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Abstract— Detecting the user location is crucial in a wireless
environment, not only for the choice of first-hop communication
partners, but also for many auxiliary purposes: Quality of Service
(availability of information in the right place for reduced conges-
tion/delay, establishment of the optimal path), energy consump-
tion, automated insertion of location-dependent info into a web
query issued by a user (for example a tourist asking informations
about a monument or a restaurant, a fireman approaching a dis-
aster area).

The technique we propose in our investigation tries to meet two
main goals: transparency to the network and independence from
the environment. A user entering an environment (for instance a
wireless-networked building) shall be able to use his own portable
equipment to build a personal map of the environment without the
system even noticing it.

Preliminary tests allow us to detect position on a map with an
average uncertainty of two meters when using information gath-
ered from three IEEE802.11 access points in an indoor environ-
ment composed of many rooms on a 625m2 area. Performance is
expected to improve when more access points will be exploited in
the test area. Implementation of the same techniques on Bluetooth
are also being studied.

Index Terms— Ad Hoc Routing, Interconnection Ad Hoc -
wired, QoS, Middleware, Location Management

I. INTRODUCTION

Location detection and management is rapidly becoming a
crucial issue in wireless environments [7], [1], [2], [8]. The
advantages of a network node (meaning both a router and a
terminal host) knowing its own position, and sharing this in-
formation with others, are becoming more and more evident as
routing algorithms are becoming smarter and mobile-specific
applications are being introduced at the user level [12].

For instance, the ability to build the network topology based
on real-world node dislocation can help building more robust
routing algorithms, reducing dependence from unwanted be-
havior of radio wave propagation: if we only use radio strength
to build the routing scheme, two distant nodes may become
prime neighbors at the expense of nearby nodes, because of
self-interference and multipath fading effects; this situation,
however, can lead to unstable topologies, since small move-
ments are likely to substantially decrease the signal level of
distant nodes.

QoS-enabled middleware can also benefit from user location
information from many viewpoints: routing schemes can be
calibrated in order to obtain the desired delay, the user’s move-
ments can be tracked in order to put relevant information as

near as possible to his location in order to reduce the wireless
link congestion; it is also possible to model the user’s future
behavior in order to reduce the expected network load by dis-
tributing information along his possible path and by prefetching
data (which will be likely requested by the user in a future time)
under good radio link conditions if substantial degrade is fore-
seen along the modeled user path, resulting in faster perceived
service and equipment battery savings.

Finally, end applications can take advantage from location
information by partially automating user queries. Consider a
tourist asking for information about the monument in front of
him. If the application (browser) is aware of the user’s location,
a lot of typing by the tourist can be avoided.

This paper is organized as follows. In Section II we introduce
the context of our work, previous results in the field of location
discovery. In Section III we describe the hardware and soft-
ware equipment we are using for experiments. In Section IV
we show some results we obtained in our tests. Section V dis-
cusses briefly our current work, extending the results reported
in this paper. Finally, some conclusions and indications for fu-
ture work are outlined in Section VI.

This research is partially supported by the Province of Trento
(Italy), in the framework of project WILMA1.

II. CONTEXT

The technique we propose in our investigation tries to meet
two main goals.

• The first is transparency to the network: a node should be
able to run the location algorithm without requiring any
algorithm on the other nodes, and without the rest of the
network even noticing it (the information will be spread
according to the user‘s privacy policy).

• The second goal is independence from the environment:
no prior knowledge of the environment should be required.
A user entering an environment (for instance a wireless-
networked building) must be able to use his own portable
equipment to build a personal map of the environment.

These goals cannot be met by a standard positioning sys-
tem. In fact, while satellite positioning systems such as USA’s
GPS, former Soviet Union’s GLONASS and the planned EU’s

1WILMA is an acronym for Wireless Internet and Location Management
Architecture; more information can be gathered at the project’s web site:
http://www.wilmaproject.org/.



 0

 5

 10

 15

 20

 25

 0  5  10  15  20  25  30

Walls
Sample points
Access points

Fig. 1. The experimental environment.

GALILEO offer a rather good position estimate together with
other interesting services, they cannot be operated indoors or in
a town with tall buildings.

Other common systems suitable for indoors localization re-
quire an appropriate infrastructure, such as infrared or radio
beacons.

To achieve our proposed goals, we assume the existence of
non-mobile nodes (which are likely to exist even in an ad-hoc
network in the form of access points to the wired network).

We use signal strength information to build a location finger-
print map of the environment. When enough information has
been collected, it can be used to derive the unknown location
based on signal strengths of the various transmitters.

III. EQUIPMENT AND EXPERIMENTAL SETTINGS

The IEEE802.11b wireless LAN technology (also known as
WiFi) was selected for the initial part of the project due to many
reasons: widespread use, fairly low cost, and above all the fact
that signal strength measurements must be reported by the card
as part of standard compliance.

Three IEEE802.11b Lucent Technologies Avaya AP-II ac-
cess points have been placed as shown in Figure 1, connected
to external antennas, while a laptop equipped with a Lucent
Technologies ORiNOCO Silver PC card was used to build a ra-
dio map of the environment; the map consists of a sequence of
pairs (ssi, pi) where ssi is a triplet of radio signal strengths and
pi is the corresponding physical coordinate in the map.

Figure 2 shows the signal strength received from access point
AP1 (the black dot at coordinates (1m, 19.6m) in Figure 1)
along the map; the −102dBm level (the lower flat portions of
the graph) is used to represent areas not covered by measures.

IV. RESULTS

After collecting several example pairs as described above, in
our case 194 samples, the algorithm chosen for determining the
unknown position, given a triplet ss of radio strength levels ex-
pressed in dBm units, was the k-nearest-neighbors technique.
Given a positive integer number k, the algorithm works as fol-
lows:
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Fig. 2. Radio signal strength for AP1 of Figure 1.
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Fig. 3. Displacement error (194 pairs, leave-one-out estimates, k = 6).

1) Find among the known signal strength ssi the k that are
nearest to the given ss triplet; let i1, i2, . . . , ik be their
indices.

2) Calculate the estimated position by the following aver-
age, weighted with the inverse of the distance between
signal strengths:

p =

k∑

j=1

1

d(ssij
, ss) + ε

· pij

k∑

j=1

1

d(ssij
, ss) + ε

,

where d(ssi, ss) is the Euclidean distance between the
two triplets, and ε is a small real constant (ε = .01 in our
tests) used to avoid division by zero.

Using this algorithm, leave-one-out error estimates were per-
formed by removing one couple from the training set and using
all other couple in the previous algorithm in order to get an es-
timation of its position based on the signal strength triplet. This
procedure was repeated for every point; displacements of the
estimated from the true position are shown as arrows in Fig-
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Fig. 4. Experimental error distribution (194 pairs, leave-one-out estimates,
k = 6).

ure 3 for k = 6 (weighted average of 6 nearest neighbors in the
radio signal space).

Distribution of the error is shown in Figure 4; every his-
togram bar represents the number of couples for which the
leave-one-out position estimate resulted in a given error class
(up to one meter for the first, from one to two meters the sec-
ond, and so on). The average positioning error is about 1.78
meters, even though occasional errors up to 10 meters show up.
The parameter value k = 6 was chosen because it returned the
lowest average error; however, all values from k = 2 to k = 25
return an average error below 2 meters.

V. ONGOING WORK

A. Different techniques and problem evolutions

The technique we proposed is substantially training by ex-
amples; the nearest-neighbors technique has been used because
the structure of the radio space is reasonably smooth (apart from
wall crossings, as we can see in Figure 2). Other training tech-
niques are being developed and studied by our group: in partic-
ular, neural network models and support vector techniques are
good candidates; their positioning error is comparable with the
nearest-neighbors technique, and while the training algorithm
takes a rather long time, the complexity of position estimation
is lower. Another technique that can take advantage from this
kind of measurements employs the Bayes theorem to derive a
conditioned probability distribution for placement.

More precision can probably be attained when the past his-
tory can be considered, by tracking user movements and com-
puting mobile average. To perform these tests, a PDA was
equipped with the same PC card and a graphical program that
allows the user to insert his current position while detecting sig-
nal strengths.

1) Neural networks [3]: Learning by example is the nat-
ural scope of neural networks. In our context the multi-layer
feed-forward perceptron model has been applied with 3 input
neurons (one for each access point), two outputs (the x and y

coordinates) and a hidden layer with 4, 8 or 16 neurons. The
best results reported an error of around two meters.
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Fig. 5. Scatterplot of signal strength against distance for AP2; the number of
wall crossings from the AP to each test point is reported.

2) Probabilistic models: Probabilistic methods based on
Bayesian theory require the knowledge of the signal propa-
gation model in the form of a probability distribution. There
are two possible approaches to building a reliable model. With
the first approach [9] a suitable radio propagation model is se-
lected, then experimental observations are used to infer its pa-
rameters. This method is particularly suitable for open environ-
ments, where distance is the main cause of signal fading and a
fairly simple model can be used. The second approach [5] is
based on repeated observations of the received signal strength
for each sampled point; once enough data have been collected,
empirical distributions of individual signal strengths at different
locations can be computed. In this case, no analytical model
of signal propagation is built, and complex environments can
be mapped, where walls and multipath fading are not negligi-
ble. The main drawback of this approach is the large number of
experimental observations needed to calculate reliable distribu-
tions of signal strengths at every sample point. Once the signal
propagation model has been built, the Bayes theory of condi-
tioned probability can be used to infer a position probability
distribution, given the signal strength distribution detected at
one point. This distribution can be used to calculate a represen-
tative point (the average of the distribution or the maximum).
Preliminary tests using the same 194-measurements set report
an average error of above 3 meters. The large error can be jus-
tified by the inadequate radio model we were forced to use. In
fact, while the training set is large enough to estimate a few pa-
rameters in an analytical radio model, it is too small to calculate
individual signal strength distributions for every sample point,
so the first of the two mentioned approaches had to be used.
The plot of signal strength against distance in Figure 5 shows
that signal strength (reported in dBm) decreases in a linear fash-
ion with distance. The number of walls crossed by the straight
line from the access point to the test point is not influent, as we
infer by observing that all plotted points seem to adjust along
the same straight line. Linear fit tests confirm that adding the
number of crossed walls in the model does not improve the de-
pendence.



3) Support vector machines: The Support Vector algorithm
is based on the statistical learning theory developed over the last
three decades by Vapnik, Chervonensis and others [11]. See, for
example, [6] for details. The algorithm can be used for classifi-
cation (i.e., mapping samples on a two-valued set, usually ±1),
scoring (mapping on small integers) and regression. Various
implementations can be found on the Internet; in particular we
used the packages SVMlight developed by T. Joachims [4]
and mySVM by S. Rüping. In this case, current leave-one-out
error estimates are about 2 meters.

B. Bluetooth scatternets

Beside WiFi, we are also working on localization issues with
Bluetooth. In particular, localization of Bluetooth devices can
help optimize interconnection topologies from the point of view
of communication speed and energy consumption.

Interconnected piconets are called scatternets, and their aim
is to allow more than eight active Bluetooth devices in the same
network while augmenting their range by bridging. However,
scatternet formation and operation algorithms are not part of the
Bluetooth specifications [10] yet. In the frame of our work we
try to develop new methods for optimizing communications in
scatternets taking advantage of localization information that we
can gather from the mobile devices.

The signal strength measurement problem with Bluetooth is
not as straightforward as in the case of IEEE 802.11b. The lat-
est version of the Bluetooth Specification does not require the
device manufacturers to provide a means for software devel-
opers for the exact measurement of the signal strength, as in
the case of WiFi. A Bluetooth device only needs to be able to
tell whether the signal strength is acceptable, too strong or too
weak. This granularity is not enough for developing a position-
ing system similar to the one presented in this work. Since the
localization problem is very important in context-aware com-
puting, a standard way for measuring the signal strength be-
tween Bluetooth radios would be extremly useful.

Another open issue when extending our work to Bluetooth is
the series of interworking problems experienced with systems
from different producers. These problems originate from the
different implementations of the higher layer protocols.

VI. CONCLUSIONS

We discussed experiments to determine the user’s position
in a wireless networked environment without the need of addi-
tional infrastructures or of particular network configuration.

Preliminary tests allow us to detect position on a map with
an average uncertainty of two meters when using information
gathered from three IEEE802.11b access points in an indoor
environment composed of many rooms on a 625m2 area. Per-
formance is expected to improve when more access points will
be exploited in the test area. Implementation of the same tech-
niques on Bluetooth, aimed at providing localization-based ser-
vices as well as topology formation algorithms, are also being
studied.
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