10 research outputs found

    A Comprehensive Survey on the Implementations, Attacks, and Countermeasures of the Current NIST Lightweight Cryptography Standard

    Full text link
    This survey is the first work on the current standard for lightweight cryptography, standardized in 2023. Lightweight cryptography plays a vital role in securing resource-constrained embedded systems such as deeply-embedded systems (implantable and wearable medical devices, smart fabrics, smart homes, and the like), radio frequency identification (RFID) tags, sensor networks, and privacy-constrained usage models. National Institute of Standards and Technology (NIST) initiated a standardization process for lightweight cryptography and after a relatively-long multi-year effort, eventually, in Feb. 2023, the competition ended with ASCON as the winner. This lightweight cryptographic standard will be used in deeply-embedded architectures to provide security through confidentiality and integrity/authentication (the dual of the legacy AES-GCM block cipher which is the NIST standard for symmetric key cryptography). ASCON's lightweight design utilizes a 320-bit permutation which is bit-sliced into five 64-bit register words, providing 128-bit level security. This work summarizes the different implementations of ASCON on field-programmable gate array (FPGA) and ASIC hardware platforms on the basis of area, power, throughput, energy, and efficiency overheads. The presented work also reviews various differential and side-channel analysis attacks (SCAs) performed across variants of ASCON cipher suite in terms of algebraic, cube/cube-like, forgery, fault injection, and power analysis attacks as well as the countermeasures for these attacks. We also provide our insights and visions throughout this survey to provide new future directions in different domains. This survey is the first one in its kind and a step forward towards scrutinizing the advantages and future directions of the NIST lightweight cryptography standard introduced in 2023

    Fault-Resilient Lightweight Cryptographic Block Ciphers for Secure Embedded Systems

    Get PDF
    The development of extremely-constrained environments having sensitive nodes such as RFID tags and nano-sensors necessitates the use of lightweight block ciphers. Indeed, lightweight block ciphers are essential for providing low-cost confidentiality to such applications. Nevertheless, providing the required security properties does not guarantee their reliability and hardware assurance when the architectures are prone to natural and malicious faults. In this thesis, considering false-alarm resistivity, error detection schemes for the lightweight block ciphers are proposed with the case study of XTEA (eXtended TEA). We note that lightweight block ciphers might be better suited for low-resource environments compared to the Advanced Encryption Standard, providing low complexity and power consumption. To the best of the author\u27s knowledge, there has been no error detection scheme presented in the literature for the XTEA to date. Three different error detection approaches are presented and according to our fault-injection simulations for benchmarking the effectiveness of the proposed schemes, high error coverage is derived. Finally, field-programmable gate array (FPGA) implementations of these proposed error detection structures are presented to assess their efficiency and overhead. The proposed error detection architectures are capable of increasing the reliability of the implementations of this lightweight block cipher. The schemes presented can also be applied to lightweight hash functions with similar structures, making the presented schemes suitable for providing reliability to their lightweight security-constrained hardware implementations

    Efficient and Secure Implementations of Lightweight Symmetric Cryptographic Primitives

    Get PDF
    This thesis is devoted to efficient and secure implementations of lightweight symmetric cryptographic primitives for resource-constrained devices such as wireless sensors and actuators that are typically deployed in remote locations. In this setting, cryptographic algorithms must consume few computational resources and withstand a large variety of attacks, including side-channel attacks. The first part of this thesis is concerned with efficient software implementations of lightweight symmetric algorithms on 8, 16, and 32-bit microcontrollers. A first contribution of this part is the development of FELICS, an open-source benchmarking framework that facilitates the extraction of comparative performance figures from implementations of lightweight ciphers. Using FELICS, we conducted a fair evaluation of the implementation properties of 19 lightweight block ciphers in the context of two different usage scenarios, which are representatives for common security services in the Internet of Things (IoT). This study gives new insights into the link between the structure of a cryptographic algorithm and the performance it can achieve on embedded microcontrollers. Then, we present the SPARX family of lightweight ciphers and describe the impact of software efficiency in the process of shaping three instances of the family. Finally, we evaluate the cost of the main building blocks of symmetric algorithms to determine which are the most efficient ones. The contributions of this part are particularly valuable for designers of lightweight ciphers, software and security engineers, as well as standardization organizations. In the second part of this work, we focus on side-channel attacks that exploit the power consumption or the electromagnetic emanations of embedded devices executing unprotected implementations of lightweight algorithms. First, we evaluate different selection functions in the context of Correlation Power Analysis (CPA) to infer which operations are easy to attack. Second, we show that most implementations of the AES present in popular open-source cryptographic libraries are vulnerable to side-channel attacks such as CPA, even in a network protocol scenario where the attacker has limited control of the input. Moreover, we describe an optimal algorithm for recovery of the master key using CPA attacks. Third, we perform the first electromagnetic vulnerability analysis of Thread, a networking stack designed to facilitate secure communication between IoT devices. The third part of this thesis lies in the area of side-channel countermeasures against power and electromagnetic analysis attacks. We study efficient and secure expressions that compute simple bitwise functions on Boolean shares. To this end, we describe an algorithm for efficient search of expressions that have an optimal cost in number of elementary operations. Then, we introduce optimal expressions for first-order Boolean masking of bitwise AND and OR operations. Finally, we analyze the performance of three lightweight block ciphers protected using the optimal expressions

    Understanding Quantum Technologies 2022

    Full text link
    Understanding Quantum Technologies 2022 is a creative-commons ebook that provides a unique 360 degrees overview of quantum technologies from science and technology to geopolitical and societal issues. It covers quantum physics history, quantum physics 101, gate-based quantum computing, quantum computing engineering (including quantum error corrections and quantum computing energetics), quantum computing hardware (all qubit types, including quantum annealing and quantum simulation paradigms, history, science, research, implementation and vendors), quantum enabling technologies (cryogenics, control electronics, photonics, components fabs, raw materials), quantum computing algorithms, software development tools and use cases, unconventional computing (potential alternatives to quantum and classical computing), quantum telecommunications and cryptography, quantum sensing, quantum technologies around the world, quantum technologies societal impact and even quantum fake sciences. The main audience are computer science engineers, developers and IT specialists as well as quantum scientists and students who want to acquire a global view of how quantum technologies work, and particularly quantum computing. This version is an extensive update to the 2021 edition published in October 2021.Comment: 1132 pages, 920 figures, Letter forma

    Shortest Route at Dynamic Location with Node Combination-Dijkstra Algorithm

    Get PDF
    Abstract— Online transportation has become a basic requirement of the general public in support of all activities to go to work, school or vacation to the sights. Public transportation services compete to provide the best service so that consumers feel comfortable using the services offered, so that all activities are noticed, one of them is the search for the shortest route in picking the buyer or delivering to the destination. Node Combination method can minimize memory usage and this methode is more optimal when compared to A* and Ant Colony in the shortest route search like Dijkstra algorithm, but can’t store the history node that has been passed. Therefore, using node combination algorithm is very good in searching the shortest distance is not the shortest route. This paper is structured to modify the node combination algorithm to solve the problem of finding the shortest route at the dynamic location obtained from the transport fleet by displaying the nodes that have the shortest distance and will be implemented in the geographic information system in the form of map to facilitate the use of the system. Keywords— Shortest Path, Algorithm Dijkstra, Node Combination, Dynamic Location (key words

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    XXIII Congreso Argentino de Ciencias de la Computación - CACIC 2017 : Libro de actas

    Get PDF
    Trabajos presentados en el XXIII Congreso Argentino de Ciencias de la Computación (CACIC), celebrado en la ciudad de La Plata los días 9 al 13 de octubre de 2017, organizado por la Red de Universidades con Carreras en Informática (RedUNCI) y la Facultad de Informática de la Universidad Nacional de La Plata (UNLP).Red de Universidades con Carreras en Informática (RedUNCI
    corecore