3,553 research outputs found

    Indoor Positioning for Monitoring Older Adults at Home: Wi-Fi and BLE Technologies in Real Scenarios

    Get PDF
    This paper presents our experience on a real case of applying an indoor localization system formonitoringolderadultsintheirownhomes. Sincethesystemisdesignedtobeusedbyrealusers, therearemanysituationsthatcannotbecontrolledbysystemdevelopersandcanbeasourceoferrors. This paper presents some of the problems that arise when real non-expert users use localization systems and discusses some strategies to deal with such situations. Two technologies were tested to provide indoor localization: Wi-Fi and Bluetooth Low Energy. The results shown in the paper suggest that the Bluetooth Low Energy based one is preferable in the proposed task

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    Transparent Location Fingerprinting for Wireless Services

    Get PDF
    Detecting the user location is crucial in a wireless environment, not only for the choice of first-hop communication partners, but also for many auxiliary purposes: Quality of Service (availability of information in the right place for reduced congestion/delay, establishment of the optimal path), energy consumption, automated insertion of location-dependent info into a web query issued by a user (for example a tourist asking informations about a monument or a restaurant, a fireman approaching a disaster area). The technique we propose in our investigation tries to meet two main goals: transparency to the network and independence from the environment. A user entering an environment (for instance a wireless-networked building) shall be able to use his own portable equipment to build a personal map of the environment without the system even noticing it. Preliminary tests allow us to detect position on a map with an average uncertainty of two meters when using information gathered from three IEEE802.11 access points in an indoor environment composed of many rooms on a 625sqm area. Performance is expected to improve when more access points will be exploited in the test area. Implementation of the same techniques on Bluetooth are also being studied

    RFID Localisation For Internet Of Things Smart Homes: A Survey

    Full text link
    The Internet of Things (IoT) enables numerous business opportunities in fields as diverse as e-health, smart cities, smart homes, among many others. The IoT incorporates multiple long-range, short-range, and personal area wireless networks and technologies into the designs of IoT applications. Localisation in indoor positioning systems plays an important role in the IoT. Location Based IoT applications range from tracking objects and people in real-time, assets management, agriculture, assisted monitoring technologies for healthcare, and smart homes, to name a few. Radio Frequency based systems for indoor positioning such as Radio Frequency Identification (RFID) is a key enabler technology for the IoT due to its costeffective, high readability rates, automatic identification and, importantly, its energy efficiency characteristic. This paper reviews the state-of-the-art RFID technologies in IoT Smart Homes applications. It presents several comparable studies of RFID based projects in smart homes and discusses the applications, techniques, algorithms, and challenges of adopting RFID technologies in IoT smart home systems.Comment: 18 pages, 2 figures, 3 table

    Radio Frequency-Based Indoor Localization in Ad-Hoc Networks

    Get PDF
    The increasing importance of location‐aware computing and context‐dependent information has led to a growing interest in low‐cost indoor positioning with submeter accuracy. Localization algorithms can be classified into range‐based and range‐free techniques. Additionally, localization algorithms are heavily influenced by the technology and network architecture utilized. Availability, cost, reliability and accuracy of localization are the most important parameters when selecting a localization method. In this chapter, we introduce basic localization techniques, discuss how they are implemented with radio frequency devices and then characterize the localization techniques based on the network architecture, utilized technologies and application of localization. We then investigate and address localization in indoor environments where the absence of global positioning system (GPS) and the presence of unique radio propagation properties make this problem one of the most challenging topics of localization in wireless networks. In particular, we study and review the previous work for indoor localization based on radio frequency (RF) signaling (like Bluetooth‐based localization) to illustrate localization challenges and how some of them can be overcome
    corecore