

PhD-FSTC-2017-77
The Faculty of Sciences, Technology and Communication

DISSERTATION

Defence held on 29/11/2017 in Luxembourg

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG

EN INFORMATIQUE

by

Dumitru-Daniel DINU

EFFICIENT AND SECURE IMPLEMENTATIONS OF

LIGHTWEIGHT SYMMETRIC CRYPTOGRAPHIC

PRIMITIVES

Dissertation defence committee

Dr Alex Biryukov, dissertation supervisor
Professor, Université du Luxembourg

Dr Benedikt Gierlichs
Researcher, KU Leuven

Dr Volker Müller, Chairman
Associate Professor, Université du Luxembourg

Dr Daniel Page
Senior Lecturer, University of Bristol

Dr Peter Y. A. Ryan, Vice Chairman
Professor, Université du Luxembourg

iii

Abstract

This thesis is devoted to efficient and secure implementations of lightweight symmetric
cryptographic primitives for resource-constrained devices such as wireless sensors
and actuators that are typically deployed in remote locations. In this setting,
cryptographic algorithms must consume few computational resources and withstand
a large variety of attacks, including side-channel attacks.

The first part of this thesis is concerned with efficient software implementations
of lightweight symmetric algorithms on 8, 16, and 32-bit microcontrollers. A first
contribution of this part is the development of FELICS, an open-source benchmarking
framework that facilitates the extraction of comparative performance figures from
implementations of lightweight ciphers. Using FELICS, we conducted a fair evaluation
of the implementation properties of 19 lightweight block ciphers in the context of
two different usage scenarios, which are representatives for common security services
in the Internet of Things (IoT). This study gives new insights into the link between
the structure of a cryptographic algorithm and the performance it can achieve on
embedded microcontrollers. Then, we present the Sparx family of lightweight ciphers
and describe the impact of software efficiency in the process of shaping three instances
of the family. Finally, we evaluate the cost of the main building blocks of symmetric
algorithms to determine which are the most efficient ones. The contributions of
this part are particularly valuable for designers of lightweight ciphers, software and
security engineers, as well as standardization organizations.

In the second part of this work, we focus on side-channel attacks that exploit the
power consumption or the electromagnetic emanations of embedded devices executing
unprotected implementations of lightweight algorithms. First, we evaluate different
selection functions in the context of Correlation Power Analysis (CPA) to infer
which operations are easy to attack. Second, we show that most implementations
of the AES present in popular open-source cryptographic libraries are vulnerable
to side-channel attacks such as CPA, even in a network protocol scenario where
the attacker has limited control of the input. Moreover, we describe an optimal
algorithm for recovery of the master key using CPA attacks. Third, we perform the
first electromagnetic vulnerability analysis of Thread, a networking stack designed
to facilitate secure communication between IoT devices.

The third part of this thesis lies in the area of side-channel countermeasures
against power and electromagnetic analysis attacks. We study efficient and secure
expressions that compute simple bitwise functions on Boolean shares. To this end,
we describe an algorithm for efficient search of expressions that have an optimal cost
in number of elementary operations. Then, we introduce optimal expressions for
first-order Boolean masking of bitwise AND and OR operations. Finally, we analyze
the performance of three lightweight block ciphers protected using the optimal
expressions.

To my family.

vii

Acknowledgements

This doctoral thesis would not exist without the support, help, and encouragement
of many people. It is a pleasure for me to express my gratitude to all of them.

I am deeply thankful to my supervisor, Alex Biryukov. He gave me the opportu-
nity to pursue a Ph.D. in his research group and guided me with patience through
my studies. I highly appreciate the freedom and flexibility that Alex offered to me
in addition to his wise advice.

I am very grateful to Johann Großschädl for his enthusiastic support, the in-
teresting discussions we had, and the wonderful time I spent working with him on
interesting research problems. Johann introduced me to the design of masking coun-
termeasures and taught me how to write papers. I also thank him for proofreading
this thesis and suggesting many corrections.

I am also grateful to Ilya Kizhvatov, who was my mentor during an exciting
internship at NXP Semiconductors. He provided me an industrial view on side-
channel attacks and generously shared his expertise with me. I enjoyed very much
our collaboration and the interaction with the highly experienced researchers and
engineers from NXP Semiconductors.

I warmly thank Yann Le Corre and André Stemper for the endless engineering
discussions we had and their technical assistance. I also owe gratitude to Fabienne
Schmitz, Isabelle Schroeder, and Natalie Kirf for their help with many administrative
tasks.

I am lucky to have had the opportunity to write papers together with out-
standing researchers: Alex Biryukov, Johann Großschädl, Ilya Kizhvatov, Dmitry
Khovratovich, Yann Le Corre, Léo Perrin, Aleksei Udovenko, and Vesselin Velichkov.

I would like to thank Benedikt Gierlichs, Volker Müller, Daniel Page, and Peter
Ryan for serving on my defence committee and providing valuable comments on my
thesis.

Many thanks to my current and former colleagues from the University of Lux-
embourg for creating a good working environment: Patrick Derbez, Daniel Fehrer,
Johann Großschädl, Dmitry Khovratovich, Yann Le Corre, Zhe Liu, Léo Perrin,
Ivan Pustogarov, Sergei Tikhomirov, Aleksei Udovenko, Praveen Vadnala, Vesselin
Velichkov, and Srinivas Venkatesh.

I am thankful to all my friends from Luxembourg for the nice time and good mem-
ories. I am grateful to my family for their unconditional support and encouragement
through all these years.

The work described in this thesis would not have been possible without the
funding from the Fonds National de la Recherche (FNR) through the CORE project
ACRYPT (ID C12-15-4009992).

Contents

1 Introduction 1

1.1 From Classical to Modern Cryptography 2
1.2 Modern Cryptography . 3

1.2.1 Security Services . 3
1.2.2 Kerckhoffs’ Principle . 4
1.2.3 Adversarial Models . 5

1.3 Cryptographic Toolkit . 6
1.3.1 Symmetric Cryptography . 6

1.3.1.1 Block Ciphers . 6
1.3.1.2 Stream Ciphers . 7
1.3.1.3 Hash Functions . 8
1.3.1.4 Message Authentication Codes 8
1.3.1.5 Authenticated Ciphers 8

1.3.2 Asymmetric Cryptography . 8
1.3.2.1 Public-Key Encryption 9
1.3.2.2 Digital Signatures 9
1.3.2.3 Public Key Infrastructure (PKI) 9

1.3.3 Symmetric vs. Asymmetric Cryptography 9
1.4 Implementations . 10

1.4.1 Hardware Implementations 11
1.4.2 Software Implementations . 11
1.4.3 Hardware vs. Software Implementations 12
1.4.4 Implementation Efficiency . 12
1.4.5 Metrics for Hardware Implementations 12
1.4.6 Metrics for Software Implementations 13
1.4.7 Optimization Strategies . 14

1.5 Implementation Attacks . 15
1.5.1 Short History . 15
1.5.2 Classification . 18

1.6 Side-Channel Attacks . 20
1.6.1 Power Analysis Attacks . 20
1.6.2 Electromagnetic Analysis Attacks 21
1.6.3 Attack Toolkit . 21

1.6.3.1 Measurement Setup 22

x Contents

1.6.3.2 Signal Processing . 24
1.6.3.3 Attack Algorithms 25
1.6.3.4 Metrics . 28
1.6.3.5 Tools . 29

1.7 Countermeasures against Side-Channel Attacks 30
1.7.1 Masking . 31

1.7.1.1 Boolean Masking . 32
1.7.1.2 Provable Security 32

1.7.2 Leakage Detection Tests . 33
1.8 Internet of Things (IoT) . 33

1.8.1 Constraints . 34
1.8.2 Lightweight Cryptography . 34
1.8.3 Device Types . 35

1.8.3.1 Lower Bound for the Computational Power of IoT
Devices . 35

1.8.3.2 Upper Bound for the Computational Power of IoT
Devices . 36

1.8.3.3 Middle Range IoT Devices 36
1.8.4 Threat Model . 36

1.9 Motivation . 37
1.10 Research Contributions . 37

1.10.1 Part I – Efficient Implementations 38
1.10.2 Part II – Side-Channel Attacks 39
1.10.3 Part III – Side-Channel Countermeasures 40

I Efficient Implementations 41

2 Fair Evaluation of Lightweight Cryptographic Systems 43

2.1 Introduction . 44
2.1.1 Research Contribution . 45

2.2 Related Work . 45
2.2.1 BLOC Project . 45
2.2.2 eBACS Project . 46
2.2.3 XBX Project . 47
2.2.4 ATHENa Project . 48
2.2.5 ECRYPT II Project – Performance Evaluation on ATtiny45 . 48

2.3 Motivation . 49
2.4 Goals . 50
2.5 Benchmarking Framework . 51

2.5.1 Structure . 51
2.5.1.1 Core Module . 51
2.5.1.2 Block Ciphers Module 53
2.5.1.3 Stream Ciphers Module 54
2.5.1.4 Authenticated Ciphers Module 55

Contents xi

2.5.1.5 Hash Functions Module 56

2.5.2 Export Formats . 57

2.6 Target Devices . 57

2.6.1 8-bit AVR ATmega128 Microcontroller 58

2.6.2 16-bit MSP430F1611 Microcontroller 58

2.6.3 32-bit ARM Cortex-M3 Microcontroller 59

2.7 Metrics . 59

2.7.1 Code Size . 59

2.7.2 RAM . 60

2.7.3 Execution Time . 61

2.8 Summary . 61

3 Fair Evaluation of Lightweight Block Ciphers 63

3.1 Introduction . 63

3.1.1 Our Contributions . 65

3.2 Benchmarking Framework . 66

3.2.1 Usage Scenarios . 67

3.2.1.1 Scenario 1: Communication Protocol 67

3.2.1.2 Scenario 2: Challenge-Response Authentication . . . 68

3.3 Analyzed Ciphers . 68

3.4 Results . 74

3.4.1 Methodology . 75

3.4.2 Discussion of Results . 77

3.4.3 Comparison with other Benchmarking Results 81

3.5 Summary . 81

4 On the Efficiency of the Sparx Family of Lightweight Block Ci-
phers 83

4.1 Introduction . 83

4.2 Short Description . 84

4.3 Choosing the arx-box A . 85

4.4 Choosing the Linear Layer λw . 86

4.5 Key Schedule . 87

4.6 Implementation . 88

4.6.1 Main Components . 88

4.6.2 Flexibility . 90

4.6.3 Evaluation . 91

4.6.4 Comparison . 92

4.7 Test Vectors . 93

4.8 Other Implementations . 94

4.9 Summary . 94

xii Contents

5 Efficient Lightweight Symmetric Cryptography 95

5.1 Introduction . 95
5.1.1 Our Contribution . 96

5.2 Efficient Implementations . 97
5.2.1 Bitwise Operations . 97
5.2.2 Modular Arithmetic Operations 98
5.2.3 Rotations . 99

5.2.3.1 8-bit Operand on AVR 101
5.2.3.2 16-bit Operand on AVR 101
5.2.3.3 32-bit Operand on AVR 101
5.2.3.4 8-bit Operand on MSP 102
5.2.3.5 16-bit Operand on MSP 103
5.2.3.6 32-bit Operand on MSP 103
5.2.3.7 ARM . 104

5.2.4 Table-Based Lookups . 105
5.2.4.1 8-bit Table on AVR 106
5.2.4.2 4-bit Table on AVR 106
5.2.4.3 8-bit Table on MSP 106
5.2.4.4 4-bit Table on MSP 106
5.2.4.5 8-bit Table on ARM 106
5.2.4.6 4-bit Table on ARM 107

5.2.5 Stack Operations . 107
5.3 Discussion . 107

5.3.1 Choosing the Best Operations 107
5.3.2 Choosing the Best Word Size 108
5.3.3 Substitution Layer . 108
5.3.4 Linear Layer . 108
5.3.5 Cipher’s State . 109
5.3.6 Structure . 109

5.4 Summary . 109

II Side-Channel Attacks 111

6 Resilience to Correlation Power Analysis Attacks 113

6.1 Introduction . 113
6.1.1 Research Contributions . 115

6.2 Preliminaries . 115
6.2.1 Theoretical Metrics for the SCA Resistance of S-Boxes 116

6.3 Evaluation Framework . 118
6.3.1 Measurement Setup . 118
6.3.2 Metrics . 119

6.4 Quantifying the Leakage . 120
6.4.1 Understanding the Device’s Leakage 121
6.4.2 Comparison of Different Selection Functions 122

Contents xiii

6.5 Analyzed Ciphers . 125
6.6 Experimental Results . 127
6.7 Summary . 129

7 Correlation Power Analysis Attacks on Communication Protocols131

7.1 Introduction . 131
7.1.1 Research Contributions . 133

7.2 Preliminaries . 134
7.2.1 Description of the AES . 134
7.2.2 Attacking Temporary Key Bytes 134
7.2.3 Software Implementations of the AES 136
7.2.4 Measurement Setup . 137

7.3 Quantifying the Leakage . 138
7.4 Generating the Evaluation Cases . 140
7.5 The Attack . 143

7.5.1 Optimality . 146
7.5.2 Choosing the Best Attack Strategy 147

7.6 Results . 148
7.6.1 Electromagnetic Leakage . 148
7.6.2 Simulated Leakage . 149
7.6.3 Detailed Results . 150

7.7 Countermeasures . 152
7.8 Summary . 152

8 An Electromagnetic Vulnerability Analysis of Thread 153

8.1 Introduction . 154
8.1.1 Attack Surface and Threats for Connected Devices 154
8.1.2 Motivation . 155
8.1.3 Contribution . 155
8.1.4 Related Work . 156
8.1.5 Responsible Disclosure . 157

8.2 Thread . 157
8.2.1 Security Material . 158
8.2.2 Mesh Link Establishment (MLE) 159

8.3 Threat Model . 160
8.4 Side-Channel Vulnerability Analysis 162

8.4.1 Relationship between MK and KMLE 162
8.4.2 Processing of an MLE Parent Request 163
8.4.3 Attack on Key Generation . 164
8.4.4 Attack on the AES in CCM Mode 165

8.5 Implementation of the Most Feasible Attack 166
8.5.1 Experimental Setup . 167

8.5.1.1 Thread Network . 167
8.5.1.2 Measurement Setup 167

8.5.2 Alignment of the Electromagnetic Traces 168

xiv Contents

8.5.3 Attack Results . 169
8.5.4 Improving the Attack . 170

8.6 Feasibility and Limitations . 171
8.6.1 Equipment Cost . 171
8.6.2 Portability . 171
8.6.3 Other Attacks . 171

8.7 Quantification of the Attack Effort 172
8.8 Additional Attack Paths . 173

8.8.1 Attack on Loading the Security Material 173
8.8.2 Elliptic Curve Implementations 173

8.9 Countermeasures . 173
8.9.1 Tamper Resistance . 174
8.9.2 Protected Cryptographic Implementations 174
8.9.3 Fresh Re-keying . 174
8.9.4 Protocol-level Mitigations . 174
8.9.5 Security Certification Scheme 174

8.10 Summary . 175

III Side-Channel Countermeasures 177

9 Optimal First-Order Boolean Masking 179

9.1 Introduction . 179
9.1.1 Boolean Masking . 180
9.1.2 Contributions . 182

9.2 Search Algorithm . 182
9.2.1 Description . 182
9.2.2 Optimality . 183
9.2.3 Instruction Set Architecture (ISA) 185
9.2.4 Leakage Model . 185
9.2.5 Extension to Higher-Order Masking 185
9.2.6 Other Improvements . 185
9.2.7 Results . 185

9.3 Applications . 186
9.3.1 Modular Addition and Subtraction 186

9.3.1.1 Masking Cost . 187
9.3.1.2 Leakage Assessment 189

9.3.2 Other Applications . 189
9.4 Implementations . 189

9.4.1 Masked Addition . 190
9.4.2 Lightweight Block Ciphers . 191

9.4.2.1 Speck . 191
9.4.2.2 Simon . 192
9.4.2.3 RECTANGLE . 193
9.4.2.4 Leakage Assessment 194

Contents xv

9.4.2.5 Comparison . 194
9.4.2.6 Discussion . 195

9.5 Summary . 196

10 Conclusion 197
10.1 Impact . 199
10.2 Future Directions . 199

Bibliography 201

Publications 243

Appendices 247
A Assembly Code for Basic 8-bit Rotations 247
B Assembly Code for Basic 16-bit Rotations 249
C Assembly Code for Basic 32-bit Rotations 251

List of Figures

1.1 Comparison between the black box and gray box security models. . . 15
1.2 A classification of implementation attacks. 20
1.3 Diagram of a measurement setup used for power and EM attacks. . . 23
1.4 A power trace of the AES-128 from an Arduino Uno. 24

2.1 Modular structure of FELICS. 52

4.1 The structure of Sparx encryption. 84
4.2 The structure of Sparx key schedule. 85
4.3 The candidate 32-bit arx-boxes, MARX-2 and Speckey. 85
4.4 The linear layers of Sparx-64/128 and Sparx-128/128. 86
4.5 The Feistel functions used by the linear layers of Sparx. 87
4.6 The key schedules of Sparx-64/128 and Sparx-128/128. 87
4.7 Computation of L on 8-bit registers. 89
4.8 Computation of L′ on 8-bit registers. 90

6.1 Measurement setups. 118
6.2 Correlation coefficient difference spectrum. 121
6.3 Correlation coefficient difference spectrum for four assembly instructions.122

7.1 The first input block for the AES-CTR and AES-CCM modes used in
IEEE 802.15.4 [170]. 132

7.2 The device under test (DUT). 138
7.3 Distribution of the Hamming weight of the output of the AES S-box

and T-table. 139
7.4 Symbolic processing of an initial state. 142
7.5 The number of EM traces required to fully recover the master key. . 149
7.6 The number of simulated traces required to fully recover the master key.150

8.1 Establishing a communication link between two Thread nodes. . . . 160
8.2 Key generation using HMAC. 164
8.3 Input format for the first block of (a) AES-CBC and (b) AES-CTR. 165
8.4 The EM probes used for measurement of the EM leakage. 168
8.5 Timing of various events that occur during the acquisition of an EM

trace. 169

xviii List of Figures

9.1 The result of the t-test applied to our implementation of Speck. . . 194
9.2 The result of the t-test applied to our implementation of Simon. . . 195
9.3 The result of the t-test applied to our implementation of RECTANGLE.195
9.4 Performance comparison of unprotected and first-order protected

implementations of Speck, Simon, and RECTANGLE. 196

List of Tables

1.1 Security services provided by different symmetric and asymmetric
cryptographic primitives. 10

2.1 Comparison of software benchmarking frameworks. 49
2.2 Compilers used to build the implementations for each target device. . 51
2.3 Tools used to extract the metrics for each target device. 53
2.4 Key characteristics of the three microcontrollers used by FELICS. . . 57

3.1 Overview of the 19 lightweight block ciphers considered in this evaluation. 69
3.2 Results for Scenario 1. Encrypt and decrypt 128 bytes of data using

CBC mode. 76
3.3 Results for Scenario 1 (encryption of 128 bytes of data using CBC

mode) when using different weights wm for the three metrics. 77
3.4 Results for Scenario 2. Encrypt 128 bits of data using CTR mode.

Balanced (globally efficient) implementations. 78
3.5 Results for Scenario 2. Encrypt 128 bits of data using CTR mode.

Small code size and RAM implementations. 80

4.1 Sparx parameters. 84
4.2 Comparison between the execution time of MARX-2 and Speckey. 86
4.3 Performance characteristics of the main components of Sparx. . . . 89
4.4 Different trade-offs between the execution time and code size. 91
4.5 The performance figures of the balanced (globally efficient) implemen-

tations. 92
4.6 Top 10 best implementations in Scenario 1 (encryption key schedule,

encryption and decryption of 128 bytes of data using CBC mode). . 92
4.7 Sparx test vectors. 93

5.1 General-purpose registers (GPRs) of each target device. 96
5.2 Execution time of bitwise operations. 98
5.3 Execution time and number of additional registers required to perform

modular arithmetic operations. 99
5.4 Trade-offs between the execution time and number of additional

registers required to perform various rotations. 100

xx List of Tables

5.5 Execution time and number of additional registers required to perform
8-bit rotations. 102

5.6 Execution time and number of additional registers required to perform
16-bit rotations. 103

5.7 Execution time and number of additional registers required to perform
32-bit rotations. 104

5.8 Execution time and number of additional registers for table lookup
operations. 105

5.9 Execution time of stack operations. 107

6.1 Correlation coefficient difference. 122
6.2 Leakages of different selection functions. 123
6.3 Detailed leakages for different selection functions. 124
6.4 Nonlinearity (NL) of the components of the modular addition. 125
6.5 Main characteristics of the analyzed lightweight ciphers. 126
6.6 Properties of the S-boxes of four analyzed ciphers. 127

7.1 A summary of the existing AES implementations used by open-source
cryptographic libraries written in C/C++. 137

7.2 Correlation coefficient difference. 138
7.3 Possible attack outcomes for different number of bytes controlled by

attacker. 143
7.4 All evaluation cases with an example of a possible initial state for

each evaluation case. 145
7.5 The number of individual CPA attacks required to recover the master

key for different number of bytes controlled by attacker. 147
7.6 The number of traces required to fully recover the master key for each

evaluation case. 151

8.1 Device types and roles in a Thread network. 158
8.2 Summary of the attack types specific to the IoT. 162
8.3 Attack rating using an adaptation of the rating for smart cards from

Joint Interpretation Library [330]. 172

9.1 The cost (in number of elementary operations) and the number of
randoms of different secure operations. 181

9.2 Expressions, number of randoms and number of operations for different
secure operations. 186

9.3 Comparison of the number of instructions required to perform different
secure operations. 189

9.4 Number of elementary operations and random numbers required for
Kogge-Stone addition/subtraction on Boolean shares for different
values of the operand size. 190

9.5 Execution time and code size for secure addition and subtraction on
Boolean shares using the Kogge-Stone adder. 191

List of Tables xxi

9.6 Execution time, code size and performance penalty factor for different
secure implementations of Speck-64/128. 192

9.7 Execution time, code size and performance penalty factor for different
secure implementations of Simon-64/128. 193

9.8 Execution time, code size and performance penalty factor for different
secure implementations of RECTANGLE-64/128. 194

List of Algorithms

1 CPA evaluation algorithm . 120
2 AES encryption . 135
3 AES key schedule for a 16-byte master key 135
4 Symbolic processing of an initial state 141
5 The attack algorithm . 144
6 Searching for optimal expression . 184
7 Improved Kogge-Stone masked addition 187
8 Improved Kogge-Stone masked subtraction 188

Listings

2.1 Required function signatures for block ciphers. 53
2.2 Required function signatures for stream ciphers. 54
2.3 Required function signatures for authenticated ciphers. 55
2.4 Required function signatures for hash functions. 56

Chapter 1

Introduction

The Latin expression “sapientia est potentia”1, which is often translated as “knowledge
is power”, captures the great importance of knowledge for humankind. At the same
time, it shows why people became interested in protecting information 2, which is
one of the main ingredients of knowledge.

Cryptology (from Greek kryptós – hidden and lógos – word) is the science that
studies communication and storage of data in secure and usually secret form [324]. It
encompasses two highly related areas: cryptography (from the Greek gráphein – to
write) and cryptanalysis (from Greek analýein – to loosen or to untie). Cryptography
uses mathematical techniques to provide information security, such as confidentiality,
data integrity, entity authentication, and data origin authentication. The large
field of cryptography also includes algorithms and protocols designed for electronic
transactions and elections or cryptocurrencies. On the other hand, cryptanalysis
aims at finding weaknesses in cryptographic algorithms.

Contents

1.1 From Classical to Modern Cryptography 2

1.2 Modern Cryptography . 3

1.2.1 Security Services . 3

1.2.2 Kerckhoffs’ Principle . 4

1.2.3 Adversarial Models . 5

1.3 Cryptographic Toolkit . 6

1.3.1 Symmetric Cryptography 6

1.3.2 Asymmetric Cryptography 8

1.3.3 Symmetric vs. Asymmetric Cryptography 9

1.4 Implementations . 10

1.4.1 Hardware Implementations 11

1.4.2 Software Implementations 11

1.4.3 Hardware vs. Software Implementations 12

1The expression appeared for the first time in this form in [162].
2RFC 2828 [322] defines information as “facts and ideas, which can be represented (encoded) as

various forms of data” .

2 Introduction

1.4.4 Implementation Efficiency 12

1.4.5 Metrics for Hardware Implementations 12

1.4.6 Metrics for Software Implementations 13

1.4.7 Optimization Strategies 14

1.5 Implementation Attacks 15

1.5.1 Short History . 15

1.5.2 Classification . 18

1.6 Side-Channel Attacks . 20

1.6.1 Power Analysis Attacks 20

1.6.2 Electromagnetic Analysis Attacks 21

1.6.3 Attack Toolkit . 21

1.7 Countermeasures against Side-Channel Attacks 30

1.7.1 Masking . 31

1.7.2 Leakage Detection Tests 33

1.8 Internet of Things (IoT) 33

1.8.1 Constraints . 34

1.8.2 Lightweight Cryptography 34

1.8.3 Device Types . 35

1.8.4 Threat Model . 36

1.9 Motivation . 37

1.10 Research Contributions . 37

1.10.1 Part I – Efficient Implementations 38

1.10.2 Part II – Side-Channel Attacks 39

1.10.3 Part III – Side-Channel Countermeasures 40

1.1 From Classical to Modern Cryptography

Historically, cryptography was more of an art than science. The first forms of secret
writing date to ancient Egypt about 4000 years B.C. [181, 385]. At that time, scribes
were communicating by written messages using hieroglyphs. The art of secret writing
using hieroglyphs was transmitted from father to son and was broken only several
millenia later by Champollion [371].

The ancient Greeks used a cylinder with a strip of parchment wound around it to
write secret messages. This tool (the scytale), invented around 500 B.C. by Spartans,
represents the first transposition cipher. To recover the original message, one had
to wrap the parchment around a rod of the same diameter and read along the axis.
This cipher was used to communicate during military campaigns.

Later, the Roman emperor Julius Caesar used another technique (the Caesar
cipher) to protect his private correspondence. It consists in replacing every letter of
a message by the letter which comes three positions later in the alphabet. The initial
message can be recovered by performing the inverse transformation. The Caesar
cipher is regarded as the first recorded use of a substitution cipher [325].

1.2 Modern Cryptography 3

The ROT13 substitution is a special case of the Caesar cipher that is typically
used to hide offensive jokes or to obscure an answer to a puzzle [310]. It replaces
a letter of the basic Latin alphabet, which consists of 26 letters, with the letter
situated 13 positions after it in the alphabet and thus it is its own inverse.

Modern cryptography started to develop in the first half of the 20th century [183].
A famous example from that time is the Enigma machine invented by the German
engineer Arthur Scherbius at the end of World War I and patented in 1928 [19].
Several different Enigma models were produced. Enigma I, also known as the
Wehrmacht, was extensively used by German military services before and during
World War II. Under the leadership of mathematician Marian Rejewski, the Poles
reverse-engineered Enigma and found the first attack against it. Their efforts were
continued by a British team led by mathematician Alan Turing who created the
bombe, an electromechanical device designed to discover the daily settings of the
Enigma machines used by the German troops.

In the years immediately following World War II, both cryptography and crypt-
analysis continued to develop at a rapid pace, driven by several significant technical
innovations such as the invention of the von Neumann architecture in 1945 [374]
and of the transistor in 1947 [66]. Some other notable milestones in the history
of modern cryptography are the seminal work of Claude Shannon that established
the mathematical basis of information theory in 1948 [319, 320], the first public
description of public-key cryptography by Diffie and Hellman in 1976 [101], and the
publication of the Data Encryption Standard (DES) in 1977 [360], which is based on
a slightly modified version of an earlier design of cryptographer Horst Feistel. As a
consequence of all breakthroughs and findings in this area, a rich theory emerged
that enabled a rigorous study of cryptology (cryptography and cryptanalysis) as a
science.

The advent of the first personal computer in 1981 [257] and the rise of the
Internet in the early 1990s set the stage for mass usage of cryptography. Nowadays,
cryptography plays a crucial role in our lives since it is at the heart of computer and
communication security. Without doubt, the expansion of the Internet of Things
(IoT) envisioned for the coming years will augment even more the importance of
cryptography.

While the first decades of modern cryptography were dominated by military
applications, in the last decades cryptography permeated numerous domains such
as commerce, banking, industry, and health care to become an essential component
of many secure systems. The history of cryptology is a fascinating story in itself,
but not the scope of this thesis. A good reading on the history of cryptology is the
monograph of Kahn [181].

1.2 Modern Cryptography

1.2.1 Security Services

Cryptography uses a set of techniques to provide information security. A security
service is a specific security goal that can be achieved by using cryptography. The

4 Introduction

primary objective of using cryptography is to provide the following four fundamental
information security services: confidentiality, data integrity, authentication, and
non-repudiation. They form a framework upon which other security services, such as
access control, anonymity, or digital signatures, can be derived [238].

• Confidentiality. This security service ensures that only those authorized have
access to the content of the information. Hence, it prevents an unauthorized
user to access the content of the protected information. It is sometimes referred
to as secrecy.

• Data integrity. Data integrity provides a mean to detect whether data has
been manipulated by an unauthorized party since the last time an authorized
user created, stored or transmitted it. Data manipulation refers to operations
such as insertion, deletion, or substitution.

• Authentication. Authentication is related to identification and it is often
divided into two classes: data origin authentication and entity authentication.

– Data origin authentication. It gives assurance that an entity is the
original source of a message. Data origin authentication implicitly provides
data integrity. Sometimes, it is referred to as message authentication.

– Entity authentication. Entity authentication assures one entity about
the identity of a second entity with which it is interacting. Usually, entity
authentication implies data origin authentication.

• Non-repudiation. Non-repudiation is a security service that prevents an
entity from denying a previous action or commitment. It is very useful in
situations that can lead to disputes. When a dispute arises, a trusted third
party is able to provide the evidence required to settle it.

1.2.2 Kerckhoffs’ Principle

The Dutch cryptographer Auguste Kerckhoffs formulated six design principles that
a cipher has to satisfy [185]. The second principle is the most famous of them and
states the following:

The security of a cryptographic system must depend only on the secrecy
of the key, and not on the secrecy of the algorithm.

There are many good arguments in favour of Kerchhoffs’ principle [125, 183].
The first two arguments stem from the fact that algorithms are built in hardware or
software which makes them susceptible to reverse-engineering and hard to replace.
First, it is more difficult to keep the secrecy of an algorithm than to maintain the
secrecy of a simple key. Second, it is more straightforward to replace an exposed key
than a leaked algorithm. Third, it is much easier to share the same algorithm and use
different keys to securely communicate with various entities than to use a different
algorithm for each party. Finally, there are good reasons why algorithms should be

1.2 Modern Cryptography 5

published. While it is very difficult to design a good cryptographic algorithm, it is
very easy to make a mistake that weakens it. Therefore, an algorithm is likely to be
stronger if it has been extensively studied and no weaknesses have been found.

However, the simple fact that an algorithm is public does not imply that it is
secure. It can be the case that the algorithm was not studied enough or it was
already broken. The first case can be exemplified by the PC1 stream cipher published
in 1997 and broken in 2012 [52] when it was already part of the DRM system of
the MOBI e-book format, which was supported by the Amazon Kindle and by the
free software MobiPocket. An expressive example of the latter case is the surprising
use of the ROT13 substitution, described in Section 1.1, by the eBook vendor New
Paradigm Research Group to protect its documents (at least) until 2001 when this
finding was presented at a hacking conference [326]. Windows XP used the same
algorithm on some of its registry keys [339].

Some famous examples of proprietary algorithms that were firstly leaked or reverse-
engineered and then broken are RC4 [254, 10], DST [61], KeeLoq [70, 171, 120, 4], and
Megamos [372]. The last three algorithms were used for car immobilizer transponders.
A detailed list of such algorithms can be found in [53].

1.2.3 Adversarial Models

In the context of encryption algorithms, the primary goal of a cryptanalyst is to
break an algorithm using an attack. By attack we understand any technique that
provides some information about the decryption key (key recovery attack) or the
plaintext (decryption attack). There are many types of attacks, each with its own
strengths and weaknesses. Depending on the information a cryptanalyst has in
addition to the description of the cipher under analysis, we distinguish between four
main categories of attacks [183, 371].

• Ciphertext-only attack. The only piece of information the attacker has is
a set of ciphertexts produced using the same encryption key. This is the most
difficult type of attack since the attacker has the least amount of information.

• Known-plaintext attack. In this setting, the attacker knows some plain-
text-ciphertext pairs. In practice, there are many situations in which the
attacker gets to know the plaintext associated to a ciphertext (e.g. after a
confidential document is made public).

• Chosen-plaintext attack. The attacker can choose the plaintext to be
encrypted and therefore she gets the corresponding ciphertext. This is a more
powerful type of attack than a known-plaintext attack.

• Chosen-ciphertext attack. In addition to a chosen-plaintext attack, the
adversary can choose arbitrary ciphertexts and she gets the corresponding
plaintexts decrypted from it. Hence, this attack is more powerful than a
chosen-plaintext attack.

6 Introduction

The above-mentioned attacks belong to the class of cryptanalytic attacks. Another
important class of attacks is represented by the so-called generic attacks. A generic
attack is an attack that can be applied to a wide range of cryptographic algorithms
without knowing the details of the attacked primitive. Examples of generic attacks
are brute-force attacks and dictionary attacks. A brute-force attack consists in an
exhaustive search of the correct key. The attacker encrypts a plaintext under a
guessed key and checks if the resulting ciphertext matches the known ciphertext. The
process is repeated until the correct key is found. Brute-force attacks are impractical
given sufficiently large key sizes. A third class of attacks covers physical attacks
that exploit implementation aspects of cryptographic algorithms. These attacks are
described in detail in Section 1.5.

1.3 Cryptographic Toolkit

Cryptography can be divided into two main branches: symmetric cryptography
and asymmetric cryptography. The difference between the two branches hinges on
the relationship between the keys used to perform different operations. In general,
symmetric cryptosystems use the same key or closely related keys for encryption and
decryption. Symmetric cryptography also studies algorithms that do not require any
key at all, such as hash functions. On the contrary, in asymmetric cryptosystems
the encryption key is fundamentally different from the decryption key [226].

Symmetric and asymmetric algorithms have various advantages and disadvan-
tages, but they complement each other well. Cryptographic systems commonly
use algorithms from both branches to provide various security services such as
those described in Section 1.2.1. A brief comparison of symmetric and asymmetric
cryptography is given in Section 1.3.3.

1.3.1 Symmetric Cryptography

Symmetric cryptography is also referred to as secret key cryptography because the
same key is used to both encrypt and decrypt the data. Secret key cryptography is the
oldest form of cryptography. The algorithms studied by this branch of cryptography
can be divided into five categories: block ciphers, stream ciphers, hash functions,
message authentication codes, and authenticated ciphers.

1.3.1.1 Block Ciphers

A block cipher is a bijective function that maps a plaintext block of n bits to a
ciphertext block of n bits using a key of k bits. Usually a block cipher is built
by iterating a round function that depends on the secret key using a well-known
structure such as a Substitution-Permutation network (SPN), a Feistel network (FN),
or a Lai-Massey structure.

In practice, a block cipher is used in a mode of operation to encrypt plaintexts of
arbitrary size. The most important modes of operation are briefly described next.

1.3 Cryptographic Toolkit 7

• Cipher Block Chaining (CBC). In this mode of operation, each plaintext
block is XORed with the previous ciphertext block and then it is encrypted.
Consequently, each cipher block depends on all plaintext blocks previously
processed [117]. The first plaintext block is XORed with an initialization vector
(IV). Although CBC is sequential and requires padding of the message to a
multiple of the cipher block size, it is one of the most widely used modes of
operation.

• Counter (CTR). This mode of operation turns a block cipher into a stream
cipher. A counter is encrypted by the block cipher and the result is XORed
with the plaintext block to obtain the ciphertext block [102]. The counter can
be any function which produces a sequence that is guaranteed not to repeat for
a long time. A simple and popular method is to increment the counter value
by one for each new block.

• Counter with CBC-MAC (CCM). Designed to provide both authenti-
cation and confidentiality, CCM supports only block ciphers with a block
length of 128 bits [380, 362]. It combines the CBC-MAC (i.e. CBC mode used
to generate a message authentication code) with CTR mode of encryption:
CBC-MAC is first computed on the message to obtain a tag which is then
encrypted together with the message using counter mode. A minor variation of
the CCM, called CCM*, includes all of the features of CCM and additionally
offers encryption-only and integrity-only capabilities.

• Galois/Counter Mode (GCM). GCM is an authenticated encryption algo-
rithm that combines the counter mode of encryption with the Galois mode of
authentication [363, 234]. It can reach high throughput thanks to its structure
that allows parallel processing and efficient use of pipelining. Namely, the CTR
mode and the Galois field multiplication used for authentication can be easily
computed in parallel.

Block ciphers are versatile primitives and thus they can be used to build a large
variety of cryptographic algorithms such as stream ciphers, hash functions, message
authentication codes, authenticated ciphers, or pseudo-random number generators.
The most widely used block cipher is the Advanced Encryption Standard (AES) [361],
which is based on the Rijndael algorithm [98].

1.3.1.2 Stream Ciphers

Stream ciphers are inspired by the one-time pad (OTP) cipher, which encrypts every
plaintext with a different key. OTP provides perfect secrecy if the keys used are
fully random [320]. However, in practice it is difficult to share large key streams. To
overcome this issue, a stream cipher generates a pseudo-random stream of bits from a
short secret key. There are two types of stream ciphers: synchronous stream ciphers
and self-synchronizing stream ciphers. A self-synchronizing stream cipher generates
a key stream that depends on some previous ciphertext digits, while a synchronous
stream cipher generates a key stream that is independent of the plaintext and

8 Introduction

ciphertext messages. Trivium is a synchronous stream cipher selected as part of the
portfolio for low area hardware ciphers by the eSTREAM project and standardized
by ISO/IEC [173].

1.3.1.3 Hash Functions

A hash function transforms an arbitrarily long input into a fixed length digest. This
construction is secure if it satisfies three conditions: collision resistance, preimage
resistance, and second preimage resistance. Collision resistance is achieved if it is
computationally impossible to build two messages that hash to the same value.
Preimage resistance means that it is computationally infeasible to reverse a hash
function (i.e. to find a message that hashes to a given digest). Finally, second preimage
resistance requires that given an input and its digest it is hard to find a different
input with the same digest. Secure Hash Algorithm 2 (SHA-2) [364] and Secure
Hash Algorithm 3 (SHA-3) [366] are members of the Secure Hash Algorithm family
of standards, released by NIST. SHA-2 was designed by the United States National
Security Agency (NSA), while SHA-3 is a subset of the broader cryptographic
primitive family Keccak [46].

1.3.1.4 Message Authentication Codes

A message authentication code (MAC) or a keyed hash function is an algorithm that
takes a key and an arbitrarily long message and produces a fixed size tag whose
purpose is to provide message authentication. A MAC should have the forgery
resistance property, namely, that it is computationally infeasible for an attacker to
find a message and tag pair without knowing the secret key. A common mechanism
for message authentication using cryptographic hash functions is HMAC [204].

1.3.1.5 Authenticated Ciphers

Authenticated ciphers are designed to simultaneously provide confidentiality, integrity,
and authenticity of data. The process of using an authenticated cipher is sometimes
called authenticated encryption (AE) or authenticated encryption with associated
data (AEAD). Authenticated ciphers are motivated by the fact that combining a
confidentiality mode with an authentication mode in a secure way can be difficult
and error prone. Examples of authenticated encryption modes based on block ciphers
include CCM and GCM, which are standardized by ISO/IEC [172].

1.3.2 Asymmetric Cryptography

Asymmetric cryptography or public-key cryptography studies any cryptographic
system that involves a pair of keys: a public key and a private key. In order to use
a public-key cryptosystem one needs to generate a pair of mathematically-related
keys such that it is computationally infeasible to determine the private key from
the public key. The private key is kept secret, while the public key is distributed to
other entities.

1.3 Cryptographic Toolkit 9

Public-key cryptosystems are based on mathematical problems that currently
admit no efficient solution: integer factorization (RSA [297]), discrete logarithms
(ElGamal [134], digital signature algorithm – DSA [365]), or discrete logarithms
on elliptic curves (elliptic curve cryptography – ECC [365]). Three well-known
applications of asymmetric cryptography are public-key encryption, digital signatures,
and public-key infrastructure (PKI).

1.3.2.1 Public-Key Encryption

Public-key encryption is realized using the public key of the recipient. Anyone can
encrypt a message using this public key and the corresponding public-key encryption
algorithm. Only the owner of the matching private key can decrypt the ciphertext.
Public-key algorithms are typically used to encrypt small messages due to the their
computational complexity. To protect a long message, one can use a public-key
cryptosystem to encrypt only a secret key which is then used to encrypt the long
message using a symmetric cipher.

1.3.2.2 Digital Signatures

A digital signature can be obtained by encrypting a message under the sender’s
private key. Typically, the message is hashed before being signed. Anyone who has
the sender’s public key can verify if the signature is valid or not. Besides the sender’s
public key, the verification function takes a signature and a message. It checks if the
signature was generated from the given message using the private key of the sender.
The verification function ensures that the message was not tampered with.

1.3.2.3 Public Key Infrastructure (PKI)

A public key infrastructure is a system in which the ownership of a key pair is certified
by a trusted third party through a public-key certificate. A public-key certificate
includes information about the public key, the identity of its owner, and the validity
period. This information is signed by a certification authority (CA), which issues,
stores and revokes public-key certificates. Each participant in a PKI has to get a
public-key certificate from the CA. Moreover, each participant has to know the CA’s
public key to be able to verify the certificates of other participants.

1.3.3 Symmetric vs. Asymmetric Cryptography

Current cryptographic systems exploit the strengths of both symmetric-key and
public-key cryptography. Symmetric encryption is preferred when confidentiality
is required because it is faster than public-key encryption. Moreover, symmetric
algorithms usually use smaller keys than public-key algorithms. On the other hand,
public-key cryptography is used to establish secure communication channels and to
provide non-repudiation.

To preserve the security of a symmetric system, the key must be kept secret at
both ends. Furthermore, a different key must be shared between each two entities.

10 Introduction

Consequently, the key management might become cumbersome when communicating
with a large number of entities. In contrast, in public-key cryptosystems only the
private key must be secret.

Sound cryptographic practice requires that symmetric keys have to be changed
more frequently than the key pairs used for public-key cryptography, which can
remain unchanged for considerable periods of time. While symmetric keys can be
randomly generated, keys used in a public-key system have a special structure and
are usually more expensive to generate.

An overview of the main security services (see Section 1.2.1) that can be achieved
using symmetric and asymmetric cryptography is given in Table 1.1. Sometimes
a primitive can not provide a security service on its own, but when it is used in a
mode of operation or in combination with another primitive.

Primitive
Security service

Confidentiality Integrity Authentication Non-repudiation

Block cipher

Stream cipher

Hash function

MAC

Authenticated cipher

Public-key encryption

Digital signature

– using only the primitive

– using the primitive in a mode of operation or combined with other primitives

– not possible

Table 1.1: Security services provided by different symmetric and asymmetric crypto-
graphic primitives.

1.4 Implementations

Modern cryptographic algorithms are designed to work on a binary representation of
information and thus they are fairly useless on their own. They have to be imple-
mented in actual devices that process information in the same binary representation.
Usually, the implementations of cryptographic algorithms are divided into hardware
implementations and software implementations. Though, a cryptographic algorithm
can also be implemented using a hardware/software codesign which tries to exploit
the synergy of hardware and software. The goal of such an implementation is to
satisfy stringent design constraints such as cost or performance, while reducing the
time to market [346, 306].

Any cryptographic algorithm can be implemented in software or can be built
directly in hardware. The choice between hardware and software is determined

1.4 Implementations 11

by various factors such as the requirements and constraints of specific use cases,
flexibility, cost, or time to market. The same criteria are considered when selecting
the chip technology for hardware implementations or the programming language for
software implementations.

1.4.1 Hardware Implementations

A hardware implementation describes the structure of an integrated circuit. An inte-
grated circuit is the result of a hardware design flow that starts with the specification
of the circuit in a hardware description language (HDL) such as VHDL or Verilog.
A digital circuit can be implemented on a chip using a Field Programmable Array
(FPGA) or an Application-Specific Integrated Circuit (ASIC). A detailed comparison
between the two technologies is given in [207].

• Field Programmable Gate Arrays (FPGAs). An FPGA is an integrated
circuit designed to be configured using a HDL. It consists of an array of
programmable logic blocks, memory elements, and routing channels. The logic
blocks can be used as simple logic gates or configured to perform complex
combinational functions [69].

• Application-Specific Integrated Circuits (ASICs). An ASIC is an in-
tegrated circuit customized for a specific use or application. Usually ASIC
implementations are faster and smaller than FPGA implementations, but they
are more expensive to design. However, the final cost of an ASIC decreases as
more units are manufactured [329].

1.4.2 Software Implementations

A software implementation is a program that can be executed on a general-purpose
processor. Nowadays, software engineers can choose the most suitable programming
language from a rich variety of languages to create programs that implement specific
algorithms. However, there are few programming languages that can be used to write
code for embedded devices. Typically, the development toolchains for microcontrollers
support several languages, of which the most common are C (high-level language)
and assembly (low-level language).

• C language. C is a language that supports cross-platform programming. It
is used to write various software for devices ranging from supercomputers
to embedded systems. Code written in C benefits from low-level access to
memory through pointers and, in general, it is efficiently mapped to machine
instructions.

• Assembly language. An assembly (or assembler) language is strongly tied
to the machine instructions of a particular architecture. Hence, an assembly
language is specific to a particular architecture. Assembly code has niche uses
such as for operations that can not be easily implemented or are not well
optimized by a compiler.

12 Introduction

1.4.3 Hardware vs. Software Implementations

There are some major differences between hardware and software implementations.
While the development cost of software implementations is almost flat and relatively
low, the development cost of hardware implementations tends to increase towards
the end of the development cycle. Hence, hardware implementations, especially
ASICs, are cost-effective in large volumes. Hardware has to be well implemented and
debugged before being shipped to the customer. In other words, it has to be free of
errors or bugs because it is difficult and expensive to change deployed hardware. In
contrast, software is more flexible and usually can be updated after shipment to the
customer. Unlike hardware implementations, software implementations can evolve
through multiple releases and new features can be added at any time. However,
hardware implementations can be faster than software implementations.

1.4.4 Implementation Efficiency

A first step towards building secure systems is to implement a set of cryptographic
algorithms that provide the main security services (see Section 1.2.1) necessary to
achieve the desired security properties. Typically, implementations of cryptographic
algorithms need to meet some specific requirements imposed by the applications
of the system. For example, an implementation for a real-time system must be
able to encrypt data within a clearly defined time frame. Such application-specific
requirements are precisely formulated and assessed using the appropriate metrics.

The term efficiency characterizes a process done well with minimum resources.
Hence, we say an implementation is efficient when it does not waste the resources
of the system on which it is executed. Writing an efficient implementation of a
cryptographic algorithm is not straightforward. It requires a good understanding of
the algorithm to be implemented as well as of the hardware or software architecture
which will run the implementation. Therefore, the skills required for an efficient
implementation of a cryptographic algorithm fall into the area of cryptographic
engineering.

A description of meaningful metrics for efficiency of hardware implementations is
given in Section 1.4.5. Similarly, Section 1.4.6 presents metrics used to assess the
efficiency of software implementations.

1.4.5 Metrics for Hardware Implementations

There are various metrics that can be used to assess the efficiency of a hardware
implementation. These metrics usually depend on the fabrication technology and
the standard cell library. The most common ones are:

• Area. Area measures the size of an integrated circuit in µm2 or gate equivalents
(GEs). A GE is a unit of measure that allows one to quantify the area complexity
of a circuit independently of the manufacturing technology. Usually a GE is
equal to the area of a two-input NAND gate.

1.4 Implementations 13

• Latency. Latency (or execution time) gives the time required to perform an
operation. It is measured in clock cycles or seconds (often ms). The amount of
time is obtained by dividing the number of cycles by the operating frequency.

• Throughput. Throughput is the maximum rate at which an operation is
performed. It is usually expressed in bits per second (bps), that is, the number
of output bits divided by the time required to generate those output bits.

• Power consumption. This metric quantifies the electric power, usually in
mW , consumed by an integrated circuit to perform an operation. Typically,
power consumption values can be based on estimations or simulations at the
gate or transistor level provided by the hardware design tools.

• Energy consumption. Energy consumption of an integrated circuit, typically
expressed in mJ , is equal to the product of the electric charge transferred
through the circuit and the supply voltage. It can be determined experimentally
by integrating the current across a shunt resistor inserted between the Vdd

pin and the power supply. Energy per bit is obtained by dividing the energy
consumption by the number of output bits.

• Figure of merit. There are various ways to compare the performance or effi-
ciency of implementations using metrics such as hardware efficiency defined as
throughput to area ratio [59, 277], figure of merit (FOM) defined as throughput
divided by the area squared [24], or figure of adversarial merit (FOAM) [186]
which combines the inherent security provided by cryptographic structures and
components with their hardware implementation properties.

1.4.6 Metrics for Software Implementations

A metric is a way to determine the degree to which an implementation possesses
some property. Hence, there is a considerable overlap between the metrics used
to measure hardware and software implementations since both have some similar
characteristics. The metrics used to weight software implementations depend on the
target architecture or the compiler/assembler used to generate the binary code.

• Code size. While the size of a hardware implementation is determined by
its area, the size of a software implementation is quantified by its code size.
Hence, the code size measures the amount of bytes required to store the binary
code in the non-volatile memory (e.g. flash memory, ROM) of a device.

• Execution time. This metric has exactly the same essence as execution time
of a hardware implementation. While number of clock cycles is independent of
the operating frequency, the actual time in seconds depends on the frequency
of the clock signal.

• RAM consumption. RAM consumption gives the amount of run-time
memory (in bytes) required for the execution of a software implementation on

14 Introduction

a processor. RAM is a form of volatile memory that can be used to store the
data of a program and its execution stack.

• Throughput. Throughput is a common metric for both hardware and software
implementations. Typically, an algorithm can reach higher throughput rates
when implemented in hardware than when it is implemented software.

• Power consumption. This metric gives the power consumed for an operation.
Modern processors and microcontrollers have several power modes that can be
used to optimize the power consumption. In contrast to some hardware design
tools that can provide power consumption estimations, software toolchains
usually do not have this feature.

• Energy consumption. Although there is a direct link between energy and
power, namely power is the energy consumed per unit time, energy is a primary
concern for battery operated devices since it directly influences the lifetime of
the battery [114, 31].

• Figure of merit. The authors of [118] used a combined metric defined as
the product of code size and execution time normalized by the block size to
asses the performance of block ciphers on an 8-bit microcontroller. Two similar
metrics were used to summarize the efficiency of several hash functions: the
product of code size and execution time and the product of RAM consumption
and execution time [26].

1.4.7 Optimization Strategies

An implementation can be optimized to make more efficient use of available resources
(e.g. energy) or to achieve better results for a certain metric (e.g. throughput).
Typically, an optimization requires a trade-off between different objectives of an
implementation. Two common optimization techniques that can be applied to both
hardware and software implementations of symmetric cryptographic algorithms are
loop unrolling and pipelining.

• Loop unrolling. Loop unrolling is an optimization technique that can be used
to reduce the execution time of an implementation at the expense of an increase
in area (hardware implementation) or code size (software implementation). It
replicates the loop body and adjusts the loop iteration counter accordingly.

• Pipelining. Pipelining consists in overlapping the execution of different
operations with the aim of increasing the throughput. The circuitry is usually
divided into stages and each stage performs a particular operation. Hence,
pipelining takes advantage of those operations that can be executed concurrently
at distinct stages of a pipeline.

There are many other optimization strategies besides the above-mentioned ones.
Therefore, efficient implementations demand skilled cryptographic engineers that

1.5 Implementation Attacks 15

are able to leverage the appropriate optimization techniques necessary to meet the
requirements of different use cases. Typical trade-offs for hardware implementations
of symmetric cryptography are discussed in [194]. A good description of common
optimization techniques for software implementations can be found in [269].

1.5 Implementation Attacks

In general, a straightforward implementation of a cryptographic algorithm is vul-
nerable to various types of attacks referred to as implementation attacks or physical
attacks. In contrast to cryptanalytic attacks that focus on breaking a cryptographic
algorithm in a black box model, implementation attacks work in the so-called gray box
model. In the black box model, the attacker uses the specifications of a cryptographic
algorithm (see Section 1.2.2) and some pairs of plaintexts and ciphertexts to recover
the key. The gray box model assumes a more powerful attacker that has access
to some information about the internal state of the algorithm in addition to the
knowledge of an attacker in the black box model.

Essentially, an attack against an implementation of a cryptographic algorithm
takes advantage of the physical characteristics of the device that executes the
implementation. Attackers can simply observe some physical phenomena or they can
manipulate some physical parameters to cause a response from the device. Physical
attacks are usually much more powerful than classical cryptanalytic attacks (see
Section 1.2.3). A graphical representation of the two attack models is shown in
Figure 1.1.

input output
implementation

input output
implementation

modification leakage

Figure 1.1: Comparison between the black box (left) and gray box (right) security
models.

1.5.1 Short History

An early example of an attack that exploited the emanations of a communication
equipment occurred in 1914, during World War I. At that time, the German army
successfully eavesdropped on the voice communication of its enemy using the ground
current of the phone lines. To reduce the weight of cable drums that the troops
had to carry, the field phones were connected with a single insulated wire and the
ground was used for the return circuit. This allowed the Germans to pick up the
resulting voltage drop from the other side of the trenches with valve amplifiers

16 Introduction

connected to so-called search electrodes inserted into the ground. To prevent this
attack, the combatants introduced various countermeasures such as placing the
ground connections far behind the front trenches, using twisted-pair cables, reducing
the line currents, and limiting the sensitivity of information communicated via field
phones [34, 13, 206].

This attack does not target a cryptographic implementation. It is merely an
eavesdropping attack on an insecure communication channel. Nevertheless, it is
a good example of how an attacker can exploit some compromising emanations
that were not that obvious in the first place. Moreover, it uses the same principle
employed in power analysis attacks to measure the power consumption of a device
that executes cryptographic algorithms.

According to a paper declassified by NSA in 2007 [131], attributed to Jeffrey
Friedman [311], the United States of America learned about the existence of compro-
mising emanations during World War II. The problem of compromising emanations,
which was given the code name TEMPEST, is also mentioned in another document
recently declassified by NSA [57]. It is clearly described by the following excerpt
from the declassified paper:

Any time a machine is used to process classified information electrically,
the various switches, contacts, relays, and other components in that
machine may emit radio frequency or acoustic energy. These emissions,
like tiny radio broadcasts, may radiate through free space for considerable
distances – a half mile or more in some cases. Or they may be induced
on nearby conductors like signal lines, power lines, telephone lines, or
water pipes and be conducted along those paths for some distance – and
here we may be talking of a mile or more.

The problem of compromising emanations was discovered in 1943 by a researcher
from Bell Labs. While he was testing the Bell-telephone mixing device 131-B2, which
was used for encryption in the backbone systems of the U.S. Army and Navy, he
observed a spike on an oscilloscope situated in a distant corner of the lab. After a
careful examination of the spikes, he was able to recover the plaintext encrypted
by the device. In a demonstration under field conditions for the skeptical military
leaders who did not believe that the phenomenon can be exploited, some engineers
from Bell Telephone recovered 75% of the plaintext processed by a device situated
at a distance of about 25 meters.

Bell Labs was appointed to study the phenomenon in depth and propose modi-
fications to secure the Bell-telephone mixing device 131-B2. They identified three
separate phenomena and suggested three basic suppression measures: shielding (for
radiation through space and magnetic fields), filtering (for conducted signals on
power lines), and masking (for space-radiated or conducted signals). However, the
application of shielding and filtering countermeasures was challenging. The modified
mixer was heavy, had issues with heat dissipation and limited the access to various
controls. As a result, it was never used in the field. Instead, commanders were
advised to keep a control zone of about 30 meters in diameter around the their
communication centers.

1.5 Implementation Attacks 17

After World War II, the problem was forgotten and rediscovered by the CIA in
1951. At that time, a considerable effort was put into understanding the phenomena
of compromising emanations and determining suppression techniques. In the next
years, the progress in developing and improving new attack techniques was faster
than in building countermeasures. A disturbing discovery was the threat of acoustic
emanations since it was immediately linked to the microphones found in various
strategic locations. Ordinary microphones could detect machine sounds with enough
fidelity to permit exploitation.

The NSA did not declassify the entire paper [131], leaving the description of
two separate, but apparently related, topics enticingly redacted. One topic is called
seismic and the other flooding.

Peter Wright, a former MI5 officer, describes in his book [384] two missions that
exploited compromising emanations. The first mission took place in 1956, during
the Suez Crisis, when a joint operation of MI5 and GCHQ determined the initial
position of several wheels of the Hagelin cipher machine installed in the Egyptian
Embassy in London using a phone bug and an oscilloscope. The second espionage
campaign targeted the communications of the French Embassy in London between
1960 and 1963. A broadband radio frequency tap installed on the telex cable carried
a secondary faint signal that facilitated the recovery of the plaintext.

For a long time, the topic of emission security was exclusively studied by military
and intelligence agencies, which treated it as a highly classified case. According to
Markus Kuhn, the security risks of electromagnetic radiation were first mentioned in
the open literature only in 1966 [206]. However, the broader public became aware of
the problem of compromising emanations in 1985 when Wim van Eck published a
paper that shows how to reconstruct the image of a cathode ray tube (CRT) display
by picking up and decoding the electromagnetic interference produced by this type
of equipment [369]. He made a practical demonstration of the attack using just
a dipole antenna, a television receiver, and an external synchronization oscillator.
Wim van Eck proposed three ways to mitigate the attack: decrease radiation level,
increase noise level, and randomize the sequence in which the image is displayed on
the screen. The countermeasures proposed by van Eck can be used to protect an
implementation against other types of emissions as well.

The cryptographic research community started to intensively study and publish
papers on various implementation attacks in the late 1990s. Firstly, Paul Kocher
developed timing attacks in 1996 [198]. The core idea of his attacks is that one can
exploit the variations in the execution time of cryptographic software to recover the
secret data involved in the computations. His paper is considered to be one of the
foundation bricks for research in the field of side-channel attacks. The following
quote illustrates his view about side-channel attacks at that time:

In general, any channel which can carry information from a secure area
to the outside should be studied as a potential risk.

In 1997, Boneh et al. [60] published a theoretical model for breaking cryptographic
systems by taking advantage of random hardware faults. It was followed by a related
attack, called differential fault attack, proposed by Biham and Shamir [49]. Then,

18 Introduction

Kocher et al. described two power analysis attacks, namely simple power analysis
(SPA) and differential power analysis (DPA), in a technical report released in
1998 [199] and then in a paper published in 1999 [200].

The threat of optical compromising emanations was demonstrated in 2002. Kuhn
was able to reconstruct the information displayed on a CRT computer monitor in a
dark environment using a photomultimeter and a computer with a fast analog-to-
digital converter [205]. In the same year, Loughry and Umphress showed that LED
status indicators found in various electronic devices can carry a modulated optical
signal that is correlated with the handled information [221].

In 2004, Asonov and Agrawal found that keyboards of computers, notebooks,
telephones, and ATM pads are vulnerable to attacks that differentiate the sound
emanated by different keys [20]. The attack was improved by Zhuang et al. in
2005 [392]. Their work was followed by an acoustic attack on matrix printers in
2010 [23] and an RSA key extraction via acoustic cryptanalysis in 2014 [138].

Murdoch showed, in 2006, that many computers reveal their CPU load via thermal
leakage and that the influence of the temperature on clock skew can be remotely
detected [245]. Masti et al. demonstrated that the processor core temperature can
be used both as side-channel and covert communication channel [228].

For more details on the history of implementation attacks, we refer the reader
to [206, 13, 313, 390, 389]. Numerous implementation attacks were published in the
proceedings of various conferences and workshops on security or cryptography. Some
good books about power analysis attacks are [223, 272, 11].

1.5.2 Classification

There are many criteria one can use to categorize implementation attacks since they
use various techniques that differ in cost, time, equipment, or expertise needed. In
the cryptographic engineering literature, it is common to categorize physical attacks
according to two criteria [334, 223]. The first criterion classifies physical attacks into
passive and active attacks depending on whether the attacker directly interacts with
the target or not.

• Passive attacks. In a passive attack, the attacker gathers information by
simply observing executions of a cryptographic algorithm on the target device
which operates according to its functional specifications. Side-channel attacks
fall into this category since the attacker has to observe a physical phenomenon
such as electromagnetic emissions, power consumption, or acoustic emanations.

• Active attacks. An active attack exploits an erroneous or unexpected behavior
of the target device in response to a manipulation done by the attacker to
affect the execution environment or the underlying hardware. Fault attacks
are active implementation attacks that induce faults into a device by means of
supply voltage, external clock, temperature, light, X-rays, or ion beams [32].

A complex attack can consist of a sequence of active and passive attacks. For
example, an active attack can be a preparation step for a passive attack. Examples

1.5 Implementation Attacks 19

of attacks that combine active and passive techniques are [12, 83, 299]. Compared
to active attacks, passive attacks are harder to detect and do not leave any damage
to the attacked device.

The second criterion distinguishes between three types of attacks based on the
level of intrusion into the target device: non-invasive, semi-invasive, and invasive
attacks. Any passive or active attack can fall into one of these three types of
attacks [223].

• Non-invasive attacks. In a non-invasive attack, the target device is attacked
only through directly accessible interfaces and thus it is not permanently altered.
In other words, the attacker observes or manipulates only the environmental
parameters, but not the device itself. These attacks are relatively inexpensive
and thus they constitute a real threat to the security of cryptographic devices.

• Semi-invasive attacks. Semi-invasive attacks are characterized by a moder-
ate level of physical intrusion. For example, the casing of a device is removed or
the microchip is decapsulated to get better access to its inner components, but
no direct electrical contact to the chip surface is made because the passivation
layer is not damaged. All methods of decapsulation such as eroding the chip
surface by mechanical or chemical means fall into this category.

• Invasive attacks. An invasive attack is the strongest type of attack against a
device since the attacker has full control of the target device and no boundaries.
The adversary can establish electrical contact with the chip and even modify
the circuit. Invasive attacks are very powerful, but they require expensive
equipment, which can be usually found only in specialized laboratories.

A visual representation of the classification of implementation attacks along the
two dimensions, namely interaction with the target device and intrusion level, is
shown in Figure 1.2. When the degree of interaction with the target device increases,
the attacker is more exposed to the risk of being detected. However, this comparison
has its limitations. For example, a passive attacker measuring the power consumption
of a device in a certain physical location is typically more exposed than an active
attacker who mounts a remote timing attack from the comfort of his home. On the
other dimension, the cost of the equipment necessary to mount the attack increases
proportionally with the intrusion level. The more invasive an attack is, the higher
are the chances that it permanently damages a device and consequently the attack
will be detected. Hence, in a broad sense, one axis quantifies the risks to which an
attacker is exposed to and the other the cost of an attack.

Although, the classification of implementation attacks along the two dimensions is
not perfect or complete, it serves the purpose of grouping different types of attacks by
their main characteristics. Side-channel attacks are usually passive and non-invasive
attacks, while fault attacks fall into the category of active attacks. Depending on the
fault injection mechanism, fault attacks can be non-invasive or semi-invasive . Most
of the semi-invasive and invasive attacks are active attacks (e.g. probing attacks [160],
reverse engineering attacks [255], data remanence attacks [158, 327]). Consequently,
there are few semi-invasive or invasive attacks that are passive attacks.

20 Introduction

Intrusion
(Cost)

Interaction
(Risk)

non-invasive semi-invasive invasive

passive

active

Figure 1.2: A classification of implementation attacks.

1.6 Side-Channel Attacks

Side-channel analysis attacks belong to the genre of physical attacks and exploit
some auxiliary information (e.g. the power consumption of a device that executes a
cryptographic algorithm) to recover the secret key [178]. Their main advantage is
that they are hard to detect because usually a side-channel attacker does not interact
with the target device. Hence, they fall into the class of passive and non-invasive
implementation attacks. Consequently, a second advantage of side-channel attacks is
that they can be mounted with relatively cheap equipment.

There are many sources of side-channel information that an attacker can exploit
to break a system. The most popular ones are: timing [198], power consumption [199,
200], and electromagnetic emanations [286, 5]. These three physical effects caused by
the execution of a cryptographic algorithm on a device are very popular because they
are easy to observe and record. Moreover, they usually carry enough information
about the secret used during the computation such that it can be recovered after a
relatively low number of measurements. Less popular sources of side-channel leakage
are: acoustic [138, 139], optical [128, 328], and thermal [169].

The study of the side-channel emanations from a cryptographic device with
the aim of recovering the secret used during the observed computations is referred
to as side-channel analysis (SCA). In this work we focus only on side-channel
analysis attacks that exploit power and electromagnetic emanations, which are briefly
described next.

1.6.1 Power Analysis Attacks

Every electronic device needs electric power to operate. More concretely, a digital
circuit needs power to transfer and process data. The power is supplied at different
voltages and current intensities (currents) depending on the circuit design. At any
point in time, the power consumption of a CMOS circuit consists of several com-
ponents: Poperation – an operation-dependent component, Pdata – a data-dependent
component, Pelectronic noise – electronic noise component, and Pconstant – a constant

1.6 Side-Channel Attacks 21

component.

Ptotal = Poperation + Pdata + Pelectronic noise + Pconstant (1.1)

The two interesting components for a side-channel attack are Poperation and Pdata.
Power analysis attacks exploit the small variations in the power consumption of a
device determined by different operations being executed and/or different data being
processed.

The total power consumption of a single CMOS cell is the sum of its static and
dynamic power consumption. The dynamic power consumption depends on the data
being processed and usually is the dominant component of the power consumption
of a cell. For example, when there is a signal transition between the input and
output of a cell (i.e. 0 7→ 1 or 1 7→ 0), the dynamic power consumption is higher than
when there is no transition (i.e. 0 7→ 0 or 1 7→ 1). The static power consumption is
increasing in modern technologies that have very small size [223].

1.6.2 Electromagnetic Analysis Attacks

These attacks are based on the information gained from the electromagnetic radia-
tion of the electromagnetic field generated by a device. Electromagnetic radiation
propagates through space and consists of waves which are synchronized oscillations
of electric and magnetic fields. In other words, the electromagnetic field is the
combination of the electric field (E) and its dual, the magnetic field (H). Hence, the
electromagnetic field typically carries similar information about the processed data
and executed instruction as the power consumption does.

A major advantage of electromagnetic analysis attacks over power analysis attacks
is that they do not require insertion of a shunt resistor in the ground or current path
of the target device to perform the measurements. Moreover, an attacker can use
different spots for the acquisition of the electromagnetic emanations such as chip
surface [219] or decoupling capacitors [258, 29]. However, the process of identifying
the best spot can be very time consuming since it depends on a combination of
factors such as a careful selection of the EM probe and finding a good orientation
for it. Sometimes, the electromagnetic signal has to be amplified and preprocessed,
but it can give better results than power consumption measurements in the sense
that the number of observations necessary to recover a secret may be lower [265].

1.6.3 Attack Toolkit

The toolkit of a side-channel attacker depends on the type of information that is
exploited in an attack. In general, the attacker needs some equipment to record
the side-channel information, which is usually referred to as side-channel leakage
or simply leakage. She also needs some tools to process the side-channel leakage in
order to break the cryptographic system.

Typically, a side-channel attack is performed in two phases: an online phase
and an offline phase. In addition to these two phases, some attacks (e.g. template
attacks [79, 290]) require a prior profiling phase in which the attacker uses a device

22 Introduction

similar to the one to be attacked to characterize its leakage. This phase yields the
so-called templates which profile the power consumption or the electromagnetic
emanations of the target device. In the online phase, the attacker measures and
records the side-channel information while the target device performs cryptographic
operations. For each input or output of the cryptographic algorithm, the attacker
captures a set of leakage samples referred to as a side-channel trace. At the end of
this phase, the attacker has a set of traces and, usually, the corresponding input or
output values of the algorithm. The data collected in the online phase is fed into an
attack algorithm in the offline phase to recover the key used during the observed
computations. The outcome of the attack algorithm is one or several key candidates.

The time spent in the online phase of an attack is determined by the number
of measurements recorded, which in turn depends on the measurement setup. An
attacker aims to break a system using as few measurements as possible in order
to reduce the risk of being detected. Typically, the offline phase of an attack is
constrained by the technical resources of the attacker and by the number and quality
(i.e. signal-to-noise ration) of the traces acquired in the previous phase.

This is a rather compact description of a side-channel attack, similar to the one
in [191]. The first mention of DPA attacks [199] outlines two phases: data collection
and data analysis. Other works present a more fine-grained flow for side-channel
attacks. For example, the attack strategy described in [223] consists of five steps,
while the one presented in [201] involves six stages.

In the following, we describe the equipment and tools required to exploit the
power or electromagnetic leakage of a device. Then, we introduce some metrics which
are frequently used to quantify different aspects of a side-channel attack and some
tools designed for side-channel attacks.

1.6.3.1 Measurement Setup

The online phase of a side-channel attack requires a measurement setup, which
typically consists of a digital sampling oscilloscope (DSO), a target device (sometimes
referred to as device under test – DUT), and a computer (PC), as shown in Figure 1.3.
In addition to these components, a measurement setup may include: a regulated
power supply, a clock generator, an amplifier, and different types of probes.

The entire process is controlled by the PC, which sends inputs to the DUT and
gets the corresponding leakage traces from the DSO. Typically, the PC communicates
with the target board through a serial connection via USB. To reduce the noise
generated by the communication channel, the USB connection can be replaced by an
optical fiber link. The oscilloscope is connected to the computer using an Ethernet
cable or an USB cable.

In a controlled environment such as a research laboratory, the attacker sets a
trigger signal that is used by the oscilloscope to record the side-channel leakage.
In real world settings, most of the time, there is no trigger signal available for the
attacker. In such situations, she has to use other means of detecting the relevant
part of the acquired emanations such as a pattern-based trigger [41]. Consequently,
the traces are not aligned and thus they have to be preprocessed before they can be

1.6 Side-Channel Attacks 23

PC

DSO

DUT

data I/O commands/traces

leakage

trigger

Figure 1.3: Diagram of a measurement setup used for power and EM attacks.

used in the next phase of the attack.
The attacker uses a power measurement circuit or an electromagnetic probe

to measure the leakage signal [223]. Typically, the attacker inserts a resistor in
the power or ground line of the target device in order to be able to measure the
power consumption of the device. If the resistor is inserted in the power line, then
a differential probe is used to measure the voltage drop across the resistor. When
the resistor is connected in series to the device’s ground line, a normal probe can be
used. The electromagnetic emanations can be measured using an E-field probe, an
H-field probe, or a simple coil placed in a carefully chosen spot.

A key component of the measurement setup is the digital sampling oscilloscope,
which takes an analog voltage or electromagnetic signal and converts it into a digital
signal. This analog-to-digital conversion is characterized by three main parameters:
input bandwidth, sampling rate, and resolution [223]. The bandwidth of an oscilloscope
gives the maximum frequency at which a signal is processed without distortion. The
sampling rate is equal to the number of points of the input analog signal that are
recorded in a second. The resolution of an oscilloscope is the number of possible
values a sample in the digitized signal can take. Beside these three parameters, there
are other important parameters such as memory size or the smallest input range
that can be measured [334]. All these parameters determine the specifications of an
digital sampling oscilloscope.

Typically, an attacker is interested in reducing the influence of noise on the
performed measurements such that the acquired signal is very clear. There are
various ways to reduce the noise level of a measurement setup that range from
disabling unused features of the target device, such as a blinking LED, to using a
Faraday cage to isolate the target device from the environmental noise. An important

24 Introduction

Figure 1.4: A power trace of the AES-128 sampled at 1 GS/s from an Arduino Uno.

source of noise is the power supply. Therefore, an attacker usually prefers to use a
battery or a regulated power supply instead of powering a target device from an
USB cable which is directly connected to a computer.

More detailed descriptions of various measurement setups can be found in [223,
334, 335]. In this work, we used different measurement setups to record the power
consumption or the electromagnetic emanations of several target devices. In each
chapter where we present experimental results, we briefly describe the measurement
setup used.

A power consumption trace measured during the execution of the AES-128 on
an Arduino Board is exemplary shown in Figure 1.4. One can easily identify the ten
rounds of the AES-128 in the leakage trace acquired at a sampling rate of 1 GS/s.

1.6.3.2 Signal Processing

In practice, signal processing techniques can be applied in both phases of an attack to
improve the signal-to-noise ratio of the measured side-channel information or to align
the collected traces. Typically, signal processing improves the attack outcome by
reducing the number of traces required to recover the secret key. The time complexity
of the offline and online phases of the attack scales down accordingly. Some of the
most suitable signal processing techniques for side-channel analysis attacks are: signal
filtering, signal alignment, signal compression, and signal averaging.

• Signal filtering. The main purpose of filtering the side-channel leakage is
to isolate those components of the signal that carry information about the
processed data or the executed instruction. To this end, low-pass and band-
pass filters are typically applied to the measured signal in order to control the
frequency range and remove noise.

• Signal alignment. The measured leakage traces may be misaligned due to
the absence of a reliable trigger signal or as the result of hiding countermeasures
such as dummy operations, random delays [86], and shuffling [373]. Some of the

1.6 Side-Channel Attacks 25

waveform matching algorithms proposed in the literature for signal alignment
are: correlation coefficient, cross-correlation, sign comparison, sum of absolute
differences (SAD), least square, and interval matching [41, 223].

• Signal compression. Compression algorithms combine multiple samples of
a single trace to reduce the size of the trace. Signal compression can help to
reduce high-frequency noise and amplify signal resolution while reducing the
amount of data that requires processing in subsequent steps [201]. Compression
methods range from extracting the mean or maximum from a set of consecutive
samples to more complex resampling techniques.

• Signal averaging. The main purpose of signal averaging is to reduce the noise
by performing the same measurement several times. It can be done directly
on the digital oscilloscope used for measurements or on a computer during or
after the data collection process. Conditional averaging [218] computes in the
offline phase an average trace from all traces whose associated intermediate
input or output used in an attack is the same.

Signal processing techniques may combine some of the above-mentioned methods.
For example, a signal compression algorithm may include a low pass filter.

1.6.3.3 Attack Algorithms

Simple Power Analysis (SPA) Attacks. Simple power analysis (SPA) [199, 200]
encompasses a collection of analysis techniques that can be used to extract a secret
key from one or few traces. Essentially, the attacker inspects the patterns within the
power consumption traces and maps them to the structure of the executed algorithm.
Typically, the attacker targets instructions that use or depend on the value of the
secret key. Despite their name, SPA attacks on symmetric cryptosystems are very
challenging in practice due to noise and because they require a detailed knowledge
of the executed algorithm.

SPA attacks are typically applied in the context of public-key cryptography. For
example, the modular exponentiation used in the RSA algorithm can reveal the private
key because multiplications consume more power than squarings. Consequently,
multiplications appear as higher peaks in power traces. They are performed only when
the corresponding bit of the exponent is set to 1. Yet, SPA can also be used to attack
insecure implementations of symmetric key algorithms. See for example the SPA
attacks against insecure implementations of the key schedule of the AES [222, 370].

SPA attacks can exploit leakages that stem from both data and instructions.
When the electromagnetic emanations of a target device are the source of the side-
channel leakage, the corresponding attack is referred to as a simple electromagnetic
analysis (SEMA) attack.

Differential Power Analysis (DPA) Attacks. Differential power analysis (DPA)
[199, 200] uses statistical techniques to exploit the dependency between the power
consumption of a device and the processed data. In contrast to SPA attacks, DPA

26 Introduction

attacks require more power traces, but they do not need a detailed knowledge of the
attacked algorithm. While SPA attacks analyze the power consumption along the
time axis, DPA attacks focus on the variations of the power consumption at a fixed
moment of time that result from handling different data values. Usual targets for
DPA attacks are symmetric-key algorithms, especially block ciphers.

Based on a divide and conquer paradigm, DPA attacks recover individual chunks
of a secret key. Afterwards, these chunks are used to reconstruct the full secret key.
The general idea is to choose an intermediate value (also called a sensitive value)
of the attacked algorithm that combines a chunk of the key with a known variable
input (e.g. a part of the plaintext) and to estimate its power consumption using a
power model for all possible values of the key chunk. The resulting set of predicted
leakages is compared with the traces collected from the target device to determine
the most likely key chunk used during the observed computations. The statistical
test used to infer the most likely key candidates is referred to as a distinguisher in
the side-channel literature.

When it was initially proposed, DPA was merely a side-channel attack method that
combined the information contained in several power consumption traces measured
from a cryptographic device to recover the secret key used during the observed
computations. Nowadays, in addition to the original definition, DPA encompasses
a rich class of techniques for side-channel attacks. In general, a DPA attack is
characterized by two key features: the power model that describes the hypothetical
power consumption of a target device and the distinguisher used to determine the
secret key.

The original DPA attack uses a single-bit power model and the difference of means
(DoM) test as distinguisher. The power traces are divided into two sets depending
on the value of the intermediate bit. Then, a differential trace is computed for each
key candidate. A spike in a differential trace indicates that the corresponding key is
a candidate for the correct key. The analogous attack technique that exploits the
electromagnetic emanations of a device instead of its power consumption is referred
to differential electromagnetic analysis (DEMA) attack.

Subsequent developments of DPA attacks concentrated on the two key features
of DPA. Consequently, new power models were proposed to better capture the
instantaneous power consumption of a target device. At the same time, the relation
between the estimated and the measured power consumption was better exploited
by new distinguishers.

Messerges et al. [240] exploited the leakage of all bits of an intermediate variable
to get a better signal-to-noise ratio in the differential traces by using a multiple-bit
DPA. The leakage traces are separated in two sets according to whether all bits in
an intermediate variable are set to zero or to one. All traces that do not fit into
the two sets used to compute the differential trace are discarded. Therefore, this
power model requires a large number of traces. The same authors [241] exploited the
relation between the power consumption of an intermediate variable and its binary
representation, which was already mentioned before in several works [200, 240, 232,
87, 8]. The Hamming weight of an intermediate variable (i.e. the number of bits set
to one in that variable) or the Hamming distance between two consecutive values of

1.6 Side-Channel Attacks 27

the same variable (i.e. the number of bits that changed between the two states of
the variable) are good power models for side-channel attacks. They proposed a new
technique, generalized multiple-bit DPA, which splits the traces used to compute the
differential trace into two sets depending on whether the modeled power consumption
is lower or greater than a threshold.

Various statistical tests were proposed to improve the recovery of the correct key.
Coron et al. [87, 88] studied several leakage detection tests to check the existence of
secret-correlated emanations from cryptographic devices. Mayer-Sommer evaluated
the changes in power dissipation due to writing different data values into a certain
memory location or register [232]. The Pearson’s correlation factor was used to
determine the exact instant during the execution at which the dependency between
power dissipation and data is maximal. Bevan and Knudsen [47] proposed the
maximum-likelihood test. Agrawal et al. [6] used a generalized maximum-likelihood
test in the context of multi-channel attacks to identify the correct key hypothesis.

Brier et al. [68] combined the advantages of the previous power models and
statistical techniques in a new method – correlation power analysis (CPA). Their
approach is based on the Hamming distance model, which encloses the particular
case of Hamming weight leakages. The Pearson’s correlation coefficient is used as
statistical distinguisher to optimally exploit the estimated relation between the power
model and actual traces [67].

Depending on the number of time samples exploited in an attack, one distinguishes
between univariate and multivariate attacks. Most attacks proposed in the literature
are univariate because they focus only on atomic leakages at single points in time.
In contrast, multivariate attacks exploit joint statistical properties of several time
samples. Unlike multivariate attacks, univariate attacks do not work on intermediate
variables of a masked algorithm (see Section 1.7.1). Typically, univariate attacks
require a preprocessing step which combines several atomic leakages at different
points in time using a combining function. Multivariate attacks, such as mutual
information analysis (MIA) [141], can be used to attack masked implementations
without a preprocessing step that combines the leakeages [282]. Therefore, they are
not affected by the information loss induced by the preprocessing step [78].

Mutual information analysis (MIA) uses a distinguisher based on mutual informa-
tion to measure the statistical dependence between the predicted power consumption
and the recorded traces. It works even if each intermediate variable leaks in a distinct
manner. Hence, MIA allows the application of the most generic power model possible,
namely the identity function. However, correlation-based attacks are typically more
efficient than MIA in simple attack scenarios [282]. A comprehensive evaluation of
MIA was conducted in [381].

Profiled Attacks. This category of attacks comprises all techniques that require
a profiling phase to gain additional information about the leakage of a target device.
The core idea of profiled attacks is that the outcome of a side-channel attack improves
with a more precise leakage model of the target device. Indeed, profiled attacks are
among the most powerful side-channel techniques.

Template attacks, introduced by Chari et al. [79], seek to make maximal use of a

28 Introduction

small number of traces from a target device. Although template attacks may require
a large amount of initial effort to accurately model the leakage of a target, they are
the strongest side-channel attack possible from an information-theoretic point of
view if the noise follows a multivariate Gaussian distribution. However, experimental
results show that in practice template attacks suffer from the variability caused
by different devices or different acquisition campaigns [81]. Template attacks are
particularly useful when few measurements can be obtained from the target device
and a clone device is available for training. Template attacks have a strong advantage
over non-profiled attacks when applied against masked implementations [7, 266].

Linear Regression Analysis (LRA) attacks, or stochastic attacks, were introduced
by Schindler et al. [307] as an efficient alternative to template attacks in situations
where the adversary already has a parameterized model for the leakage of a target
device. As first observed in the original paper [307] and later confirmed by Doget et
al. [112], LRA attacks can work without a profiling phase. Lemke and Paar [213]
applied profiled LRA attacks against masked implementations, while Dabosville et
al. [96] mounted non-profiled LRA attacks against masked implementations. An
experimental comparison between template and stochastic attacks under identical
conditions can be found in [142].

Other Attacks. Besides the above-mentioned attacks, there are many other attack
algorithms described in the literature. For example, collision attacks [312] use the
side-channel leakage of an implementation to detect internal collisions, which provide
some information about the secret key. Nevertheless, an exhaustive study of all
existing attack techniques is outside the scope of this work.

1.6.3.4 Metrics

Standaert et al. [336] described a framework for fair evaluation and comparison of
side-channel attacks. Their framework includes two types of metrics: information-
theoretic metrics and actual security metrics. The information-theoretic metrics
are used to gauge the amount of information leaked by an implementation, while
the actual security metrics show to what extent the leaked information can be
used by an attacker. They proposed the following metrics: conditional entropy
(information-theoretic metric), success rate and guessing entropy (actual security
metrics).

Next, we briefly describe three metrics widely used in the literature for experi-
mental evaluations of side-channel attacks, namely success rate, guessing entropy,
and number of traces.

Success Rate. The success rate of a side-channel attack is computed as the ratio
between the number of experiments in which the correct key was recovered and
the total number of experiments carried out. The success rate of an order o is the
probability that the key is in the first o key candidates.

1.6 Side-Channel Attacks 29

Guessing Entropy. The guessing entropy gives the average number of key candi-
dates that have to be tested to recover the correct key after a side-channel attack was
performed. Hence, it measures the remaining workload of a side-channel adversary.
Guessing entropy was defined by Massey [227] and then used by Köpf and Basin [203]
to evaluate the effectiveness of side-channel attacks.

Number of Traces. This metric assesses the number of measurements an attacker
has to perform in the online phase of an attack in order to achieve the desired
outcome (e.g. a guessing entropy below a fixed threshold). Mangard et al. [223]
provided a way to estimate the number of traces required to mount a successful DPA
attack.

1.6.3.5 Tools

In this section, we present some tools designed for side-channel attacks, especially
for power and electromagnetic analysis attacks. The list includes a wide range of
tools from professional frameworks designed for security evaluations in accordance to
various security standards such as Common Criteria [89] to software libraries written
for hobbyists. The industry-grade solutions comprise everything an attacker or a
security evaluator needs, from a specialized hardware measurement apparatus to
highly flexible software tools. In contrast to tools designed by side-channel researchers
and enthusiasts, which are typically free and open-source, the professional tools are
usually very expensive.

Inspector SCA. Designed by Riscure, Inspector SCA [294] is a modular platform
that combines features for acquisition, alignment, and signal processing of leakage
traces. It integrates with a variety of hardware equipment and provides a set of
statistical tools that can be used in side-channel attacks against major cryptographic
algorithms. Customers get access to the source code of the tool and can extend its
functionalities.

DPA Workstation Analysis Platform. DPA Workstation Analysis Platform
[287] is designed by Rambus for security chip vendors, product companies, testing
labs, and government organizations. The collected leakage traces can be examined
using Simple Power and Electromagnetic Analysis (SPA/SEMA) or more powerful
Differential Power and Electromagnetic Analysis (DPA/DEMA) to identify exposure
of secret keys.

ChipWhisperer. ChipWhisperer [252] is a toolchain for embedded hardware
security research, including side-channel and glitching attacks. It is a combination
of open-source software and hardware sold at a low price. The hardware uses a
synchronous capturing method, which greatly reduces the sampling rate and the
data storage. This is possible because the sampling clock is synchronized to the
target clock [260].

30 Introduction

Daredevil. Daredevil [323] is a tool for (higher-order) correlation power analysis
(CPA) attacks. Its distinctive feature is that it can perform CPA attacks very fast
on multiple cores given a specified amount of memory. The algorithm used by the
tool is selected after a careful evaluation of the computational aspects of calculating
the Pearson product-moment correlation coefficient and is based on an incremental
approach which extends already completed computations [64].

pysca. pysca [189] is a side-channel analysis toolbox written in Python that aims
to be simple and flexible, while using a language suitable for scientific computing. It
implements state-of-the-art DPA techniques and achieves good performance. Another
key feature is that it facilitates visualization of various metrics for security evaluation
purpose.

Jlsca. Jlsca [76] is a tool for side-channel analysis written in Julia, a dynamic
programming language for numerical computing. It can be executed as a stand-alone
tool or as a module inside Inspector SCA. Some of the features implemented in Jlsca
are: conditional averaging, non-profiled linear regression analysis (LRA) [307, 218],
incremental correlation statistics [43], and mutual information analysis (MIA) [141].

1.7 Countermeasures against Side-Channel Attacks

The discovery of side-channel attacks triggered a continuous arms race between
attackers and designers of countermeasures against side-channel attacks. As a result
of this race, both attack and defense techniques evolved. On the one hand, new and
improved attack techniques have been proposed. On the other hand, countermeasures
have been devised and improved to prevent such attacks.

The goal of side-channel countermeasures is to make the physically observable
leakage of a device independent of the intermediate values of the executed crypto-
graphic algorithm or at least to reduce the dependencies between the two.

There are various countermeasures against side-channel attacks, which can be
applied at different levels: gate/circuit, architecture, system, implementation, or
protocol. While some countermeasures focus on the root cause of the problem
and try to prevent it, others try to increase the difficulty of attacks or to simply
slow down attackers. In practice, several countermeasures are usually combined
following a defense in depth approach to achieve better security against side-channel
attacks [161, 295, 309].

The most widely used countermeasures against DPA attacks can be classified
into two categories: hiding and masking. Hiding changes the leakage of a device with
the aim of making it random or equal for all operations and data values. Although
reaching perfectly random or equal leakages is an elusive goal, there are several
techniques that achieve good results by introducing changes in the time dimension or
the amplitude dimension of the leakage. Hiding in the time dimension can be done
by randomly inserting dummy operations (e.g. random delays [86]) or by shuffling
(i.e. randomly changing the sequence of operations of a cryptographic algorithm

1.7 Countermeasures against Side-Channel Attacks 31

that can be performed in arbitrary order [373]). Hiding in the amplitude domain
modifies the signal-to-noise ratio by either increasing the noise (e.g. performing
several operations in parallel, using noise generators [202]) or by lowering the signal
(e.g. filtering [317]). Masking randomizes the intermediate values that are processed
by a cryptographic device. Therefore, it can be applied at the algorithmic level
without changing the power consumption characteristics of the device. Firstly used
as a side-channel countermeasure by Chari et al. [78] and Goubin and Patarin [151],
masking is based on the principle of secret sharing introduced independently by
Blakley [55] and Shamir [316].

Masking and hiding are implemented at circuit level using secure logic styles
such as Sense Amplifier Based Logic (SABL) [354] and Wave Dynamic Differential
Logic (WDDL) [355]. However, logic styles can be easily defeated when the circuit
is not perfectly symmetric or the input signals of a gate do not arrive at the same
time [345].

Other types of side-channel countermeasures are protocol level countermeasures
and leakage-resilient cryptography. A simple approach to prevent side-channel attacks
at the protocol level is to reduce the number of cryptographic operations performed
using the same key [200]. For example, one can use a re-keying mechanism [236, 111]
to change the secret keys frequently. The focus of leakage-resilient cryptography
is to build primitives that can be proven to be secure against side-channel attacks
under certain assumptions on the leakage model [116, 338].

1.7.1 Masking

A first step towards a masked implementation of an algorithm is to convert each
sensitive intermediate value of the algorithm into a shared representation. A sensitive
value x is split into n values (or shares) x1, x2, . . . , xn such that x = x1 ⋆x2 ⋆ . . . ⋆ xn,
with n ≥ 2. Among these shares, n − 1 are generated uniformly at random and
the last one is computed such that the sensitive value is revealed when combining
all shares. Depending on the operations used in the algorithm to be masked,
the operator ⋆ can be replaced by ⊕ (exclusive-OR), ⊞ (modular addition), or
× (modular multiplication). Consequently, the masking is referred to as Boolean
masking, arithmetic masking, or multiplicative masking. Then, each operation of
the algorithm is performed on the shared representation by carefully manipulating
the shares independently to ensure that no information about the sensitive value is
leaked.

The number of random values in the shared representation of a sensitive value
determines the order of a masking scheme. For example, a masking scheme that
splits a sensitive value into two shares is referred to as first-order masking, or simply
masking. In general, an n-th order masking scheme resists attacks of order n (i.e.
attacks that combine the leakages of up to n points). Chari et al. [78] showed that
the number of measurements required to attack a masked implementation increases
exponentially with the number of shares in simplified, but realistic, settings.

32 Introduction

1.7.1.1 Boolean Masking

Boolean masking is probably the most deployed side-channel countermeasure for
symmetric algorithms. When protecting a symmetric algorithm that consists of a
combination of linear and nonlinear operations, Boolean masking must be applied to
all operations. In contrast to linear operations, which are easy to compute directly
on Boolean shares, nonlinear operations are difficult to mask.

The approach to mask a nonlinear operation is specific to each operation. When
the nonlinear operation is represented as a lookup table, the table can be random-
ized [239, 161]. In case of modular addition/subtraction, a first approach consists of
three steps: convert the Boolean masks to arithmetic masks, perform the operation
on arithmetic masks, and then convert the arithmetic masks to Boolean masks. This
approach is costly because it requires conversions between masks [149]. A second
approach is to perform the nonlinear operation directly on Boolean shares [182, 85].

Trichina [358] proposed a first-order masked AND gate, while Ishai et al. [174]
proposed several techniques for building private circuits and described a way to com-
pute a secure AND gate at any order. Then, Nikova et al. [253] introduced threshold
implementations and a masked AND gate using three shares. Finally, Reparaz et
al. [292] studied the similarities and differences between the three aforementioned
schemes to propose a generalized masking scheme.

1.7.1.2 Provable Security

An important characteristic of masking schemes is that their security can be proven
in certain theoretical models such as the probing model [174] or the strong non-
interference (t-SNI) model [33]. These models make realistic assumptions on the
leakage model of a device and the capabilities of an adversary.

The security of first-order masking schemes can be proven by showing that all
the intermediate variables of an algorithm are independent of the sensitive input
values. This approach can also be used for high-order masking schemes, but its
complexity grows exponentially with the masking order and thus it quickly becomes
too complicated. One has to show that any combination of n intermediate variables
is independent from the sensitive inputs in order to prove n-th order security.

Sometimes, security proofs are very complex and hard to comprehend even for
experts in the field. Hence, a minor slip in the argumentation can yield to a security
flaw. Moreover, the models in which security proofs are built do not perfectly
match the physical characteristics of a device nor the details of an implementation.
Although provable security provides powerful tools to assess the security of masking
schemes, it should be exercised with care, especially when implementing masking
schemes [28]. Finally, provable security should not be the sole criterion used to
determine the strength of a masking scheme. A provably secure masking scheme
should not leak when correctly implemented in a device, while its implementation
should be efficient and suitable for real-world applications.

1.8 Internet of Things (IoT) 33

1.7.2 Leakage Detection Tests

The goal of a leakage detection test is to determine whether a particular implemen-
tation is leaking or not. This is a more efficient and reliable strategy to decide if a
protected implementation achieves its security objective rather than performing a
battery of known key-recovery attacks against that implementation.

Even when an implementation withstands a set of known attacks, the significance
of the outcome is limited since there is no guaranty that a slightly modified attack
will not succeed. Certainly, it is difficult to get a good coverage of all known attacks
in a battery of tests. On the other hand, leakage detection tests have the benefit
of exhibiting leakages that might not yet be exploitable with the known attack
techniques.

Coron et al. [87, 88] presented several leakage detection tests to verify the existence
of secret-correlated emanations. Then, Goodwill et al. [148] proposed a methodology
for side-channel resistance validation based on statistical hypothesis testing. The
core statistical technique for their methodology is Welch’s t-test [377], which is an
extension of Student’s t-test [343] for unequal sample sizes and unequal variances.
Becker et al. [40] proposed an enhanced and optimized methodology which was
named Test Vector Leakage Assessment (TVLA).

There are several types of tests that can be performed to evaluate an implemen-
tation. A specific test targets certain intermediate values (e.g. S-box output) of the
assessed implementation. The evaluator knows the secret key and carefully chooses
the inputs to activate the targeted intermediates. On the other hand, a non-specific
test assesses the leakage of all intermediate variables of an algorithm. A random-vs.-
random test is performed using only random inputs, while a fixed-vs.-random test is
performed on a data set that uses fixed inputs and a data set of random inputs.

All t-test evaluations are one or two orders of magnitude faster than key-extraction
attacks [40]. Moreover, t-test leakage assessments are suitable for real-time com-
putation: the statistics can be computed as measurements are being collected.
In particular, the non-specific, fixed-vs.-random t-test can identify leakages in an
implementation very fast.

1.8 Internet of Things (IoT)

The Internet of Things (IoT) is one of the words that is on everyone’s lips nowadays.
The salient feature behind this buzzword is that the IoT brings Internet connectivity
to a plethora of devices, also called things, to create new ubiquitous ecosystems. A
thing can refer to a variety of devices that communicate to each other to make our
lives easier. Unlike the classical Internet where all devices use the same protocol
suite (i.e. TCP/IP) to exchange data, there is no standard way of communication in
the IoT, the only common ground being the Internet layer (i.e. IP/IPv6) connectivity.
Thus, the IoT is a highly heterogeneous environment with devices clustered in small
networks. The communication between these networks and the Internet is currently
facilitated by special-purpose hubs or gateways able to transfer the traffic between
various IoT technologies and the Internet. Still in its incipient stages, the IoT is

34 Introduction

believed to fundamentally change our daily lives in the way we will interact with the
surrounding environment.

1.8.1 Constraints

A distinguishing characteristic of IoT devices is that they are customized for specific
applications. Typically, they are designed to operate autonomously using a limited
amount of resources (e.g. energy). Therefore, these devices have to meet various
constraints that are imposed by a combination of factors such as the final price of a
product or the desired features.

In this context, the amount of resources that can be allocated for security
services (see Section 1.2.1) is just a small fraction of the total available resources.
Consequently, the cryptographic primitives used to provide the required security
services must meet stringent constraints without sacrificing security. The constraints
that an implementation of a cryptographic algorithm has to satisfy are usually
expressed using metrics such as those defined in Section 1.4.4. Typical constraints
for hardware implementations are silicon area, latency, and power consumption.
Exemplary constraints for software implementations are code size, execution time,
and energy consumption.

The problem of optimizing an algorithm for different criteria spans across multiple
axes, with one axis for each goal that has to be achieved. While it is relatively easy
to optimize along one axis, it is very hard to optimize for more than one design
goal at the same time. In general, designers of cryptographic algorithms focused
on optimizing along two different axes (e.g. security vs. speed, area vs. latency).
For example, different trade-offs specific to hardware implementations were explored
in [277, 193].

1.8.2 Lightweight Cryptography

Lightweight cryptography emerged as a new research direction that aims to address
the constraints that conventional cryptography faces in the IoT context. It is
widely accepted that cryptosystems play a major role in the security arena of the
IoT, but they need to be designed and implemented efficiently enough so as to
comply with the scarce resources of typical IoT devices. Gligor defined in [145]
lightweight cryptography as cryptographic primitives, schemes and protocols tailored
to (extremely) constrained environments.

The efficient implementation of cryptographic primitives so that they are applica-
ble in the highly constrained regimes of various IoT devices is a challenging task since,
for example, performance is conflicting with other metrics of interest such as memory
footprint and code size. In addition, implementations of lightweight cryptography
should withstand all known forms of attacks since lightweight cryptography is not
meant to be the weakest link in the security of a system.

1.8 Internet of Things (IoT) 35

1.8.3 Device Types

It is important to perceive the similarities and differences between the technologies
present in the IoT landscape, especially of those situated at the low-end spectrum
of computational power and capabilities: RFID (Radio Frequency IDentification),
NFC (Near Field Communication), and contactless smart cards. These terms are
used interchangeably by many people mainly because in today’s digital landscape,
keeping track of the technical jargon can be overwhelming. A clear understanding of
these technologies reveals to what extent devices using them can connect to the IoT
and where lightweight cryptography might be useful.

1.8.3.1 Lower Bound for the Computational Power of IoT Devices

A classical RFID tag, which consists of an integrated circuit for storing and processing
information and an antenna for receiving and transmitting signals, can communicate
only with tag readers. The main characteristic of an RFID tag is its unique serial
number that facilitates inventory and package tracking. Active RFID tags contain
their own power source, giving them the ability to broadcast signals with a read range
of up to 100 meters. Passive RFID tags are powered by the electromagnetic energy
transmitted from the RFID reader and have a read range of up to 25 meters [350].
An RFID tag has minimal built-in support for security and privacy [137].

NFC technology is a newer, more finely honed version of RFID. It takes advantage
of the short read range limitations (no more than a few centimeters) of its operating
radio frequency (13.56 MHz). An NFC device can work in three modes: reader/writer,
card emulation, and peer-to-peer. NFC tags contain data which can be read, and
under some circumstances can be writable by an NFC device. The card emulation
mode enables a phone to behave like a contactless card, allowing users to perform
various transactions. Peer-to-peer communication is a feature that sets NFC apart
from typical RFID devices [350], enabling devices to exchange information in an
adhoc fashion.

A contactless smart card contains a small but sophisticated computer (micro-
controller) that can perform certain on-card operations to provide a high level of
security [137]. The multi-layer security mechanism might include tamper-resistance
techniques, a dedicated cryptoprocessor, or a secure file system. Contactless smart
cards have a very limited read range of up to 10 cm to prevent tracking or eaves-
dropping. They are powered by external devices to which they exchange data using
communications technologies such as NFC.

As the cost of contactless smart cards decreases to reach soon the cost of RFID
tags set at a few cents per unit, classical RFID tags may get phased out due to
their drawbacks and limitations. At the same time, NFC technology progressively
becomes more popular thanks to NFC-capable smartphones able to accommodate
a considerable number of applications without additional costs. Currently, there
are two noticeable trends for secure payments operated under financial regulations.
Firstly, classical smart cards are evolving into contactless smart cards. Secondly,
mobile transactions done through smartphones are growing fast.

36 Introduction

1.8.3.2 Upper Bound for the Computational Power of IoT Devices

There are numerous IoT devices (i.e. smartphones, tablets) capable to communicate
directly through the Internet. Their role in the IoT is merely to augment the user
experience by facilitating interaction with different sensors and actuators. Since
these are powerful devices, they do not need to satisfy any additional requirements
to be able to communicate with other IoT devices.

1.8.3.3 Middle Range IoT Devices

A multitude of devices lay in between the previous two categories of IoT devices. This
category includes a wide range of microcontrollers that can be used for various appli-
cations such as wireless sensors, smart homes, building management, telemedicine
and healthcare. Microcontrollers are particularly interesting because they have
several advantages compared to FPGAs and ASICs. First of all, they are very
versatile in the sense that they can accommodate various software implementations.
Moreover, the software can be updated (relatively easy if such a mechanism is in
place) after the deployment the device. In the second place, the cost of writing
software applications is well below the one of hardware implementations. In addition,
there are more skilled software engineers than hardware engineers ready to write
custom applications and thus to support the fast growth of software applications for
the IoT. A third argument in favour of microcontrollers is that software applications
written in high-level programming languages such as ANSI C can be ported to
different microcontrollers with minor changes using the appropriate toolchain.

1.8.4 Threat Model

Designing and implementing effective security mechanisms requires a good under-
standing of the system to be protected. In addition to the defender’s perspective, a
security professional must also embrace an attacker’s mindset. Often, an attacker
targets those components of a system where the security is not strong enough. For
example, many attack vectors in the IoT context stem from the lack of proper
physical security, which exposes devices to a wide range of implementation attacks.
Therefore, the attack surface of IoT systems is considerably larger than the attack
surface of classical Internet-connected computers, which are typically deployed in a
secure perimeter. In light of the predicted growth of the IoT to billions of connected
devices in the coming years [122, 136], IoT devices must be designed to withstand a
variety of attacks in order to avoid large scale security incidents.

A threat model is the result of an iterative process leading to the identification
and classification of attack vectors that can be used to compromise an asset. Three
of the eight classes of attack vectors described in the thread model for the IoT
of Atamli and Martin [21] are essentially different implementation attacks: device
tampering, signal injection, and side-channel analysis. While profiling the attackers,
they identified three entities that can pose risks to the security and privacy of IoT
systems: legitimate user, device maker, and malicious adversary. In an earlier work,
Abraham et al. [2] described three classes of attackers: clever outsider, knowledgeable

1.9 Motivation 37

insider, and funded organization. For a more detailed treatment of the subject, we
refer the reader to the work of Atamli and Martin [21].

1.9 Motivation

The driving force of lightweight cryptography stems mainly from its direct applications
in the real world since it provides solutions to actual problems faced by designers of
IoT systems. Broadly speaking, lightweight cryptographic algorithms are designed to
achieve two main goals. The first goal of a cryptographic algorithm is to withstand all
known cryptanalytic attacks and thus to be secure in the black box model. The second
goal is to build the cryptographic primitive in such a way that its implementations
satisfy a clearly specified set of constraints which depend on a case-by-case basis.
The major challenge is to address both design goals at the same time since they
require expertise in different domains.

Embedded IoT devices are deployed in various locations, including places with
limited or no physical security. In such insecure or even hostile environments, they are
an enticing target for implementation attacks. Consequently, the implementations
of lightweight cryptographic algorithms that are embedded in these constrained
devices have to be protected against very powerful adversaries, while retaining their
efficiency.

Major standardization organizations are closely following the evolution of light-
weight cryptography. The International Organization for Standards (ISO) and the
International Electrotechnical Commission (IEC) have already standardized several
lightweight primitives and they currently consider other algorithms for inclusion in
their standards. The National Institute of Standards and Technology (NIST) has
organized two workshops on lightweight cryptography [248, 249] and has recently
announced the requirements for their portfolio of lightweight algorithms [247].

Enforcing security of IoT systems is very challenging task. Due to the resource
constraints imposed by the use cases for which the IoT devices are built for, system
architects are often left with few to no resources for securing these systems after
all desired futures have been added. Solutions to many of these security problems
converge to cryptographic engineering, a field at the intersection of cryptography,
computer science, and electronic engineering. This work seeks to conciliate these
contradicting requirements in order to provide secure, yet usable, embedded IoT
systems.

1.10 Research Contributions

This thesis focuses on efficient and secure implementations of lightweight symmetric
cryptographic algorithms for resource-constrained microcontrollers that are typically
used in the IoT. It is organized in three parts that are briefly described next.

38 Introduction

1.10.1 Part I – Efficient Implementations

The four chapters of this part are centered around FELICS (Fair Evaluation of
Lightweight Cryptographic Systems), an open-source benchmarking framework for
software implementations of lightweight cryptographic primitives on embedded
devices.

Chapter 2. We introduce FELICS, a free and open-source benchmarking frame-
work designed for fair and consistent evaluation of software implementations of
lightweight cryptographic primitives for embedded devices. The framework is very
flexible thanks to its modular structure, which allows for an easy integration of new
metrics, target devices and evaluation scenarios. It consists of four modules that
can currently assess the performance of lightweight block ciphers, stream ciphers,
authenticated ciphers, and hash functions on three widely used microcontrollers:
8-bit AVR, 16-bit MSP and 32-bit ARM. The extracted metrics are execution time,
RAM consumption and binary code size. FELICS has a simple user interface and is
intended to be used by cipher designers to compare new primitives with the state
of the art. The extracted metrics are very detailed and assist embedded software
engineers in selecting the best cipher to match the requirements of a particular
application. The tool aims to increase the transparency and trust in benchmarking
results of lightweight primitives and facilitates a fair comparison between different
primitives using the same evaluation conditions.

Chapter 3. We use FELICS to benchmark various implementations of 19 light-
weight block ciphers, namely AES, Chaskey, Fantomas, HIGHT, LBlock, LEA, LED,
Piccolo, PRESENT, PRIDE, PRINCE, RC5, RECTANGLE, RoadRunneR, Robin,
Simon, Sparx, Speck, and TWINE. Then, we propose a figure of merit according
to which all evaluated candidates can be ranked. Our results give new insights to
the question of how well these lightweight block ciphers are suited to secure the IoT.
We also draw conclusions about which design strategies are the most promising ones
for the IoT.

Chapter 4. We introduce the Sparx family of lightweight block ciphers. Sparx

is the first ARX design that has provable security arguments and competitive
performance on resource-constrained devices. In this chapter, we elaborate on
the implementation-related characteristics of Sparx and how software efficiency
influenced the final design. Then, we provide implementation details and results for
two instances of Sparx that use a 128-bit key and two different block sizes, namely
Sparx-64/128 and Sparx-128/128.

Chapter 5. We evaluate the cost of the main building blocks of a symmetric
cryptographic algorithm to determine the most efficient ones. This chapter provides
a detailed insight into the efficiency of software implementations of lightweight
symmetric cryptography. The contribution of this chapter is particularly valuable for

1.10 Research Contributions 39

designers of new lightweight ciphers because they can make design decisions based
on both security and efficiency using our results.

Impact. FELICS already has impact in the research community. Many people
contributed optimized implementations and several designers of new algorithms used
FELICS for the evaluation of their software implementations, while the evaluation
results are becoming a common reference in the literature. Moreover, NIST is
interested in using FELICS for a fair comparison of candidates for their recommended
portfolio of lightweight algorithms for the IoT.

1.10.2 Part II – Side-Channel Attacks

Chapter 6 An important criterion to assess the suitability of a lightweight cipher
with respect to SCA is the amount of leakage available to an adversary. In this
chapter, we analyze the efficiency of different selection functions that are commonly
used in Correlation Power Analysis (CPA) attacks on symmetric primitives. To this
end, we attacked implementations of the lightweight block ciphers AES, Fantomas,
LBlock, Piccolo, PRINCE, RC5, Simon, and Speck on an 8-bit AVR processor. By
exploring the relation between the nonlinearity of the studied selection functions and
the measured leakages, we discovered some imperfections when using nonlinearity
to quantify the resilience against CPA. Then, we applied these findings in an
evaluation of the “intrinsic” CPA-resistance of unprotected implementations of the
eight mentioned ciphers. We show that certain implementation aspects can influence
the leakage level and try to explain why. Our results shed new light on the resilience
of basic operations executed by these ciphers against CPA and help to bridge the
gap between theory and practice.

Chapter 7 We show that most implementations of the AES present in popular
open-source cryptographic libraries are vulnerable to side-channel attacks, even in
a network protocol scenario when the attacker has limited control of the input.
We present an algorithm for symbolic processing of the AES state for any input
configuration where several input bytes are variable and known, while the rest are
fixed and unknown as is the case in most secure network protocols. Then, we describe
an optimal algorithm that can be used to recover the master key using Correlation
Power Analysis (CPA) attacks. Our experimental results raise awareness of the
insecurity of unprotected implementations of the AES used in network protocol
stacks.

Chapter 8 We perform the first side-channel vulnerability analysis of the Thread
networking stack. We leverage various network mechanisms to trigger manipulations
of the security material (i.e. cryptographic keys) or to get access to the network
credentials. Then, we choose the most feasible attack vector to build a complete
attack that combines network specific mechanisms and Differential Electromagnetic
Analysis. When successfully applied on a Thread network, the attack gives full
network access to the adversary. We evaluate the feasibility of our attack in a TI

40 Introduction

CC2538 setup running OpenThread, a certified open-source implementation of the
stack. The full attack does not succeed due to a fortunate side-effect that is not
related to security. Finally, we summarize the problems we found in the protocol
with respect to side-channel analysis, and suggest a range of countermeasures to
prevent our attack and the other attack vectors we identified during the vulnerability
analysis. This chapter provides a useful lesson to designers of IoT protocols and
devices.

1.10.3 Part III – Side-Channel Countermeasures

Chapter 9 The best known expressions for Boolean masking of bitwise operations
are relatively compact, but even a small improvement of these expressions can
significantly reduce the performance penalty of more complex masked operations such
as modular addition on Boolean shares. Consequently, protected implementations of
ciphers that use better expressions get more efficient. We present and evaluate new
secure expressions for performing bitwise operations on Boolean shares. To this end,
we describe an algorithm for efficient search of expressions that have an optimal cost
in number of elementary operations. We show that bitwise AND on Boolean shares
can be performed using less instructions than the best known expressions, while the
best known expression for bitwise OR is optimal. More importantly, our expressions
do no require fresh random values.

Part I

Efficient Implementations

Chapter 2

FELICS – Fair Evaluation of

Lightweight Cryptographic

Systems

Contents

2.1 Introduction . 44

2.1.1 Research Contribution . 45

2.2 Related Work . 45

2.2.1 BLOC Project . 45

2.2.2 eBACS Project . 46

2.2.3 XBX Project . 47

2.2.4 ATHENa Project . 48

2.2.5 ECRYPT II Project – Performance Evaluation on ATtiny45 48

2.3 Motivation . 49

2.4 Goals . 50

2.5 Benchmarking Framework 51

2.5.1 Structure . 51

2.5.2 Export Formats . 57

2.6 Target Devices . 57

2.6.1 8-bit AVR ATmega128 Microcontroller 58

2.6.2 16-bit MSP430F1611 Microcontroller 58

2.6.3 32-bit ARM Cortex-M3 Microcontroller 59

2.7 Metrics . 59

2.7.1 Code Size . 59

2.7.2 RAM . 60

2.7.3 Execution Time . 61

2.8 Summary . 61

44 Fair Evaluation of Lightweight Cryptographic Systems

2.1 Introduction

The imminent expansion of the Internet of Things is creating a new world of smart
devices in which security implications are very important. If we consider that brain
stimulator circuits and heart pacemakers may be directly connected to a network
to provide physicians with useful information in establishing and adjusting the
therapy without physical examination of the patient, security plays a crucial role
since unauthorized access to these critical devices can be life-threatening. The health
sector is just one of the domains where the number of IoT devices is expected to
grow significantly. Other IoT applications include supply chain management, smart
homes, green cities and many more.

Besides the security aspects, the IoT introduces new challenges in terms of
energy and power consumption. Thus the lightweight cryptographic primitives
designed for IoT-enabled devices must consume few resources, while providing the
claimed level of security. In the recent past, the research community’s interest for
lightweight cryptography increased and as a result many lightweight algorithms were
designed and analyzed from the security perspective. The implementation effort
focused on selecting the best design constructions in order to reduce the resource
consumption, evaluating the performance figures achieved by hardware and software
implementations on different platforms, and analyzing and improving the protection
against side-channel attacks.

Looking back at NIST contests for the selection of new cryptographic stan-
dards [250, 246], we can see that weak designs from a security perspective were
disqualified after the first evaluation phase. In the following stages, the remaining
algorithms had similar security margins and thus new evaluation criteria were neces-
sary. This is the moment where hardware and software evaluation of the candidates
plays a very important role. As is pointed in [132], the final ranking of candidates is
closely related to the hardware and software performance figures. Since benchmark-
ing frameworks allow for consistent evaluation, they are important not only in the
selection process of new cryptographic standards, but also for a fair comparison of
ciphers’ performance in given usage scenarios.

NIST organized two workshops [248, 249] on lightweight cryptography to discuss
the security and resource requirements of applications in constrained environments
and potential future standardization of lightweight primitives. Considering the
increasing market of IoT devices and the industry’s need for a standard to secure
IoT applications, tools designed to extract the performance figures of lightweight
primitives on different platforms under the same conditions are required. These tools
help cryptographers to evaluate proposed designs with respect to previous ones and
can be used to break the tie between the candidates in the subsequent phases of
the selection process. Based on the feedback following the two workshops, NIST
decided to create a portfolio of lightweight ciphers that fit into clearly defined use
cases specific to the IoT. Moreover, they already announced a call for cryptographic
primitives suitable for two different profiles [247].

2.2 Related Work 45

2.1.1 Research Contribution

Firstly, we analyze previous benchmarking frameworks to identify the strengths and
weaknesses of each one. We formulate a set of design goals that are required for a fair
evaluation of lightweight primitives on different platforms under the same conditions.
Then, we describe the structure of our benchmarking framework, extracted metrics
and target devices. For each of the extracted metrics and for each supported device
we describe the methodology and tools used.

FELICS (Fair Evaluation of Lightweight Cryptographic Systems) [93] is a free,
open-source and flexible framework that assesses the performance of C and assembly
software implementations of lightweight primitives on embedded devices. Thanks
to the modular design, the framework can easily accommodate new metrics, usage
scenarios, or target devices. It is the core of an effort to increase transparency in
lightweight algorithms’ performance and aims to facilitate fair comparison of the
assessed algorithms. In the past three years we maintained a web page [93] where
the tool can be downloaded and up-to-date results of the assessed primitives can
be found. Soon after its initial publication, the framework has become a valuable
resource and reference point for comparing the efficiency of lightweight ciphers.

To the best of our knowledge, this is the only free and open-source benchmarking
framework designed for fair and consistent evaluation of software implementations of
lightweight primitives on various IoT embedded devices in the same usage scenarios.
As the IoT field is expected to have a major growth in following years, FELICS
will help to provide the research community and industry with fair and detailed
performance figures of lightweight primitives.

2.2 Related Work

Over time, several benchmarking frameworks have been designed to ease the eval-
uation of cryptographic primitives on different hardware or software platforms.
In addition to these benchmarking frameworks, survey and benchmarking pa-
pers [209, 121, 194, 184, 231] were published. In this section we describe the
previous work that helped us in designing the proposed framework. For each project
analyzed we present the design requirements and constraints, the extracted metrics
and the methodology used to ensure a fair and consistent evaluation.

2.2.1 BLOC Project

The BLOC project [74] aims to study the design of block ciphers dedicated to
constrained environments. During the project, a paper [75] about the performance
evaluation of lightweight block ciphers for wireless sensor nodes was published.
The C implementations of the studied ciphers along with the source code used to
extract the analyzed metrics are available for free. The target device is the 16-bit
MSP430F1611 [348] microcontroller, commonly used in sensor nodes.

The three metrics considered (execution time, RAM requirement and code size)
are extracted for a set of 17 ciphers. The cycle count is measured using the cycle

46 Fair Evaluation of Lightweight Cryptographic Systems

accurate simulator MSPDebug. The RAM requirement is given by the stack usage for
running the encryption key schedule, encryption and decryption operations. The
stack consumption is computed by debugging the program execution on the MSPDebug
simulator using msp430-gdb. Breakpoints are inserted at the beginning and at the
end of the program execution and afterward the number of modified words in memory
is computed. The data required to store the cipher state, the master key and round
keys are not included in the RAM requirement. The code size is given by the text

section of the binary file and is extracted using the msp430-size tool. The metric
extraction is done automatically through Bash scripts and the results are exported
into LaTeX tables similar to those used in the paper [75].

Analyzing the project source code, we inferred that the framework has some
major drawbacks. Firstly, the RAM requirement given in the paper and on the
project website is wrongly computed because the framework implementers assume
that the unsigned int data type requires one byte instead of two on a 16-bit
MSP430F1611 [348] microcontroller. Thus the RAM requirement provided in the
paper is half of the actual value. Secondly, the library is not flexible at all and it does
not allow easy addition of new devices or metrics. The provided library does not
have a set of requirements that each implementation should follow and there is no
common interface for assessing the performance of the implemented ciphers. Without
a clear evaluation methodology, reference implementations that process one block at
a time are compared with bit-sliced implementations that process several blocks in
parallel. Thirdly, some implementations of the studied ciphers do not verify the test
vectors (e.g. LBlock). We wrote a patch that fixes the identified issues and sent it to
the authors of the project. The patch was applied to the public repository [192].

The project has the merit of being one of the first attempts to evaluate a set of
lightweight block ciphers on an embedded device. It also contains a large collection
of implementations of lightweight ciphers available for free.

2.2.2 eBACS Project

The eBACS (ECRYPT Benchmarking of Cryptographic Systems) [45] project aims
at measuring the speed of a wide variety of cryptographic primitives on personal
computers and servers. The developed framework, SUPERCOP (System for Unified
Performance Evaluation Related to Cryptographic Operations and Primitives), inte-
grates features for measuring the execution time of hash functions (eBASH), stream
ciphers (eSTREAM), authenticated ciphers (eBAEAD), and public-key systems
(eBATS). It provides a large collection of cryptographic implementations. The open
and free source code of the framework is written in C with inline assembly, Bash
and Python.

The project web page provides information on how to submit new implementations
as well as how to collect data for existing implementations using the framework.
The requirements that the implementation of a cryptographic primitive has to fulfill
in order to be evaluated using the framework are very well described and ensure a
consistent evaluation of all implementations across all considered target platforms.

The framework allows benchmarking of C, C++, and assembly implementations.

2.2 Related Work 47

It automatically compiles the source code using different compilers and compiler
options. The cycle count metric is computed using inline assembly instructions
for each of the supported platforms. Because execution time is the only metric
extracted, the submitted implementations are optimized only for speed. The results
are extracted for different input data lengths across all compilers and compiler options
and saved in a database, which is merely a text file that contains a line for each
implementation evaluated. A line consists of a set of entries, separated by spaces,
that allows to identify the measurement conditions and the corresponding results.

The framework represents a first step towards consistent evaluation of crypto-
graphic primitives. Thanks to the fair and clear evaluation methodology, it has
been used as source of inspiration for other similar projects. One of the framework’s
strengths is given by the large number of computers with different architectures and
characteristics used for the result collection process, while the main shortcoming is
that it is able to extract only the execution time. The framework is used to measure
the performance of authenticated encryption schemes in the context of the CAESAR
competition [71].

2.2.3 XBX Project

The XBX (eXternal Benchmarking eXtension) project [378] is an extension of SU-
PERCOP that allows benchmarking of hash functions on different microncontrollers.
The XBX framework is written in C, Perl and Bash and uses the same interfaces for
the implemented algorithms and generated results as SUPERCOP. The hardware
layer consists of XBD (eXternal Benchmarking Device) and XBH (eXternal Bench-
marking Harness) that communicate with each other using either I2C or UART and
digital I/O lines. The XBH is connected to the PC running the XBS (eXternal Bench-
marking Software) using the Ethernet port. Where more compilers are available,
XBX retains the SUPERCOP capability to benchmark the same implementation
using different compilers and compiler options.

Besides extending the eBASH capabilities to microcontrollers, XBX extracts two
more metrics for the analyzed hash implementations: binary code size and RAM
consumption. The code size is obtained through static analysis of the generated
binary file. The RAM requirement is the sum of stack consumption and static
RAM requirement obtained from the application binary. The cycle count values
are subject to measurement errors because they are not extracted directly from the
target devices, but from the XBH [379]. Most of the benchmarked algorithms are
taken from SUPERCOP.

The XBX is the first project to uniformly measure the performance of software
implementations of cryptographic primitives built for different embedded devices
using the same evaluation methodology. The results given in the report [379] are
gathered for eight different devices with 8-bit, 16-bit and 32-bit CPUs from all major
vendors and they were used in the second round of the SHA-3 competition [246].
The project is not active anymore, but its source code is public [208].

48 Fair Evaluation of Lightweight Cryptographic Systems

2.2.4 ATHENa Project

The ATHENa (Automated Tool for Hardware EvaluatioN) project [359] aims at
fair, comprehensive and automated evaluation of cryptographic cores developed
using hardware description languages such as VHDL or Verilog. The goal of the
framework is to spread knowledge and awareness about good performance evaluation
practices in order to make the comparison of competing algorithms fairer and more
comprehensive.

The open-source benchmarking environment is described in [133]. It is inspired
from the eBACS project [45] and consists of a set of scripts written in Perl and Bash
aimed at automated generation of optimized results for multiple hardware platforms.
The metrics considered are area, throughput, and execution time, while the primary
optimization target is throughput to area ratio.

The framework can be used under Windows or Linux operating systems and
supports different target FPGA families from Xilinx, Altera, and Actel. It allows
running all steps of synthesis, implementation, and timing analysis in batch mode and
performs automated optimization of results aimed at one of the three optimization
criteria: speed, area, and throughput to area ratio. The generated results can be
exported in CSV, Excel and LaTeX formats.

During the SHA-3 contest [246] the tool played an important role due to the com-
prehensive results generated and published [165]. Besides having been used during
the SHA-3 competition, the framework is ready for the evaluation of authenticated
encryption candidates from the CAESAR competition [71] and preliminary results
are available on the project website [359]. We note that although it provides com-
prehensive performance figures, it does not require revealing the source code. While
this decision is meant to protect intellectual property, it narrows the transparency of
the results.

2.2.5 ECRYPT II Project – Performance Evaluation on ATtiny45

During the ECRYPT II project, two papers [118, 26] presenting the performance eval-
uation of block ciphers and hash functions with applications in ubiquitous computing
on an Atmel AVR ATtiny45 8-bit microcontroller were published. The implemen-
tations written in assembly language are available for free [119, 27]. Although the
authors of the two papers formulate a list of common constraints to be able to
compare the performance, some of the guidelines were not always followed.

The papers consider the following metrics: code size, RAM usage and execution
time. A combined metric is computed as the product of code size and execution
time divided by the block size for block ciphers. For hash functions the combined
metrics are given by the product of code size and execution time and the product of
RAM usage and execution time. For block ciphers the average energy consumption is
computed by integrating the measured current consumption. The energy consumption
for all studied ciphers is strongly correlated with the cycle count values.

The tools and methodology used to extract the main metrics are not described.
Although the common interfaces used for the evaluation of the implementations are
provided, no scripts to help with the metric collection process are provided. The use

2.3 Motivation 49

eBACS ECRYPT II BLOC XBX FELICS

Code size ✗ ✓ ✓ ✓ ✓

RAM ✗ ✓ ✓ ✓ ✓

Execution time ✓ ✓ ✓ ✓ ✓

AVR ✗ ✓ ✗ ✓ ✓

MSP ✗ ✗ ✓ ✓ ✓

ARM ✗ ✗ ✗ ✓ ✓

PC ✓ ✗ ✗ ✗ ✓

Evaluation scenarios ✗ ✗ ✗ ✗ ✓

Actively maintained ✓ ✗ ✗ ✗ ✓

Table 2.1: Comparison of software benchmarking frameworks.

of assembly language for the implementations of algorithms has the advantage of illus-
trating the lightweight aspects of the studied ciphers better than C implementations,
but at the same time it limits the code portability.

2.3 Motivation

The lightweight designs published in the literature give different performance figures
on different platforms and different evaluation conditions. The exact methodology
used to extract the figures is often unclear. Considering that the performance figures
are usually reported for different devices and that the measured operations and
measurement conditions differ from paper to paper, it is very hard to use the given
values to compare different designs.

The lack of comparative performance figures creates the need for a fair and
consistent way of extracting performance figures for lightweight ciphers. The results
obtained using the same assessment methodology can be used to compare different
algorithms. Using the performance values, cipher designers can infer which design
constructions are better on different architectures. At the same time, the results can
help engineers to select the best cipher for a given use case.

While the first proposed lightweight ciphers were mainly geared for hardware
efficiency, in the last years, we notice that the focus is moving to lightweight ciphers
designed for efficiency in software (see Section 3.3). This new design direction for
lightweight ciphers reinforces the need of reliable and accurate performance figures.

Table 2.1 summarizes the main characteristics of the software benchmarking
frameworks described in Section 2.2 and FELICS. While many frameworks extract
the three metrics considered (code size, RAM, and execution time), few frameworks
support IoT devices such as the 8-bit AVR, 16-bit MSP, or the 32-bit ARM. Except
for FELICS, none of those frameworks is actively maintained. A distinguishing
feature of FELICS is that it uses the concept of evaluation scenario to benchmark
an implementation in various use cases inspired from the real world.

50 Fair Evaluation of Lightweight Cryptographic Systems

2.4 Goals

FELICS was created to allow the comparison of software implementations of lightweight
ciphers on different embedded devices commonly used in the IoT. Its key character-
istics are:

Fair Evaluation. To ensure a fair evaluation a clear assessment methodology was
formulated. The methodology indicates the requirements that each implementation
should follow and how each metric is extracted for each supported device. Although
sometimes the methodology can be considered restrictive, it has been formulated to
ensure a fair evaluation for every implementation.

Consistent Evaluation. The same methodology is used to assess the performance
of all implementations of a primitive type. Thus the evaluation is consistent across all
the target embedded devices for all studied usage scenarios. The consistent evaluation
allows easy comparison of the performance figures between similar implementations
of ciphers. It also facilitates the correct ranking of the ciphers’ implementations
using different criteria.

Accurate Measurements. The framework provides accurate measurements. To
achieve this goal, the tools used to extract the metrics and the measurement conditions
are precise. The simulators are cycle accurate and the tools used for measurements
on development boards are carefully calibrated.

Open Source. To increase the trust in the measurements, the framework source
code is open. Anyone can analyze the source code, can detect and fix coding bugs,
or even contribute to the tool development with new modules and features.

Comprehensive Results. The extracted metrics are very detailed and aim to
help understanding how different parts of an algorithm’s implementation are affecting
the performance. Embedded software engineers can use the comprehensive results to
select the best trade-offs for a specific use case.

Flexible. The framework uses a modular architecture that facilitates further
development. FELICS is designed to allow future development of new modules for
assessing other types of cryptographic primitives. It also allows integration of new
target devices and metrics. The process of integrating a new cipher implementation
is very easy and can be done following the methodology and requirements of the
framework.

Automatic Evaluation. The framework is able to verify if an implementation
follows the formulated requirements. It can automatically check if an implementation
verifies the test vectors provided by an implementer for all target devices. The process
of collecting the performance figures is suitable for batch processing. The user can
extract the results for a given list of ciphers and for a given list of architectures.

2.5 Benchmarking Framework 51

AVR MSP ARM

avr-gcc 4.8.2 msp430-gcc 4.6.3 arm-none-eabi-gcc 4.8.2

Table 2.2: Compilers used to build the implementations for each target device.

2.5 Benchmarking Framework

2.5.1 Structure

FELICS is written in C with inline assembly, Bash and Python and is designed
to work on Linux operating systems. It allows benchmarking of C and assembly
implementations that follow a given set of requirements. The C programming
language was selected because of its widespread adoption and portability. If we
consider that usually the reference implementations of ciphers are provided in C
language, then it is the natural choice to reach a wide group of users. Moreover, the
framework can target multiple embedded devices used in the IoT context with a
single implementation, which limits the development effort. FELICS also facilitates
the benchmarking of highly optimized assembly implementations, which are platform
dependent.

The usage scenarios are written in C, while the cipher implementations can be
written in C or assembly. Each module has a makefile that can build an implementa-
tion for a given architecture and scenario using a given compiler optimization level.
The framework contains a collection of Bash scripts that allow to fully automate
the metric extraction process. Python scripts were used to perform operations
that were too complicated or impossible to be done in Bash. FELICS is able to
automatically generate the binary code, to check the implementation’s correctness
using the provided test vectors, and to extract the implementation metrics for the
supported devices.

The current version of the framework includes a core module and four specialized
modules for evaluating lightweight block ciphers, stream ciphers, authenticated
encryption algorithms, and hash functions. Thanks to the modular structure depicted
in Figure 2.1, FELICS can be easily extended with new modules capable to measure
other primitives. Each module uses the services of the core module and provides it
with scripts for batch processing.

2.5.1.1 Core Module

The core module is the heart of the framework and provides the tools necessary to
collect the metrics for each of the supported devices. Each implementation is built
automatically using different compiler optimization levels (-O3, -O2, -O1 and -Os)
and the metrics for each compiler optimization level are reported. The compilers
used for each target device and the compiler versions are given in Table 2.2.

The complete list of used tools and tool versions organized by extracted metric
for each supported device is given in Table 2.3. Since the framework is subject to

52 Fair Evaluation of Lightweight Cryptographic Systems

MSP

Execution

Time
Code Size RAM ...

AVR

Execution

Time
Code Size RAM ...

ARM

Execution

Time
Code Size RAM ...

PC

Execution

Time
Code Size RAM ...

...

Execution

Time
Code Size RAM ...

Implementations Implementations Implementations

Figure 2.1: Modular structure of FELICS.

changes and improvements, we refer the reader to the FELICS web page [93] for
updated information on compilers and tools.

The role of the core module is to facilitate a smooth integration of new target
devices and extracted metrics. It allows the user to collect the results for one or
more of the modules that are integrated in the framework.

In addition to the supported embedded devices, the module gives the possibility to
debug and evaluate cipher implementations built for personal computers. This feature
is mainly added to reduce the complexity of the implementation and integration
process and to ease the task of users.

In order to achieve the described design goals, each module formulates a specific
set of requirements that every implementation should follow. Even though the
requirements create additional constraints and limit the possibility to benchmark
highly optimized implementations (e.g. bit-sliced implementations), they ensure a
fair and consistent evaluation across all implementations.

The core module has a configuration file, conf.sh, that provides the other
modules with information about the tools used to extract the analyzed metrics for
each target device. At the same time, each module implements the get_results.sh

2.5 Benchmarking Framework 53

AVR MSP ARM

Code size

avr-size 2.23.1 msp430-size 2.21.1 arm-none-eabi-size 2.24

RAM

simavr 1.5 MSPDebug 0.25 J-Link GDB Server V5.00l

avr-gdb 7.6.50 msp430-gdb 7.2 arm-none-eabi-gdb 7.6.50

Execution time

Avrora 1.7.117 MSPDebug 0.23 Arduino Due board

Table 2.3: Tools used to extract the metrics for each target device.

script that can be called from the core module to extract the performance figures in
batch mode.

2.5.1.2 Block Ciphers Module

The module allows the evaluation of software implementations of lightweight block
ciphers. Each implementation of a block cipher has to use the function prototypes
from Listing 2.1 for the basic operations. In order to enable the framework to extract
the metrics for each of the four operations, each operation has to be implemented
in a separate C file. If the decryption key schedule is the same as the encryption
key schedule, the decryption key schedule function has to be defined as an empty
function. In the case the cipher does not have a key schedule, the encryption key
schedule must be defined as a function that copies the master key into the round keys.
The encryption and decryption operations are done in place to reduce the RAM
consumption and the key should not be modified after running the key schedule.

void RunEncryptionKeySchedule(uint8_t ∗key, uint8_t ∗roundKeys);
void Encrypt(uint8_t ∗block, uint8_t ∗roundKeys);
void RunDecryptionKeySchedule(uint8_t ∗key, uint8_t ∗roundKeys);
void Decrypt(uint8_t ∗block, uint8_t ∗roundKeys);

Listing 2.1: Required function signatures for block ciphers.

The block size, key size, round keys size and the number of rounds of the
cipher have to be defined in the constants.h file. Other constants used by the
implementation should be declared in the same header file, while the definitions can

54 Fair Evaluation of Lightweight Cryptographic Systems

be added to constants.c or any other *.c file, except for the predefined C files.
The constants can be stored in flash or RAM memory of the device and should be
read with the macros provided by the framework. FELICS automatically checks if
each implementation verifies the test vectors given in the test_vectors.c file.

The implementation information file, implementation.info, provides imple-
mentation details to the framework such that the common code and data to be
considered just once when extracting the metrics. One can split an implementation
into as many files as wanted if each implementation file is correctly listed in the
implementation.info file. The implementation information file indicates if a key
schedule is used for encryption and decryption.

A template cipher implementation and a file describing the module requirements
is provided with the module to help users to integrate new implementations. The
process of integrating an existing C or assembly implementation is thus very easy
and consists in filling the functions of the template cipher with the implementation
of an actual cipher as described in the README file.

The module contains three evaluation scenarios, but can be easily extended with
new evaluation scenarios. The cipher operation (Scenario 0) evaluates the basic
operations performed by a block cipher. In this scenario a block of data is encrypted
and then decrypted using the provided test vectors. The communication protocol
(Scenario 1) assumes the encryption and decryption of 128 bytes of data using the
CBC mode of operation. This scenario is suitable for secure communication in the
IoT context and considers the limitations of IEEE 802.15.4 [170] and ZigBee [393]
protocols used in sensor networks. The challenge-response authentication protocol
(Scenario 2) is created to evaluate the cost of authentication in the IoT context by
using a block cipher in CTR mode to encrypt 128 bits of data. No key schedule is
required because the cipher round keys are precomputed and stored in the device’s
flash memory.

Because the communication protocol and challenge-response scenarios assume
the encryption of 128 bytes and 128 bits of unpadded data, respectively, the block
size of the cipher in bits has to be equal to or a submultiple of 128.

2.5.1.3 Stream Ciphers Module

The performance figures of stream ciphers can be extracted for each stream cipher
implementation that defines the functions described in Listing 2.2. The definition
of each function has to be placed in a separate C file. The implementation of the
encryption function must be able to process at least one byte. The encryption process
is done in place to reduce RAM consumption. The cipher master key should not be
modified after running the setup.

void Setup(uint8_t ∗state, uint8_t ∗key, uint8_t ∗iv);
void Encrypt(uint8_t ∗state, uint8_t ∗stream, uint16_t length);

Listing 2.2: Required function signatures for stream ciphers.

2.5 Benchmarking Framework 55

The cipher state size, key size and initialization vector size have to be defined in
the constants.h file. The constants used by the stream cipher must be declared in
constants.h file and defined in the constants.c or any other *.c file, except for
the predefined *.c files. The implementer can choose to store the constants in flash
or RAM and has to use the corresponding macro to read the constants. The test
vectors used by FELICS to check the correctness of the implementation should be
defined in the test_vectors.c file.

Integrating a new stream cipher implementation is very easy because the user
is provided with a template implementation of a stream cipher and a file with
implementation instructions. The implementer has just to fill the functions from the
template cipher with the source code of the cipher according to the requirements
described in the README file.

FELICS parses the implementation.info file to ensure the common source code
and constants are counted only once in the extracted metrics. The implementation
of each of the required functions can be split into several files provided that the
implementation information is correctly given in the implementation.info file.

Two evaluation scenarios are implemented for this module, but new scenarios
can be added at any time with minimal effort. The cipher operation (Scenario 0) is
evaluated using the provided test vectors. The communication protocol (Scenario 1)
is designed to secure the communication between wireless sensor nodes and consists
in encryption of 128 bytes of data. Because the evaluation conditions are similar
to the one used for block ciphers, these scenarios can also be used to compare the
performance figures of block and stream ciphers.

2.5.1.4 Authenticated Ciphers Module

This module assesses the performance of authenticated ciphers that implement the
functions specified in Listing 2.3. Each of the six functions must be implemented in a
separate C file. This application programming interface (API) is designed to facilitate
detailed measurements of the main structural components of an authenticated cipher.
It was inspired by the lightweight submissions to the CAESAR competition [71].
Since the call for submissions did not impose strict requirements on the structure
of authenticated ciphers, designers used various structures. Consequently, it was
challenging to design an API that can easily accommodate implementations of
algorithms that do not have exactly the same structure.

void Initialize(uint8_t ∗state, uint8_t ∗key, uint8_t ∗nonce);
void ProcessAssociatedData(uint8_t ∗state, uint8_t ∗associatedData, uint8_t lenght);
void ProcessPlaintext(uint8_t ∗state, uint8_t ∗message, uint8_t length);
void ProcessCiphertext(uint8_t ∗state, uint8_t ∗message, uint8_t length);
void Finalize(uint8_t ∗state, uint8_t ∗key);
void TagGeneration(uint8_t ∗state, uint8_t ∗tag);

Listing 2.3: Required function signatures for authenticated ciphers.

56 Fair Evaluation of Lightweight Cryptographic Systems

An implementer has to specify the structural properties of the algorithm in the
implementation.info file such that the module can address the differences in the
structure of various authenticated ciphers. One must indicate the common code and
data in the implementation file to allow the module to add them a single time to the
computed metrics.

The encryption and decryption are done in place to reduce the memory require-
ment. Most of the algorithms proposed in the CAESAR competition [71] can not
process the input message in chunks of different sizes. Therefore, they impose that
the same message lengths are used for both encryption and decryption. One can
implement an authenticated cipher or port an existing implementation by following
the steps described in the README file.

This module supports five usage scenarios. Scenario 0 is used to automatically
test the correctness of an implementation using the provided test vectors. Different
use cases specific to IoT communication protocols such as ZigBee [393] are evaluated
in three scenarios. Scenario 1 describes a use case where a cipher encrypts and
authenticates 128 bytes of data. In addition to the message, the cipher authenticates
128 bits of associated data (e.g. an IPv6 address). Scenario 2 assumes only encryption
and authentication 128 bytes of data. In Scenario 3, the cipher is used only to encrypt
128 bytes of data. Finally, Scenario 4 describes a challenge-response protocol where
128 bits of associated data are authenticated.

2.5.1.5 Hash Functions Module

This module benchmarks implementations of hash functions that define the three
functions described in Listing 2.4. Each of the three functions must be implemented
in its own C file. The constants and code shared between these functions must be
listed in the implementation.info file. The README file provides details on how to
implement a hash function for this module starting from a template implementation.
The update function must be implemented such that the resulting hash is the same
regardless of how the input message is split into chunks.

void Initialize(uint8_t ∗state);
void Update(uint8_t ∗state, uint8_t ∗message, uint16_t length);
void Finalize(uint8_t ∗state, uint8_t ∗digest);

Listing 2.4: Required function signatures for hash functions.

The hash function module supports three evaluation scenarios and new scenarios
can be easily added. The correctness of an implementation is verified in Scenario 0
using the given test vectors. Scenario 1 assesses the performance of an implementation
that hashes messages of 16, 128, and 1024 bytes. The short message (i.e. 16 bytes)
corresponds to a challenge-response protocol, while the long message (i.e. 1024 bytes)
represents the maximum block size of a firmware update [63]. The common amount
of data exchanged in an IoT communication protocol influenced the choice of the
medium-sized message (i.e. 128 bytes). In Scenario 2, a hash function is used to

2.6 Target Devices 57

Characteristic AVR MSP ARM

Model ATmega128 MSP430F1611 Cortex-M3
CPU 8-bit RISC 16-bit RISC 32-bit RISC
Frequency (MHz) 16 8 84
Registers 32 16 21
Architecture Harvard von Neumann Harvard
Flash (KB) 128 48 512
SRAM (KB) 4 10 96
EEPROM (KB) 4 – –
Supply voltage (V) 4.5 – 5.5 1.8 – 3.6 1.6 – 3.6

Table 2.4: Key characteristics of the three microcontrollers used by FELICS.

generate a 16-byte message authentication code (MAC) using a 16-byte key.

2.5.2 Export Formats

The framework can export the extracted results for each scenario and target archi-
tecture in several formats in order to allow the user to analyze and post process the
results. The supported formats are: raw data table, CSV file, XML file compatible
with Microsoft Office Excel and LibreOffice Calc, MediaWiki table and LaTeX table.
New formats can be easily added should the need arise. An archive with latest results
in all mentioned formats is available for download on the FELICS web page [93].
On the same web page, a Python script for processing the CSV results can also be
found. It allows the ranking of existing ciphers’ implementations using the Figure of
Merit (FOM) defined in Section 3.4, but it can be easily modified to compute other
values of interest.

2.6 Target Devices

The IoT is populated by billions of devices that are equipped with a highly diverse
and largely incompatible range of hardware platforms. In fact, the microcontroller
population of the IoT is much more heterogeneous than the processor population of
commodity computers, where the Intel architecture enjoys a market share of over
90%. Since there is no single dominating platform in the IoT, it is essential that a
lightweight block cipher achieves consistently good performance on a variety of 8,
16, and 32-bit microcontrollers. It is also essential that a benchmarking framework
is capable to collect implementation results from a wide range of platforms. Our
framework supports the AVR ATmega128 [22] as example of an 8-bit architecture,
the TI MSP430F1611 [348] as representative of a 16-bit platform, as well as the ARM
Cortex-M3 [17] as example of a 32-bit RISC machine. However, the benchmarking
framework can be easily extended to support further platforms. Table 2.4 gives the
main characteristics of each target device.

58 Fair Evaluation of Lightweight Cryptographic Systems

2.6.1 8-bit AVR ATmega128 Microcontroller

The AVR ATmega128 [22] microcontroller manufactured by Atmel uses a CPU
with a RISC architecture and an on-chip two-cycle multiplier. Most of the 133
instructions require a single cycle to execute. The rich instruction set is combined
with the 32 8-bit general purpose registers (R0 - R31) with single clock access time.
Six of the 32 8-bit registers can be used as three 16-bit indirect address register
pointers (X, Y and Z) for addressing the data space. The instructions are executed
within a two-stage, single-issue pipeline: while one instruction is executed, the next
instruction is pre-fetched from the program memory. Therefore, one instruction is
executed every clock cycle. The Arithmetic Logic Unit (ALU) operations are divided
into three main categories: arithmetic, logic and bit manipulation functions. All
8-bit registers are directly connected to the ALU, allowing two independent registers
to be accessed in one instruction executed in one clock cycle.

It has a modified Harvard architecture where program and data are stored
in separate physical memory regions located at different physical addresses. The
separate memories and buses for program and data maximize the performance and
parallelism. The memory includes 128 KB of flash, 4 KB of SRAM and 4 KB of
EEPROM. The data memory can be addressed using five different modes: direct,
indirect, indirect with displacement, indirect with pre-decrement and indirect with
post-decrement. An access to SRAM is performed in 2 CPU cycles.

Being among the best 8-bit microcontrollers in terms of power consumption when
it entered the market, the Atmel ATmega128 provides a highly flexible and cost
effective solution to many embedded control applications from building and home
automation to medical and healthcare systems. It is working at supply voltages
between 4.5 V and 5.5 V and has six different software-selectable power modes of
operation.

2.6.2 16-bit MSP430F1611 Microcontroller

The MSP430F1611 [348] microcontroler produced by Texas Instruments has a CPU
with RISC architecture and 16 16-bit registers. Four of the registers are dedicated
to program counter, stack pointer, status register and constant generator, while the
remaining 12 registers (R4 - R15) are general-purpose registers. The 52 instructions
with three formats (dual operand, single operand, jump) and seven addressing modes
(register, indexed, symbolic, absolute, indirect, indirect auto-increment, immediate)
can operate on byte and word data. The register to register operations take one
clock cycle. The number of clock cycles required to perform an instruction depends
on the instruction format and addressing mode used.

The von Neumann memory of MSP430 has one shared address space for special
function registers, peripherals, RAM and flash memory. It includes 48 KB of flash
and 10 KB of SRAM. The flash memory is bit, byte and word addressable and
programmable.

Designed for low-cost and low-power embedded applications, it requires a supply
voltage between 1.8 V and 3.6 V and can reach a frequency of 8 MHz. It has one

2.7 Metrics 59

active mode and five software selectable low-power modes of operation. Typical
applications include industrial control, sensor systems, and hand-held meters.

2.6.3 32-bit ARM Cortex-M3 Microcontroller

The Arduino Due board [15] uses the 32-bit Atmel SAM3X8 Cortex-M3 [129] RISC
CPU that executes Thumb-2 instructions. The instruction set allows high code
density and reduced program memory requirements. The processor has a three-level
pipeline (instruction fetch, instruction decode and instruction execute) and 13 general
purpose registers (R0 - R12).

The Harvard memory architecture includes 512 KB of flash organized in two
blocks of 256 KB and 96 KB of SRAM divided into two banks of 64 KB and 32
KB. The processor enables direct access to single bits of data in simple systems
by implementing a technique called bit-banding. It supports two operating modes
(thread and handler) and two levels of access to the code (privileged and unprivileged)
enabling the implementation of complex systems without sacrificing security.

Specifically designed to achieve high system performance in power sensitive
embedded applications, such as automotive systems, industrial control systems and
wireless networking, the processor operates at a maximum frequency of 84 MHz.
The recommended supply voltage ranges between 1.6 V and 3.6 V.

2.7 Metrics

The tree metrics considered can be extracted in batch mode for a list of implemen-
tations, usage scenarios and target devices using the collect_cipher_metrics.sh

script. We added support for these metrics because they outline the lightweight
characteristics of the evaluated implementations. Derived or secondary metrics such
as power and energy consumption were not included in the initial release, mainly
because they are closely related to the basic metrics.

Detailed and accurate results are generated for each operation required by
the corresponding module separately and for the all operations together. The
comprehensive results can be used by embedded software engineers to decide what
cipher operations should be implemented for a particular device and application.
Where cycle accurate and free software simulators of the target embedded devices
exist, they are preferred to development boards because of usability reasons. While
a software simulator can be downloaded and installed easily, a development board
involves an acquisition and configuration cost. Next we describe how each metric is
extracted for the considered target devices.

2.7.1 Code Size

The code size is measured in bytes and quantifies the amount of storage an operation
occupies in the non-volatile memory (e.g. flash memory) of the target device. To
extract the code size for each target device, the frameworks uses the GNU size tool,
which lists the section sizes and the total size in bytes for a given binary file. The

60 Fair Evaluation of Lightweight Cryptographic Systems

binary code size is given by the sum of the text and data sections. The text section
of the binary file contains the code, while the data section stores global initialized
variables, which are loaded from flash into RAM at run time. The bss section of
the binary file is not considered since the framework forbids the utilization of global
uninitialized variables. The code size of the main function, where all operations are
put together, is not considered because it is the same for all studied ciphers.

The framework is able to determine the common parts using the implementation
information file and considers them just once in the extracted code size value. Hence,
FELICS encourages code reuse and the computed program footprint is accurate.

FELICS uses avr-size, msp430-size and arm-none-eabi-size to extract the
code size for AVR, MSP and ARM, respectively. The exact version of each tool is
given in Table 2.3. The code size extraction process is completely automated and can
be done using the cipher_code_size.sh script for a given cipher implementation
and a given evaluation scenario.

2.7.2 RAM

The RAM consumption is split into stack requirement and data requirement. The
stack consumption gives the maximum value of the RAM used to store local variables
and return address after interrupts and subroutine calls. The data requirement
represents the static RAM and is given by the size of the constants stored in the
target device’s RAM. It includes the data specific to each scenario such as data to
encrypt, master key, round keys or initialization vectors. The heap is not used at all
because the framework does not permit any dynamically-allocated variables.

The static RAM consumption is computed from the data section of the binary file
using GNU size. As in the case of code size, using the implementation information
file, FELICS considers the global initialized variables just once when they are used
in several operations. The stack consumption is measured using the appropriate gdb

client and the target device simulator or development board. Before the function
call for the measured operation, the stack is filled with a memory pattern. Then, at
the end of the function’s execution, the values in the stack area are compared with
the memory pattern and the number of modified bytes gives the stack consumption.
Hence, the measurement method takes into account the function arguments that are
passed on the stack. The measured operation’s return address is not considered since
it is insignificant and the same for all ciphers on a given target device. The client
and server tools used for computing the stack requirement are given in Table 2.3.
The cipher_ram.sh script is able to extract the RAM requirement for a given cipher
in a given usage scenario.

Another way to compute the stack requirement is to statically analyze the
assembly instructions generated by the compiler and build the call graph for the
measured function. For each entry in the call graph the maximum stack consumption
is computed and stored. The stack usage of the measured function is given by the
call path with the maximum stack requirements. This method is not able to solve
recursive function calls and calls to functions from the standard C library. On the
other hand, using the gdb client with a well tested simulator is less error prone than

2.8 Summary 61

a tool developed from scratch.

2.7.3 Execution Time

The execution time measures the number of CPU clock cycles spent on executing
a given operation. The metric is extracted using either cycle accurate software
simulators of the target microcontrollers or development boards.

The execution time is computed as the absolute difference between the system
timer’s number of cycles at the end of the measured operation and at the beginning
of the measured operation. To extract the number of cycles spent to execute the
measured operations, FELICS simulates the cipher operation using the cycle accurate
simulator Avrora [357, 356] for AVR and the cycle accurate simulator MSPDebug [108]
for MSP. For ARM, the framework inserts additional C and assembly code to read
the system timer’s number of ticks at the beginning and at the end of each measured
operation and then executes the program on an Arduino Due [15] board. The
measurement process on the ARM board was carefully adjusted to obtain accurate
and precise results. We draw attention to the fact that extracted values for ARM
may vary depending how the C code is translated into assembly instructions and
how data is aligned in memory for different usage scenarios. Information about the
used simulators is provided in Table 2.3. The cipher_execution_time.sh script
extracts the execution time for a given cipher implementation and scenario.

2.8 Summary

In this chapter, we introduced FELICS, a free and open-source benchmarking
framework for fair and consistent evaluation of cryptographic primitives. It is
primarily motivated by the lack of comparative performance figures for lightweight
cryptographic algorithms measured from different embedded devices. Our aim is to
increase the trust and transparency of results obtained by different algorithms and
to ensure an independent environment for assessing the performance of new designs.
FELICS facilitates the comparison of performance figures between different ciphers
due to the consistent evaluation methodology.

Currently the framework is able to benchmark lightweight block ciphers, stream
ciphers, authenticated encryption functions, and hash functions on three different
embedded devices. The extracted metrics for each device and evaluation scenario are:
binary code size, RAM consumption, and execution time. Thanks to its modular
design, FELICS is very flexible and can be easily extended to benchmark new
lightweight primitives, to extract new metrics, to collect the performance figures for
other target devices, or to evaluate the implemented algorithms in new usage scenarios.
The framework source code together with the source code of the implemented ciphers
and the corresponding performance figures are available on a website [93].

FELICS borrows and improves concepts from previous frameworks and, at the
same time, adds new ideas and features. The result is a better framework for fair
and consistent evaluation of cryptographic primitives. To the best of our knowledge,
FELICS is the first benchmarking framework to evaluate lightweight primitives for

62 Fair Evaluation of Lightweight Cryptographic Systems

the IoT context in different usage scenarios. It also provides full transparency in the
performance figures of assessed implementations by publishing the results and the
corresponding source code on the project website [93].

Possible additional features include: addition of new modules to allow bench-
marking of other cryptographic primitives (e.g. public-key algorithms), extraction
of new metrics (e.g. energy consumption), or support for other embedded devices.
Another direction for further development is to add support for development boards
where software simulators are currently used. Since the framework is free and its
source code is available, anyone interested can contribute to the tool development by
implementing new features, reporting issues, and fixing bugs.

Since its initial release in March 2015, the framework has been constantly updated
and improved. The feedback and comments received from the users of FELICS
helped us to improve the framework as well as its online documentation. FELICS
attracted implementers from around the world, which contributed more than 60
implementations of lightweight ciphers.

Chapter 3

Fair Evaluation of Lightweight

Block Ciphers

Contents

3.1 Introduction . 63

3.1.1 Our Contributions . 65

3.2 Benchmarking Framework 66

3.2.1 Usage Scenarios . 67

3.3 Analyzed Ciphers . 68

3.4 Results . 74

3.4.1 Methodology . 75

3.4.2 Discussion of Results . 77

3.4.3 Comparison with other Benchmarking Results 81

3.5 Summary . 81

3.1 Introduction

In this chapter we present a survey of lightweight block ciphers along with software
benchmarking results obtained on embedded 8, 16, and 32-bit microcontrollers. We
consider three metrics of interest: execution time, memory (i.e. RAM) requirements,
and binary code size.

To ensure a fair and consistent evaluation, we used the FELICS framework
introduced in Chapter 2. Following the spirit of the well-known and widely-used
eBACS system [45], we made FELICS available to the cryptographic research
community. Our benchmarking tool is “open” in various aspects. First, it is possible to
upload implementations of new ciphers as well as new (i.e. improved) implementations
of ciphers that are already included. Second, the tool was developed from the ground
up with the goal of supporting a wide range of embedded platforms through both
cycle-accurate instruction set simulation and actual measurements on development
boards. Currently, our tool includes cycle-accurate instruction set simulators for

64 Fair Evaluation of Lightweight Block Ciphers

AVR ATmega and TI MSP430, as well as an ARM development board equipped with
a Cortex-M3 processor. We use GCC for all these platforms, but other compilers
could be supported as well. Third, our tool is also open with respect to the evaluation
metrics. Currently, it can evaluate three basic metrics, namely execution time, RAM
footprint, and binary code size. Other metrics can be derived thereof or are, at least,
closely related. For example, the energy consumption of a block cipher executed on
an embedded processor operating in a certain power mode can be estimated by the
product of execution time, supply voltage, and average power dissipation. However,
since our framework supports development boards, it could be extended to acquire
more accurate energy figures by simply measuring the processor’s power dissipation
while it executes a cryptographic algorithm.

Our benchmarking toolsuite accepts source codes written either in “pure” ANSI C
or in C with inlined assembly sections for the three processor architectures mentioned
above. In this way, the toolsuite supports various trade-offs between performance
and portability. At one end of the spectrum are highly-optimized implementations
for which the complete encryption/decryption function consists of hand-crafted
assembly code. Assembly programming allows one to fully exploit the architectural
features of a processor and, in this way, reach peak performance. The speed-up
due to the integration of hand-crafted assembly code is especially pronounced if a
cipher performs a large number of operations that are significantly less efficient in C
than in assembly language (e.g. multi-word arithmetic, certain bit manipulations).
Benchmarking results obtained from carefully-optimized assembly implementations
played an important role in the evaluation of candidates for cryptographic standards
like the AES [250] and SHA-3 [246], and this will also be the case for future
standardization activities in the area of lightweight cryptography for the IoT [247].
However, an implementation of a cipher written in assembly language is architecture-
dependent and, consequently, not portable. At the opposite end of the performance-
portability spectrum are “pure” C implementations, which are highly portable but,
in general, less efficient than their hand-crafted assembly counterparts.

While the importance of benchmarking hand-optimized assembly implementations
is out of dispute, we argue that it makes also sense to benchmark portable C
implementations of lightweight ciphers. Our argument is twofold and based on the
specific properties and constraints of the IoT. First, it has to be noticed that there is
no single dominating hardware platform in the IoT, in contrast to the “conventional”
Internet of commodity computers, where the Intel architecture has a market share
of over 90%. In fact, the IoT is populated by billions of heterogenous devices with
largely incompatible processors and different operating systems. Supporting a large
number of platforms with optimized assembly code is tedious and error-prone since,
for each processor architecture, a separate code base needs to be written, tested,
debugged, and then maintained. In the light of ever-increasing time-to-market
pressure, cryptographic engineers may value the portability of C code more than
the performance of assembly code. Our second argument is related to the steadily
increasing research interest in lightweight ciphers with new designs being published
(almost) every month. Implementations written in C often serve as proof-of-concept
in the design phase of a new primitive to explore e.g. different candidates for a round

3.1 Introduction 65

function. Benchmarks generated from C implementations allow cipher designers to
quickly evaluate the impact of various design options (e.g. round function, number
of rounds) on execution time, RAM footprint and code size. In this way, designers
can already assess in an early phase of the design cycle how a new primitive may
compare with the state of the art.

We report detailed benchmarking results for a total of 19 lightweight block
ciphers, namely the AES [250], Chaskey [244], Fantomas [153], HIGHT [167], LBlock
[386], LEA [166], LED [157], Piccolo [321], PRESENT [58], PRIDE [9], PRINCE
[62], RC5 [296], RECTANGLE [391], RoadRunneR [35], Robin [153], Simon [36],
Sparx [106], Speck [36], and TWINE [344]. Our rationale for selecting exactly
the mentioned 19 ciphers is twofold; first, each of these candidates has some special
property or feature that makes it interesting for applications in the IoT. Second,
they cover a wide range of different design strategies and approaches. Our evaluation
considers two application scenarios or use cases; the first relates to the encryption
of messages transmitted in a Wireless Sensor Network (WSN) and the second is a
simple challenge-response authentication protocol with applications in e.g. object
identification or access control. To accommodate the different requirements of these
application scenarios, we evaluated at least two versions of most of the 19 ciphers,
including a low-memory variant and a speed-optimized variant. The former can be
seen as a “minimalist” implementation that favors low memory footprint and small
code size over performance. On the other hand, the second implementation includes
certain optimizations that increase code size and/or memory footprint (e.g. partial
loop unrolling, use of small lookup tables) with the goal of improving performance.
Roughly half of the implementations were written from scratch by us, whereby we
put a comparable effort into optimizing each cipher to ensure a consistent and fair
evaluation. The other half was either taken from other open-source projects or
contributed by the designers of the algorithms or by volunteers; in all these cases we
carefully reviewed the source codes and further optimized them whenever possible.
In this way, we tried to minimize the impact of varying programming skills and
experience. Most of our implementations are faster or on par with the best execution
times reported in the literature on the three platforms we consider. Therefore, the
implementations form a solid code base for the benchmarking of lightweight block
ciphers.

3.1.1 Our Contributions

We survey a total of 19 lightweight block ciphers and study, in particular, their
suitability for software implementation on resource-restricted devices. This set of
ciphers covers a wide range of different design principles and includes a number of
recent proposals with interesting properties, e.g. Simon/Speck [36], Robin/Fantomas

[153] and Sparx [106]. We collected between two and up to 24 implementations of
each cipher to account for different trade-offs between execution time, RAM footprint,
and code size. For nine out of the 19 ciphers we have not only C implementations,
but also optimized assembly code for the three platforms we consider. In total, our
repository includes over 250 implementations, of which we developed roughly half

66 Fair Evaluation of Lightweight Block Ciphers

from scratch. The source code of all our implementations is available under GPL
and can be downloaded from the CryptoLUX wiki using the given link1.

Third, we report detailed performance, RAM footprint, and code size figures of
the 19 ciphers, which we generated with the help of our benchmarking toolsuite. In
addition, we define two typical usage scenarios that aim to resemble security-related
operations commonly performed by real-world IoT devices. The results we obtained
shed a new light on the relative efficiency of lightweight block ciphers because:

1. some of our implementations are significantly faster or smaller than that of
other survey and benchmarking efforts, and

2. we include a few designs that have been published only very recently.

Since lightweight cryptography is a rapidly progressing area of research, we also
maintain a web page [93] with the most recent results, which gets automatically
updated when users provide new implementations. Our framework allows the user
to define a custom Figure of Merit (FOM) according to which an overall ranking of
ciphers can be assembled. The FOM metric can assign different weights to execution
time, RAM footprint, and code size, and may even consider (cryptanalytic) security
aspects.

Our results allow one to infer some interesting relations between cipher de-
sign principles and performance figures, and, in this way, contribute to a better
understanding of how to design and implement lightweight block ciphers.

3.2 Benchmarking Framework

Most papers introducing a new block cipher report some kind of results of some kind of
performance evaluation on some kind of platform using some kind of implementation.
These results are then used by the authors to claim that the proposed cipher has
some kind of “advantage” over existing ciphers or compares “favorably” with the
state of the art. However, such comparisons are little meaningful in the real world
since it is not easily possible to take differences in the characteristics of the target
platforms or differences in the simulation/measurement conditions into account.
Consequently, it is difficult to assess the relative efficiency of the numerous proposals
for lightweight ciphers in a fair and consistent fashion. This motivated us to develop
FELICS (see Chapter 2), which allows for a unified evaluation of a large number
of candidates by collecting accurate and comprehensive results for execution time,
RAM footprint, and code size. The toolsuite is currently able to extract these metrics
from implementations for 8-bit AVR, 16-bit MSP430, and 32-bit ARM Cortex-M
processors, but other platforms could be supported as well. We make the full source
code of the benchmarking framework available under GPL to facilitate its acceptance
in the cryptographic research community and to maximize transparency in the
evaluation of lightweight block ciphers.

1All results reported in this chapter are based on version 1.1.20 of the FELICS framework, which
can be downloaded from https://www.cryptolux.org/index.php/File:FELICS.zip

https://www.cryptolux.org/index.php/File:FELICS.zip

3.2 Benchmarking Framework 67

As stated in the previous section, we consider benchmarking results obtained with
C implementations to be useful for cipher designers and for cryptographic engineers
who prefer portable C code over platform-optimized assembly code. Since cipher
designers tend to write reference implementations in ANSI C, the effort of evaluating
a new cipher boils down to adapting the C source code to meet the requirements of
the framework. However, benchmarks generated with C implementations do often
not reflect the full potential of a lightweight cipher because ANSI C can not efficiently
express multi-word arithmetic operations and certain bit manipulations. In addition,
the quality of the C compiler (i.e. its ability to apply sophisticated optimizations)
may impact the relative performance of lightweight ciphers. To mitigate these
issues, and to serve cryptographic engineers who are primarily interested in high
speed rather than high portability, the toolsuite supports the benchmarking of hand-
optimized assembly implementations for the three considered platforms. We had
both C and assembly implementations available for nine of the 19 lightweight ciphers
we benchmarked; the remaining 10 ciphers were evaluated using C source codes only.
In total, we analyzed more than 250 different C and assembly implementations of
19 lightweight block ciphers. We make the full source code of all implementations
available under GPL to ensure the reproducibility of our results and, in this way,
increase the transparency and trustability of our evaluation process.

3.2.1 Usage Scenarios

Besides the evaluation of the four basic operations of a block cipher (i.e. encryption,
decryption, encryption key schedule, and decryption key schedule), the benchmarking
framework also supports more advanced forms of assessment based on usage scenarios.
A usage scenario should implement some common security service with practical
relevance for the IoT and utilize the basic cipher operations. In this way, it is possible
to obtain realistic benchmarking results that are meaningful in the real world. The
results reported in Section 3.4 are based on two simple usage scenarios, which we
describe below. Further usage scenarios can be easily added thanks to the modular
design of the benchmarking framework.

3.2.1.1 Scenario 1: Communication Protocol

This scenario covers the need for secure communication between two IoT devices such
as two sensor nodes in a WSN. It is assumeed that the sensitive data is encrypted
and decrypted using a lightweight block cipher in CBC mode of operation. Since
standard communication protocols for the IoT, such as IEEE 802.15.4 [170] and
ZigBee [393], are characterized by low transmission rates and small packet sizes, we
assume the plaintext to have a length of 128 bytes (i.e. 1024 bits) in this scenario.
There is no need for a padding scheme because the length of the plaintext is a
multiple of both 64 and 128 bits, which are the two block sizes we consider in this
chapter. Furthermore, we assume that the master key resides in RAM and that
the round keys (obtained through the operation for key schedule) are also kept in
RAM for later use by the encryption or decryption operation. The plaintext and
initialization vector for CBC mode shall also be in the device’s RAM at the beginning

68 Fair Evaluation of Lightweight Block Ciphers

of the scenario. In order to reduce the RAM footprint, the encryption is performed
in place, which means the plaintext gets overwritten by the ciphertext (and vice
versa for decryption). However, the key schedule does not modify the master key.

3.2.1.2 Scenario 2: Challenge-Response Authentication

This scenario is inspired by a simple authentication protocol where an IoT device
proves that it is in possession of a secret key by encrypting a challenge using a block
cipher. In real-world settings, the IoT device can, for example, be an RFID tag (see
e.g. [123]) or a smart card. In this scenario we assume that a lighteight block cipher
is used in CTR mode to encrypt 128 bits of data. The device has the full round
key stored in flash memory, which means there is no need to store the master key
and also no key schedule operation has to be performed. Both the 128-bit plaintext
to be encrypted and the counter value are held in RAM at the beginning of the
execution. In order to reduce the RAM footprint, the encryption is done in place,
i.e. the plaintext gets overwritten by the ciphertext.

3.3 Analyzed Ciphers

Since our aim is to contribute to a better understanding of the relation between basic
design methodologies for lightweight ciphers and the resulting software performance
on resource-limited IoT devices, we selected 19 ciphers that represent a wide variety
of design approaches based on Substitution-Permutation Networks (SPNs) and Feistel
Networks (FNs). A classical example of an SPN is the AES [250, 98], but other
designs for the S-box and the linear layer are possible, as demonstrated by PRESENT
[58], Robin, and Fantomas [153]. The overall structure of an SPN-based cipher can
also vary while still maintaining a round function consisting of an S-box layer and
a linear layer: LED [157] adds key material every four rounds only, while PRINCE
[62] implements a property called α-reflection, which minimizes the overhead for
decryption on top of encryption. Furthermore, it is also possible to build an SPN
using only modular Addition, Rotation, and XOR (ARX), as was done by the
designers of Sparx [106]. An FN, on the other hand, can be designed by utilizing
a small SPN as the Feistel function, as in LBlock [386] and Piccolo [321], or with
simple arithmetic and logical operations, as in Simon [36] and ARX designs like
HIGHT [167], RC5 [296], and Speck [36]. These operations may be data-dependent
like in RC5. A variant of the FN is the Generalized FN, which uses more than two
branches. The way the branches are mixed at the end of each round can consist of a
simple rotation (HIGHT) or a dedicated permutation optimizing diffusion (TWINE
[344], Piccolo). A high number of branches allows the use of very simple Feistel
functions like in TWINE and HIGHT.

Besides representing a wide variety of different design approaches, most of the 19
lightweight ciphers we selected for our evaluation have a certain property or feature
that makes them particularly interesting for use in the IoT. We intentionally did not
restrict our selection to software-oriented ciphers and included some designs that
were developed for efficiency in hardware, e.g. Piccolo, PRESENT, and PRINCE.

3.3 Analyzed Ciphers 69

Cipher Year
Block Key Round Rounds Security

Type Target
size size key size level

AES 1998 128 128 1408 10 0.70 SPN SW, HW
Chaskey 2014 128 128 0 8/16 0.87/0.43 Feistel SW
Fantomas 2014 128 128 0 12 NA SPN SW
HIGHT 2006 64 128 1088 32 0.81 Feistel HW
LBlock 2011 64 80 1024 32 0.72 Feistel HW, SW
LEA 2013 128 128 3072 24 0.63 Feistel SW, HW
LED 2011 64 80 0 48 NA SPN HW, SW
Piccolo 2011 64 80 864 25 0.56 Feistel HW
PRESENT 2007 64 80 2048 31 0.84 SPN HW
PRIDE 2014 64 128 0 20 NA SPN SW
PRINCE 2012 64 128 192 12 0.83 SPN HW
RC5∗ 1994 64 128 1344 20 0.80 Feistel SW
RECTANGLE 2015 64 80/128 1664 25 0.72 SPN HW, SW
RoadRunneR 2015 64 80/128 0 10/12 0.5/0.58 Feistel SW
Robin/Robin⋆ 2014 128 128 0 16 1/NA SPN SW
Simon 2013 64 96/128 1344/1408 42/44 0.71/0.70 Feistel HW, SW
Sparx 2016 64/128 128 1600/4224 24/32 0.62/0.68 Feistel SW
Speck 2013 64 96/128 832/864 26/27 0.73/0.74 Feistel SW, HW
TWINE 2011 64 80 1152 36 0.64 Feistel HW, SW

∗ We use RC5 with increased number of rounds, RC5-20.

Table 3.1: Overview of the 19 lightweight block ciphers considered in this evaluation.
Block, key and round key sizes are expressed in bits. Security level is the ratio of
the number of rounds broken in a single key setting to the total number of rounds.

The device population of the IoT is very heterogenous and shows extreme differences
in terms of computational capabilities and resources. Some devices are so constrained
that cryptographic operations can only be implemented in hardware (e.g. RFID
tags), while other devices are powerful enough to run cryptographic software at
acceptable speed. Since all these devices should be able to interact and communicate
securely with each other, they have to use one and the same cipher. In order to
be suitable for the IoT, a lightweight block cipher needs to be efficient in both
hardware and software. Thus, it makes sense to evaluate the software performance
of hardware-oriented ciphers and vice versa. In the following, we give an overview
of the 19 lightweight ciphers we selected for benchmarking and describe how they
can be implemented in software. The main characteristics of the candidates are
summarized in Table 3.1.

AES. The AES is standardized by NIST and the by far most-widely used block
cipher today. It has an SPN structure with an internal state of 128 bits represented
in the form of a (4× 4)-byte matrix. The SubBytes, ShiftRows, MixColumns, and
AddRoundKey functions operate on the cipher’s state [250, 98]. To date, the best
single-key cryptanalysis of AES-128 is a meet-in-the-middle attack on seven rounds
out of ten [100]. Size-optimized implementations of the AES put the S-box and

70 Fair Evaluation of Lightweight Block Ciphers

the round constants in lookup tables since they occupy just slightly more than 256
bytes. The source code of our size-optimized implementation mostly follows the
cipher pseudocode on all three considered architectures. Since T-tables are very large
(4 KB for either encryption or decryption), we did not include such implementations.

Chaskey. The Chaskey cipher is based on the π permutation of the Chaskey MAC
algorithm [244] that is currently considered for standardization by ISO/IEC. Said
π permutation is a generalized FN and uses ARX operations on 32-bit words. The
cipher has an Even-Mansour structure, which means there is no key schedule but
the master key is simply XORed to the internal state before and after π is applied.
Chaskey-LTS (Long Term Security) has twice as many rounds as Chaskey and is
recommended as a fallback in the case of cryptanalytic breakthroughs. Currently,
the best attack against Chaskey is a differential-linear attack on seven out of eight
rounds [214]. We benchmarked the C implementation provided by the designers,
which is straightforward thanks to the simple structure of the cipher. In addition, we
developed implementations in assembly language from scratch. The execution times
of both can be improved by unrolling several rounds at the cost of larger code size.

Fantomas. Fantomas is a 128-bit cipher belonging to the family of LS-designs [153].
Its linear layer consists in the parallel application of so-called “L-boxes,” while the
S-box is designed to simplify the implementation of masking, a countermeasure
against Differential Power Analysis (DPA). There is no key-schedule; the master
key is simply added in every round. At the time of writing this chapter, there
was to our knowledge no attack against Fantomas. A software implementation of
Fantomas usually combines lookup-table based L-boxes with bit-sliced S-boxes, which
are computed using a Feistel structure. Storing the four 512 B L-boxes in RAM
instead of flash improves the execution time by a quarter on AVR and ARM. Our
implementations are based on the C source code provided by the designers.

HIGHT. The lightweight cipher HIGHT is a generalized FN with an ARX struc-
ture. More precisely, the Feistel functions perform only logical XOR and bitwise
rotations. The output of the Feistel functions is combined with the other branches
using either XOR or addition modulo 28 [167]. An impossible differential attack
breaks 26 out of 32 rounds of HIGHT [268]. All implementations we benchmarked
follow closely the specification from [159], which modifies the design of the original
paper [167]. The 128 7-bit δ constants are either computed when the key-schedule
function is called or precomputed and stored in flash or RAM. An entirely unrolled
version with inlined auxiliary round functions F0 and F1 requires only half of the
cycles of the reference implementation. When implemented in assembly language,
the execution time decreases by 50% on MSP and by 10% on AVR and ARM,
respectively.

LBlock. LBlock is an FN with 32 rounds. The Feistel function consists of a logical
XOR with the round subkey, a substitution layer of eight different S-boxes, and a

3.3 Analyzed Ciphers 71

permutation of eight nibbles. Furthermore, the content of one of the branches is
rotated by eight bits in each round. The chosen design trade-offs between security
and performance led not only to hardware efficiency but also software efficiency [386].
To date, the best cryptanalytic result is obtained through an impossible differential
attack against 23 out of 32 rounds [65]. The benchmarked LBlock implementations
follow the specification from [386]. Optimization strategies include performing
operations on 8, 16 or 32 bits when possible, storing the S-boxes in flash or RAM,
and unrolling the loops. The best execution time on ARM is achieved by the
fully-unrolled implementation using 32-bit operations, with the S-boxes stored in
RAM.

LEA. The block cipher LEA uses a generalized FN with four 32-bit branches [166].
Designed for high-speed software encryption on 32-bit platforms, the cipher can be
efficiently implemented in hardware as well. The designers mention a boomerang
attack against 15 rounds, which is, to our knowledge, the best cryptanalytic result
to date. The benchmarked assembly implementations are based on three different
optimization strategies: fast execution time, small code size, and a trade-off between
speed and size. These optimizations are facilitated by LEA’s simple structure
requiring only 32-bit operations.

LED. The AES-based cipher LED is aimed at very compact hardware implementa-
tion while maintaining reasonable performance in software. It represents the state by
a (4× 4)-nibble matrix and uses similar round transformations as the AES, except
that they are nibble-oriented. A distinguishing characteristic of LED is the absence of
a key schedule; the round keys are simply replaced by a part of the master key [157].
To the best of our knowledge, there are no attacks on LED-80. However, there
is a differential attack that covers 16/32 rounds of LED-64 and 24/48 rounds of
LED-128 [237]. The structural attack breaking 32/48 rounds of LED-128 proposed
in [107] is unlikely to be adaptable to LED-80. Our LED implementation combines
the SubCells, ShiftRows, and MixColumnsSerial operations into a table lookup to
reduce execution time.

Piccolo. Piccolo has a generalized FN structure with four 16-bit branches. To
improve diffusion, Piccolo uses a byte permutation between rounds. Piccolo’s Feistel
function consists of two S-box layers separated by a diffusion matrix [321]. The
currently best attack against Piccolo-80 is a meet-in-the-middle attack on 14 rounds,
which was presented by the designers. Our Piccolo implementation follows closely
the description provided in [321]. The arithmetic in GF(24) uses only XORs and two
small lookup tables for multiplication by two and three. Both the S-box and the key
schedule constants are stored in lookup tables. No specific loop unrolling is applied.

PRESENT. PRESENT has an SPN structure and comes with a bit-oriented
permutation layer. The nonlinear layer is based on a single 4-bit S-box that was
designed for efficiency in hardware [58]. A truncated differential attack against 26

72 Fair Evaluation of Lightweight Block Ciphers

out of 31 rounds of PRESENT is described in [56]. Since the S-box is quite small,
a lookup table is used in all our implementations. However, its combination with
a bit permutation over a 64-bit word is difficult to optimize without introducing
extremely large lookup tables (up to 1 MB for decryption). The size-optimized
implementation resembles the cipher’s pseudocode and was taken from [74]. In
general, the bit-oriented design of PRESENT makes C implementations very slow
unless one can afford huge lookup tables. Our assembly implementations take
advantage of bit-manipulation instructions that the target devices support. On AVR,
the assembly implementation is around 12 times faster than the C counterpart, while
the MSP assembly version is even 19 times faster than the C code.

PRIDE. The block cipher PRIDE is an SPN with a strong linear layer and a
bit-sliced S-box, which are optimized for 8-bit microcontrollers [9]. It uses the
so-called FX construction with the same key for pre- and post-whitening and a
different key as basis for the round keys. A differential attack on 19 out of 20 rounds
is described in [387]. The designers contributed a C implementation using only 8-bit
operations. PRIDE’s simple key schedule can be performed on the fly to reduce the
RAM requirements at the cost of execution time. The S-box requires only bitwise
operations, and also the linear layer consisting of four transformations (one for every
16 bits of the state) can be implemented efficiently in software.

PRINCE. Similar to PRIDE, PRINCE is an FX construction, whereby the first
two subkeys are used as whitening keys, while the third subkey is the 64-bit key for
a 12-round SPN called PRINCEcore . PRINCE introduced the α-reflection property:
encryption with a given key corresponds to decryption with a related key [62]. To
date, the best cryptanalytic result is a multiple differential attack on ten out of
the twelve rounds [72]. We implemented PRINCE as described in the original
paper [62, 72]. The optimization strategies we considered include the use of 8, 16,
32, and 64-bit operations where possible and different amounts of loop unrolling. We
obtained the best performance with fully unrolled implementations based on 8-bit
operations for AVR and 16-bit operations for MSP. On ARM, the best execution
times were achieved using a partially unrolled version with 32-bit operations.

RC5. RC5 is an FN that uses data-dependent rotations [296]. Though RC5 was
designed before lightweight ciphers became popular, it is obviously suitable for
resource-constrained devices, which is confirmed by its widespread use in sensor
networks [273]. The block and key sizes, as well as the number of rounds, can be
chosen freely. We use RC5-32/20/16, i.e. a version of RC5 that operates on two
32-bit words with a total of 20 rounds (40 half-rounds) and a 16-byte key. The
number of rounds was chosen so as to have a security margin of 0.80. RC5-32/12/16
can be attacked using differential cryptanalysis as demonstrated in [51]. This attack
can be extrapolated to 18 rounds, but would require almost the full codebook (264

ciphertexts). RC5 was implemented by slightly adapting the reference code provided
in [296]. Because of its elegant and simple design, there are not many possibilities for

3.3 Analyzed Ciphers 73

optimization. To explore different trade-offs, we fully unrolled the cipher’s operations
and precomputed the encryption-key-schedule array S to store it in flash or RAM.

RECTANGLE. The block cipher RECTANGLE is an SPN that can be efficiently
implemented in both hardware and software thanks to its bit-sliced structure [391].
The nonlinear layer applies a 4-bit S-box to each column of the state, which is
represented as a (4 × 16)-bit matrix, while the linear layer rotates each row by a
different amount. A differential attack that covers 18 out of 25 rounds is described
by its designers. RECTANGLE was implemented in C and assembly by its designers
using different optimization strategies. The bit-sliced S-box is relatively fast in
software because it uses only bitwise operations. On the other hand, the simple
linear layer consists of three rotations of 16-bit words by 1, 12, and 13 bits, which
can be efficiently implemented on 8, 16, and 32-bit architectures.

RoadRunneR. RoadRunnerR has an FN structure that can be efficiently imple-
mented on 8-bit microcontrollers in a bit-sliced fashion [35]. The Feistel function
is an SPN, which consists of four 4-bit S-box layers, three linear layers, and three
key additions. There exists a high-probability truncated trail covering five rounds of
RoadRunneR, which can be exploited to attack a 7-round variant of RoadRunneR-
128 [388]. RoadRunneR can be easily implemented thanks to its simple structure
designed for 8-bit microcontrollers. The Feistel function consists of a bit-sliced S-box
and a linear layer; they use only bitwise operations and rotations of 8-bit values by
1 bit and are, thus, very efficient. The round keys can be computed on the fly to
reduce the RAM requirement.

Robin. Robin is a 128-bit block cipher similar to Fantomas, but its “L-boxes” are
involutions. The lookup table-based diffusion layers and the structure of the S-boxes
makes this family of ciphers good candidates for Boolean masking in bit-sliced
software implementations [153]. There exists a set of weak keys of density 2−32

for this cipher, which, if used, leads to an attack on the full primitive [210]. In
response to the so-called invariant subspace attack [210], the designers of Robin

proposed Robin⋆ [176], in which the 8-bit round constant is replaced by a 128-bit
round constant. Robin was implemented in different ways that are based on the
C code provided by its designers. The two L-boxes are stored in flash or RAM,
while the S-box layer is computed at each round using the Feistel structure. Robin⋆

requires more memory and is also slower than the original Robin due to expensive
derivation of the 128-bit round constants.

Simon. Simon uses an FN structure with a simple round function performing
bitwise XOR, bitwise AND and circular left shifts. It is optimized for high perfor-
mance in hardware implementations, but achieves excellent results in software as
well [36]. Differential attacks on 30 out of 42 rounds of Simon-64/96 and on 31 out
of 44 rounds of Simon-64/128 are presented in [80]. Optimized implementations of
Simon written in assembly (for AVR and MSP) and C (for ARM) were provided by

74 Fair Evaluation of Lightweight Block Ciphers

its designers. The very simple structure of Simon enables various trade-offs between
code size and execution time by combining a different number of rounds in one loop
iteration.

Sparx. The block cipher Sparx is an SPN designed on basis of the recently
introduced Long Trail Strategy (LTS), which allows the use of a large and relatively
weak S-Box rather than a small and strong one. The ARX-based S-box consists
of one unkeyed Speck-32 round, while the linear layer is inspired from that of
Noekeon [97]. Its authors described an integral attack based on Todo’s division
property covering 15 out of 24 rounds of Sparx-64/128 and 22 out of 32 rounds
of Sparx-128/128 [106]. Sparx can be implemented using various optimization
strategies thanks to its simple and flexible structure. We explored different trade-offs
between execution time and code size by rolling/unrolling the rounds of a step
function and performing one or two step functions at once. For a detailed description
of Sparx and its implementations, we refer the reader to Chapter 4.

Speck. Speck is designed to achieve excellent results in hardware and in software,
especially when executed on resource-constrained microcontrollers. It uses a Feistel
structure in which both branches are modified at each round using bitwise XOR,
modular addition, and circular shifts in both directions [36]. The best cryptanalytic
results against Speck-64/96 and Speck-64/128 are differential attacks targeting 19
and 20 rounds out of 26 and 27, respectively [332]. Speck has a very simple round
function that is extremely fast and takes just a few bytes of code. The optimized
implementations of Speck were written in assembly (AVR and MSP) and C (ARM)
and provided by the designers. Depending on the optimization goal, one or several
round functions can be unrolled to improve the execution time at the cost of a minor
increase in code size.

TWINE. TWINE is a generalized FN with 16 branches. The Feistel function
simply consists of a key addition and the application of a 4-bit S-box. The linear
layer is a nibble permutation with much higher diffusion than a nibble rotation as
used for example in HIGHT. The cipher’s design aims at small footprint in hardware
implementations and small ROM/RAM consumption in software [344]. The best
attack on TWINE-80 is a multi-dimensional zero-correlation linear attack on 23 out
of 35 rounds [376]. TWINE is a very simple cipher so that the speed-optimized
implementation is only marginally larger than the size-optimized one. It uses 4-bit
branches which, in the authors’ implementation [344], reside in separate bytes (so
that the entire state is twice as large). We wrote a size-optimized implementation
from scratch. Both implementations are small enough to run on all platforms.

3.4 Results

In this section, we firstly describe our evaluation methodology, including the Figure
of Merit (FOM) we developed to rank the candidates, and then we present and

3.4 Results 75

discuss the benchmarking results of 19 ciphers in the two scenarios described in
Section 3.2.1. Block sizes of 64 bits were used when available, otherwise 128 bits
were used. We only evaluated cipher versions with a key length of at least 80 bits,
which we consider the minimum security level acceptable for IoT applications.

3.4.1 Methodology

At the time of writing this chapter, our repository contained between two and 35
implementations for each cipher, and more than 250 in total. We benchmarked all
of them on each of the three devices in each scenario. It is possible to order the
implementations according to their execution time, RAM footprint, or code size in
any particular scenario on any device and we maintain a separate interactive web
page [93] where all these ordering options can be chosen. We have aggregated the
data by the following principles, which seem to be the most interesting ones:

• In Scenario 1, we implemented the full encryption and decryption including
key schedule. Then, for each implementation i and device d, we calculate the
performance parameter pi,d. The value pi,d aggregates the three metrics M = {
execution time, RAM consumption, code size } as follows:

pi,d =
∑

m∈M

wm

vi,d,m
mini(vi,d,m)

, (3.1)

where vi,d,m is the value of metric m for implementation i on device d; wm is
the relative weight of metric m and mini(vi,d,m) represents the minimum value
of the metric m from all considered implementations of all considered ciphers
on the same device d. For each cipher and each device we set wm = 1 (the
framework also allows one to choose other weights for the metrics; for example
the results in Table 3.3 are computed using a higher weight for execution time
than for RAM footprint and code size) and select the implementation with the
smallest pi,d. Finally, for each cipher and the selected set of implementations
i1, i2, i3 (one for each device) we calculate the Figure of Merit (FOM) value as
the average performance value over the three devices.

FOM(i1, i2, i3) =
pi1,AV R + pi2,MSP + pi3,ARM

3
(3.2)

Then, we sort the ciphers according to their FOM value (Table 3.2).

• In Scenario 2, we also select for each cipher and device the best implementation.
First, we select the most balanced implementation using Equation (3.1) and
wm = 1 (Table 3.4). In Table 3.5 we calculate pi,d a bit differently:

pi,d =
∑

m∈{code, RAM}

wm

vi,d,m
maxi(vi,d,m)

, (3.3)

where maxi(vi,d,m) is the maximum value of flash memory (for the code size
metric) or RAM (for the RAM metric) available on device d (see Section 2.6).

76 Fair Evaluation of Lightweight Block Ciphers

Thus, we essentially measure the fraction of the available memory occupied by
the implementation. Finally, in Table 3.5, the best implementation of a cipher
is the one with the smallest RAM footprint and code size, respectively.

Cipher AVR MSP ARM

Block Key Code RAM Time Code RAM Time Code RAM Time FOM

[b] [b] [B] [B] [cyc.] [B] [B] [cyc.] [B] [B] [cyc.]

Encryption + Decryption (including key schedule)

Chaskey 128 128 1328 229 20622 900 222 16674 438 236 9851 4.0
Chaskey-LTS 128 128 1328 229 33102 904 222 25394 438 236 12859 4.6
Speck 64 96 966 294 39875 556 288 31360 492 308 15427 5.1
Speck 64 128 874 302 44895 572 296 32333 444 308 16505 5.2
Simon 64 96 1084 363 63649 738 360 47767 600 376 23056 7.0
Simon 64 128 1122 375 66613 760 372 49829 560 392 23930 7.2
RECTANGLE 64 80 1152 352 66722 812 398 44551 664 426 35286 8.0
RECTANGLE 64 128 1118 353 64813 826 404 44885 660 432 36121 8.0
LEA 128 128 1684 631 61020 1154 630 46374 524 664 17417 8.3
Sparx 64 128 1198 392 65539 966 392 36766 1200 424 40887 8.8
Sparx 128 128 1736 753 83663 1118 760 53936 1122 788 67581 13.2
HIGHT 64 128 1414 333 94557 1238 328 120716 1444 380 90385 14.8
AES 128 128 3010 408 58246 2684 408 86506 3050 452 73868 15.8
Fantomas 128 128 3520 227 141838 2918 222 85911 2916 268 94921 17.8
Robin 128 128 2474 229 184622 3170 238 76588 3668 304 91909 18.7
Robin⋆ 128 128 5076 271 157205 3312 238 88804 3860 304 103973 20.7
RC5-20 64 128 3706 368 252368 1240 378 386026 624 376 36473 20.8
PRIDE 64 128 1402 369 146742 2566 212 242784 2240 452 130017 22.8
RoadRunneR 64 80 2504 330 144071 3088 338 235317 2788 418 119537 23.3
RoadRunneR 64 128 2316 209 125635 3218 218 222032 2504 448 140664 23.4
LBlock 64 80 2954 494 183324 1632 324 263778 2204 574 140647 25.2
PRESENT 64 80 2160 448 245232 1818 448 202050 2116 470 274463 32.8
PRINCE 64 128 2412 367 288119 2028 236 386781 1700 448 233941 34.9
Piccolo 64 80 1992 314 407269 1354 310 324221 1596 406 294478 38.4
TWINE 64 80 4236 646 297265 3796 564 387562 2456 474 255450 40.0
LED 64 80 5156 574 2221555 7004 252 2065695 3696 654 594453 138.6

Table 3.2: Results for Scenario 1. Encrypt and decrypt 128 bytes of data using
CBC mode. Results of assembly implementations are in italics. For each cipher,
an optimal implementation on each architecture is selected. The Figure of Merit
(FOM) takes into account the three metrics (Code, RAM, and Time) on all platforms
(AVR, MSP, and ARM). The smaller the FOM, the better the implementations of
the cipher.

Defining a fair Figure of Merit that considers various trade-offs is a challeng-
ing task. The Figure of Adversarial Merit (FOAM) introduced in [186] combines
inherent security provided by cryptographic structures and components with their
implementation properties allowing the comparison of security-time-area trade-offs

3.4 Results 77

Cipher AVR MSP ARM

Block Key Code RAM Time Code RAM Time Code RAM Time FOM

[b] [b] [B] [B] [cyc.] [B] [B] [cyc.] [B] [B] [cyc.]

Encryption + Decryption (including key schedule)

Chaskey 128 128 1328 229 20622 900 222 16674 472 240 9313 5.4
Chaskey-LTS 128 128 1328 229 33102 904 222 25394 576 228 11076 6.5
Speck 64 96 966 294 39875 664 290 29611 492 308 15427 7.5
Speck 64 128 1112 302 41103 592 298 31832 444 308 16505 7.8
Simon 64 96 1084 363 63649 758 362 47266 600 376 23056 10.7
Simon 64 128 1122 375 66613 780 374 49328 560 392 23930 11.0
LEA 128 128 1684 631 61020 1154 630 46374 696 644 16192 11.5
RECTANGLE 64 80 1152 352 66722 832 400 44050 664 426 35286 12.4
RECTANGLE 64 128 1118 353 64813 846 406 44384 660 432 36121 12.5
Sparx 64 128 1426 392 61955 986 394 36265 1200 424 40887 13.4
Sparx 128 128 1736 753 83663 1710 758 46640 2290 784 53109 19.6
AES 128 128 3010 408 58246 2684 408 86506 3080 452 73579 23.6
HIGHT 64 128 1414 333 94557 1258 330 120215 1444 380 90385 25.1
Fantomas 128 128 5892 267 111677 4164 234 56788 4604 308 70142 26.3
Robin 128 128 4944 271 146149 3170 238 76588 3572 1312 74665 28.5
Robin⋆ 128 128 5076 271 157205 3312 238 88804 3724 1316 85247 31.1
RC5-20 64 128 3706 368 252368 1240 378 386026 624 376 36473 37.0
PRIDE 64 128 3384 373 111155 2918 380 226135 2240 452 130017 38.8
RoadRunneR 64 80 2504 330 144071 3088 338 235317 2788 418 119537 39.2
RoadRunneR 64 128 2316 209 125635 2952 362 218909 2504 448 140664 39.8
LBlock 64 80 2954 494 183324 1632 324 263778 2204 574 140647 43.7
PRESENT 64 80 2160 448 245232 1838 450 201549 2528 502 270464 59.3
PRINCE 64 128 5358 374 243396 4174 240 357423 4372 504 201136 62.3
TWINE 64 80 4236 646 297265 3796 564 387562 2456 474 255450 70.8
Piccolo 64 80 1992 314 407269 1354 310 324221 1596 406 294478 71.9
LED 64 80 5156 574 2221555 7004 252 2065695 3696 654 594453 264.8

Table 3.3: Results for Scenario 1 (encryption of 128 bytes of data using CBC mode)
when using different weights wm for the three metrics in Equation (3.1) to compute
the performance parameter pi, d. Namely, the code size and the RAM size have the
weights wcode = wRAM = 1, while the cycle count has the weight wcycle = 2. Results
of assembly implementations are in italics.

of hardware implementations. Although the FOAM is only suitable for hardware
implementations, a similar metric could be defined for software by replacing area by
RAM consumption and/or code size.

3.4.2 Discussion of Results

In Scenario 1 (“bulk encryption”), the top-3 ciphers based on the FOM score are
Chaskey, Speck, and Simon; the FOM score of these ciphers is less than half of
the FOM score of the AES. Recall that the FOM score takes into account all three

78 Fair Evaluation of Lightweight Block Ciphers

Cipher AVR MSP ARM

Block Key Code RAM Time Code RAM Time Code RAM Time FOM

[b] [b] [B] [B] [cyc.] [B] [B] [cyc.] [B] [B] [cyc.]

Balanced (globally efficient)

Chaskey 128 128 624 80 1465 388 70 1153 216 76 524 4.4
Chaskey-LTS 128 128 624 80 2265 390 70 1690 216 76 648 5.0
Speck 64 96 506 53 2647 328 48 1959 256 56 1003 5.1
Speck 64 128 452 53 2917 332 48 2013 276 60 972 5.2
Simon 64 96 600 57 4269 460 56 2905 416 64 1335 7.0
Simon 64 128 608 57 4445 468 56 3015 388 64 1453 7.2
LEA 128 128 906 80 4023 722 78 2814 520 112 1171 8.0
RECTANGLE 64 128 602 56 4381 480 54 2651 444 76 2365 8.5
RECTANGLE 64 80 606 56 4433 480 54 2651 444 76 2365 8.5
Sparx 64 128 662 51 4397 580 52 2261 654 72 2338 8.7
Sparx 128 128 1184 74 5478 1036 72 3057 1468 104 2935 13.0
RC5-20 64 128 1068 63 8812 532 60 15925 372 64 1919 14.8
AES 128 128 1246 81 3408 1170 80 4497 1348 124 4044 14.9
HIGHT 64 128 636 56 6231 636 52 7117 670 100 5532 15.9
Fantomas 128 128 2496 108 5919 1920 78 3602 2184 184 4550 19.6
Robin 128 128 2530 108 7813 1942 80 4913 2188 184 6250 23.0
Robin⋆ 128 128 2580 106 8052 1980 80 5262 2272 196 6417 23.7
RoadRunneR 64 80 1420 61 7329 1536 76 13034 1900 172 7234 25.5
PRIDE 64 128 2064 91 5727 1842 68 13108 1592 148 7446 25.6
RoadRunneR 64 128 1184 59 6289 1724 74 13266 1436 164 8573 26.3
LBlock 64 80 1440 64 11183 804 58 16101 1220 284 9015 28.7
PRESENT 64 80 1294 56 16849 1072 58 12347 1222 80 17105 38.6
PRINCE 64 128 1362 72 20060 1576 76 24246 1384 280 15165 44.0
Piccolo 64 80 1114 72 25820 784 70 20081 688 112 17965 44.2
TWINE 64 80 1528 64 21701 1922 136 23662 1180 156 15673 44.6
LED 64 80 2548 267 135061 4422 104 121850 2172 352 35891 149.2

Table 3.4: Results for Scenario 2. Encrypt 128 bits of data using CTR mode.
Results of assembly implementations are in italics. For each cipher, an optimal
implementation on each architecture is selected. The Figure of Merit (FOM) takes
into account the three metrics (Code, RAM, and Time) on all platforms (AVR, MSP,
and ARM). The smaller the FOM, the better the implementations of the cipher.

metrics (i.e. execution time, RAM footprint, and code size) and does so across
three platforms (AVR, MSP, and ARM). Of course, when looking at performance,
RAM footprint, or code size individually, or when looking at AVR, MSP, or ARM
individually, the specific ranking can differ significantly from the overall ranking
based on the FOM score. Furthermore, it has to be taken into account that several
(up to 35) different implementations exist for one and the same cipher. Since these
implementations are based on different optimization strategies, they can (and usually
do) perform differently on the three platforms. It may also happen that one and the
same cipher is slower on 16-bit MSP than on 8-bit AVR (e.g. HIGHT, AES, RC5),

3.4 Results 79

which is not a mistake but simply the result of considering RAM equally important
as execution time. On each platform, we collected our benchmarking results using
the implementation that achieved the best (i.e. smallest) FOM score.

When having a closer look at the results on AVR, it turns out that the top-ranked
algorithms are very similar in terms of RAM footprint, which means the overall
rank is primarily determined by execution time and code size. Speck has roughly
twice the execution time of Chaskey, while Simon carries a performance penalty by
a factor of approximately three. A somewhat surprising result is that the AES beats
Simon on AVR, but its high performance comes at the expense of relatively large
code size. Also LEA and Sparx are slightly faster than Simon when comparing the
versions with 64-bit blocks and 128-bit keys. All other ciphers have an execution
time that is more than three times worse than that of Chaskey. The situation is
somewhat similar on MSP in the sense that Chaskey is the fastest cipher, followed by
Speck. Simon is again on the sixth position, outperformed by RECTANGLE, LEA
and Sparx with 64-bit blocks. However, the MSP results also show a disadvantage
of Chaskey, namely its relatively large code size, which is roughly twice the size
of Speck. On the other hand, in terms of RAM footprint, PRIDE, RoadRunneR,
and Fantomas perform very well on the MSP430 platform. Finally, on ARM, the
winners in the performance competition are Chaskey, Speck, and LEA. In addition,
these three ciphers also have the top positions in terms of code size, which is mainly
due to their extremely simple round function operating on 32-bit words. All other
algorithms are both slower and larger than LEA.

The overall ranking in Scenario 2 (“challenge-response authentication”), shown
in Table 3.4, is similar to that of Scenario 1. The three top spots are held by the
same ciphers in the same order, i.e. Chaskey is the best overall performer and Speck

the runner-up. Simon secured the third place, even though on all three platforms
some other ciphers show better execution times. However, Simon profits from its
relatively small code size and low RAM footprint. Positions 4 to 6 are held by LEA,
RECTANGLE and Sparx with FOM scores that are between 1.82 and 1.98 times
worse than Chaskey’s FOM score. All other ciphers have a FOM score that is more
than three times higher than that of Chaskey. Table 3.5 summarizes the results
of the implementations with minimal RAM footprint and code size for each of the
19 ciphers. Speck turns out to be the most lightweight candidate and, therefore,
the best choice for applications where size is the primary constraint. On all three
platforms, Speck has a code size of below 500 bytes and a RAM footprint of at
most 60 bytes. On the other hand, as shown in Table 3.5, when RAM footprint and
code size are of primary concern and execution time does not matter much, then
Speck is clearly the best choice. Also Simon is size-wise consistently good on all
three platforms.

Caveats. The results of any “survey-and-benchmark” work in lightweight cryptog-
raphy, including ours, always reflect the state of research at a certain time, namely
the time when it was written. However, the efficient implementation of (lightweight)
ciphers is an active area of research that is likely to provide new approaches for
speeding up one or more of the 19 candidates considered in this chapter. The AES

80 Fair Evaluation of Lightweight Block Ciphers

Cipher AVR MSP ARM

Block Key Code RAM Time Code RAM Time Code RAM Time

[b] [b] [B] [B] [cyc.] [B] [B] [cyc.] [B] [B] [cyc.]

Small code size & RAM

AES 128 128 1246 81 3408 1170 80 4497 952 140 38191
Chaskey 128 128 624 80 1465 388 70 1153 180 76 785
Chaskey-LTS 128 128 624 80 2265 390 70 1690 180 76 961
Fantomas 128 128 1712 76 9689 1412 74 5506 1384 100 8335
HIGHT 64 128 636 56 6231 636 52 7117 528 88 14244
LBlock 64 80 864 55 17933 804 58 16101 586 84 13818
LEA 128 128 906 80 4023 722 78 2814 528 88 1714
LED 64 80 1162 95 284063 950 102 170135 758 120 114723
Piccolo 64 80 1042 74 32603 784 70 20081 688 112 17965
PRESENT 64 80 1294 56 16849 802 62 513599 582 80 209946
PRIDE 64 128 834 62 14234 944 68 22551 656 96 16310
PRINCE 64 128 1384 70 20812 1518 70 27311 1158 136 22826
RC5-20 64 128 742 65 22635 524 54 23318 372 64 1919
RECTANGLE 64 128 648 54 4665 480 54 2651 464 68 3004
RECTANGLE 64 80 648 54 4665 480 54 2651 464 68 3004
RoadRunneR 64 80 1420 61 7329 628 88 67497 540 140 21475
RoadRunneR 64 128 1112 58 7023 620 82 25577 598 80 16334
Robin 128 128 1710 78 12513 1406 72 7051 1400 112 10070
Robin⋆ 128 128 1754 80 14285 1452 76 8634 1432 112 11679
Simon 64 96 534 57 4521 416 56 3199 324 56 2587
Simon 64 128 542 57 4709 424 56 3323 340 60 2308
Sparx 64 128 662 51 4397 496 54 2623 482 76 3434

Sparx 128 128 1212 73 5602 904 80 3273 932 108 4085

Speck 64 96 448 53 2829 328 48 1959 256 56 1159
Speck 64 128 452 53 2917 332 48 2013 264 56 1029
TWINE 64 80 788 56 42434 850 56 45273 530 72 29986

Table 3.5: Results for Scenario 2. Encrypt 128 bits of data using CTR mode.
Results of assembly implementations are in italics. For each cipher, an optimal
implementation on each architecture is selected.

serves as a good example on how progress in software optimization techniques can
yield significantly more efficient implementations. Similar progress could also make
one or more of our lightweight ciphers much faster than anticipated today. This is the
very reason why we maintain a web page [93] where the reader can find up-to-date
benchmarking results and cipher rankings. Furthermore, our results reflect, to a
certain degree, also the programming skills of the implementers and how much effort
they put into optimization. We invite the cryptographic research community to send
us improved implementations of the 19 ciphers covered in this chapter. In addition,
we also welcome implementations of new ciphers.

3.5 Summary 81

3.4.3 Comparison with other Benchmarking Results

Many of the ciphers we study in this paper have already been evaluated on AVR, MSP,
or ARM processors before, either separately or within some other benchmarking
project. It is not easily possible to compare performance figures across various
frameworks and implementations because the evaluation methodology is usually
different and also the optimization efforts typically vary. The importance of a
consistent evaluation framework and methodology becomes quickly evident when
taking the AES counter-mode implementation for Cortex-M3 processors in [314,
Section 3] as example. This implementation uses the T-table approach in combination
with a careful optimization of the memory accesses and achieves, according to [314],
an average execution time of 659.4 clock cycles for a single-block encryption with a
128-bit key. However, this cycle count was only reached by configuring the Cortex-M3
processor to have a reduced number of wait states for memory accesses, which favors
implementations using T-tables, but limits the maximum frequency the processor
can be clocked with. On the other hand, our benchmarking framework operates the
Cortex-M3 with the full wait states (so that it can be clocked with its maximum
frequency) and reports an execution time of 1641 clock cycles for this T-table
implementation. In addition, it must be taken into account that using T-tables
entails a large memory footprint, which worsens the FOM score. This also explains
why an implementation using only Sbox look-ups can reach a better FOM score than
the T-table approach, despite the fact that T-tables have the potential to reduce the
execution time by a factor of more than two.

The most notable differences between our benchmarks and previous implementa-
tion results obtained on AVR/MSP/ARM are the following. The BLOC project’s
[74] MSP implementations of LBlock, Piccolo, and Twine are slightly worse than ours,
whereas the implementations of AES, HIGHT, and PRESENT are much slower. On
the other hand, the AVR assembly implementations of PRESENT and AES from the
ECRYPT project [119, 121] are slightly slower than our assembly implementations,
while our implementation of HIGHT is twice as fast as the assembly implementation
from [121] and ten times faster than the assembly implementation from [119].

3.5 Summary

In this chapter, we presented a survey and benchmark of 19 lightweight block ciphers
based on two usage scenarios that are common for secure communication in the IoT.
In particular, we studied their implementation aspects on representative 8, 16, and
32-bit platforms.

The metrics (binary code size, RAM footprint and execution time) are extracted
using the FELICS benchmarking framework introduced in Chapter 2. For full
transparency, the source code of the framework, together with the implementations
of the evaluated ciphers, are available under an open-source license. We strongly
encourage the community to use and contribute to our framework, since it allows
easy integration and evaluation of new C and assembly implementations. We are
committed to maintaining a web page [93] that summarizes the latest results obtained

82 Fair Evaluation of Lightweight Block Ciphers

by each submitted implementation.
Based on the benchmarking results, we inferred some interesting information

regarding the link between the design decisions and performance figures. In par-
ticular, our results show that state-of-the-art designs based on simple operations
(addition/AND, rotation, and XOR) like Chaskey, Speck and Simon are not only
very fast, but also extremely small in terms of both code size and RAM requirements.
Furthermore, they perform consistently well on all three platforms, which makes
them excellent candidates for a lightweight cipher to secure the IoT.

Designers of new ciphers should focus on simple round functions that use as
few operations as possible and reach a good security level after several iterations.
The most efficient operations to be employed are the bitwise logical operations and
modular addition. The cost of rotations depends on the target architecture and the
rotation amount. One should use rotations by some carefully chosen values (e.g.
7, 8, 9, 15, or 16 for a 32-bit word) to reduce the execution time and code size on
architectures that support only rotations by one bit at a time. The above-mentioned
operations do not require any memory access, provided that the cipher’s state can
be kept into the internal registers. Finally, lookup tables of any size should be
avoided as they increase the code size and/or RAM footprint at the cost of a memory
load. These requirements lead to the following three categories of designs: ARX –
Add-Rotate-XOR (e.g. Chaskey, Speck, LEA, Sparx), AndRX – AND-Rotate-XOR
(e.g. Simon), and bit-sliced (e.g. RECTANGLE).

Further work may include the addition of new ciphers, integration of countermea-
sures against physical attacks, extending the framework’s capabilities to benchmark
other lightweight symmetric primitives (stream ciphers, hash functions, authenticated
encryption algorithms) and the support of additional processors.

Chapter 4

On the Efficiency of the Sparx

Family of Lightweight Block

Ciphers

Contents

4.1 Introduction . 83

4.2 Short Description . 84

4.3 Choosing the arx-box A 85

4.4 Choosing the Linear Layer λw 86

4.5 Key Schedule . 87

4.6 Implementation . 88

4.6.1 Main Components . 88

4.6.2 Flexibility . 90

4.6.3 Evaluation . 91

4.6.4 Comparison . 92

4.7 Test Vectors . 93

4.8 Other Implementations . 94

4.9 Summary . 94

4.1 Introduction

Sparx is a family of lightweight block ciphers designed to be secure and yet efficient
on a variety of resource-constrained devices. As the name suggests, Sparx is a
Substitution-Permutation (SP) network and uses only three operations: addition,
rotations, and XOR (ARX). Thanks to the Long Trail Strategy (LTS) [106], Sparx is
the first ARX cipher that was designed to have provable bounds against differential
and linear cryptanalysis. The family has three instances depending on the block and
key sizes.

84 On the Efficiency of the Sparx Family of Lightweight Block Ciphers

While the primary design goal of Sparx was security, the efficiency of its software
implementations on 8-, 16-, and 32-bit microcontrollers played an important role in
shaping this family of lightweight block ciphers. Hence, in this chapter we elaborate
on the implementation-related characteristics of Sparx and how software efficiency
influenced the final design. Then, we provide implementation details and results for
two instances of Sparx, namely Sparx-64/128 and Sparx-128/128.

4.2 Short Description

We use Sparx-n/k to refer to the instance of Sparx that operates on a block of n
bits and has a key of k bits. The high-level structure of Sparx depicted in Figure 4.1
works on 32-bit words. Hence, the cipher’s state is represented on w = n/32 words,
while the key consists of v = k/32 words. The encryption function is obtained by
iterating ns times a step, which consists of a substitution layer and a linear mixing
layer. The substitution layer applies ra rounds of a so-called arx-box (preceded by
a key addition) to each word of the state, while the linear layer mixes the cipher’s
state. The linear layer of the last step is followed by the addition of a post-whitening
key to the cipher’s state. The key schedule, shown in Figure 4.2, uses the function
Kv to generate v round keys in each iteration. The main parameters of the three
instances of Sparx are summarized in Table 4.1.

Sparx-64/128 Sparx-128/128 Sparx-128/256

State words w 2 4 4
Key words v 4 4 8

Steps ns 8 8 10
Rounds ra 3 4 4

Round keys words 50 132 164

Table 4.1: Sparx parameters.

λw

⊕

A

A

⊕

⊕

A

A

⊕

ksw0

kswra−1

ksw+w−1
0

ksw+w−1
ra−1

round

step

Figure 4.1: The structure of Sparx encryption.

4.3 Choosing the arx-box A 85

kr0 kr1 ... krv−1

Kv

kr+1
0 kr+1

1
... kr+1

v−1

Figure 4.2: The structure of Sparx key schedule.

4.3 Choosing the arx-box A

Once the high-level structure (see Figure 4.1) of the cipher was set, we had to
choose an arx-box that provides good cryptographic properties (i.e. minimizes the
differential and linear probabilities), while facilitating efficient implementations. We
considered two possible structures, namely MARX-2 and Speckey, which were
introduced by Biryukov et al. [274]. MARX-2 is based on the MIX function of
Skein [124], while Speckey is a variant of Speck-32. The two structures are shown
in Figure 4.3.

≪ 1

⊞

≪ 2
⊕

≪ 7

⊞

≪ 3
⊕

(a) MARX-2.

≫ 7

⊞

≪ 2

⊕

(b) Speckey.

Figure 4.3: The candidate 32-bit arx-boxes, MARX-2 and Speckey. The branch
size is 8 bits for MARX-2 and 16 bits for Speckey.

Although both structures process a 32-bit word, their branches have different
sizes. MARX-2 has four 8-bit branches, while Speckey uses two 16-bit branches.
Another major difference between the two stems from the number of elementary
operations used. MARX-2 needs two additions modulo 28, two bitwise XORs, and
four rotations (by 1, 2, 3, and 7 bits to the left). Moreover, MARX-2 also performs
a branch swap. Speckey requires only one addition modulo 216, one bitwise XOR,
and two rotations (by 2 bits to the left and by 7 bits to the right). The execution
time in number of clock cycles of both MARX-2 and Sparx is given in Table 4.2.
These values correspond to implementations where each branch is stored in its own
register. Consequently, the implementations of these two structures do not require
additional registers. For more details on the cost of each elementary operation, we
refer the reader to Chapter 5.

The above-mentioned implementation properties of MARX-2 and Speckey

86 On the Efficiency of the Sparx Family of Lightweight Block Ciphers

AVR MSP ARM

MARX-2 20 25 17
Sparx 16 9 7

Table 4.2: Comparison between the execution time (in cycles) of MARX-2 and
Speckey.

indicate that Speckey yields much better implementations than MARX-2. Therefore,
we selected Speckey for the arx-box of Sparx. An even better choice for the
overall implementation efficiency would have been a primitive that operates on 32-bit
branches because this word size yields better execution times on all platforms (see
Section 5.3.2). However, when we designed the cipher, there was no such construction
with provable differential and linear bounds for enough rounds.

In order to reduce the pressure on registers, we decided to execute all the arx-
boxes of a branch before processing another branch of the same step. This approach
reduces the number of stack operations required to switch between branches when
the state does not fully fit into the available registers of a microcontroller. On the
other hand, it does not negatively affect the performance of an implementation when
there are enough registers to store the entire state of the cipher.

4.4 Choosing the Linear Layer λw

The linear layer was selected such that it minimizes the probability of differential and
linear trails as well as the number of steps of the integral characteristic found with
the division property. The Feistel functions L and L′ are used by the linear layers λ2

and λ4, respectively. They provide diffusion and yield efficient implementations on
8-, 16-, and 32-bit architectures. Both L and L′ rely on a Lai-Massey structure. The
function L′ is a generalization of L, which is borrowed from Noekeon [97]. The
linear layer λ2 used by Sparx-64/128 is shown in Figure 4.4a, while the linear layer
λ4 used by Sparx-128/128 and Sparx-128/256 is shown in Figure 4.4b. The two
Feistel functions L and L′ are shown in Figure 4.5.

L
0

1

⊕
⊕

(a) λ2.

L′
⊕
⊕

⊕
⊕

0

1

2

3

(b) λ4.

Figure 4.4: The linear layers of Sparx-64/128 and Sparx-128/128.

The L transformation maps a 32-bit value x to x ⊕ (x ≪ 8) ⊕ (x ≫ 8). Its

4.5 Key Schedule 87

⊕

⊕ ⊕

≪ 8

0 1

(a) L.

⊕

⊕
⊕ ⊕

⊕

≪ 8

0 1 2 3

(b) L′.

Figure 4.5: The Feistel functions used by the linear layers of Sparx.

alternative representation shown in Figure 4.5a works on two 16-bit branches a and
b, which are transformed to a⊕

(

(a⊕ b) ≪ 8
)

and b⊕
(

(a⊕ b) ≪ 8
)

, respectively.
Similarly to L, the L′ function can be defined in two ways. The representation

shown in Figure 4.5b transforms the four 16-bit branches a, b, c, d to c⊕ t, b⊕ t, a⊕ t,
and d⊕t, where t = (a⊕b⊕c⊕d) ≪ 8. In order to define the representation of L′ that
works on 32-bit values, let L′⋆ be the function that skips the final branch swap of L′. If
x || y is the concatenation of two 32-bit words and t =

(

(x⊕y) ≫ 8
)

⊕
(

(x⊕y) ≪ 8
)

,
then L′⋆(x || y) = x⊕ t || y ⊕ t. Furthermore, L′⋆ can be written using L as follows:
L′⋆(x || y) = y ⊕ L(x⊕ y) || x⊕ L(x⊕ y).

4.5 Key Schedule

The key schedule was designed to quickly mix the bits of the master key into the round
keys. It reuses the arx-box A to reduce the code size of software implementations.
The additions modulo 216 provide diffusion, while the addition of the round number
prevents slide attacks [54]. The expensive operations of the key schedule Kv are the
branch swaps. The key schedule of Sparx-64/128 is shown in Figure 4.6a, while the
key schedule of Sparx-128/128 is given in Figure 4.6b.

k0 k1 k2 k3

A

⊞
⊞

⊞r + 1

(a) Key schedule of Sparx-64/128.

k0 k1 k2 k3

A A

⊞
⊞

⊞
⊞

⊞r + 1

(b) Key schedule of Sparx-128/128.

Figure 4.6: The key schedules of Sparx-64/128 and Sparx-128/128.

It is important to note that one iteration of the key schedules of Sparx-64/128

88 On the Efficiency of the Sparx Family of Lightweight Block Ciphers

and Sparx-128/128 generates four key words of 32 bits each. On the other hand,
one step of Sparx-64/128 and Sparx-128/128 requires 6 and 16 round key words,
respectively. The final key addition uses 2 round key words for Sparx-64/128 and 4
round key words for Sparx-128/128. Hence, the number of key words generated by
the key schedule of Sparx-64/128 is not synchronized with the number of key words
required in the step function. Consequently, its rolled implementations consume
more code size (to compute the last two round keys outside the main loop) or waste
some clock cycles (to execute one full iteration and discard two key words).

4.6 Implementation

Next we describe how Sparx can be efficiently implemented on three resource-
constrained microcontrollers widely used in the IoT, namely the 8-bit Atmel AT-
mega128, the 16-bit TI MSP430, and the 32-bit ARM Cortex-M3. These devices
are described in Section 2.6. We support the described optimization strategies with
performance figures extracted from assembly implementations of Sparx-64/128
and Sparx-128/128 using the FELICS open-source benchmarking framework (see
Chapter 2). We refer the reader to Chapter 3 for comparative performance figures
extracted from software implementations of 19 lightweight block ciphers.

4.6.1 Main Components

In order to efficiently implement Sparx on a resource-constrained embedded proces-
sor, it is important to have a good understanding of its instruction set architecture
(ISA). The number of general-purpose registers determines whether the entire ci-
pher’s state fits into registers or if a part of it has to be held in RAM. Memory
operations are generally slower than register operations, consume more energy and
increase the vulnerability of an implementation to side-channel attacks as shown
in Chapter 6. Thus, the number of memory operations should be reduced as much
as possible. Ideally the state should only be read from memory at the beginning
of the cryptographic operation and written back at the end. The three targets we
implemented Sparx for have 32 8-bit, 12 16-bit, and 13 32-bit general-purpose
registers, which result in a total capacity of 256 bits, 192 bits, and 416 bits for AVR,
MSP, and ARM, respectively.

The Sparx family’s simple structure consists only of three components: the
arx-box A and its inverse A−1, the linear layer λ2 or λ4 (depending on the version),
and the key addition. The key addition (bitwise XOR) does not require additional
registers and its execution time is proportional to the ratio between the operand
width and the target device’s register width. The execution time in cycles and the
number of registers required to perform A, A−1, λ2, and λ4 on each target device
are given in Table 4.3.

The costly operation in terms of both execution time and number of required
registers is the linear layer. The critical point is reached for the 128-bit linear layer
λ4 on MSP, which requires 13 registers. Since this requirement is above the number

4.6 Implementation 89

Component
AVR MSP ARM

Cycles Registers Cycles Registers Cycles Registers

A 16 4 + 1 9 2 11 1 + 3
A−1 19 4 9 2 12 1 + 3

λ2 – 1-step 24 8 + 1 11 4 + 3 5 2 + 1
λ2 – 2-steps 12 8 7 4 + 1 3 2

λ4 – 1-step 48 16 + 2 36 8 + 1 16 4 + 5
λ4 – 2-steps 24 16 + 2 13 8 + 1 12 4 + 4

Table 4.3: Performance characteristics of the main components of Sparx.

of available registers, a part of the state has to be saved on the stack. Consequently,
the execution time increases by 5 cycles for each push – pop instruction pair.

A 2-step implementation uses a simplified linear layer without the most resource-
demanding part – the branch swaps. It processes the result of the left branch after
the first step as the right branch of the second step and similarly the result of the
right branch after the first step as the left branch of the second step. This technique
reduces the number of required registers and improves the execution time at the cost
of an increase in code size. The performance gain is a factor of 2 on AVR, 2.7 on
MSP, and 1.3 on ARM.

The linear transformations L and L′ exhibit interesting implementation properties.
For each platform there is a different optimal way to perform them. The optimal way
to implement the linear layers on MSP is using the representations from Figure 4.5a
and Figure 4.5b. On ARM the optimal implementation performs the rotations directly
on 32-bit values. The function L can be executed on AVR using 12 XOR instructions
and no additional registers. On the other hand, the optimal implementation of L′

on AVR requires 2 additional registers and takes 24 cycles. The steps required to
efficiently compute L and L′ on an 8-bit AVR microcontroller are shown in Figure 4.7

x

⊕

x ≪ 8
⊕

x ≫ 8

L(x)

x0 x1 x2 x3

x1 x2 x3 x0

x3 x0 x1 x2

r0 r1 r2 r3

r0 = x0 ⊕ x1 ⊕ x3 r1 = x0 ⊕ x1 ⊕ x2
r2 = x1 ⊕ x2 ⊕ x3 r3 = x0 ⊕ x2 ⊕ x3

Figure 4.7: Computation of L on 8-bit registers.

90 On the Efficiency of the Sparx Family of Lightweight Block Ciphers

x

t

t ≪ 8
⊕

t ≫ 8

u

⊕

x′

L′(x)

x0 x1 x2 x3 x4 x5 x6 x7

t0 t1 t2 t3

t1 t2 t3 t0

t3 t0 t1 t2

u0 u1 u0 u1

x4 x5 x2 x3 x0 x1 x6 x7

r0 r1 r2 r3 r4 r5 r6 r7

u0 = x1 ⊕ x3 ⊕ x5 ⊕ x7 u1 = x0 ⊕ x2 ⊕ x4 ⊕ x6
r0 = u0 ⊕ x4 r1 = u1 ⊕ x5 r2 = u0 ⊕ x2 r3 = u1 ⊕ x3
r4 = u0 ⊕ x0 r5 = u1 ⊕ x1 r6 = u0 ⊕ x6 r3 = u1 ⊕ x7

Figure 4.8: Computation of L′ on 8-bit registers.

and Figure 4.8, respectively. Each intermediate variable is an 8-bit value.
The linear layer performed after the last step of Sparx can be dropped without

affecting the security of the cipher, but it turns out that it results in poorer overall
performance. The only case where this strategy helps is when top execution time
is the main and only concern of an implementation. Thus we preferred to keep the
symmetry of the step function and the overall balanced performance figures.

4.6.2 Flexibility

The salient implementation-related feature of the Sparx family of ciphers is given by
the simple and flexible structure of the step function depicted in Figure 4.1, which
can be implemented using different optimization strategies. Depending on specific
constraints, such as code size, speed, or energy requirements to name a few, the
rounds inside the step function can be rolled or unrolled; one or two step functions
can be computed at once. The main possible trade-offs between the execution time
and code size are explored in Table 4.4.

Except for the 1-step implementation of Sparx-128/128 on MSP, which needs
RAM memory to save the cipher’s state, all other RAM requirements are determined
only by the process of saving the register context on the stack at the beginning of the
measured function. Thus, the RAM consumption of a pure assembly implementation
would be zero, except for the 1-step rolled and unrolled implementations of Sparx-
128/128 on MSP.

4.6 Implementation 91

Implementation AVR MSP ARM

Block Time Code RAM Time Code RAM Time Code RAM

[b] [cyc.] [B] [B] [cyc.] [B] [B] [cyc.] [B] [B]

1-step rolled 64 1789 248 2 1088 166 14 1370 176 28
1-step unrolled 64 1641 424 1 907 250 12 1100 348 24
2-steps rolled 64 1677 356 2 1034 232 10 1331 304 28
2-steps unrolled 64 1529 712 1 853 404 8 932 644 24

1-step rolled 128 4553 504 11 2809 300 26 3463 348 44
1-step unrolled 128 4165 1052 10 2353 584 24 2784 884 40
2-steps rolled 128 4345 720 11 2593 432 18 3399 620 40
2-steps unrolled 128 3957 1820 10 2157 1004 16 2377 1692 36

Table 4.4: Different trade-offs between the execution time and code size for encryption
of a block using Sparx-64/128 and Sparx-128/128. Minimal values are given in
bold.

Due to the 16-bit nature of the cipher, performing A and A−1 on a 32-bit platform
requires a little bit more execution time and more auxiliary registers than performing
the same operations on a 16-bit platform. The process of packing and unpacking a
state register to extract and store back the two 16-bit branches of A or A−1 adds
a performance penalty. This cost is amplified by the fact that the flexible second
operand of an instruction can not be used with a constant to extract the least or
most significant 16 bits of a 32-bit register. Thus, an additional masking register
is required. One can use the movt instruction to perform the masking of the 16-bit
values without an additional register, but the implementations of A and A−1 will
require more instructions and hence the execution time and code size will increase.

The simple key schedules of Sparx-64/128 and Sparx-128/128 can be imple-
mented in different ways. The most efficient implementation turns out to be the one
using the 1-iteration rolled strategy. Another interesting approach is the 4-iterations
unrolled strategy, which has the benefit that the final permutation is achieved for free
by changing the order in which the registers are mapped to the generated key words.
This strategy increases the code size by up to a factor of 4, while the execution time
is on average 25% better.

Although we do not provide performance figures for Sparx-128/256, we emphasize
that the only differences with respect to implementation aspects between Sparx-
128/256 and Sparx-128/128 are the key schedules and the different number of
steps.

4.6.3 Evaluation

We evaluate the performance of our implementations of Sparx using FELICS in
the two usage scenarios described in Section 3.2.1. The key performance figures
are summarized in Table 4.5. The balanced results are achieved using the 1-step
implementations of Sparx-64/128 and Sparx-128/128.

92 On the Efficiency of the Sparx Family of Lightweight Block Ciphers

AVR MSP ARM

Block Time Code RAM Time Code RAM Time Code RAM FOM
[b] [cyc.] [B] [B] [cyc.] [B] [B] [cyc.] [B] [B]

Scenario 1 – Encryption of 128 bytes of data using CBC mode

64 30256 358 10 16113 338 22 19131 456 56 8.8
128 37984 614 19 24056 404 36 30466 428 68 13.2

Scenario 2 – Encryption of 128 bits of data using CTR mode

64 4397 662 51 2261 580 52 2338 654 72 8.7
128 5478 1184 74 3057 1036 72 2935 1468 104 13.0

Table 4.5: The performance figures of the balanced (globally efficient) implementa-
tions of Sparx-64/128 and Sparx-128/128 according to the Figure of Merit (FOM)
defined in FELICS.

4.6.4 Comparison

We compare the performance of Sparx with the results available on the Triathlon
Competition website [92] at the time of writing. Up-to-date results are available
at [92]. As can be seen in Table 4.6 the two instances of Sparx perform very well
across all platforms and rank very high in the FOM-based ranking. The superior
competitors are the NSA designs Simon and Speck, Chaskey, RECTANGLE and
LEA, but, apart from RECTANGLE, none of them have been designed with provable
security in mind.

Besides the overall good performance figures in the two usage scenarios, the

Rank Cipher
Block Key Scenario 1

size size FOM

1 Chaskey-LTS 128 128 4.6
2 Speck 64 128 5.2
3 Simon 64 128 7.2
4 RECTANGLE 64 128 8.0
5 LEA 128 128 8.3
6 Sparx 64 128 8.8
7 Sparx 128 128 13.2
8 HIGHT 64 128 14.8
9 AES 128 128 15.8

10 Fantomas 128 128 17.8

Table 4.6: Top 10 best implementations in Scenario 1 (encryption key schedule,
encryption and decryption of 128 bytes of data using CBC mode) ranked by the
Figure of Merit (FOM) defined in FELICS. The smaller the FOM, the better the
implementation.

4.7 Test Vectors 93

following results are worth mentioning:

• the execution time of Sparx-64/128 on MSP is in the top 3 of the fastest
ciphers in both scenarios thanks to its 16-bit oriented operations;

• the code size of the 1-step rolled implementations of Sparx-64/128 and Sparx-
128/128 on MSP is in the top 5 in both scenarios as well as in the small code
size and RAM table for Scenario 2;

• the 1-step rolled implementation of Sparx-64/128 breaks the previous mini-
mum RAM consumption record on AVR in Scenario 2;

• the execution time of the 2-steps implementation of Sparx-64/128 in Scenario
2 is in the top 3 on MSP, in the top 5 on AVR, and in the top 7 on ARM; it
also breaks the previous minimum RAM consumption records on AVR and
MSP.

4.7 Test Vectors

Test vectors are shown as 16-bit words in hexadecimal notation in Table 4.7. Reference
C implementations of the three instances of Sparx are available on GitHub [95]. All
optimized implementations described in this chapter are included in FELICS [93].
More resources about the Sparx family of lightweight block ciphers can be found on
the primitive’s web page [94].

Sparx-64/128
key 0011 2233 4455 6677 8899 aabb ccdd eeff

plaintext 0123 4567 89ab cdef

ciphertext 2bbe f152 01f5 5f98

Sparx-128/128
key 0011 2233 4455 6677 8899 aabb ccdd eeff

plaintext 0123 4567 89ab cdef fedc ba98 7654 3210

ciphertext 1cee 7540 7dbf 23d8 e0ee 1597 f428 52d8

Sparx-128/256

key
0011 2233 4455 6677 8899 aabb ccdd eeff

ffee ddcc bbaa 9988 7766 5544 3322 1100

plaintext 0123 4567 89ab cdef fedc ba98 7654 3210

ciphertext 3328 e637 14c7 6ce6 32d1 5a54 e4b0 c820

Table 4.7: Sparx test vectors.

94 On the Efficiency of the Sparx Family of Lightweight Block Ciphers

4.8 Other Implementations

Damian Gryski [99] implemented Sparx in Go, while Frank Denis [130] and Quininer
Kel [285] implemented Sparx in Rust.

4.9 Summary

Given its simple and flexible structure as well as its very good overall ranking in the
Triathlon Competition of lightweight block ciphers [92], the Sparx family is suitable
for applications on a wide range of resource-constrained devices. The absence of look-
up tables reduces the memory requirements and provides some intrinsic resistance
against power analysis attacks as described in Chapter 6.

Sparx was designed to achieve two goals, namely security against known cryptan-
alytic attacks and efficiency on resource-constrained microcontrollers. In this chapter,
we showed that software efficiency played an important role in the design phase of
Sparx and influenced many design choices. However, as in many lightweight designs,
the main limiting factor was the theoretical framework used to prove the cipher’s
security. In other words, we could have designed much more efficient ciphers, but we
could not prove their security against the main cryptanalytic attacks.

Chapter 5

Efficient Lightweight Symmetric

Cryptography for Embedded IoT

Systems

Contents

5.1 Introduction . 95

5.1.1 Our Contribution . 96

5.2 Efficient Implementations 97

5.2.1 Bitwise Operations . 97

5.2.2 Modular Arithmetic Operations 98

5.2.3 Rotations . 99

5.2.4 Table-Based Lookups . 105

5.2.5 Stack Operations . 107

5.3 Discussion . 107

5.3.1 Choosing the Best Operations 107

5.3.2 Choosing the Best Word Size 108

5.3.3 Substitution Layer . 108

5.3.4 Linear Layer . 108

5.3.5 Cipher’s State . 109

5.3.6 Structure . 109

5.4 Summary . 109

5.1 Introduction

In a broad sense, the IoT connects devices with various computational capabilities
ranging from small RFID tags to very powerful smartphones and tablets. A more
precise scope of the IoT covers only devices with very low computational capabilities
and middle range IoT devices, but not the very powerful ones. We focus on devices

96 Efficient Lightweight Symmetric Cryptography

that support software implementations (i.e. microcontrollers) for the advantages
that these implementations have over hardware implementations in a dynamic
environment such as the IoT. In this chapter, we consider the three embedded devices
used by FELICS. A description of these devices is provided in Section 2.6. Table 5.1
summarizes the number of general-purpose registers and the total capacity of these
registers for each of the three devices.

MCU Register size GPRs Number of Capacity
(bits) GPRs (bits)

AVR 8 R0 – R31 32 256
MSP 16 R4 – R15 12 192
ARM 32 R0 – R12 13 416

Table 5.1: General-purpose registers (GPRs) of each target device.

One of the main problems raised by the emergence of the IoT is the need for
secure and efficient cryptographic algorithms that meet the security requirements
and the design constraints of IoT systems. On the one hand, there is the need for
basic security functions such as confidentiality, integrity, and availability in these
information ecosystems. On the other hand, the use cases for which most of the IoT
devices are built impose numerous constraints ranging from the physical dimensions
of a device and its battery lifetime to acceptable query response time or throughput.
The large body of research on lightweight cryptography aims to conciliate these two
conflicting requirements.

5.1.1 Our Contribution

In this chapter, we study how to design lightweight symmetric algorithms that
lead to efficient software implementations on embedded IoT devices. We provide
a detailed analysis of the costs associated with the main building blocks used to
construct lightweight symmetric primitives. Moreover, we give the optimal instruction
sequences in terms of both execution time and number of registers required for all
operations frequently used in lightweight symmetric cryptography, especially for
rotations which are not optimized by C compilers. The optimal implementation
of rotations demand a tremendous effort and a very good understanding of the
instruction set architecture of each target device.

To the best of our knowledge, this is the first work to provide such a detailed
insight into the efficiency of software implementations of lightweight symmetric
cryptography. The contribution of this chapter is particularly valuable for designers
of new lightweight ciphers because they can make design decisions based on both
security and efficiency using our results.

5.2 Efficient Implementations 97

5.2 Efficient Implementations

The efficiency of lightweight cryptographic primitives is determined by the properties
of the underlying building blocks. The basic building blocks for lightweight symmetric
algorithms are the individual operations that are combined to achieve the desired
cryptographic properties. We classify the possible operations in the following four
categories: bitwise operations, modular arithmetic operations, rotations, and table-
based lookups. The operand size varies between 4 bits for small S-boxes to 32 bits
for modular addition. Frequently used operand sizes are 8, 16, and 32 bits.

The evaluation of lightweight block ciphers [105] conducted using the FELICS
framework [104] has shown that, in general, assembly implementations give better
results than pure C implementations, especially on 8-bit AVR and 16-bit MSP.
Although more demanding and less portable than C implementations, assembly
implementations allow the implementer to fully control the allocation of registers and
give her access to all instructions supported by the target microprocessor. On the
contrary, the GNU Compiler Collection (GCC) does not always manage efficiently
the available registers; thus stack memory is used to compensate for the inefficient
allocation of registers. Moreover, the GCC is not able to generate efficient assembly
code for certain bit manipulations such as rotations.

For each of the basic operations considered next, we provide the execution time
in number of CPU cycles and, when relevant, the number of additional registers
required to perform the given operation for different operand sizes. When a particular
operation can be implemented in different ways to leverage various trade-offs between
the execution time and the number of registers necessary to perform the given
operation, we give the same priority to the execution time and the number of used
registers. Moreover, when such trade-offs are possible we list the both options (i.e. the
high speed implementation that requires more registers and the implementation that
uses less registers, but more execution time) such that one can choose a trade-off. The
figures correspond to assembly implementations optimized for the above-mentioned
criteria. Indeed, the execution time for each operation is optimal in the sense that
there is no faster way of performing that operation. Similarly, the number of registers
required to perform each operation is minimal, meaning that there is no way to
perform that operation using less registers.

5.2.1 Bitwise Operations

Bitwise operations such as NOT (¬), AND (∧), OR (∨), and exclusive-OR (⊕) can
be performed very fast on any microcontroller. When the operand size is less than
or equal to the target device’s register size, the execution of a bitwise operation
takes a single clock cycle. When the operand size is greater than the register size,
the execution time of a bitwise operation is equal to the ratio between the operand
size and register size because the operand has to be processed in chunks less than
or equal to the register size. None of these operations requires additional registers.
Table 5.2 summarizes the execution time of the considered bitwise operations for
different operand sizes.

98 Efficient Lightweight Symmetric Cryptography

Operand size 8 bits 16 bits 32 bits

Operation ¬ ∧ ∨ ⊕ ¬ ∧ ∨ ⊕ ¬ ∧ ∨ ⊕

AVR 1 1 1 1 2 2 2 2 4 4 4 4

MSP 1 1 1 1 1 1 1 1 2 2 2 2

ARM 1 1 1 1 1 1 1 1 1 1 1 1

Table 5.2: Execution time of bitwise operations.

To perform a bitwise NOT, AND, OR, and XOR using the 8-bit registers of the
AVR microcontroller, one needs the following instructions: com (one’s complement),
and, or, and eor, respectively.

On an MSP microcontroller, the instructions inv, and, bis (bit set or OR), and
xor perform the same operations (NOT, AND, OR, and XOR) on 16-bit registers.
In addition to these instructions, the MSP microcontroller supports the bic (bit
clear or AND NOT) instruction that takes a single cycle and two bytes of code, thus
saving one clock cycle and two bytes of code compared to chaining of inv and and

instructions.
The instructions mvn, and, orr, eor are used on the 32-bit registers of ARM

to perform NOT, AND, OR, and XOR, respectively. The ARM microcontroller
provides two additional bitwise instructions: bic (bit clear or AND NOT) and orn

(OR NOT). Each of these instructions combines two basic bitwise operations into a
single instruction to save one clock cycle and four bytes of code.

5.2.2 Modular Arithmetic Operations

The most frequent modular arithmetic operations used by lightweight ciphers are
addition and subtraction. For an operand size of n bits, the modular addition
and subtraction are performed modulo 2n. Common choices for n are 8, 16, or
32. The execution time and number of additional registers required to perform
modular additions and subtractions for different values of the operand size are given
in Table 5.3.

Addition and subtraction of two n-bit values using n-bit registers are straightfor-
ward on the three microprocessors. Any of these two operations can be performed
using a single instruction (add/sub) with no need for additional registers.

When the operand size n is a multiple of the register size m, i.e. n = k ·m with
k > 1, then the whole operation is performed in k steps. In the first step, the least
significant bits of the two operands are added/subtracted without considering the
carry bit. In the subsequent steps, the same operation is repeated, but the carry bit
from the previous step is considered (i.e. adc/sbc – AVR, ARM; addc/subc – MSP).
These steps use k instructions and consequently the execution time is k cycles. The
code size is 2 · k, 2 · k, and 4 · k bytes for AVR, MSP, and ARM, respectively.

Whenever the operand size n is smaller than the register size m, there is at least

5.2 Efficient Implementations 99

MCU
Operand size 8 bits 16 bits 32 bits

Operation ⊞ ⊟ ⊞ ⊟ ⊞ ⊟

AVR
Cycles 1 1 2 2 4 4

Registers 0 0 0 0 0 0

MSP
Cycles 3 3 1 1 2 2

Registers 0 0 0 0 0 0

ARM
Cycles 2 2 2 2 1 1

Registers 0 0 0 0 0 0

Table 5.3: Execution time and number of additional registers required to perform
modular arithmetic operations.

one additional instruction (and) necessary to ensure that the final result is n bits
long. Hence, an 8-bit addition/subtraction on the MSP microcontroller takes two
extra cycles and four bytes of code. The same operation takes one extra cycle and
four bytes of code on the ARM microcontroller.

The result of an 16-bit addition/subtraction of on ARM can not be masked using
and instruction with an immediate value. Though, the movt instruction can be used
to write a 16-bit immediate value (i.e. 0) to the top halfword of a register, without
affecting the bottom halfword.

When a 32-bit register of an ARM microcontroller stores a single 8-bit value,
then the total cost of an 8-bit addition/subtraction is 2 cycles. One can perform two
8-bit additions/subtractions at the same time on ARM provided that the values are
properly arranged in registers. The additional cost of masking the result is three
cycles, an additional register, and twelve bytes of code because the mask has to be
loaded (ldr) into a register (two cycles and eight bytes of code) since it can not be
used as an immediate value. If the mask can be kept in the auxiliary register, then
the additional cost of subsequent operations is one clock cycle and four bytes of code.

5.2.3 Rotations

It is crucial for the performance of a lightweight primitive to choose the best rotation
amounts possible [106, 39] because the cost of rotations greatly varies as a function of
the operand size, rotation amount, and target microcontroller. This simple principle
is hard to apply in practice in the absence of a detailed analysis of the cost associated
with different rotations. Depending on the operand size, we distinguish between
rotations of 8-bit values (Table 5.5), rotations of 16-bit values (Table 5.6), and
rotations of 32-bit values (Table 5.7). For each possible rotation amount, we give
the execution time and the number of additional registers required to perform the
given operation.

We follow two optimization goals of equal priority. The first optimization goal is
the execution time and consequently some rotations can also be performed using more

100 Efficient Lightweight Symmetric Cryptography

Operand size MCU Operation Amount Metric Trade-offs

16-bit AVR
≫ 3

Cycles 10 12
Registers 1 0

≫ 5
Cycles 11 12

Registers 1 0

32-bit AVR
≪ 5

Cycles 21 23 25
Registers 3 1 0

≫ 4
Cycles 20 24

Registers 2 0

32-bit MSP

≪ 11
Cycles 15 18

Registers 1 0

≫ 6
Cycles 13 18

Registers 1 0

≫ 11
Cycles 16 18

Registers 1 0

Table 5.4: Trade-offs between the execution time and number of additional registers
required to perform various rotations.

clock cycles but less additional registers. Hence, the execution time is optimal in the
sense that it is not possible to perform the same rotations using less clock cycles. The
second optimization goal is to use the minimal number of registers possible for each
rotation. Therefore, the execution time increases, but the pressure on the registers
decreases. These two extreme cases show the trade-offs one can make between
execution time and register usage. In general, each additional register required for
an operation can be traded for a pair of stack operations (see Section 5.2.5), which
increases the execution time. Consequently, for brevity, we list only those trade-offs
that give a gain according to this principle in Table 5.4 and we show them in italics
in the other tables (Table 5.6 and Table 5.7). However, one can easily explore all
possible trade-offs by simply using the values of the basic rotations displayed in bold
since all other rotations can be performed using a combination of basic rotations.

For an operand of n bits, we consider left (≪) and right (≫) rotations by an
amount up to ⌈n/2⌉ bits. To be able to efficiently implement any rotation on the
three target devices, it is important to know the supported instructions that can
be used to perform rotations for each device. Finding the optimal values for the
execution time and number of registers required is an iterative process that requires
a tremendous effort. Thus, besides providing the cost of rotations, we also provide
the optimal implementations for all basic rotations of 8-, 16-, and 32-bit values in
Appendix A, Appendix B, and Appendix C, respectively.

5.2 Efficient Implementations 101

5.2.3.1 8-bit Operand on AVR

The basic rotation amounts for rotation of an 8-bit value on AVR are 1 and 4. Since
the microcontroller does not have special instructions to rotate the content of a
register by one or more bits, rotations by one bit to the left and to the right take
two and three cycles respectively.

The rotation of an 8-bit register by 1 bit to the left can be done using a logical shift
to the left by one bit (lsl) followed by an addition with carry of zero (__zero_reg__
or R1).

The rotation of an 8-bit register by 1 bit to the right can be performed using
three instructions as follows: store the least significant bit of the register to the T

flag of the status register (bst), rotate through carry the content of the register to
the right by one bit (ror), and load the bit T from the status register into the most
significant bit of the register (bld).

The rotation of an 8-bit value by four bits to the left or to the right takes only one
clock cycle on AVR thanks to the swap instruction that exchanges the two nibbles
of a byte.

5.2.3.2 16-bit Operand on AVR

The are three basic rotation amounts for rotation of a 16-bit value on AVR: 1, 4 and
8. On the AVR microcontroller, a 16-bit value is stored in two 8-bit registers.

The rotation of a 16-bit operand by 8 bits to the left or to the right can be done
in 3 clock cycles using three XORs (eor) and no additional register.

The rotation of a 16-bit value by 1 bit to the left uses the same principle employed
to rotate an 8-bit value by 1 bit to the left; additionally, it requires a rotation by
one bit to the left through carry (rol). Similarly, the rotation of a 16-bit value by 1
bit to the right makes use of the instructions to rotate an 8-bit value by 1 bit to the
right; additionally, it requires a rotation by one bit to the right through carry (ror).

The optimal rotations by four bits to the left and to the right can be done in
three steps using an auxiliary register. Firstly, the content of the two registers is
swapped. Then, the values of the two registers are XORed in the auxiliary register.
Depending on the rotation direction, the low or high nibble of the auxiliary register
is enabled. Finally, the auxiliary register is XORed to the two registers holding the
value to be rotated.

5.2.3.3 32-bit Operand on AVR

The basic rotations for a 32-bit value are rotations by 1, 5, 8, and 16 to the left and
rotations by 1, 4, 8, and 16 to the right. A 32-bit value is stored in four registers on
AVR.

The rotation of a 32-bit value by 1 bit uses the same technique as the rotation of
a 16-bit value by 1 bit, but requires two more rotations by one bit through carry.

The rotations by 4 bits can be done by extracting each nibble of the initial
32-bit value and inserting them on the correct positions in the four registers. These

102 Efficient Lightweight Symmetric Cryptography

MCU Operation Metric
Amount

1 2 3 4

AVR
≪

Cycles 2 4 4 1
Registers 0 0 0 0

≫
Cycles 3 5 3 1

Registers 0 0 0 0

MSP
≪

Cycles 2 4 6 8
Registers 0 0 0 0

≫
Cycles 2 4 6 8

Registers 0 0 0 0

ARM
≪

Cycles 2 2 2 2
Registers 0 0 0 0

≫
Cycles 2 2 2 2

Registers 0 0 0 0

Table 5.5: Execution time and number of additional registers required to perform
8-bit rotations.

operations take 20 cycles and require two additional registers to perform a 4-bit
rotation.

The rotation of a 32-bit value by 5 bits to the left can done in 21 clock cycles using
the hardware multiplier of the AVR microcontroller. The whole operation requires
three additional registers and consumes one byte of RAM, since the __zero_reg__

(R1) has to be saved on the stack.
The rotations by 8 bits can be done efficiently by moving the content of each

register to its neighbour. These operations can be done using five mov instructions
and an auxiliary register.

The rotations by 16 bits can be done by simply swapping the content of the
four registers using three movw instructions and two additional registers. The movw

instruction copies the content of two registers into another two register in a single
clock cycle.

5.2.3.4 8-bit Operand on MSP

The basic rotations for an 8-bit value on MSP are rotations by 1 bit to the left and
to the right. Each of these rotations can be done in two steps. The left rotation by
one bit consists of an arithmetic rotation to the left by one bit (rla.b) followed by
the addition of the carry bit to the previous result (adc.b). The right rotation by
one bit sets the carry bit to the least significant bit of the initial value (bit) and
then rotates the byte stored in register right through carry (rrc.b).

5.2 Efficient Implementations 103

MCU Operation Metric
Amount

1 2 3 4 5 6 7 8

AVR
≪

Cycles 3 6 9 7 10 11 7 3
Registers 0 0 0 1 1 0 0 0

≫
Cycles 4 8 10 7 11 9 6 3

Registers 0 0 1 1 1 0 0 0

MSP
≪

Cycles 2 4 6 8 7 5 3 1
Registers 0 0 0 0 0 0 0 0

≫
Cycles 2 4 6 8 7 5 3 1

Registers 0 0 0 0 0 0 0 0

ARM
≪

Cycles 2 2 2 2 2 2 2 1
Registers 0 0 0 0 0 0 0 0

≫
Cycles 2 2 2 2 2 2 2 1

Registers 0 0 0 0 0 0 0 0

Table 5.6: Execution time and number of additional registers required to perform
16-bit rotations.

5.2.3.5 16-bit Operand on MSP

There are two basic rotations amounts for rotations of a 16-bit value on MSP, namely
1 and 8. Each 16-bit value fully occupies a register.

The rotations of a 16-bit value by 1 bit use the same two steps as rotations of an
8-bit value by one bit, but, for rotations of 16-bit values, the instructions are applied
to the whole register and not only to its low byte as in the case of 8-bit values.

The rotation of an 16-bit value by 8 bits can be done in a single clock cycle by
swapping the two bytes of a register (swpb).

5.2.3.6 32-bit Operand on MSP

The basic rotations amounts for performing rotations of a 32-bit value on MSP are
1, 8, and 16. A 32-bit value is stored in two registers.

The rotations of a 32-bit value by 1 bit use the same techniques presented for
rotation of 16-bit values on the same microprocessor, but require one additional
instruction per operation: rotate left through carry (rlc) for the rotation to the left
by one bit and rotate right through carry (rrc) for the rotation to the right by one
bit.

To rotate a 32-bit value by 8 bits, one extracts the four bytes of the two input
registers and places them in the correct position of the output registers. These
sequence of operations requires instructions to swap the bytes of a register (swpb), to
move the content of a register into another register, and to XOR the content of two

104 Efficient Lightweight Symmetric Cryptography

MCU Op. Metric
Amount

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

AVR
≪

Cycles 5 10 15 20 21 17 11 5 10 15 20 25 21 15 9 3
Registers 0 0 0 0 3 1 1 1 1 1 1 1 2 2 2 2

≫
Cycles 6 12 18 20 20 15 10 5 11 17 23 23 18 13 8 3

Registers 0 0 0 2 1 1 1 1 1 1 1 2 2 2 2 2

MSP
≪

Cycles 3 6 9 12 15 12 9 6 9 12 15 15 12 9 6 3
Registers 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0

≫
Cycles 3 6 9 12 15 13 10 7 10 13 16 15 12 9 6 3

Registers 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0

ARM
≪

Cycles 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Registers 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

≫
Cycles 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Registers 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 5.7: Execution time and number of additional registers required to perform
32-bit rotations.

registers. An additional register is necessary to properly manipulate the four bytes.
The rotation of a 32-bit value by 16 bits comprises three XORs and does not

require additional registers.

5.2.3.7 ARM

Surprisingly, the GCC compiler does not generate optimal code for rotation of an
n-bit value, with n < 32, by k bits to the right. Namely this operation is done in
two cycles using an additional register, but it can be done without the additional
register. The assembly code generated by the compiler performs a logical shift right
by k bits into the additional register and updates the conditional flags (lsrs). Then,
it does a bitwise OR (orr) between the additional register and the original register
shifted to the left (lsl) by n− k bits. The rotations to the left are performed using
the same sequence of instructions by simply swapping the amounts of the two shifts.

The optimal sequence of instructions required to rotate a n-bit value, with n < 32
by k bits to the right uses the bfi instruction to replace k bits of the data register
starting at the low-bit position n, with k bits starting from bit 0. Then, it performs
a rotation to the right by k bits on the same register. The rotations to the left can be
performed using the same sequence of instructions by simply changing the amounts
of the two instructions from k to n− k.

The rotation of a 16-bit value by 8 bits to the left or to the right can be done in
a single clock cycle without any additional register using the rev16 instruction that
reverses the byte order in each halfword (16 bits) of the register.

5.2 Efficient Implementations 105

MCU Chunk
4-bit lookup 8-bit lookup

Cycles Registers Cycles Registers

AVR
0 6 2 5 2
1 7 2 – –

MSP

0 4 0 4 0
1 11 0 5 0
2 5 0 – –
3 12 0 – –

ARM
0 – 3 4 2 4 2
4 – 7 4 2 – –

Table 5.8: Execution time and number of additional registers for table lookup
operations. All bits of a register are used to store data. Data chunks are counted in
increasing order from least significant bit to most significant bit.

The ARM microcontroller has a barrel shifter able to perform rotations of 32-
bit values to the right by any amount within a single clock cycle. This can be
accomplished using the ror instruction. Moreover, a shift or rotation followed by a
bitwise operation or a modular addition/subtraction can be done in a single cycle
thanks to the flexible second operand being passed through the barrel shifter.

5.2.4 Table-Based Lookups

Most frequently, lookup tables are used for the nonlinear layer of a cipher. Sometimes,
lookup tables are also used for the linear layer. A lookup table T returns an n-bit
value T (x) for the m-bit input value x. Typically, the values of m and n are equal
to four or eight, but they can also be different as in case of Robin, Fantomas, and
Mysterion [153, 176]. The lookup table can be stored in flash memory or in RAM. If
the code for generation of the lookup table is smaller than the table itself, then the
lookup table can be computed during the initialization of the device and stored in
RAM to save flash memory. Such a trade-off is possible, for example, for the S-box
of SKINNY [42].

Table lookups are usually slower than most of the operations performed directly
on registers because they require at least one memory access. The execution time and
the number of additional registers for different table lookups are given in Table 5.8.

For the AVR microcontroller, the execution time of a load operation depends on
the memory type: a load from flash (lpm) takes 3 clock cycles, while a load from
RAM (ld) takes 2 clock cycles. The results reported consider only loads from flash.

106 Efficient Lightweight Symmetric Cryptography

5.2.4.1 8-bit Table on AVR

The naive way of doing a table lookup takes 7 cycles and 10 bytes of code. If the table
is aligned in memory (on a 256 bytes boundary), then a lookup can be performed in
4 cycles (+1 cycle for loading the table’s memory address) and takes 4 bytes of code
(+2 bytes for loading the table’s memory address).

5.2.4.2 4-bit Table on AVR

Two 4-bit table lookups are slower than a single 8-bit table lookup on AVR because
processing the two nibbles of a byte requires additional instructions to extract each
nibble from a register and to store them back. The overhead of a straightforward
implementation using two 4-bit table lookups is 13 clock cycles and 22 bytes of code
compared to a straightforward implementation using a single 8-bit table lookup. The
high nibble requires one additional instruction (1 clock cycle and 2 bytes of code)
compared to the low nibble. A possible trade-off between memory and execution
time is to increase the table size from 24 bytes to 28 bytes to be able to perform two
4-bit lookups at a time using a single 8-bit lookup.

5.2.4.3 8-bit Table on MSP

When a single 8-bit value is kept in a register, the execution time of an 8-bit table
lookup is 3 clock cycles and its code size is 4 bytes. If each register stores two bytes
of data, the overhead (associated with extracting the two bytes of a 16-bit register
and inserting them back into the register) is 8 clock cycles and 16 bytes of code
compared to processing two registers that hold a single 8-bit value each. On an MSP
microcontroller it is not possible to perform two 8-bit lookups at the same time,
because the size of the lookup table (216 bytes) exceeds the available memory (both
flash and RAM).

5.2.4.4 4-bit Table on MSP

To perform 4-bit table lookups when a 16-bit register contains four data values on
MSP, one has first to extract the correct nibble of a byte, perform the lookup, and
then store the nibble back. While the lookup alone takes only 3 cycles, the process
of extracting the nibble and storing it back adds an overhead of between 1 and 9
cycles depending on the nibble position in the register. To speed up the lookups, the
initial lookup table of 24 bytes can be replaced with a lookup table of 28 bytes to
facilitate two 4-bit lookups at the same time.

5.2.4.5 8-bit Table on ARM

Assuming that a 32-bit register is used to store four data bytes, a straightforward
implementation of an 8-bit lookup on ARM requires 5 cycles and 4 additional registers.
When several loads are done one after the other, the instructions can pipeline their
address and data phases. Consequently, the execution time is decreased to 2 + 3 ·N
cycles, where N is the number of consecutive load instructions. If a 32-bit register

5.3 Discussion 107

Instruction AVR MSP ARM

push 2 3 1 + N

pop 2 2 1 + N

Table 5.9: Execution time of stack operations. N is the number of registers in the
register list to be loaded or stored.

stores a single 8-bit value, then the execution time of an 8-bit table lookup is 2
cycles when instructions are not pipelined and 1 +N cycles when N instructions are
pipelined.

5.2.4.6 4-bit Table on ARM

The technique described above can be employed on ARM to perform 4-bit table
lookups. The size of the lookup table can be increased to 28 or 216 bytes to perform
two or four lookups at the same time.

5.2.5 Stack Operations

The stack is the program memory (RAM) used to keep track of the address to which
each active subroutine should return control when it finishes executing. In addition
to this, the stack is used to pass parameters to a subroutine or for local data storage.

When the available registers of a microcontroller are not enough to keep all data,
then stack operations are necessary to store the content of registers on the stack and
load them back. The push instruction stores the content of a register on the stack.
Similarly, the pop instruction loads a register from the stack.

The execution time of the stack operations is provided in Table 5.9. Whenever
possible, stack operations should be avoided because they are slow and increase the
memory consumption. On an ARM microcontroller the push and pop instructions
can receive a list of registers. In this case, thanks to the pipeline, the execution time
is 1 + N cycles, where N is the number of registers in the register list to be loaded or
stored. The code size of a stack instruction is 2 bytes on any of the three platforms.

5.3 Discussion

5.3.1 Choosing the Best Operations

The reader can easily see that the most efficient operations are bitwise logical
operations, followed by modular arithmetic operations. In general, rotations are
the worst operations, especially rotations of large operands by values at equal
distance from the neighbouring basic rotation amounts. At the same time, different
rotation amounts offer different trade-offs between security (differential and linear

108 Efficient Lightweight Symmetric Cryptography

probabilities) and efficiency. Hence, it is important to carefully chose the best
rotation amounts as described in [38, 106].

Although the execution time for 8-bit table lookup operations is not very high,
the size of the table adds a significant penalty on the code size or RAM consumption.
On the other hand, the 4-bit lookup tables have a lower footprint, but a higher
execution time and thus they are not very efficient.

5.3.2 Choosing the Best Word Size

An important design decision with a profound impact on the performance of a
lightweight symmetric algorithm is the so-called word size. In this context, the
word size gives the operand size and should not be confused with the word size of
a processor, which is typically equal to the number of bits that can be stored in a
register.

The most efficient implementations on a particular microcontroller are reached
when the word size is equal to the register size of that microcontroller. The worst
results are obtained when the register size is greater than the operand size. Conse-
quently, when the word size is a multiple of the register size, the efficiency of the
implementation is in between the the best and worst possible figures.

It is desirable that an implementation of a lightweight symmetric algorithm is
efficient on a wide range of microcontrollers characterized by different register sizes.
To achieve this goal, a designer should chose the cipher’s word size equal to the
largest register size since this has no influence on the platforms with the largest
register size and adds only minor penalties for devices with smaller register sizes.

5.3.3 Substitution Layer

Typically, the substitution layer is implemented using table lookups. Another option
is to use the algebraic normal form (ANF) of an S-box, which requires only bitwise
operations. The popularity of the second option significantly increased in the last
years because, compared to lookup tables, implementations based on ANF do not
require memory (flash or RAM) to store the mappings between inputs and outputs.
Moreover, they achieve similar execution times, but may require more registers.
This has led to bit-sliced implementations of S-boxes in ciphers such as PRIDE [9],
RECTANGLE [391], or RoadRunneR [35].

5.3.4 Linear Layer

Sometimes, the linear layer is the most expensive transformation used by a cipher
because it requires additional registers to permute the bits of the cipher’s state. Thus,
special attention must be payed to the selection of the linear layer, in particular for
ciphers designed to be implemented on the 16-bit MSP microcontroller, which has
only 12 general-purpose registers.

5.4 Summary 109

5.3.5 Cipher’s State

A critical property for software efficiency of a lightweight cipher is its state size, namely
whether the state fits into the available registers or not. An efficient implementation
should keep the full state of a cipher in registers and, in addition to this, it should
have enough registers to handle round keys and other operations that may require
temporary registers. In this way, the overhead generated by register spills can be
avoided. This goal is difficult to achieve on MSP, which has a register capacity of
only 192 bits as shown in Table 5.1.

5.3.6 Structure

Block ciphers represent a major fraction of the lightweight symmetric primitives
designed so far. They can be built using different structures, the most widely used
being: Substitution-Permutation network (SPN), Feistel network (FN), and Lai-
Massey. When analyzing these three structures, one can see that Feistel networks are
software friendly. Typically, each operation affects only one of the two branches of a
Feistel network and thus the number of temporary registers is minimal compared
to a Lai-Massey structure, which updates both branches at the same time, or
an SPN structure, which uses heavy linear layers. In addition, Feistel ciphers
usually have simpler round functions and consequently need more rounds than SPN
ciphers. Nevertheless, there are exceptions from these observations. For example, bit-
sliced designs favour efficient software implementations regardless of their structure
(RECTANGLE [391] is an SPN, RoadRunneR [35] is a FN).

Usually, ARX designs (which use only modular addition/subtraction, rotations,
and bitwise XOR) have very efficient software implementations (e.g. Chaskey [244]).
A variation of this design strategy that replaces modular addition/subtraction
with bitwise AND leads to very efficient software implementations as well (e.g.
Simon [36]).

5.4 Summary

In this chapter, we have conducted a comprehensive analysis of the implementation
cost associated with basic building blocks of a lightweight symmetric algorithm. At
the same time, we provided optimal cost implementations for rotations of various
operand sizes (8, 16, and 32 bits) on three microcontrollers (8-bit AVR, 16-bit MSP,
and 32-bit ARM) widely used for IoT applications.

This chapter provides detailed insights into efficiency and security of software
implementations of lightweight symmetric cryptography. The comprehensive analysis
can aid the development of better lightweight symmetric cryptographic algorithms
for software implementations.

Part II

Side-Channel Attacks

Chapter 6

Resilience to Correlation Power

Analysis Attacks

Contents

6.1 Introduction . 113

6.1.1 Research Contributions 115

6.2 Preliminaries . 115

6.2.1 Theoretical Metrics for the SCA Resistance of S-Boxes . . 116

6.3 Evaluation Framework . 118

6.3.1 Measurement Setup . 118

6.3.2 Metrics . 119

6.4 Quantifying the Leakage 120

6.4.1 Understanding the Device’s Leakage 121

6.4.2 Comparison of Different Selection Functions 122

6.5 Analyzed Ciphers . 125

6.6 Experimental Results . 127

6.7 Summary . 129

6.1 Introduction

For a long time, it was widely believed in the cryptographic community that side-
channel attacks are primarily an implementation problem rather than a design
problem, i.e. there is little that can be done from a designer’s perspective to eliminate
or reduce the leakage of sensitive information. However, some recent research results
have started to challenge this view. So does the work described in this chapter. More
concretely, it shows that the operations of a symmetric algorithm, which are selected
in the design phase, influence differently its resistance to side-channel attacks.

Previous research at the intersection between lightweight cryptography and SCA
focused (almost) exclusively on the AES, i.e. there exist only few papers that deal

114 Resilience to Correlation Power Analysis Attacks

with attacks or countermeasures for other ciphers. In particular, the study of the
SCA-resistance of software implementations of lightweight ciphers did not keep pace
with the high number of new proposals. In [30], the resilience of the AES and three
lightweight block ciphers that share some characteristics (namely KLEIN, LED,
and PRESENT) is investigated against profiled single-trace attacks. Unprotected
hardware implementations of Simon and LED were analyzed with respect to DPA
in [318]. An evaluation of both an unmasked and a masked implementation of
Simon for FPGAs was reported in [48]. In [315], the vulnerability of PRINCE and
RECTANGLE against DPA is studied. A second line of research focused on the
design of new ligthweight primitives that can be efficiently protected against DPA
via masking; representative examples include PICARO [276], Zorro [140], and the
LS-designs Robin and Fantomas [153].

The above-mentioned studies on DPA attacks against (lightweight) ciphers other
than the AES were mainly “isolated” efforts in the sense that they were carried out
on different execution platforms with different measurement setups and different
analysis frameworks. A comparative (and consistent) study of the DPA-vulnerability
of lightweight block ciphers based on power traces acquired from the same target
device is, to our knowledge, still missing. However, such a study would allow one
to answer the question of whether different ciphers are equally difficult to attack or
not (and if not, why not). Furthermore, we could not find a detailed analysis of the
power leakage of basic operations (e.g. arithmetic and logical computations, table
lookups) executed in the round function of common lightweight ciphers. Thus, in
this chapter, we first try to answer the following questions:

• How do the theoretical metrics used to assess leakage relate to real-world attack
results?

• Which operation leaks more?

Then, we apply the answers of these questions to illustrate how eight lightweight
ciphers (namely AES, Fantomas, LBlock [386], Piccolo [321], PRINCE [62], RC5 [296],
as well as Simon and Speck [37]) behave with respect to CPA. These eight ciphers
were selected from the portfolio of lightweight symmetric algorithms evaluated
in [105] using the FELICS framework [93]. The two main selection criteria were high
performance and to have a variety of different design strategies.

In this chapter we focus on CPA attacks against unprotected implementations.
We say that an implementation leaks more than another implementation when it is
easier to attack the first implementation using CPA than the second one, i.e. the
correct key can be recovered with less effort.

All results and findings we describe in this chapter are based on CPA attacks
performed with power consumption traces that were captured on an evaluation board
equipped with an 8-bit AVR microcontroller. Our choice for this specific platform is
motivated by the widespread use of the 8-bit AVR architecture in resource-limited
environments and its particular relevance in the context of the IoT (e.g. wireless sensor
nodes). A better understanding of the actual leakage of different operations on 8-bit
AVR microcontrollers could influence the design of new lightweight ciphers for the

6.2 Preliminaries 115

IoT and the implementation of more effective and less costly SCA countermeasures.
For example, it is a known fact that the AES leaks significantly due to its highly
nonlinear S-box [73], but modern lightweight ciphers generally use smaller S-boxes
with lower nonlinearity compared to the AES, and thus one might expect that they
leak less. However, an actual confirmation of this assumption with measured traces
is still lacking.

We remark that the evaluation of candidates for the NIST SHA-3 standard con-
sidered besides security and performance on various hardware and software platforms
also SCA resistance as a selection criterion (see e.g. [44, 395] for some concrete
results). Currently, a number of standardization bodies, including NIST, are either
considering or have already started the process to standardize lightweight symmetric
primitives for the IoT. In this context, it makes sense to compare different aspects
of potential candidates, including the SCA resistance of (unprotected) software
implementations, before deploying them on millions or even billions of devices. This
chapter contributes to a better understanding of how to design lightweight block
ciphers that have a better intrinsic resistance against side-channel attacks.

6.1.1 Research Contributions

Firstly, we quantify the leakage generated by the execution of different instructions
on an AVR processor, aiming to identify the instructions that leak most. Then, we
compare the power consumption leakage of basic operations widely used by lightweight
ciphers. For each operation, we analyze the relation between our experimental results,
the nonlinearity of the operation, and the size (in bits) of the attacked intermediate
value.

Secondly, we provide a fair comparison of the resilience of eight lightweight block
ciphers against CPA attacks. Knowing which instructions and operations leak more,
and knowing all implementation details of the eight ciphers helps to identify the
weakest point of each cipher, which can be attacked with maximal efficiency. Our
experimental results show that, in some cases, the actual leakage is lower than
expected due to certain implementation-related aspects.

The practical approach we follow has the benefit that it gives more realistic
results compared with simulated power traces, where the noise is modeled in a
deterministic way, which favors the attacker. Thus, our work sheds new light on the
resilience of different operations against CPA attacks, and we illustrate this for a set
of eight lightweight block ciphers. To the best of our knowledge, there has been no
similar effort published in the literature.

6.2 Preliminaries

We use the following operators for the corresponding (bitwise) logical operations: “∧”
for AND, “∨” for OR, “⊕” for XOR. The operators “⊞” and “⊟” denote a modular
addition and a modular subtraction, respectively. The two functions MSB(x) and
LSB(x) are used to extract the most and the least significant byte from a stream of
bits x, respectively. We represent the S-box layer of a block cipher α by Sα, which

116 Resilience to Correlation Power Analysis Attacks

may involve the application of one or more S-boxes in parallel, depending on the
input size and the specifications of the cipher. The symbol L−1

i,Fantomas
stands for the

result of the inverse linear layer of Fantomas computed with L-box i, where i ∈ {0, 1}.
Finally, HW(x) denotes the Hamming weight of x, whereas HD(x, y) = HW(x⊕ y)
is the Hamming distance between x and y.

Definition 6.2.1 (Iterated Block Cipher). An iterated block cipher, sometimes called
a product cipher, is a block cipher obtained by iterating r times a round function
R : {0, 1}n → {0, 1}n, each time with its own key Ki ∈ K, where K is called round
key space. The cipher block size is n bits, the number of rounds is equal to r, X(0) is
the plaintext, and X(r) is the ciphertext. It works as follows:

X(i) = RKi
(X(i−1)) for 1 ≤ i ≤ r

Definition 6.2.2 (Selection Function). In the context of side-channel attacks, a
selection function gives the intermediate result, also referred to as sensitive value
φk = ϕ(x, k), which is used by the attacker to recover the secret key. It depends on
a known part x of the input X(i−1) of the round function RKi

and on an unknown
part k of the round key Ki.

The attacker computes the intermediate values φk for a fixed (either known or
chosen) input x and for all possible subkeys k. The bit-size |k| of the subkey k
determines the memory complexity m of the side-channel attack. Then, she uses the
sensitive values φ1, φ2, . . . , φ2|k| and the side-channel leakage to guess the subkey k∗

used during the actual computations on the target device. The higher the number
of inputs x for which the attacker manages to measure the leakage, the higher the
chances to recover the subkey k∗. Usually, the selection functions are chosen to
be easy to compute, typically at the first round of the encryption or decryption
operation.

Definition 6.2.3 (Correlation Power Analysis (CPA)). Given a set of power traces
and the corresponding sets of intermediate values φ1, φ2, ...φ2|k|, Correlation Power
Analysis (CPA) aims at recovering the secret subkey k∗ using a correlation factor
between the measured power samples and the power model of the computed sensitive
values.

The concept of CPA was studied as an improvement of DPA and formalized
in [68]. A power model is used to describe the hypothetical power consumption of the
target device as a function of the intermediate value φk considering the device’s power
consumption characteristics. The Hamming weight (HW) model is more common for
software implementations, whereas the Hamming distance (HD) model is generally
used for hardware devices.

6.2.1 Theoretical Metrics for the SCA Resistance of S-Boxes

In the definitions introduced in this subsection, we denote by “+” the addition
of integers in Z and by “⊕” the addition mod 2. We will also use “+” for the

6.2 Preliminaries 117

addition of two vectors in F
n
2 since there is no ambiguity. For a pair of vectors

a = (a1, a2, . . . , am) and b = (b1, b2, . . . , bm) from F
m
2 , the scalar product a · b is

defined as a · b = ⊕m
i=1ai · bi.

One way to achieve nonlinearity in symmetric cryptographic primitives is to use
S-boxes. Formally, an S-box is an (n,m) function F : F

n
2 7→ F

m
2 that maps n input

bits to m output bits. If m = 1, then F is nothing else than a Boolean function.
For any given (n,m) function F , we denote by (F1, F2, . . . , Fm) the coordinate
functions of F , such that F (x) = (F1(x), F2(x), . . . , Fm(x)), where Fi : F

n
2 7→ F2

for 1 ≤ i ≤ m. The derivative of F with respect to a vector a in F
n
2 is the function

DaF : F
n
2 7→ F

m
2 such that DaF (x) = F (x) + F (x + a). The Walsh transform

of F is the function WF (u, v) =
∑

x∈Fn
2
(−1)v·F (x)+u·x, while the cross-correlation

transform of Boolean functions Fi and Fj with respect to a vector a ∈ F
n
2 is defined

as CFi,Fj
(a) =

∑

x∈Fn
2
(−1)Fi(x)+Fj(x+a).

Definition 6.2.4 (Nonlinearity). The nonlinearity of an (n,m) function F is defined
as:

NL(F) = 2n−1 −
1

2
max
u∈Fn

2
v∈Fm∗

2

|WF (u, v)| (6.1)

Nonlinearity characterizes the resistance of F against linear cryptanalysis [230].
The higher the nonlinearity of a function, the more resistant the function is to linear
cryptanalysis. It is widely accepted that the higher the nonlinearity of a function F ,
the more information it leaks through side channels.

Definition 6.2.5 (Transparency Order). The Transparency Order of an (n,m)
function F , where n and m are two positive integers, is:

TO(F) = max
β∈Fm

2

(

∣

∣

∣
m− 2HW(β)

∣

∣

∣
−

1

22n − 2n

∑

a∈Fn∗
2

∣

∣

∣

∑

v∈Fm
2

H(v)=1

(−1)v·βWDaF (0, v)
∣

∣

∣

)

The Transparency Order was introduced in [279] to “quantify” the resistance of
an S-box against DPA attacks using the Hamming weight power model. In general,
the smaller the transparency order of F , the higher is its resistance to DPA attacks.
TO(F) satisfies the following relation: 0 ≤ TO(F) ≤ m.

Definition 6.2.6 (Improved Transparency Order). The Improved Transparency
Order of a balanced (n,m) function F is defined as:

ITO(F) = max
β∈Fm

2

(

m−
1

22n − 2n

∑

a∈Fn∗
2

m
∑

j=1

∣

∣

∣

m
∑

i=1

(−1)βi+βjCFi,Fj
(a)
∣

∣

∣

)

The Improved Transparency Order addresses the limitations identified in the
initial definition of TO [77].

Definition 6.2.7 (DPA Signal-to-Noise Ratio). The DPA Signal-to-Noise Ratio of
function F is defined as:

SNR(F) = m22n

(

∑

a∈Fn
2

(m−1
∑

i=0

(

∑

x∈Fn
2

(−1)Fi(x)+x·a
)

)4
)− 1

2

118 Resilience to Correlation Power Analysis Attacks

The DPA Signal-to-Noise Ratio was proposed in [154] as a way to model the
information leakage of CMOS circuits using the tools of traditional cryptanalysis. The
SNR increases when the resistance of an S-box to linear and differential cryptanalysis
increases. A novel definition of the SNR based on the maximum likelihood estimator
was introduced in [155].

For an extensive comparison of the metrics proposed to assess the intrinsic
resistance to side-channel analysis attacks of a given S-box at the design stage, we
refer the reader to [341].

6.3 Evaluation Framework

6.3.1 Measurement Setup

All experiments reported in this chapter were performed using two different measure-
ment setups. The main difference between the two setups stems from the budget
spent on equipment. The first setup costs more than $5, 000 and is referred to as a
high-cost setup, while the second setup is worth less than $300 and thus it is deemed
to be a low-cost setup.

The first setup consists of on an evaluation board equipped with an 8-bit AT-
mega2561 processor clocked at 16 MHz as shown in Figure 6.1a. A regulated power
supply provides the 5 V supply voltage required for the operation of the board. The
evaluation board and the computer used to control the measurements are connected
through optical fiber. We placed the board in a Faraday cage to reduce the environ-
mental noise. The measurements of the power traces were performed with a LeCroy
waveRunner 104MXi digital sampling oscilloscope using a differential probe.

The second setup uses an Arduino Uno board based on the ATmega328P micro-
controller and an Analog Discovey oscilloscope from Digilent as shown in Figure 6.1b.
Unlike the first setup, the second setup does not use noise reduction techniques.

(a) First setup. (b) Second setup.

Figure 6.1: Measurement setups.

We mounted the CPA attacks against the ANSI C implementations of the selected
ciphers available in the FELICS framework [93]. The only modification of the original
C source codes we made was the insertion of a trigger signal to indicate the beginning
and the end of the side-channel relevant portion of the power traces. To have a

6.3 Evaluation Framework 119

common ground for comparison, we assumed that the attacker needs to recover the
32 bits of the round key K1 = 0x01234567 for all eight block ciphers. Note that, in
all of our experiments, we acquired the same number of traces, namely q for the
encryption of q known plaintexts.

6.3.2 Metrics

To ensure a fair and uniform side-channel evaluation of the selected ciphers, we used
the evaluation methodology for key-recovery attacks proposed in [336]. In that paper,
two different types of evaluation metrics are defined: an information-theoretic metric
quantifying the amount of information that leaks from a given implementation, and
an actual security metric, which quantifies how well the leaked information can be
used by the attacker.

Since we conducted a practical evaluation based on leakages acquired from a target
board using the described setup instead of attacks based on simulated power traces,
the actual security metrics (i.e. success rate and guessing entropy) are sound for our
study. We do not use the information-theoretic metric from [336] (i.e. conditional
entropy) because it involves profiling the target device in order to approximate the
probability distribution of the leakage, which reduces the applicability of the attack
to a certain class of devices. Moreover, both the template creation and the approxi-
mation of the probability distribution for all leakage samples are computationally
intensive.

We recall that side-channel attacks are generally performed using a divide-and-
conquer approach. The adversary attacks a subkey class κ with |κ| ≪ |K| using
the selection function ϕ(x, k) and q measurements. As result she gets a guess
vector g = [g1, g2, . . . , g2|k|] for the subkey k with the possible candidates sorted in
descending order, the most-likely subkey candidate being g1, and the least-likely
subkey candidate being g2|k| . The following two metrics quantify the amount of
effort required to recover the correct subkey k∗ from the guess vector. Consequently,
they serve as an indicator of how efficient an attack is in the case of q measurement
queries.

Definition 6.3.1 (Success Rate). The success rate of order o, o ≤ 2|k|, of a side-
channel key recovery attack is defined as:

SRo(k
∗, g) =

{

1, if k∗ ∈ [g1, g2, . . . , go]

0, otherwise

Definition 6.3.2 (Guessing Entropy). The guessing entropy of a side-channel key
recovery attack is:

GE(k∗, g) = log2 i, such that k∗ = gi for gi ∈ [g1, g2, . . . , g2|k|]

Given an implementation C to be evaluated using N experiments with the
maximum number of measurement queries q, the memory complexity m, and the
time complexity t, Algorithm 1 shows in detail how the mean success rate of order

120 Resilience to Correlation Power Analysis Attacks

o, i.e. SRi
o, and the mean guessing entropy, i.e. GEi, can be computed for i power

consumption traces. The results are accompanied by the respective standard errors
SE

SR
i
o

and SE
GE

i . Unless otherwise specified, the results in this chapter are based on

N = 100 experiments, each with q = 2000 queries. Both the time complexity t and
memory complexity m were determined by guesses of at most 8-bit subkeys of the
round key K1, where k∗ is the actual key used by the implementation C.

Algorithm 1 CPA evaluation algorithm

Input: C, k∗, q, m, t, N
Output: SRi

o, GE
i, SE

SR
i
o

, SE
GE

i

1: for j in [1, N] do
2: AcquirePowerTraces(C, k∗, q)
3: for i in [5, q] do
4: g = CPA(C, i,m, t)
5: compute and store SRj,i

o (k∗, g),GEj,i(k∗, g)
6: end for
7: end for
8: for i in [5, q] do

9: compute SRi
o =

1
N

∑N
j=1 SR

j,i
o (k∗, g),GEi = 1

N

∑N
j=1 GE

j,i(k∗, g)
10: compute SE

SR
i
o

, SE
GE

i

11: end for

6.4 Quantifying the Leakage

Using the first measurement environment described before, we quantify the leakage of
different instructions to find out which instruction gives the “best” target in the power
traces when performing a CPA attack. For this purpose, we define the correlation
coefficient difference δ = ck∗− ck⋄ as the difference between the correlation coefficient
of the correct key k∗, i.e. ck∗ , and the correlation coefficient of the most likely key
guess k⋄, i.e. ck⋄ , with k⋄ 6= k∗.

In this work, we use the correlation coefficient difference to quantify the leakage
of different selection functions in the context of CPA attacks. We selected this metric
because it is simple and describes well the result of a CPA attack. Moreover, it can be
applied to both measured and simulated traces. For a better understanding of how the
metric works, we give a graphical representation of the correlation coefficient difference
spectrum in Figure 6.2. Our metric works regardless the sign of the correlation
coefficient of the correct key k∗, i.e. ck∗ , and the correlation coefficient of the most
likely key guess k⋄, i.e. ck⋄ . However, the correlation coefficient difference should be
used with care in other contexts such as when comparing distinguishers [293].

The mean correlation coefficient difference δ̄ is the arithmetic mean of all values
of the correlation coefficient difference δ such that each value of δ corresponds to a
different correct key (k∗) and all possible values of HW(k∗) are considered once.

For the measurements we used a simple assembly code fragment that contains

6.4 Quantifying the Leakage 121

Leaks
less

Leaks
more

δ = ck∗ − ck⋄

0

several guesses

ck∗

ck⋄

δ

δ < 0

1 guess

ck∗

ck⋄ δ

δ > 0

Figure 6.2: Correlation coefficient difference spectrum.

the targeted assembly instruction guarded by several nop instructions to reduce the
noise from other operations such as the communication between the board and the
computer or the peaks of the trigger signal. The measurements were done with
values of the correct key k∗ such that HW(k∗) runs through all possible values once.
For a fixed value of the input plaintext x and key k∗, we averaged eight power
measurements of the analyzed instruction to get a single power trace. The plaintext
took all possible values from 0x00 up to 0xFF; thus the number of traces q is 256.
We performed N = 10 experiments for each value of k∗.

6.4.1 Understanding the Device’s Leakage

Understanding the device’s leakage requires to understand how different assembly
instructions executed by the processor can impact the power consumption of the
device. For this purpose, we evaluated two instructions that operate on registers
(namely and and add) as well as three instructions that require access to memory
(namely lpm, ld, and st). The and instruction performs a bitwise AND of two 8-bit
words, while the add instruction executes a modular addition of two 8-bit words.
Loading an 8-bit word from the flash memory of the device into a register can be
achieved through the lpm instruction, whereas loading an 8-bit quantity from RAM
into a register requires a ld instruction. Finally, the st instruction writes the content
of an 8-bit register to memory. We used the AES S-box with the index value given
by the plaintext XORed with the key to perform the memory accesses.

Our results given in Table 6.1 show that the memory-access instructions leak
a lot more information about the secret key than the register instructions. The
writing of a register to memory leaks most, followed by the loading of a word from
memory. At the other end of the spectrum is the and instruction, which is leaking
approximately 20 times less than the add instruction (see Table 6.1 and Figure 6.3).
We also observed that increasing the number of power traces does not significantly
change the values of δ.

122 Resilience to Correlation Power Analysis Attacks

Instr.
Correct key

δ̄ SEδ̄

0x00 0x01 0x03 0x07 0x0F 0x1F 0x3F 0x7F 0xFF

and -0.798 -0.643 -0.577 -0.518 -0.465 -0.392 -0.329 -0.178 -0.016 -0.435 0.183
add 0.190 -0.218 -0.160 -0.079 -0.053 0.001 0.049 0.041 0.001 -0.025 0.093

lpm 0.376 0.312 0.271 0.219 0.174 0.169 0.164 0.156 0.143 0.220 0.062
ld 0.244 0.200 0.178 0.225 0.215 0.226 0.215 0.195 0.222 0.213 0.015
st 0.596 0.581 0.578 0.577 0.566 0.594 0.603 0.585 0.592 0.586 0.008

Table 6.1: Correlation coefficient difference δ = ck∗ − ck⋄ between the correlation of
the correct key (i.e. ck∗) and the correlation of the most likely key (i.e. ck⋄) where
k⋄ 6= k∗ for different Hamming weights of the correct key k∗ (δ̄ and SEδ̄ are the mean
and the standard error for a 95% confidence interval, respectively).

Leaks

less

Leaks

more

0.5860.220-0.435 -0.025 0

several

guesses
1 guess

and add lpm st

Figure 6.3: Correlation coefficient difference spectrum for four assembly instructions.

Although these experiments may remind the reader about template attacks
(where the attacker creates in the profiling phase leakage templates for various
instructions), we stress that we did not perform actual template attacks, but we
used a technique inspired by classical template attacks to quantify the leakage of
different assembly instructions. Our results indicate that an attacker should target
the store of a sensitive value to increase the success rate of the attack.

6.4.2 Comparison of Different Selection Functions

We now extend the previous experiments to different selection functions, where-
by we target the writing of the selection function’s result to memory using the st

instruction, which, as we saw, has the highest leakage. Table 6.2 summarizes the
nonlinearity NL and the mean correlation coefficient difference δ̄ for a total of 16
different selection functions, which are divided into four groups. Detailed values for
different correct keys can be found in Table 6.3.

The first group of selection functions comprises the three logical operations AND,
OR, and XOR, which all have a negative value for the mean correlation coefficient
difference δ̄. This means that using one of these logical operations as a selection
function for a CPA attack is not a very good option. As our results show, only
the AND and OR, but not XOR, are sometimes able to recover the correct key k∗,
whereby AND is slightly more efficient than OR.

One can notice the contrast between the huge nonlinearity of the AND and OR
selection functions on the one side, and all other selection functions listed in Table 6.2

6.4 Quantifying the Leakage 123

on the other side. It is also interesting to note that these high values of nonlinearity
are accompanied by (relatively) poor values for the correlation coefficient difference.
In the case of the bitwise logical operations, it seems the high nonlinearity values do
not provide the useful leakage one normally would expect. This contrasts with the
conventional wisdom saying that the higher the nonlinearity of a selection function,
the more information it leaks in SCA.

Selection function n m NL δ̄ SEδ̄

ϕ1(x, k) = x ∧ k 16 8 16384 -0.005 0.074
ϕ2(x, k) = x ∨ k 16 8 16384 -0.018 0.060
ϕ3(x, k) = x⊕ k 16 8 0 -0.153 0.168

ϕ4(x, k) = x⊞ k 16 8 0 0.127 0.011
ϕ5(x, k, c) = x⊞ k ⊞ c 17 8 0 0.121 0.010

ϕ6(x⊕ k) = SAES(x⊕ k) 8 8 112 0.586 0.008
ϕ7(x⊕ k) = SLBlock(x⊕ k) 4 4 4 0.342 0.008
ϕ8(x⊕ k) = SLBlock(x⊕ k) 8 8 64 0.235 0.006
ϕ9(x⊕ k) = SPiccolo(x⊕ k) 4 4 4 0.339 0.019
ϕ10(x⊕ k) = SPiccolo(x⊕ k) 8 8 64 0.259 0.006
ϕ11(x⊕ k) = SPRINCE(x⊕ k) 4 4 4 0.269 0.010
ϕ12(x⊕ k) = SPRINCE(x⊕ k) 8 8 64 0.138 0.004

ϕ13(x⊕ k) = LSB(L−1
1,Fantomas

(x⊕ k)) 8 8 0 0.087 0.015
ϕ14(x⊕ k) = MSB(L−1

1,Fantomas
(x⊕ k)) 8 8 0 0.041 0.014

ϕ15(x⊕ k) = LSB(L−1
2,Fantomas

(x⊕ k)) 8 8 0 0.136 0.007
ϕ16(x⊕ k) = MSB(L−1

2,Fantomas
(x⊕ k)) 8 8 0 0.083 0.018

Table 6.2: Leakages of different selection functions (n and m are the input and
output size of the selection function in bits, NL is the nonlinearity of the selection
function, δ̄ is the mean correlation coefficient difference, and SEδ̄ is the standard
error for a 95% confidence interval).

The modular addition is similar to the XOR operation; the main difference is the
carry propagation in the case of modular addition. Although the nonlinearity of the
two modular addition selection functions in Table 6.2 is zero, there are components
of these functions that reach high nonlinearity because of the carry propagation. For
clarity, it should be mentioned that all the components of the XOR selection function
have a nonlinearity equal to zero, and that the nonlinearity of an (n,m) function
is determined by the component having the lowest nonlinearity. By nonlinearity
of a component of an (n,m) function F , we mean the nonlinearity of F computed
for a fixed vector v ∈ F

m∗
2 as shown in Equation (6.1); see Table 6.4 for details.

This exhibits another imperfection of the nonlinearity metric when used to compare
various selection functions regarding side-channel leakage. We note that considering
the carry bit c from a previous operation when using selection function ϕ5 (adc
instruction) does not improve the correlation coefficient difference compared with ϕ4

124 Resilience to Correlation Power Analysis Attacks

Selection Correct key

function 0x00 0x01 0x03 0x07 0x0F 0x1F 0x3F 0x7F 0xFF

ϕ1 -0.225 0.098 0.086 0.057 -0.031 -0.052 -0.001 0.011 0.007
ϕ2 0.006 -0.005 -0.002 -0.073 -0.002 0.026 0.015 0.072 -0.202
ϕ3 -0.145 -0.160 -0.173 -0.190 -0.167 -0.152 -0.142 -0.125 -0.124

ϕ4 0.129 0.134 0.134 0.127 0.150 0.125 0.117 0.096 0.131
ϕ5 0.121 0.120 0.147 0.125 0.113 0.109 0.111 0.141 0.110

ϕ6 0.597 0.582 0.578 0.577 0.566 0.595 0.603 0.586 0.593
ϕ7 0.341 0.343 0.338 0.354 0.337 – – – –
ϕ8 0.234 0.223 0.228 0.249 0.230 0.245 0.244 0.233 0.234
ϕ9 0.319 0.331 0.361 0.350 0.338 – – – –
ϕ10 0.252 0.245 0.264 0.256 0.263 0.268 0.264 0.255 0.268
ϕ11 0.265 0.257 0.273 0.273 0.278 – – – –
ϕ12 0.139 0.135 0.146 0.143 0.136 0.142 0.129 0.145 0.131

ϕ13 0.094 0.089 0.079 0.061 0.061 0.080 0.105 0.099 0.120
ϕ14 0.036 0.027 0.026 0.028 0.018 0.047 0.060 0.062 0.069
ϕ15 0.144 0.121 0.137 0.127 0.129 0.145 0.134 0.151 0.143
ϕ16 0.078 0.073 0.072 0.037 0.074 0.093 0.120 0.100 0.100

Table 6.3: Detailed leakages for different selection functions ϕi as defined in Table 6.2.

(add instruction). The modular addition selection function successfully recovered the
secret key in all our test cases and should thus be preferred over logical operations.

A further group of selection functions is composed of the substitution layers of
different lightweight block ciphers. These selection functions clearly leak the most
with respect to CPA. In fact, the selection function using the S-box of the AES has
the highest leakage among all studied selection functions. For ciphers using 4-bit
S-boxes, we considered two different selection functions: one with an 8-bit input and
one with a 4-bit input. The 8-bit selection functions based on the substitution layer
of LBlock, Piccolo and PRINCE leak two times less than the selection function using
the AES S-box. Surprisingly, although our target device has an 8-bit architecture,
the 4-bit selection functions ϕ7, ϕ9, ϕ11 leak more than the 8-bit selection functions
of the same substitution layers.

The selection functions based on the L-boxes of Fantomas are analyzed in a
fourth group since they are linear operations, which are generally expected to leak
less than nonlinear operations. To our surprise, this group (which consists of the last
four selection functions listed in Table 6.2) leaks more than the logical operations
and is on a similar level with the modular addition. Thus, they can be considered as
selection functions when performing CPA attacks.

We remark that in [212], the basic algebraic group operations XOR, addition
modulo 2n, and modular multiplication are studied in the context of multi-bit CPA
attacks using simulated power traces. Then, selection functions based on the addition

6.5 Analyzed Ciphers 125

NL Number Proportion (%)

0 1 0.39
16384 26 10.20
24576 100 39.22
28672 112 43.92
30720 16 6.27

NL Number Proportion (%)

0 1 0.39
32768 26 10.20
49152 100 39.22
57344 112 43.92
61440 16 6.27

(a) ϕ4 : F
16
2 7→ F

8
2, ϕ4(x, k) = x⊞ k (b) ϕ5 : F17

2 7→ F
8
2, ϕ5(x, k, c) = x⊞k⊞ c

Table 6.4: Nonlinearity (NL) of the components of the modular addition (selection
functions ϕ4 and ϕ5 from Table 6.2). By nonlinearity of a component of an (n,m)
function F , we mean the nonlinearity of F computed for a fixed vector v ∈ F

m∗
2 as in

Equation (6.1). “Number” denotes how many components have the given nonlinearity
NL, “Proportion (%)” is the proportion of the given nonlinearity NL with respect to
the nonlinearity of all components of F .

modulo 216 and multiplication modulo 216 + 1 are applied to an implementation of
IDEA running on an 8-bit AVR processor. In the case of the modular addition, the
characteristics of the correlation coefficients for practical attacks do not correspond
to the simulated ones due to signal superposing.

Through these experiments, we revealed some interesting aspects about the
leakage of the studied selection functions with respect to CPA. In contradiction to
intuitions based on nonlinearity, we made the following observations:

• The bitwise logical AND and OR operations leak much less than expected and
do not always reveal the secret key.

• For block ciphers that use 4-bit S-boxes, a 4-bit selection function is more
efficient than an 8-bit selection function.

• The linear lookup tables (i.e. L-boxes) used by Fantomas leak more than
expected and can be considered as selection functions for CPA attacks.

The lessons we learned from these experiments helped us a lot to select the
appropriate leakage functions to attack the eight lightweight block ciphers we briefly
describe in the following section.

6.5 Analyzed Ciphers

We chose the eight lightweight ciphers included in our evaluation according to the
following criteria. Firstly, we selected the ciphers from those that achieved good
software performance in the Triathlon competition [105]. Besides selecting the ciphers
for our CPA study from the ones evaluated in [105], we also used the provided C
source codes. This approach has the advantage that all ciphers are implemented

126 Resilience to Correlation Power Analysis Attacks

according to a common set of guidelines and by the same team of developers, and
therefore all implementations had undergone a similar level of optimization. Secondly,
we chose our ciphers from the two major structural classes, namely Feistel Networks
(FN) and Substitution-Permutation Networks (SPN) with the goal of having many
different design approaches with unique features or properties. For example, PRINCE
introduced the α-reflection property, which means that a message encrypted under a
certain key can only be decrypted with a related key. RC5 introduced data-dependent
rotations, while Fantomas is the first instance of the so-called LS-designs.

The main characteristics of the studied ciphers are given in Table 6.5. A short
description of each cipher can be found in Section 3.3. Half of the eight ciphers
use substitution boxes; Table 6.6 summarizes the most important properties of each
S-box. In the following we describe for each cipher the selection function we used to
attack it.

Cipher
Block size Key size

Rounds Structure
Target Attacked

(bits) (bits) platform operation

AES 128 128 10 SPN SW, HW S-box lookup
Fantomas 128 128 12 SPN SW L-box lookup
LBlock 64 80 32 Feistel HW, SW S-box lookup
Piccolo 64 80 25 Feistel HW S-box lookup

PRINCE 64 128 12 SPN HW S-box lookup
RC5 64 128 20 Feistel SW modular addition

Simon 64 96 42 Feistel HW, SW bitwise AND
Speck 64 96 26 Feistel SW, HW modular subtraction

Table 6.5: Main characteristics of the analyzed lightweight ciphers.

AES. The 8-bit selection function we used in our experiments targets the result of
the S-box lookup in the first round of encryption.

Fantomas. Because there are four possible 8-bit inputs for the same MSB or LSB
of the output of the 16-bit L-boxes used for the linear layer, we had to attack both
the MSB and LSB to recover the key. The selection function targets the inverse
linear layer at the first round of decryption.

LBlock. The 4-bit selection function is given by the result of the substitution layer
at the first round of encryption.

Piccolo. The 4-bit selection function targets the result of the first substitution
layer of the first round function of encryption.

PRINCE. The 4-bit selection function we used targets the substitution layer
applied to the initial state XORed with the whitening key k0 and round key k1 at
the first round of PRINCEcore. Thus, the attacker recovers the key k∗ = k0 ⊕ k1.

6.6 Experimental Results 127

Cipher S-box NL TO ITO SNR

AES S 112 7.860 6.916 9.600

LBlock

s0 4 3.667 2.567 2.946
s1 4 3.667 2.567 2.807
s2 4 3.667 2.567 2.807
s3 4 3.667 2.567 2.946
s4 4 3.667 2.567 2.946
s5 4 3.667 2.567 2.807
s6 4 3.667 2.567 2.946
s7 4 3.667 2.567 2.946

Piccolo S 4 3.667 2.567 3.108

PRINCE S 4 3.400 2.333 2.129

Table 6.6: Properties of the S-boxes of four analyzed ciphers. The values of TO, ITO,
and SNR have a similar behavior as the value of NL for different S-boxes, but they
have a different granularity. Thus, the study of NL with respect to CPA holds also
for TO, ITO, and SNR, which are variations of NL.

RC5. The selection function for RC5 targets the modular addition of the round key
before the first encryption round. To avoid correlations with the reading the round
key from memory instead of modular additions, we wrote the selection function in
assembly language to measure just the leakage generated by the targeted operation.

Simon. To increase leakage, we attacked the composition of the XOR and AND
operations at the end of the first round of decryption because at that time the
intermediate value is written to memory.

Speck. The used selection function gives the result of the modular subtraction
of the two Feistel branches in the first decryption round. The attacker can take
advantage of the memory-write operation of the result of the selection function
rotated by 8 bits to the left.

6.6 Experimental Results

We distinguish between two main classes of lightweight ciphers with respect to their
implementations’ resistance against CPA. The first class contains ciphers that are
implemented using lookup tables, while the second class comprises designs that
involve only three operations (addition/AND, rotation, and XOR), which generally
leak less than table lookups.

First Class. The first class can be further divided into three different categories
of ciphers. The first category contains the AES, whose 8-bit S-box leaks much more

128 Resilience to Correlation Power Analysis Attacks

than any other considered selection function. Our attacks required only 59 power
traces to recover the four key-bytes with 100% success rate. The second category
consists of the three lightweight ciphers LBlock, Piccolo, and PRINCE, each using
one or more 4-bit S-boxes for the substitution layer. All members of this category
leak enough information to make the recovery of the key with a small number of
traces possible. On average, a little bit more than 100 traces were enough to get the
subkeys of these ciphers with 100% success rate. However, two subkeys of LBlock
and two subkeys of Piccolo required a lot more traces since the sensitive results of
the selection functions are not written to memory after the targeted operation and
hence the attacker correlates the reading of the S-box content (i.e. ld instruction)
instead of the writing of the S-box output (i.e. st instruction). The third category
is represented by ciphers that use linear lookup tables, e.g. Fantomas. Our attack
against the implementation of Fantomas is a multi-target attack [229] because a
normal attack failed to recover two bits of each attacked subkey. The multi-target
attack enabled us to reveal the four key-bytes using 165 traces with 100% success
rate.

Second Class. The second class covers RC5, Simon, and Speck, for which we
were not able to recover the full secret key due to reduced leakage. If we consider,
for example, the attacks to obtain the fourth key byte k∗ = 0x67 using q = 2000
traces, our experiments for RC5 and Simon gave a mean guessing entropy GE of
1.58 and 3.05, respectively. However, in the case of Speck, we managed to reveal k∗

using 1345 traces with 100% success rate.
The assembly code generated from the C implementations of these ciphers

executes four consecutive st instructions, which entails signal superposing. We tried
to “cancel” this effect by reducing the frequency of the processor, but we had no
success. Although the insertion of nop instructions between the stores improved the
results, we decided to not use these modified implementations in our experiments
because they give the attacker an unreasonable advantage and affect therefore the
fair comparison with the ciphers from the first class.

Given the small size of the state of these designs and the rather simple operations
they carry out, we investigated the possibility of keeping the whole state in registers
during the entire encryption process. The 64-bit block version of both Simon and
Speck can be implemented in assembly without having to execute a single st

instruction between the start and the end of the encryption operation. This approach
significantly reduces the amount of leakage available to the attacker. But this
leakage reduction optimization can not be applied to 128-bit block implementations
of RC5, Simon, and Speck due to the restricted register space available on an 8-bit
microcontroller. For RC5, we also tried the butterfly attack proposed in [394] on
the modular addition, but the results were worse than when using the classical CPA
attack.

We performed the described attacks also with a “low-cost” setup consisting of an
Arduino Uno board and an Analog Discovery oscilloscope with a built-in differential
probe. The Arduino board gets its supply voltage through an USB connection,
which is also used for the communication with the computer that controls the

6.7 Summary 129

trace acquisition process. We did not employ any noise reduction techniques. The
experiments with the low-cost setup produced similar results for the ciphers in the
first class, except for Fantomas, but required more traces due to the increased noise
levels. For example, the AES key could be recovered with 80% success rate using 36
power traces with the first setup, but 58 traces were necessary with the second (i.e.
low-cost) setup. Similarly, to retrieve the PRINCE key with the same success rate,
the first setup needed 65 traces, while the second setup required 85 traces. For the
ciphers from the second class, the low-cost setup yielded much worse results. When
using 5000 traces, the mean guessing entropy for the attack against RC5 increased
from 3.68 (low noise) to 22.29 (high noise). Similarly, for Simon we got GE = 9.97
in the noise-reduced setting and GE = 16.44 with the cheap equipment.

All our experiments were conducted on unprotected implementations of the
ciphers. However, many security-critical applications require countermeasures against
SCA attacks, e.g. masking. In this context, it is known that linear and Boolean
operations, such as those performed by Fantomas, RC5, Simon, and Speck, can
be masked with relatively low overheads in terms of execution time and code size.
On the other hand, masking a nonlinear S-box like that of AES generally entails a
significant performance and code-size penalty. Somewhere in the middle between
these two extremes are LBlock, Piccolo, and PRINCE.

6.7 Summary

Following a practical approach, we investigated the leakage of various selection
functions widely used in existing lightweight ciphers for an 8-bit processor. We
analyzed how these results relate to the intuition about side-channel leakages based on
the nonlinearity of the selection function. Thereby, we identified three imperfections of
leakage evaluation based on nonlinearity, namely for AND and OR bitwise operations,
for 4-bit S-boxes, and for linear lookup tables.

Using the knowledge gained from the evaluation of selection functions, we attacked
unprotected software implementations of eight well-known lightweight ciphers, namely
AES, Fantomas, LBlock, Piccolo, PRINCE, RC5, Simon, and Speck. We grouped
the results of our experiments into two classes according to the observed resistance
against CPA attacks. The unprotected implementation of AES was broken with the
smallest number of power traces, followed by the implementations of lightweight
ciphers using 4-bit S-boxes, and thereafter the implementation of Fantomas, whose
L-boxes required slightly more traces than the 4-bit S-boxes. On the other hand,
the implementations of RC5, Simon, and Speck leaked less as we could not recover
the full key for any of them. We also demonstrated that different implementation
options can increase the resilience of lightweight block ciphers against power analysis
attacks.

The software implementations of the three designs that do not use lookup tables
(i.e. RC5, Simon and Speck) are characterized by a certain level of “intrinsic” re-
silience against CPA. They can also be efficiently masked with relatively small impact
on execution time and code size. These features make constructions based solely on
addition/AND, rotation, and XOR excellent candidates for the implementation of

130 Resilience to Correlation Power Analysis Attacks

lightweight block ciphers for the IoT.

Chapter 7

Correlation Power Analysis

Attacks on Communication

Protocols

Contents

7.1 Introduction . 131

7.1.1 Research Contributions 133

7.2 Preliminaries . 134

7.2.1 Description of the AES 134

7.2.2 Attacking Temporary Key Bytes 134

7.2.3 Software Implementations of the AES 136

7.2.4 Measurement Setup . 137

7.3 Quantifying the Leakage 138

7.4 Generating the Evaluation Cases 140

7.5 The Attack . 143

7.5.1 Optimality . 146

7.5.2 Choosing the Best Attack Strategy 147

7.6 Results . 148

7.6.1 Electromagnetic Leakage 148

7.6.2 Simulated Leakage . 149

7.6.3 Detailed Results . 150

7.7 Countermeasures . 152

7.8 Summary . 152

7.1 Introduction

Side-channel attacks use observations made during the execution of an implementation
of a cryptographic algorithm to recover secret information. From the multitude of

132 Correlation Power Analysis Attacks on Communication Protocols

side-channel attacks, Correlation Power Analysis (CPA) [68] stands out as a very
efficient and reliable technique. Its success is augmented by the minimally invasive
methods employed for the acquisition of the side-channel information. Some of the
most frequently used sources of side-channel leakage are the power consumption or
the electromagnetic (EM) emissions of a device under attack.

Flags Source Address Frame Ctr
Key
Ctr Block Ctr

1 byte 8 bytes 4 bytes 1 byte 2 bytes

Figure 7.1: The first input block for the AES-CTR and AES-CCM modes used in
IEEE 802.15.4 [170].

Nowadays, AES [250] is the most popular symmetric cryptographic algorithm
in use. It is widely deployed to secure data in transit or at rest. Various network
protocols rely on the AES in different modes of operation to provide security services
such as confidentiality and authenticity. The usage spectrum of the AES stretches
from powerful servers and personal computers to resource-constrained devices such
as wireless sensor nodes. While the security of the algorithm and its implementations
have been placed under scrutiny since it was standardized by NIST, with a few
notable exceptions, most of the previous work focused on the AES itself and less on
the usage of the AES in complex systems.

By far, most of the experimental results reported in the side-channel literature
are for implementations of the AES. They usually assume the attacker has full
control of the AES input. This is not the case in a real world communication
protocol, when often a major part of the input is fixed and only few bytes are
variable. Moreover, sometimes the attacker cannot control these variable bytes and
she has to passively observe executions of the targeted algorithm without being able
to trigger encryptions of her own free will. With the notable exceptions of [175, 259],
the security of communication scenarios based on the AES against side-channel
attacks has not been thoroughly analyzed so far. Thus, in this chapter we analyze
how much control of the AES input does an attacker need to recover the secret key
of the cipher by performing a side-channel attack against a communication protocol.

Numerous standards for communication in the Internet of Things (IoT) such as
IEEE 802.15.4 [170] and LoRaWAN [220] use the AES to encrypt and authenticate
the Medium Access Control (MAC) layer frames. The 802.15.4 standard uses a
variant of the AES-CCM [380, 115], while LoRaWAN uses AES-CMAC [331]. The
same CCM mode is used with the AES to encrypt the IPsec Encapsulating Security
Payload (ESP) [168]. According to [305] the security architecture of IEEE 802.15.4
relies on four categories of security suites: none, AES-CTR, AES-CBC-MAC, and
AES-CCM. A typical input for the AES-CTR and AES-CCM modes used in the
IEEE 802.15.4 protocol is shown in Figure 7.1. In this particular example, an attacker
can manipulate up to 12 bytes of the input (Source Address and Frame Counter),
while the other input bytes (Flags, Key Counter and Block Counter) are fixed.

7.1 Introduction 133

The attack on IEEE 802.15.4 wireless sensor nodes described in [259] assumes the
control of only four input bytes (Frame Counter), while the remaining input bytes
are constant. Thus the following question arises:

How many input bytes should an attacker change in the injected messages
in order to fully recover the master key without triggering any network
protection mechanism?

While numerous network protocols use the AES to secure the communication
between end nodes, major cryptographic libraries such as OpenSSL [261] and ARM
mbed TLS [18] do not have a side-channel protected implementation of the AES
for devices that do not support the AES-NI [163] instruction set as is the case with
most IoT devices. Therefore, an elaborate analysis of the security of the unprotected
implementations of the AES used in communication protocols is necessary. Only
such a careful analysis can assess the impact of side-channel attacks on the security
of real world systems using unprotected implementations of the AES.

In this chapter, we chose to focus on CPA attacks thanks to their efficiency and
reliability. We opted for a non-invasive measurement setup and hence we selected the
EM emissions of the target processor as source of side-channel leakage. The target
is an ARM Cortex-M3 processor mounted on a STM32 Nucleo [340] board from
STMicroelectronics. These processors are widely used for low-power applications
and meet the requirements for use in the IoT.

The IoT will be a security nightmare if the whole information ecosystem is not
designed with security in mind. While many communication protocols for the IoT
are in formative stages, the threat model of the IoT is less understood despite it is
widely accepted that its attack surface is large. Although we focus on a particular
side-channel attack (i.e. power/EM), other side-channel attacks such as timing, fault,
cache or data remanence attacks might pose a similar or even a higher threat for the
security of the IoT ecosystem. Attacks that do not exploit side-channel information,
such as those used to compromise Internet-connected computers, should not be
neglected since they have certain advantages over side-channel attacks. Thus, our
work adds another piece to the security puzzle of the IoT by showing the need for
side-channel countermeasures to prevent a somehow overlooked threat.

7.1.1 Research Contributions

This chapter presents a thorough analysis of the scenarios in which an attacker can
mount a DPA attack against software implementations of the AES used to secure
various communication protocols. Firstly, we present an algorithm for symbolic
processing of a given input state of the AES. The algorithm outputs the number
of rounds and the bytes that must be attacked to recover the secret key. Then,
using this algorithm we perform a classification of all possible inputs depending on
the number of rounds that must be attacked in order to recover the master key.
The result is a set of 25 independent evaluation cases. Secondly, we describe an
optimal algorithm that uses the above-mentioned symbolic representation to recover
the master key of the AES using CPA attacks. The algorithm explores all possible

134 Correlation Power Analysis Attacks on Communication Protocols

combinations of input key bytes and discards the invalid key candidates, thus yielding
only the correct master key if enough power traces with a good signal-to-noise ratio
are provided. Afterwards, we evaluate the results of the attack algorithm in each
of the 25 evaluation cases identified in the classification step using traces from an
ARM Cortex-M3 processor.

Our results show that popular implementations of the AES found in well-known
and widely used cryptographic libraries can be broken using CPA attacks. The only
requirement is that a part of the AES input is known and variable, while the rest is
constant, which is a common scenario in communication protocols. Knowledge of
the AES implementation strategy improves the attack results, but it is not crucial.

7.2 Preliminaries

7.2.1 Description of the AES

We give a brief description of the AES [250] to recall relevant aspects of the algorithm
and to introduce the notation used in this chapter. For more details on the AES
algorithm, we refer the reader to the official specifications.

The AES is a version of the Rijndael cipher [98] with 128-bit blocks and three
different key lengths: 128, 192, and 256 bits. The round function is applied to the
4× 4 byte state matrix 10, 12, or 14 times depending on the key length. It comprises
four transformations: SubBytes, ShiftRows, MixColumns, and AddRoundKey. The
final round function does not include the MixColumns transformation.

Let si,j be the state byte located at row i and column j (0 ≤ i, j ≤ 3), kl
the corresponding round key byte (l = 16 · r + i + 4 · j) and r the round number.
After application of the AddRoundKey transformation, each byte of the state becomes
s′i,j = si,j ⊕ kl, where the “⊕” symbol denotes bitwise exclusive or of two 8-bit values.
The nonlinear SubBytes operation transforms each byte of the state using an 8-bit
S-box S as follows: s′i,j = S[si,j]. The ShiftRows transformation performs a rotation
of row i by i bytes to the left. In the MixColumns transformation, a polynomial
multiplication over GF (28) is applied to each column of the state matrix. The
symbol “•” is used for multiplication of two polynomials in GF (28), while {01}, {02},
and {03} are 8-bit vectors representing elements from GF (28).

The key schedule expands the master key into the 16-byte round keys. The
round constant array Rcon contains the powers of {02} in GF (28) as described in
the specifications. The structure of the AES encryption is given in Algorithm 2.
Algorithm 3 describes the AES key schedule at the byte level when using a 16-byte
master key.

7.2.2 Attacking Temporary Key Bytes

To attack the AES in counter mode, Jaffe introduced a technique that propagates a
DPA attack to later rounds. It can be used when just few bytes of the AES input
are known and variable, while the others are fixed (constant) and unknown [175].
Next we briefly describe how the unknown fixed bytes can be incorporated into a

7.2 Preliminaries 135

Algorithm 2 AES encryption

Input: state, round_keys
1: AddRoundKey(state, round_keys[0])
2: for r = 1 to R− 1 do ⊲ R is the total number of rounds
3: SubBytes(state)
4: ShiftRows(state)
5: MixColumns(state)
6: AddRoundKey(state, round_keys[r])
7: end for
8: SubBytes(state)
9: ShiftRows(state)

10: AddRoundKey(state, round_keys[R])
11: return state

Algorithm 3 AES key schedule for a 16-byte master key

Input: key
1: rk[0] = key
2: for i = 1 to R do ⊲ R is the total number of rounds
3: rk[i][0] = rk[i− 1][0]⊕ SubBytes(rk[i− 1][13])⊕ Rcon[i− 1]
4: rk[i][1] = rk[i− 1][1]⊕ SubBytes(rk[i− 1][14])
5: rk[i][2] = rk[i− 1][2]⊕ SubBytes(rk[i− 1][15])
6: rk[i][3] = rk[i− 1][3]⊕ SubBytes(rk[i− 1][12])
7: for j = 4 to 15 do
8: rk[i][j] = rk[i− 1][j]⊕ rk[i][j − 4]
9: end for

10: end for
11: return rk

round key byte to recover a temporary key byte. Then, using these temporary key
bytes the attack can be carried to later rounds until enough round key bytes are
recovered to reverse the key schedule.

Using a CPA attack an adversary can recover only those key bytes that are
XORed with variable and known state bytes in the AddRoundKey transformation.
The gist of Jaffe’s technique is that an attacker can still recover a temporary key
byte when an input byte of the AddRoundKey transformation is the result of the
MixColumns transformation applied to at least one known and variable input byte
while the other input bytes are unknown and constant.

To better illustrate how this technique works, let us consider the first state byte
s′0,0 after performing the first round function:

s′0,0 = ({02} • s0,0)⊕ ({03} • s1,1)⊕ ({01} • s2,2)⊕ ({01} • s3,3)⊕ k16

Suppose now that the input bytes s0,0 and s1,1 are known and variable (key bytes
k0 and k5 were successfully recovered using a side-channel attack on the SubBytes

transformation of the first round), while the other input bytes (s2,2 and s3,3) are

136 Correlation Power Analysis Attacks on Communication Protocols

unknown, but fixed. Thus s′0,0 can be written as ({02} • s0,0)⊕ ({03} • s1,1)⊕ k′16,
where the constant part is included in the temporary key k′16 that will be recovered
by attacking the SubBytes transformation of the second round; k′16 = ({01} • s2,2)⊕
({01} • s3,3) ⊕ k16. The temporary key k′16 enables the computation of four state
bytes in the following round. In this way, the attack is carried to the next rounds
until all state bytes are known; consequently, the real key bytes can be recovered.

The technique works similarly when three input bytes are known and variable.
Though, when only one input byte is known and variable, the attacker will recover the
same two equally likely key candidates for two bytes of the same column of the cipher
state. For example, when only s3,3 is known and variable while the other input bytes
are unknown and fixed, then s′0,0 = ({01} • s3,3)⊕ k′16 and s′1,0 = ({01} • s3,3)⊕ k′17.
Thus attacking either of the two, an attacker will get two equally likely key bytes (k′16
and k′17). If the state bytes are not processed in order by the SubBytes transformation,
the attacker will not know which key byte corresponds to s′0,0 and which key byte
corresponds to s′1,0.

7.2.3 Software Implementations of the AES

There are various ways to implement the AES in software depending on the execution
time, code size and RAM consumption requirements. Other factors that influence
the implementation strategy are the cipher mode of operation and the number of
plaintext blocks to be encrypted. Schwabe and Stoffelen [314] identified four different
strategies to implement the AES in software: traditional, T-tables, vector permute,
and bit slicing. In this chapter, we consider the following two implementation
approaches for the AES that are relevant for a secure communication protocol:

• The straightforward implementation (S-box strategy) performs the four round
transformations as described above. The substitution layer is implemented
using a 256-byte lookup table based on S-box S. This implementation approach
is suitable for 8-bit architectures.

• The table based implementation (T-table strategy) uses four lookup tables
(T0, T1, T2, and T3) of 1024 bytes each to perform the SubBytes, ShiftRows,
and MixColumns operations at the cost of 16 table lookups, 16 masks and 16
XORs per round, except for the final round. A low memory alternative uses
just one T-table, but performs 12 additional rotations per round. This strategy
was initially described by the designers of Rijndael [98]. It leads to very fast
implementations on 32-bit platforms.

We did not analyze bit-sliced or vector permute implementations because such
implementations are uncommon in cryptographic libraries due to the following
limitations. The bit-sliced implementations process at least two blocks in parallel
and thus they can be applied only to non-feedback modes of operation. The vector
permute implementations require support of vector permute instructions, but most of
the resource-constrained microcontrollers for the IoT do not support such instructions.

An analysis of the existing AES implementations used by different open-source
cryptographic libraries is given in Table 7.1. The default implementations of the

7.2 Preliminaries 137

Library Language Version Release AES-NI T-table

Botan [288] C++ 2.1.0 Apr 2017 ✓ ✓

cryptlib [90] C 3.4.3 Feb 2017 ✓ ✓

Crypto++ [91] C++ 5.6.5 Oct 2016 ✓ ✓

Libgcrypt [146] C 1.7.6 Jan 2017 ✓ ✓

libtomcrypt [143] C 1.17 Apr 2017 ✗ ✓

libsodium [215] C 1.0.12 Mar 2017 ✓ ✗

mbed TLS [18] C 2.4.2 Mar 2017 ✓ ✓

Nettle [251] C 3.3 Oct 2016 ✓ ✓

OpenSSL [261] C 1.1.0e Feb 2017 ✓ ✓

wolfCrypt [383] C 3.10.2 Feb 2017 ✓ ✓

Table 7.1: A summary of the existing AES implementations used by open-source
cryptographic libraries written in C/C++. All the T-table implementations are
vulnerable to the attack described in this chapter.

AES for platforms that do not support the AES-NI [163] instructions in popular
cryptographic libraries such as OpenSSL [261, 262] or mbed TLS [18, 144] use the T-
table approach. Except for libsodium [215], all other cryptographic libraries analyzed
have an implementation of the AES based on the T-table strategy. Moreover, these
implementations are not protected against side-channel attacks such as DPA or
cache attacks. It is well known that unprotected implementations of cryptographic
algorithms are an easy target for DPA attacks. Recently, researchers from Rambus
Cryptography Research Division have shown that even an unprotected software
implementation based on AES-NI instructions can be attacked with DPA [302]. The
T-table implementations of the AES are vulnerable to various cache attacks as shown
in [264, 216]. Although the unprotected T-table implementations are vulnerable to
side-channel attacks, nine out of the ten libraries considered in Table 7.1 have such
an implementation of the AES.

7.2.4 Measurement Setup

For all experimental results reported in this chapter we used a STM32 Nucleo [340]
board from STMicroelectronics. It has a 32-bit ARM Cortex-M3 processor clocked at
8 MHz, 512 KB of flash, 80 KB of RAM and 16 KB of EEPROM. The measurement
of the electromagnetic emissions was performed from a spot above the chip using a
Langer RF-K 7-4 H-field probe as shown in Figure 7.2. The target board executed
software implementations of the AES. The signal was amplified by 30dB and then
sampled at 500 MS/s using a Teledine LeCroy WaveRunner 8254M-MS oscilloscope.
We did not use any noise reduction technique. The board was powered through an
USB cable, which was also used to control the device under test (DUT).

138 Correlation Power Analysis Attacks on Communication Protocols

Figure 7.2: The device under test (DUT).

7.3 Quantifying the Leakage

We introduced the correlation coefficient difference metric in Section 6.4 to analyze
the leakage of different selection functions in the context of CPA. The correlation
coefficient difference δ gives the difference between the correlation coefficient of the
correct key and the correlation coefficient of the most likely key guess, where the
most likely key is different from the correct key.

We use the correlation coefficient difference to quantify the leakages of two
selection functions: ϕ1 based on the AES S-box and ϕ2 based on the AES T-table.
The two selection functions are defined below:

ϕ1 : F
8
2 7→ F

8
2, ϕ1(x⊕ k) = S(x⊕ k)

ϕ2 : F
8
2 7→ F

32
2 , ϕ2(x⊕ k) = T (x⊕ k)

Correct key
δ̄ SEδ̄

0x00 0x01 0x03 0x07 0x0F 0x1F 0x3F 0x7F 0xFF

ϕ1 0.146 0.126 0.108 0.156 0.126 0.960 0.153 0.140 0.084 0.126 0.020
ϕ2 0.104 0.072 0.143 0.074 0.070 0.126 0.078 0.044 0.028 0.082 0.028

Table 7.2: Correlation coefficient difference δ between the correlation of the correct
key and the correlation of the most likely key [50], for different Hamming weights of
the correct key; δ̄ and SEδ̄ are the mean and the standard error for a 95% confidence
interval, respectively. The leakages are acquired from an ARM Cortex-M3 processor.

When using simulated leakages, the values of the correlation coefficient difference
are 0.813 and 0.7 for ϕ1 and ϕ2, respectively. These values are the same regardless

7.3 Quantifying the Leakage 139

(a) S-box. (b) T-table.

Figure 7.3: Distribution of the Hamming weight of the output of the AES (a) S-box
and (b) T-table for all possible input combinations.

of the correct key used. In the simulated environment, the leakages of the two
selection functions are very high and the difference between them is about 14% of
the first one. On the other hand, the mean correlation coefficient difference δ̄ for
different values of the correct key using leakages acquired from an ARM Cortex-M3
processor is given in Table 7.2. The measurements were performed at a sampling
rate of 500 MS/s using assembly implementations of the analyzed selection functions.
Increasing the sampling rate to 1 GS/s does not significantly improve the results.
The mean correlation coefficient difference δ̄ is positive for both selection functions,
which means they leak enough information about the secret key such that an attacker
can recover the key byte using only one key guess. In practice, the selection function
based on the AES S-box leaks about 50% more than the selection function based
on the AES T-table. This can be explained by analyzing the distribution of the
Hamming weight of the two selection functions for all possible input combinations
(See Figure 7.3).

The reader can easily observe in Figure 7.3a that the distribution of values in
the case of the AES S-box follows a binomial distribution. On the other hand, the
distribution of values in the case of the AES T-table shown Figure 7.3b does not
resemble a binomial distribution. Moreover, there are 14 out of 32 possible output
values that never occur (i.e. 1, 2, 3, 4, 6, 7, 25, 26, 27, 28, 29, 30, 31, and 32). Each
Hamming weight value can be seen as a predicted power consumption that is used
in a CPA attack. Therefore, the 8-bit output of an S-box can generate any of the 9
possible power levels, while the 32-bit output of a T-table generates only 54.54%
of the 33 possible power levels. Consequently, it is easier for a CPA attacker to
determine which 8-bit input corresponds to the 8-bit output of an S-box than to the
32-bit output of a T-table. For this reason, the leakage of ϕ1 is greater than the
leakage of ϕ2 as quantified using the correlation coefficient difference. This means
that a CPA attack against an implementation based on the T-table strategy requires
more effort (i.e. power traces) compared to a CPA attack against an implementation
based on the S-box strategy.

140 Correlation Power Analysis Attacks on Communication Protocols

7.4 Generating the Evaluation Cases

In this section we describe the algorithm for symbolic processing of a given initial
state to determine the number of rounds required to recover the master key of the
AES. We used this algorithm to explore all possible attack cases and to choose the
relevant evaluation cases for our scenario. The algorithm relies on the following
symbolic representation of a byte located at row i and column j of the AES state at
the start of round r:

sri,j =











0, the corresponding key byte can not be recovered

1, the corresponding key byte can be recovered

−n, n temporary key bytes can be recovered

Thus, the byte sri,j is variable if its symbolic representation is different from 0
and fixed (constant) when its symbolic representation is 0. Due to the MixColumns

transformation, each column of the state at round r+1 can be expressed as a function
of four bytes of the state at round r. At the start of round r + 1 each byte of the
state is updated using the following rules:

• if the number of variable input bytes is 0, then the symbolic representation of
the output byte is set to 0;

• if the number of variable input bytes is 1, then the symbolic representation of
the output byte is updated as follows:

– if the variable input byte is multiplied by {01} in the MixColumns trans-
formation, then the symbolic representation of the output byte is set to
−2p+1, where p is the number of independent input pairs. A new pair is
added to the output byte;

– else, the symbolic representation of the output byte is set to −2p;

• if the number of variable input bytes is 2 or 3, then the symbolic representation
of the output byte is set to -1;

• if the number of variable input bytes is 4, then the symbolic representation of
the output byte is set to 1.

Besides updating the symbolic representation of the state, the algorithm keeps a
list of key pairs for each byte of the state and carries this list into the next round.
The algorithm stops when the symbolic representation of all bytes in a round is 1. It
outputs the symbolic representation of the state and the associated key pairs. These
can be used to compute the number of rounds required to recover the master key
and the number of possible master keys. The pseudocode for the algorithm is given
in Algorithm 4. The algorithm returns the processed state and the associated set
of pairs. Using this output, an attacker knows what key bytes have to be attacked
in each round of the AES, the number of rounds to be attacked, and the maximum
number of possible master keys.

7.4 Generating the Evaluation Cases 141

Algorithm 4 Symbolic processing of an initial state

Input: state ⊲ Initial state: 0 – fixed byte, 1 – variable byte
1: function ProceessColumn(r, pairs, i0, i1, i2, i3, o0, o1, o2, o3)
2: Compute the number of variable inputs for i0, i1, i2, i3: var_in
3: Update pairs
4: if var_in == 0 then ⊲ No key bytes recovered
5: state[r][o0] = state[r][o1] = state[r][o2] = state[r][o3] = 0
6: else if var_in == 1 then ⊲ 4 temporary key bytes recovered; new pair
7: Compute the number of independent pairs: p
8: pairs = pairs ∪ {new_pair}
9: state[r][o0] = state[r][o1] = state[r][o2] = state[r][o3] = −2

p

10: if state[r][oi] == state[r][oj] == ({01} • state[r − 1][it])⊕ k′ then
11: state[r][oi] = state[r][oj] = −2

p+1

12: end if
13: else if var_in ∈ {2, 3} then ⊲ 4 temporary key bytes recovered
14: state[r][o0] = state[r][o1] = state[r][o2] = state[r][o3] = −1
15: else if var_in == 4 then ⊲ All 4 key bytes recovered
16: state[r][o0] = state[r][o1] = state[r][o2] = state[r][o3] = 1
17: end if
18: end function
19: function ProcessRound(r, pairs)
20: ProcessColumn(r, pairs, 0, 5, 10, 15, 0, 1, 2, 3)
21: ProcessColumn(r, pairs, 4, 9, 14, 3, 4, 5, 6, 7)
22: ProcessColumn(r, pairs, 8, 13, 2, 7, 8, 9, 10, 11)
23: ProcessColumn(r, pairs, 12, 1, 6, 11, 12, 13, 14, 15)
24: end function
25: function RoundKeyRecovered(r)
26: for i = 0 to 15 do
27: if 0 ≥ state[r][i] then return False
28: end if
29: end for
30: return True
31: end function
32: function Process(state)
33: pairs = ∅
34: for r = 1 to R do ⊲ R is the total number of rounds
35: if RoundKeyRecovered(r − 1) then return state, pairs
36: end if
37: ProcessRound(r, pairs)
38: end for
39: end function
40: return Process(state)

142 Correlation Power Analysis Attacks on Communication Protocols

State

Pairs

Round 1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

Round 2

−1

−2

−2

−1

0

0

0

0

0

0

0

0

0

0

0

0

∅

S1

S1

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

Round 3

−1

−2

−2

−1

−2

−2

−1

−1

−4

−2

−2

−4

−2

−2

−4

−4

∅

S2

S2

∅

S3

S3

∅

∅

S4

S1

S1

S4

S1

S1

S5

S5

Round 4

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

S6

S6

S6

S6

S6

S6

S6

S6

S7

S7

S7

S7

S7

S7

S7

S7

S1 = {1}; S2 = {2}; S3 = {3}; S4 = S1 ∪ {4} = {1, 4};

S5 = S1 ∪ {5} = {1, 5}; S6 = S3 ∪ S5 = {1, 3, 5}; S7 = S2 ∪ S4 = {1, 2, 4}

Figure 7.4: Symbolic processing of an initial state.

Figure 7.4 gives a graphical representation of how the algorithm works when only
the first byte of the initial state is variable and known, while the other bytes are
fixed and unknown. By attacking the result of the SubByte transformation applied
to the first byte of the state in the first round, the key byte k0 is recovered. This
recovered key byte allows a carry of the attack to the second round where four key
bytes (k′16, k

′
17, k

′
18, k

′
19) can be recovered by attacking the result of the SubBytes

transformation. Because the attacker cannot distinguish between k′17 and k′18, a new
pair S1 = {1} is added to the corresponding state bytes. Then, the attacker targets
the third round, where she can recover temporary key bytes for all state bytes. The
pair S1 from previous round affects all bytes of the third and fourth column of the
state and thus the corresponding pairs are updated accordingly. In addition, new
pairs are added when the attacker can not distinguish between key candidates as
shown in Figure 7.4. In the fourth round, the attacker is able to recover all round
key bytes. Then, having all the round key bytes of the fourth round, she can reverse
the AES key schedule to get the master key.

The attacker has to build 2p possible round keys, where p is the number of
independent pairs associated with the state bytes of the last attacked round. For
the example in Figure 7.4, the number of possible keys is 25 because card(S) =
card(S6 ∪ S7) = card({1, 2, 3, 4, 5}) = 5. Thus, in addition to the number of rounds
to attack, the algorithm for symbolic processing of an initial state gives the number
of possible master keys to be recovered by an attacker. Though, the attacker does
not have to check all 2p candidates to see which one is the correct one since she
can discard the wrong candidates based on the difference between the correlation
coefficients of the first two key candidates as we will show in Section 7.5.

7.5 The Attack 143

Bytes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

min(Rnds) 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 1
Prop. (%) 100 100 100 14.1 35.2 55.9 72.7 84.7 92.3 96.7 98.9 99.8 100 100 100 100

max(Rnds) 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 1
Prop. (%) 100 100 100 85.9 64.8 44.1 27.3 15.3 7.7 3.3 1.1 0.2 100 100 100 100

Trade-off ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗

Table 7.3: Possible attack outcomes for different number of bytes (“Bytes”) controlled
by attacker. “Rnds” is the number of rounds that have to be attacked in order to
recover the master key. “Prop. (%)” is the proportion of a given evaluation case with
respect to all possible input configurations for a fixed number of bytes controlled by
attacker.

Using the algorithm for symbolic processing of an initial state we evaluated all
possible input combinations. More precisely, we considered all configurations of the
initial state when the attacker controls i bytes of the input for i ∈ [1, 16]. When the
attacker controls i bytes, there are

(

16
i

)

possible input configurations. This results
in 216 − 1 possible configurations of the initial state in total. Then, we divided
these inputs into equivalence classes (evaluation cases) depending on the number of
rounds that must be attacked in order to recover the master key. The results are
summarized in Table 7.3. When the attacker controls between four and eleven bytes
of the input, a trade-off between the input configuration and the number of rounds
to be attacked is possible. When this is the case, the proportion of possible input
configurations shows which evaluation case is more likely to appear if the initial state
is chosen at random. Thus, when the attacker controls only four or five bytes of the
input, it is crucial to carefully choose an input configuration from the limited set of
possible input configurations that minimize the number of rounds to be attacked.

We give an example of a possible initial state for each of the 25 distinct evaluation
cases identified after processing all possible input combinations in Table 7.4. Any
possible input configuration for the AES encryption falls into one of these evaluation
cases depending on the number of bytes controlled by attacker and the number of
rounds that must be attacked in order to recover the master key.

7.5 The Attack

The attack we present in this section uses the symbolic representation of the AES
state (described in Section 7.4) in conjunction with CPA attacks to recover individual
bytes of the AES round keys. After executing Algorithm 5, the attacker has all round
key bytes of round R. Thus, she is able to recover the master key of the cipher by
reversing the key schedule.

The algorithm follows the symbolic representation of the state to infer which
key bytes must be attacked and how many key candidates it should yield for each

144 Correlation Power Analysis Attacks on Communication Protocols

Algorithm 5 The attack algorithm
Input: state ⊲ Initial state: 0 – fixed byte, 1 – variable byte
Input: λ = (plaintexts, traces) ⊲ Recorded in the acquisition phase
1: state, pairs = Process(state) ⊲ Symbolic processing (Algorithm 4)
2: known_pairs = ∅, mapped_pairs = ∅
3: keys[2p] = ∅, valid_keys[2p] = True ⊲ p is the number of independent pairs
4: for r = 1 to R do ⊲ R is the number of rounds to be attacked
5: for i = 0 to 15 do

6: if state[r][i] 6= 0 then

7: if pairs[r][i] == ∅ then ⊲ No pair
8: keys[0, · · · , 2p − 1][r][i] = CPA(λ, keys[0], r, i)
9: else if pairs[r][i] ⊆ known_pairs then ⊲ Known pair(s)

10: if i /∈ mapped_pairs[pairs[r][i]] then

11: mask = 0, temp_keys = ∅, αmax = −1
12: for pair ∈ pairs[r][i] do

13: mask = mask ∨ 2pair−1

14: end for

15: for j ∈ [0, 2p − 1] do

16: if valid_keys[j] and temp_keys[j ∧mask] == ∅ then

17: temp_keys[j ∧mask], α = CPA(λ, keys[j], r, i)
18: if α > αmax then

19: αmax = α
20: end if

21: end if

22: valid_keys[j][r][i] = temp_keys[j ∧mask]
23: end for

24: for j ∈ [0, 2p − 1] do

25: if abs(state[r][i]) == 1 and α+ β < αmax then

26: valid_keys[j] = False
27: end if

28: end for

29: end if

30: else ⊲ New pair
31: mask = 2pairs[r][i]−new_pair, k1 = k2 = ∅
32: for j ∈ [0, 2p − 1] do

33: if k1[j ∧mask] == ∅ then

34: k1[j ∧mask], k2[j ∧mask] = CPA(λ, keys[j], r, i)
35: end if

36: if j ∧ 2new_pair−1 then

37: keys[j][r][i] = k1[j ∧mask], keys[j][r][i′] = k2[j ∧mask]
38: else

39: keys[j][r][i′] = k2[j ∧mask], keys[j][r][i′] = k1[j ∧mask]
40: end if

41: end for

42: known_pairs = known_pairs ∪ new_pair
43: Add (i, i′) to mapped_pairs[new_pair]
44: end if

45: end if

46: end for

47: end for

48: return keys[i], where valid_keys[i] == True for i ∈ [0, 2p − 1]

7.5 The Attack 145

Case Bytes Rounds Possible initial state

0 1 4 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

1 2 4 [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

2 3 4 [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

3 4 3 [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
4 4 4 [1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

5 5 3 [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
6 5 4 [1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

7 6 3 [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
8 6 4 [1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]

9 7 3 [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
10 7 4 [1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0]

11 8 3 [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]
12 8 4 [1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0]

13 9 3 [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0]
14 9 4 [1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0]

15 10 3 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0]
16 10 4 [1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0]

17 11 3 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0]
18 11 4 [1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0]

19 12 3 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0]
20 12 4 [1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1]

21 13 3 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0]

22 14 3 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]

23 15 3 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0]

24 16 1 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

Table 7.4: All evaluation cases with an example of a possible initial state for each
evaluation case. “Bytes” gives the number of bytes controlled by attacker; “Rounds”
gives the number of rounds that have to be attacked to recover the master key.

attacked key byte. By tracking the pairs associated with the recovered key bytes,
the algorithm is able to discard all impossible round keys, thus saving computational
resources. Indeed, the algorithm uses an optimal number of CPA attacks to recover
the master key.

Initially, the set of known pairs is empty and all possible keys are considered
valid. The algorithm keeps track of 2p possible keys, where p is the total number of

146 Correlation Power Analysis Attacks on Communication Protocols

independent pairs in the symbolic representation of the state at round R.
The main loop of the algorithm runs through all rounds that must be attacked.

At each round, the key bytes corresponding to variable state bytes are attacked to
recover one or more temporary key bytes or a round key byte. Depending on the
pairs associated with the byte to be attacked, there are three possible cases:

• No pair. If the symbolic representation does not have a pair associated with
the byte of the state to be used for the attack, then the algorithm will recover
a single key byte, which is distributed to all possible keys.

• New pair. If one of the pairs associated with the byte under attack is
not present in the set of known pairs, then the algorithm will recover 2u

possible values for the corresponding key byte, where u is the number of known
independent pairs associated with the byte under attack. The number of known
pairs determines the number of CPA attacks to be performed. Using a mask
based on the existing pairs and a mask for the new pair, the algorithm correctly
distributes the recovered key byte values to all possible keys. The new pair
is added to the set of known pairs and the two indexes of the state affected
by the recovered temporary keys are mapped to this new pair. This mapping
prevents the computation of the same temporary keys twice.

• Known pairs(s). In the case where the t independent pairs associated with
the key byte to be attacked are known but not mapped to the current state
byte, the algorithm performs 2t CPA attacks. Then, it distributes the attack
results (the recovered key and the difference between the correlation coefficients
of the first two most likely key candidates α) to the corresponding bytes of all
possible keys. Afterwards, the possible keys for which the value of α is less than
the maximum observed value αmax minus a threshold β are marked as invalid.
In this way, only the combination of keys yielding the highest correlation peak
is selected. At this moment, the input pairs are solved in the sense that the
algorithm can uniquely assign each of the two temporary keys of a pair to the
corresponding state bytes. As a consequence, the algorithm will not further
process the possible keys marked as invalid. Thus, this optimization improves
the algorithm efficiency by reducing the number of performed CPA attacks.

Finally, the algorithm returns all possible keys, which are marked as valid. If the
threshold β tends to zero, the algorithm will return only one possible key. When the
quality of the side-channel acquisition is good (i.e. high signal-to-noise ratio) and
there are enough power traces, the algorithm yields the correct key.

7.5.1 Optimality

We prove that our algorithm uses the minimum number of CPA attacks possible to
recover the master key and thus is optimal. Hence, the lower bounds provided in
Table 7.5 are optimal.

Theorem 7.5.1. Algorithm 5 performs an optimal number of CPA attacks to recover
the 16-byte master key of the AES.

7.5 The Attack 147

Proof. The only way an attacker can recover the 16-byte master key of the AES is
to recover all key bytes of a round r and then to reverse the key schedule. Since the
function that derives the round keys of round i from the round keys of round i− 1 is
bijective, knowledge of all round key bytes of a round r leads to the knowledge of
the master key.

Let us assume that Algorithm 5 uses n individual CPA attacks for a given initial
state and it is not optimal. Thus, there exists at least one algorithm that is able
to recover the master key using only m CPA attacks, with m < n. We show next
that such an algorithm does not exist. If there exists an algorithm that uses less
CPA attacks than Algorithm 5, then this algorithm attacks at least one key byte
less. But if it does so, then the attack can not be carried to later rounds any more
because the state byte corresponding to the unrecovered key yields unknown and
variable state bytes after the MixColumns transformation. These bytes can not be
recovered using a CPA attack and thus the attack fails. As a consequence, there is
no algorithm that uses less CPA attacks than Algorithm 5.

7.5.2 Choosing the Best Attack Strategy

For up to seven bytes controlled by the attacker, our attack algorithm (Algorithm 5)
is more efficient than the classic attack algorithm where all possible key bytes are
attacked to recover the master key. The improvement varies between 15% and 68%
of the number of CPA attacks required by the classic attack. When an attacker has
control of more than seven input bytes, our algorithm performs the same number of
CPA attacks as the classic attack. At the same time, our algorithm gives a unique
master key, provided that there are enough traces with a high signal-to-noise ratio
available. This is not the case for a classic attack unless an additional mechanism to
discard invalid keys, as the one in Algorithm 5, is employed.

Bytes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

min(Rnds)
Classic attack 150 104 188 80 66 52 46 40 41 42 43 44 45 46 47 16

Algorithm 5 48 42 48 38 38 38 39 40 41 42 43 44 45 46 47 16
Improvement 102 62 140 42 28 14 7 0 0 0 0 0 0 0 0 0

max(Rnds)
Classic attack 150 104 188 110 72 50 51 52 53 54 55 56 45 46 47 16

Algorithm 5 48 42 48 48 49 50 51 52 53 54 55 56 45 46 47 16
Improvement 102 62 140 62 23 0 0 0 0 0 0 0 0 0 0 0

Table 7.5: The number of individual CPA attacks required to recover the master key
for different number of bytes (Bytes) controlled by attacker; “min(Rnds)”/“max(Rnds)”
and “Bytes” precisely identify the evaluation case. “Classic attack” does not use the
optimizations introduced in “Algorithm 5” to discard the invalid keys. “Improvement”
gives the number of CPA attacks saved by an attacker using Algorithm 5 over an
attacker using “Classic attack”.

An attacker willing to reduce the duration of the offline phase of the attack
(without increasing the number of rounds that must be attacked) can use the

148 Correlation Power Analysis Attacks on Communication Protocols

results in Table 7.5 in corroboration with the data in Table 7.3 to adjust the attack
accordingly. More precisely, if an attacker is able to control up to n bytes of the
AES input, she can choose to control m (m ≤ n) bytes of the input because m
variable bytes minimize the number of CPA attacks required to recover the master
key. This decision has to be made before performing the side-channel acquisition
since it influences the chosen inputs. Another argument in favor of using less variable
input bytes is that the attack is much more difficult to detect if the injected packets
have fewer variable bytes and mimic the appearance of a normal network traffic.
For example, when n = 12, an attacker can choose m = 4, 5, or 6 to reduce the
complexity of the offline attack from 44 to 38 individual CPA attacks, while still
attacking just three rounds. The result is an overall improvement of the attack
efficiency by 14% over the classic attack.

An even better decision can be made with the help of experimental results for
different configurations of the input from a similar target to the one to be attacked
in addition to the results presented so far. For this reason, in the next section we
determine experimentally the number of traces required to recover the master key
for each evaluation case using EM leakages from an ARM Cortex-M3 processor.

7.6 Results

7.6.1 Electromagnetic Leakage

For the experimental evaluation, we considered two unprotected implementations
of the AES written in ANSI C. The first implementation uses table lookups for the
S-box, while the second one uses the T-table strategy. For each of the 25 evaluation
cases we measured up to 2000 EM traces. The acquisition took about 90 minutes
for an evaluation case. The samples were split into files corresponding to the AES
round number. Then, we mounted the attack presented in Algorithm 5 using an
increasing number of traces in the interval [100, 2000] with a step of 100 traces until
the guessing entropy converged to zero.

For each implementation we considered two selection functions based on the
AES S-box and T-table, respectively. The minimum number of traces for which the
guessing entropy becomes zero and remains stable is pictorially shown in Figure 7.5
for each evaluation case. All attacks recovered the full 16-byte master key with
less than 1600 EM traces. In general, the master key was recovered with fewer
traces when the selection function perfectly matched the implementation strategy.
Though, our results show that full key recovery is possible even when the selection
function does not perfectly match the attacked implementation. The attacks on
the S-box implementation using the T-table selection function needed 204 more
traces on average to recover the master key compared to the attacks on the same
implementation using the S-box selection function. Similarly, using the S-box selection
function instead of the T-table selection function to attack the implementation based
on the T-table strategy required 354 more traces on average. For details on the exact
number of traces required to recover the master key for each evaluation case and
attack scenario we refer the reader to Section 7.6.3.

7.6 Results 149

Figure 7.5: The number of EM traces required to fully recover the master key. Scenar-
ios: (a) S-box implementation, S-box selection function; (b) S-box implementation,
T-table selection function; (c) T-table implementation, T-table selection function;
(d) T-table implementation, S-box selection function.

7.6.2 Simulated Leakage

We averaged the guessing entropy of 100 experiments on simulated traces for each
of the 25 evaluation cases. Then we selected the minimum number of traces for
which the guessing entropy was zero and remained stable. The results are shown in
Figure 7.6.

Comparing the results for the simulated traces (Figure 7.6) with the results for
the EM traces acquired from the Cortex-M3 processor (Figure 7.5), we can notice
the following differences:

• In general, for simulated traces the attacks against the T-table implementation
using the T-table selection function (c) required a similar but slightly smaller
number of traces than the attacks on the S-box implementation using the
S-box selection function (a). In contrast, the leakage estimation of the two
selection functions indicates that the S-box selection function leaks a little
bit more than the T-table selection function. But when the leakages of the
two selection functions were quantified, they were clearly isolated from the
leakages of other operations. As a consequence, the intermediate results of
similar neighboring operations have a greater influence on the correlation of
the S-box leakage than on the correlation of the T-table leakage. This can be
explained by the fact that there are 19 possible Hamming weight values for
the T-table output but only 9 possible Hamming weight values for the S-box
output. Thus, it is easier to distinguish a T-table output from the neighboring
T-table outputs than an S-box output from the neighboring S-box outputs. On
the other hand, for the EM traces, the attacks on the S-box implementation
using the S-box selection function (a) required less traces than the attacks on
the T-table implementation using the T-table selection function (c). For the

150 Correlation Power Analysis Attacks on Communication Protocols

Figure 7.6: The number of simulated traces required to fully recover the master
key. Scenarios: (a) S-box implementation, S-box selection function; (b) S-box
implementation, T-table selection function; (c) T-table implementation, T-table
selection function; (d) T-table implementation, S-box selection function.

EM traces, the attack results are consistent with the leakages of the selection
functions as quantified by the correlation coefficient difference.

• The attacks that used the non-matching selection functions (b, d) required a
similar number of simulated traces. Contrariwise, the attacks on the T-table
implementation using the S-box selection function (d) required more EM traces
than the attacks on the S-box implementation using the T-table selection
function (b).

• In the case of simulated traces attacked with the matching selection functions (a,
c), the number of traces necessary to fully recover the master key when the
attacker controlled less than six input bytes was greater than when the attacker
controlled more than six input bytes. On the contrary, the number of traces
necessary to fully recover the master key for the EM leakage was minimal when
the attacker controlled exactly three input bytes.

For details on the exact number of traces required to recover the master key for
each evaluation case and attack scenario we refer the reader to Section 7.6.3.

7.6.3 Detailed Results

We give the number of traces required to fully recover the AES master key using
simulated and EM traces for all evaluation cases in Table 7.6.

7.6 Results 151

Case Bytes Rounds
EM leakage Simulated leakage

(a) (b) (c) (d) (a) (b) (c) (d)

0 1 4 700 960 630 1120 20 34 19 40

1 2 4 620 760 600 490 15 28 13 30

2 3 4 80 100 180 80 14 32 16 29

3 4 3 430 700 790 1060 24 33 19 39
4 4 4 570 760 300 160 13 31 19 33

5 5 3 390 660 820 1140 15 37 21 38
6 5 4 520 730 390 690 14 33 12 35

7 6 3 280 540 790 1290 20 35 17 34
8 6 4 620 900 910 1170 11 39 8 40

9 7 3 280 590 800 1160 14 42 13 32
10 7 4 500 780 800 1190 11 32 8 40

11 8 3 500 570 640 1220 11 30 7 39
12 8 4 490 730 660 1590 10 33 7 36

13 9 3 410 670 1010 1240 11 35 7 32
14 9 4 670 870 800 1210 12 39 7 33

15 10 3 430 500 830 1150 10 29 8 34
16 10 4 570 790 1000 1440 10 33 8 35

17 11 3 380 560 780 1050 10 37 9 34
18 11 4 400 590 790 1420 11 33 9 32

19 12 3 420 650 820 990 11 29 7 31
20 12 4 530 910 790 1460 11 39 9 39

21 13 3 490 620 720 1130 11 40 8 42

22 14 3 350 670 640 1200 11 35 8 37

23 15 3 510 650 810 1200 10 33 8 32

24 16 1 240 310 590 890 10 30 7 30

Average 459 663 716 1070 13 34 11 35

Table 7.6: The number of traces required to fully recover the master key for each
evaluation case (“Case”). “Bytes” gives the number of bytes controlled by attacker;
“Rounds” gives the number of rounds that have to be attacked to recover the master
key. Scenarios: (a) S-box implementation, S-box selection function; (b) S-box
implementation, T-table selection function; (c) T-table implementation, T-table
selection function; (d) T-table implementation, S-box selection function.

152 Correlation Power Analysis Attacks on Communication Protocols

7.7 Countermeasures

Our experimental results show that side-channel countermeasures such as masking
must be employed in order to protect the AES implementations based on lookup
tables (S-box and T-table implementation strategies) even in a communication
protocol scenario, when the adversary has limited control of the input. Masking
nonlinear lookup tables is a challenging task since it adds a considerable penalty on
execution time and memory usage [368].

Although bit-sliced implementations are not present in many cryptographic
libraries due to their limitations (i.e. can not be used in a feedback mode of operation
such as CCM), they have a lower CPA leakage than implementations using lookup
tables [50]. Nevertheless, they are still vulnerable to DPA attacks [29].

A lightweight algorithm (block cipher or authenticated encryption), particularly
one designed for efficient masking, is a good replacement for the AES-CCM when
considering side-channel protection.

Other countermeasures, such as a key refreshing mechanism, can support a
defense in depth approach. However, any additional countermeasure affects the
overall efficiency of an IoT protocol and consequently the most effective ones (i.e.
masking) must have priority given the resource constraints.

7.8 Summary

In this chapter, we presented an extensive security analysis of AES software im-
plementations against CPA attacks in the context of network protocols. In this
scenario the attacker has control of several input bytes, while the remaining input
bytes are fixed. To asses the resilience of AES implementations to all possible input
combinations, we presented an algorithm for symbolic processing of the cipher state.
Then, we classified all possible inputs into 25 independent evaluation cases depending
on the number of input bytes controlled by attacker and the number of rounds
that must be attacked to recover the master key. Finally, we described an optimal
algorithm that recovers the master key by mounting the minimum number of CPA
attacks possible. It makes clever decisions based on the set of key pairs that affects
the key byte under attack and the correlation coefficient of possible key candidates
to discard impossible keys.

We showed that unprotected implementations of the AES based on the S-box and
T-table strategies can be broken even when the attacker controls only one input byte
of the cipher with less than 1600 electromagnetic traces acquired from a 32-bit ARM
Cortex-M3 processor in about one hour. Knowledge of the implementation strategy
does not significantly improve the attack outcome, nor does it reduce the attack
complexity. Thus, unprotected implementations of the AES should not be used to
secure the communication between end devices in networks. Care must be taken
when using implementations of the AES from popular open-source cryptographic
libraries since most of them are not protected against side-channel attacks.

Chapter 8

An Electromagnetic Vulnerability

Analysis of Thread

Contents

8.1 Introduction . 154

8.1.1 Attack Surface and Threats for Connected Devices 154

8.1.2 Motivation . 155

8.1.3 Contribution . 155

8.1.4 Related Work . 156

8.1.5 Responsible Disclosure . 157

8.2 Thread . 157

8.2.1 Security Material . 158

8.2.2 Mesh Link Establishment (MLE) 159

8.3 Threat Model . 160

8.4 Side-Channel Vulnerability Analysis 162

8.4.1 Relationship between MK and KMLE 162

8.4.2 Processing of an MLE Parent Request 163

8.4.3 Attack on Key Generation 164

8.4.4 Attack on the AES in CCM Mode 165

8.5 Implementation of the Most Feasible Attack 166

8.5.1 Experimental Setup . 167

8.5.2 Alignment of the Electromagnetic Traces 168

8.5.3 Attack Results . 169

8.5.4 Improving the Attack . 170

8.6 Feasibility and Limitations 171

8.6.1 Equipment Cost . 171

8.6.2 Portability . 171

8.6.3 Other Attacks . 171

8.7 Quantification of the Attack Effort 172

154 An Electromagnetic Vulnerability Analysis of Thread

8.8 Additional Attack Paths 173

8.8.1 Attack on Loading the Security Material 173

8.8.2 Elliptic Curve Implementations 173

8.9 Countermeasures . 173

8.9.1 Tamper Resistance . 174

8.9.2 Protected Cryptographic Implementations 174

8.9.3 Fresh Re-keying . 174

8.9.4 Protocol-level Mitigations 174

8.9.5 Security Certification Scheme 174

8.10 Summary . 175

8.1 Introduction

Over the last few years we have seen a huge increase of IoT-enabled devices available
on the market. These devices, intended to make our lives easier by collecting,
processing and exchanging data, are manufactured by various companies around
the world. To foster the development of industry-wide standards for smart devices,
companies from different business fields gathered together in various working groups,
organizations or consortia. Their aim is to augment the smart objects’ capabilities
by enhancing the communication and data exchange between devices from different
manufacturers. This is a challenging task given the heterogeneous nature of the
IoT comprising a vast variety of devices, of which the overwhelming majority is
characterized by a multitude of constraints such as energy or power consumption,
code size and memory footprint to name a few.

The IoT ecosystem is still in its early inception stages and a lot has to be done
until all smart devices can communicate seamlessly with each other. Unfortunately,
compared to the current abundance of emerging standards for the IoT, there is little
to no effort to thoroughly analyze the security of these proposals. Thus, neither
the companies involved in the development of such standards, nor the end users are
fully aware of the security and privacy aspects of future connected products that
will flood the market in the coming years.

8.1.1 Attack Surface and Threats for Connected Devices

In the connected world, attacks that can be mounted remotely pose a major threat.
Software exploitation and network attacks fall into this category. They require low
resources (usually just a connected PC), and do not require physical proximity.

Especially in the context of the connected home, most current devices are within
the home perimeter and physical access would mean that the attacker is already
inside the house (assuming building access as an asset). However, devices like smart
locks and cameras are on the edge or outside of the building perimeter, and thus
may be physically accessed. In the near future, we will most likely see devices for
outdoor lighting or garden sprinklers connected to the smart home ecosystem. An
attack on one of such devices may provide an entry point to the ecosystem.

8.1 Introduction 155

Physical proximity attacks pose a relatively larger threat in a commercial setting,
for instance a hotel where rooms are equipped with wireless door locks. If an
adversary has access to such a smart lock connected to a mesh network like Thread
in her room, she might be able to exploit it in a similar way to what we describe in
this chapter to get access to the hotel network. A recent security incident targeting
the access control system of a hotel [256] shows that this type of scenario is well
possible; see also the physical attack on a door lock presented in [342].

8.1.2 Motivation

With the growing complexity of exploit-mitigation techniques, recent software attacks
need to chain several vulnerabilities to succeed (e.g. [147]). Moreover, new network
protocols are designed with security in mind.

We are driven by the curiosity to see if extending the attack surface to physical
attacks, such as electromagnetic or power analysis (common in the smart card
security world), would give additional benefits to the attacker that pay off the need
for physical proximity. With the increased availability and reduced cost of both
hardware and software tools for side-channel attacks ([252], [76], [323] to list a few)
these attacks are becoming familiar and affordable to a wide hacker community. We
are interested to evaluate the realistic effort required to apply such an attack in the
IoT context.

The network layer of the connectivity stack typically relies on a master key
and relatively long-lived network keys to provide the first layer of defense against
an attacker in the proximity of an IoT device. A question raised by the designers
of IoT hardware is: Do cryptographic implementations in the network layer need
protection against side-channel attacks? We have not seen a consolidated opinion on
this matter, with academic experts in Differential Power Analysis (DPA) claiming
attacks are possible (see related work paragraph below), while industry being on the
conservative side. In our view, this disagreement is due to the lack of in-depth case
studies that could demonstrate the feasibility (or infeasibility) of such attacks.

Numerous articles and marketing campaigns advertise Thread [351] as a new,
efficient and secure solution for the connected home with the roadmap to expand
into the commercial building and professional sectors. The claim of being always
secure 1 garnered our attention and made us curious to check ourselves if this claim
is true, especially in view of the availability of OpenThread. The lessons learned
from side-channel analysis applied to the Thread networking stack could be used to
improve the overall security level of current and future protocols designed for the
IoT.

8.1.3 Contribution

We perform, to the best of our knowledge, the first public side-channel vulnerability
analysis of Thread. Thread is a complex networking stack and an exhaustive analysis

1Meanwhile, the claim has been changed to “built-in security”. See http://threadgroup.org/
What-is-Thread/Overview

http://threadgroup.org/What-is-Thread/Overview
http://threadgroup.org/What-is-Thread/Overview

156 An Electromagnetic Vulnerability Analysis of Thread

would require a tremendous effort, especially when multidisciplinary attack vectors
are considered as in our work. While providing some coverage, we focus on finding
fast and effective ways to get access to a Thread network. Our contributions are:

• We perform a vulnerability analysis of Thread specifically with respect to
an adversary capable to mount electromagnetic side-channel attacks. In this
context, we outline several attack vectors to bypass the security mechanisms
of the networking stack. In particular, we target manipulations of the security
material (i.e. cryptographic keys).

• We describe a fully implemented attack that chains the exploitation of network-
level mechanisms and electromagnetic side-channel analysis techniques to get
unauthorized access to an existing Thread network after several hours of
acquisitions in the close proximity of a Thread Router or Router-Eligible End
Device that is already in the network.

• We explain that the failure of the full attack is due to a fortunate side-effect
of a feature not related to security (packet fragmentation). Therefore, the
protocol weaknesses we discovered are relevant.

• We describe a range of countermeasures for the protocol and for the implemen-
tation that can be applied whenever side-channel resistance is required.

We believe this case study provides a useful lesson to designers of IoT protocols and
devices. Our work comes early in the life cycle of future Thread products. Because
of this, we believe that it has a more profound impact, although being less impressive
than breaking an off-the-shelf Thread device.

8.1.4 Related Work

In the past years, numerous papers addressed various aspects of IoT security. One
notable direction is the analysis of the security and privacy of software frameworks
for the IoT [126, 127]. A survey of the security and privacy of implantable medical
devices and body area networks is given in [301].

Though, the impact of side-channel attacks on the security of connected objects is
far from being completely and clearly understood. A step towards this goal was made
by the following works. O’Flynn and Chen attacked the MAC layer encryption of an
IEEE 802.15.4 node [259] using side-channel attacks; they describe the approach and
implement the basic steps but not the full attack. Their attack builds on previous
works of Jaffe [175] and Kizhvatov [190]. Ronen et al. [300] exploited popular smart
lights to create a worm capable to quickly spread an infection over large areas. Their
work used side-channel attacks to recover the global AES-CCM key used to encrypt
and authenticate firmware updates.

Compared to the work described in [259], our attack is performed in the context
of Thread. It bypasses more complex security mechanisms to affect the full Thread
networking stack and not only the standalone MAC layer. By our full implementation,
we demonstrate that the threat posed by the recovery of the MAC layer key largely

8.2 Thread 157

depends on the context, specifically on the upper layers, and that there may be
unexpected hurdles. Additionally, we improve the attack on AES-CCM of [259] by
increasing the number of ciphertext bytes under our control. As a consequence, we
have to attack one AES round less to recover the 16-byte key.

Therefore, to our knowledge, this work is one of the few to demonstrate an EM
analysis attack in a complex wireless network setting, and to address the security of
an IoT network protocol with respect to adversaries capable to mount side-channel
attacks.

8.1.5 Responsible Disclosure

We informed the Thread Group in October 2016 about our findings and proposed
countermeasures. We received a confirmation of our findings. Based on our report,
the Thread Group decided to elaborate a set of recommendations for implementers
in order to enhance the security of Thread products.

8.2 Thread

Supported by more than 200 companies, including most major players in the IoT
arena, the Thread Group [351] is a nonprofit organization that promotes Thread’s
use in connected home solutions. Thread is a network and transport level stack
of protocols designed to simplify consumer lifestyles by controlling and connecting
products at home. In November 2016, the Thread Group announced the expansion
of Thread beyond the connected home to commercial spaces where people work [353].
Nest released an open-source implementation of Thread, called OpenThread, on
GitHub [263] in May 2016. As of October 2017, the OpenThread GitHub repository
is supported by ten members of the Thread Group and is an important resource for
hobbyists and early adopters who cannot afford the membership fee. OpenThread
runs on a number of wireless hardware platforms.

Based on well-established technologies, the Thread networking stack is built on
top of physical and data link layers of IEEE 802.15.4 [170], operating at 250 kbps in
the 2.45 GHz band [351]. Thread uses 6LowPAN to enable IPv6 addressing of up to
250 devices per network. The mesh network topology of Thread accommodates up
to 32 routers to create a resilient network with no single point of failure. It provides
an efficient way to forward messages between nodes using the RIPng distance vector
routing protocol. For its transport layer, Thread uses UDP and DTLS. CoAP is
used as application layer for the commissioning of new devices.

Thread devices are classified into two groups (see Table 8.1) based on power
requirements and resource characteristics: Full Thread Devices (FTDs) and Minimal
Thread Devices (MTDs).

• An FTD is usually supplied directly from the power lines, but it can also
run on batteries. A FTD can have three different roles in a Thread network:
Router, Router-Eligible End Device (REED), and Full End Device (FED).

158 An Electromagnetic Vulnerability Analysis of Thread

• An MTD runs a lighter version of the Thread stack with reduced capabilities
due to its limited resources; it usually runs on batteries. A MTD can have
one of the following roles: Minimal End Device (MED) or Sleepy End Device
(SED).

A key difference between FTDs and MTDs is that FTDs keep a communication
link with neighboring Routers, while MTDs do not. A device that is not a Router is
called an End Device (ED) and it is attached to a Parent with whom it communicates
through a direct link.

A device attaches to a Thread network as an ED. During the lifetime of a
Thread network, a device can have different roles at different moments of time. For
example, a REED can become a Router if the network configuration is favorable;
similarly, a Router can become a REED. A Thread network is managed by a Router
autonomously elected by the network and called Leader. The Leader assigns router
addresses, collects and distributes information about the network state to all Routers.
If the current Leader becomes unavailable, another Router will replace it. A Thread
Router having other network interfaces (Ethernet, Wi-Fi, Bluetooth, etc.) is called
a Border Router. It can forward the traffic between the Thread network and other
networks.

Type Role Description End Device (ED)

FTD
Router acts as a router ✗

REED can act as a router ✓

FED will never act as a router ✓

MTD
MED always on ✓

SED sleeps most of the time ✓

Table 8.1: Device types and roles in a Thread network.

Network security is enforced at the MAC (Media Access Control) and MLE
(Mesh Link Establishment) layers using AES in CCM mode [263]. All communication
within a Thread Network is secured, except for MLE Discovery Request and MLE

Discovery Response messages. Commissioning security is based on a DTLS tunnel
established using elliptic curve J-PAKE and the NIST P-256 elliptic curve.

8.2.1 Security Material

Once successfully commissioned into a Thread network, the connected device gets
the 16-byte network master key MK used to secure Thread communication and the
Commissioning Key CK used to secure Thread commissioning [263].

Each node keeps its own 4-byte Sequence counter in synchronization with neigh-
boring devices through the use of designated fields in the security header of MAC
frames (1-byte Key Index) and MLE messages (4-byte Key Source). The 1-byte

8.2 Thread 159

Key Index is computed from the 4-byte Sequence number:

KeyIndex = (Sequence ∧ 0x7F) + 1 (8.1)

Thread communication is secured using a 16-byte MAC key KMAC or a 16-
byte MLE key KMLE . These keys are derived from the 4-byte Sequence number
concatenated with the ASCII binary representation of the string “Thread” (0x54
0x68 0x72 0x65 0x61 0x64) using the keyed-hash message authentication code
(HMAC) function HMAC under the network master key MK as described below.
The hash function used is SHA-256.

KMAC ‖ KMLE = HMACMK(Sequence ‖ “Thread”) (8.2)

Fresh MAC and MLE keys are generated when the default key rotation timer (set
to 672 hours) expires. The Sequence number is incremented by one, the KeyIndex
value is updated, the HMACMK function is executed and the key rotation timer is
rearmed. When refreshing the keys, the outgoing MAC and MLE frame counters are
reset to zero.

When receiving an MLE message with a different Sequence number set in the
Key Source field, the receiver computes a temporary key using the received sequence
as described in Equation 8.2. In the case of MAC frames, if the received KeyIndex
is not equal to the computed KeyIndex from Equation 8.1, the receiver will generate
a temporary key only when the absolute difference between the two values is one.
This temporary key allows a node to synchronize with its Parent after a period of
absence from the Thread network.

Each Thread node, regardless of its type and role, stores the security material
and network parameters of the Thread network to its non-volatile memory to be
able to rejoin the network after a reset without human intervention.

8.2.2 Mesh Link Establishment (MLE)

The Mesh Link Establishment (MLE) protocol facilitates the secure configuration
of radio links and exchange of network parameters. The MLE messages are sent
inside UDP datagrams with the source and destination ports set to 19788. The
security of MLE messages is provided by AES in CCM mode using the MLE key
KMLE . The Auxiliary Security Header, Source IP address and Destination

IP address are authenticated using a 32-bit message integrity code (MIC), while
the payload is encrypted. The Auxiliary Security Header of an MLE message
includes the 4-byte Key Source.

A Thread Router periodically multicasts MLE Advertisement messages to adver-
tise its presence. Such a message is sent at an interval between 1 and 32 seconds
after the previous advertisement was sent by the same Router. The Thread REEDs
advertise their presence by multicasting a similar message every ten minutes on
average.

The process of establishing a communication link between two Thread nodes
N1 and N2 is depicted in Figure 8.1. In this case, the Child node N1 is creating a

160 An Electromagnetic Vulnerability Analysis of Thread

communication link with its Parent N2 in three phases: Attaching, Child Synchro-
nization, and Link Synchronization. This message exchange occurs, for example,
when an MTD reconnects to a Thread network.

Before initiating the MLE message exchange shown in Figure 8.1, the Child
sends an MLE Discovery Request to locate the existing Thread devices. It gets
in response an MLE Discovery Response message containing the Thread network
channel number and its PAN ID.

In the Attaching phase, the Child (N1) multicasts an MLE Parent Request mes-
sage with a randomly generated 8-byte challenge. All Routers and REEDs that
receive this request store the received challenge and answer with an MLE Parent

Response message including the received challenge and a new random 8-byte chal-
lenge. N1 selects one of the answers it receives based on the link quality and unicasts
an MLE Child ID Request message that includes the received challenge to the corre-
sponding node N2. The Parent sends an MLE Child ID Response which may include
the network configuration parameters. Then, the Child Synchronization takes place.
The Child sends an MLE Child Update Request to its Parent and gets in response
an MLE Child Update Response message.

The communication link is established in the Link Synchronization phase. Initially,
the Child multicasts an MLE Link Request message containing an 8-byte random
challenge. The Parent answers with an MLE Link Accept & Request message that
includes the received challenge and a new randomly generated challenge. The Child
confirms the Parent request by sending an MLE Link Accept message, which includes
the challenge received from the Parent.

Child (N1) Parent (N2)

MLE Parent Request
MLE Parent Response

MLE Child ID Request
MLE Child ID Response

Attach.

MLE Child Update Request
MLE Child Update Response

Child
Sync.

MLE Link Request
MLE Link Accept & Request

MLE Link Accept
Link
Sync.

Figure 8.1: Establishing a communication link between two Thread nodes.

8.3 Threat Model

The are numerous avenues an attacker can try to compromise a Thread network.
While some threats were well understood and properly mitigated in the design phase
of the networking stack, others were less obvious and thus overlooked. The latter ones

8.3 Threat Model 161

are harder to eliminate as the protocol becomes more mature and widely used [242].
We make a classification of the possible attack types in the IoT environment, without
aiming at a complete coverage of all threats specific for these settings. The threat
modeling we performed for Thread can be easily adapted to other IoT protocols and
the lessons learned from this study can be employed to protect other IoT solutions
as well.

The goal of our threat model is to provide a classification and a better under-
standing of Thread’s attack surface. The attacker attempts to affect one or more of
the basic security functions: confidentiality, integrity, and availability. The primary
goal of the attacker is to get access into a Thread network in order to intercept and
understand the communication or to take control of the network. Other objectives in-
clude, but are not limited to, disrupting the normal network operation by performing
a DoS attack or altering data sent across the network through a man-in-the-middle
attack.

Similar to the work of Atamli and Martin [21], we consider three main entities
that can threaten the security of an IoT system: legitimate user, device maker, and
malicious adversary. A legitimate user poses a threat to the security of an IoT
system when, for example, she seeks to bypass the authentication, authorization,
and accounting mechanisms used by the target system. In this way, she might
unlock restricted features of the device or use the existing ones without paying for
them. A device maker can threaten the security of an IoT system either accidentally
(e.g. poorly implemented security mechanism) or deliberately (e.g. aiming to collect
user’s data). Finally, a malicious adversary is the classical attacker willing to get
unauthorized access to a system or to damage that system.

Depending on the location of the attacker with respect to the target system, we
distinguish between: remote, proximity, and invasive attacks. The powerful remote
attacks are well understood from the classical Internet-connected systems. Although,
some IoT protocols such as Thread assume that not all IoT devices inside a network
are directly accessible from the Internet. Thus the attack surface of remote attacks
on IoT networks is reduced compared to the attack surface of the same attacks on
the classical Internet. The IoT is a highly heterogeneous environment with devices
deployed in various, including distant, locations. In such settings, it is hard to enforce
the physical security of these systems that become vulnerable to proximity and even
invasive attacks. Proximity attacks can be performed without physical access to the
target device and thus are harder to detect than invasive attacks. A summary of
the attack types specific to the IoT is given in Table 8.2.

Proximity attacks are very feasible in the IoT since most protocols use wireless
communication means and are deployed in easily accessible spots. Hence, the attacker
can easily get in the proximity of a Thread device and observe it performing various
operations. Given the ubiquitous nature of the IoT, it is expected that the attacker
is able to quickly identify such target devices. We assume the attacker can carry a
portable oscilloscope and an EM probe required to perform an EM analysis attack.

We do not restrict the attacker’s capabilities in terms of equipment or physical
location to accurately capture the current state of security in the IoT with respect
to EM analysis attacks.

162 An Electromagnetic Vulnerability Analysis of Thread

Attack type Attack Mitigation

remote
software exploitation system hardening

guessing password
strong security policy

brute force

proximity EM analysis
side-channel

countermeasures
invasive

power analysis

fault attacks

flash read-out flash read-out protection

Table 8.2: Summary of the attack types specific to the IoT.

8.4 Side-Channel Vulnerability Analysis

The goal of our vulnerability analysis was to investigate attack paths that can provide
full access to a Thread network. This allows us to sniff and understand all network
traffic, to add new devices into the network, and to take control of the network
by changing the security material. In order to achieve this, we explored different
attack vectors to recover the security material of the network. We first explore the
feasibility of several active attacks paths; these are attacks in which the attacker
injects packets to trigger different operations on the target nodes. Then, based on
the results of the active attacks, we can estimate how successful a passive attack
exploiting the same mechanism could be.

We did not look for implementation-specific issues such as buffer overflow attacks,
fragmentation attacks, or improper input sanitization, because they would be mean-
ingful only for a particular software implementation. We did not include attacks
that affect the availability of the network such as denial-of-service (DoS) attacks in
our scope. Below we present the most promising attack paths. Other attack paths
are described in Section 8.8.

8.4.1 Relationship between MK and KMLE

Having the master key MK and Sequence number, a node can compute the MLE
key KMLE using Equation 8.2. If a node possesses the MLE key KMLE but does
not have the master key MK, it can send an MLE Child ID Request to ask for the
network master key. Its Parent will answer with an MLE Child ID Response, which
includes the Master Key TLV containing the requested master key MK. This means
that MK and KMLE are equivalent, in the sense that if a node has one of them,
it can easily compute or retrieve the other one. Giving access to the master key
to nodes having a key derived from it generates serious security issues as we will
describe later.

However, this approach has a major limitation. The Master Key TLV is just

8.4 Side-Channel Vulnerability Analysis 163

a small fraction of the data included in the MLE Child ID Response. Although
the attacker can ask for some specific TLVs in his request, the Parent decides the
exact content of the response message. If the answer fits into a single MLE message,
then the response is encrypted only at the MLE layer. As the total payload length
of the MLE Child ID Response message exceeds the maximum transmission unit
(MTU) of 127 bytes, the MLE message is fragmented at the 6LowPAN layer. When
fragmentation occurs, all resulting fragments are encrypted at the MAC layer using
KMAC . Thus, the attacker has to first decrypt the MAC frames, then to reassemble
the fragments of the original MLE message, and finally to decrypt the MLE message
in order to get the value of the Master Key TLV.

Hence, the attacker can get the master key when she knows only the MLE key
if the response MLE message is not fragmented and thus not encrypted at the
MAC layer. We note that this mechanism is not affected by the OBTAIN_MASTER_KEY

bit of the Security Policy TLV. When set, the OBTAIN_MASTER_KEY bit enables a
Commissioner to extract the master key for out-of-band commissioning after she was
authenticated.

This mechanism does not help a node to reconnect to a Thread network if the
network master key was changed while it was sleeping because the node does not
possess a valid MLE key to ask for the new master key. Thus its MLE requests will
be dropped, and it has to be commissioned again by a human to the Thread network.

8.4.2 Processing of an MLE Parent Request

An obvious option for an attacker is to exploit the very first message exchange
that allows a Child to connect to a Parent in a Thread network. Next we detail
how a Router processes the first message sent by a Child that wishes to establish a
communication link with a Parent.

Upon receipt of an MLE Parent Request message, the receiving Router extracts
the received Sequence number from the Key Source field. Then, it compares the
value of the received Sequence with its current internal Sequence number. There
are two possible cases:

• If the two sequence numbers are equal, then the Router continues by processing
the authentication tag of the received MLE message using the current MLE
key KMLE of the Thread network.

• If the two sequence numbers are not equal, then the Router derives a temporary
key from the received Sequence number. The Router uses this temporary MLE
key K ′

MLE to process the authentication tag of the received message.

If the resulting tag is the same as the authentication tag present in the received MLE

Parent Request message, then the Router prepares a response. Else, it will drop
the received MLE message.

Whatever processing path the Router follows, it will perform at least an AES-
CCM operation on the received message. Thus, an attacker can easily trigger
executions of HMAC-SHA256 or AES-CCM by pretending to be a Child willing to
connect to a Parent. If the attacker chooses to trigger HMAC-SHA256 executions

164 An Electromagnetic Vulnerability Analysis of Thread

on the receiving Router, she has to inject MLE Parent Request messages with a
different Sequence number from the one observed in MLE Advertisement messages.
On the other hand, if the attacker is interested in observing AES-CCM computations
with the current network MLE key KMLE , she has to inject MLE Parent Request

messages with the same Sequence number. Hence, an attacker not yet connected to
the target Thread network can take advantage of a normal network mechanism used
to establish a communication link between a Child and a Parent Router to trigger
executions of the underlying cryptographic algorithms with sensitive key material at
her own will.

8.4.3 Attack on Key Generation

An attacker can inject MLE Parent Request messages with a chosen Sequence
number. When receiving an MLE Parent Request with a different Sequence number
from its own Sequence number, a Router will derive a temporary MLE key using
Equation 8.2.

Although it is possible to trigger executions of the HMAC function, the number
of input bytes controlled by attacker is not enough to make the recovery of the
master key MK possible as we show next.

IV F

MK ⊕ ipad

F

m

IV F

MK ⊕ opad

F KMAC ‖ KMLE

k1

k2

Figure 8.2: Key generation using HMAC.

The key derivation is pictorially shown in Figure 8.2. The one-way compression
function of SHA-256 is denoted by F . The input message m to the HMAC function
is obtained by concatenating the 4-byte Sequence number with the 6-byte represen-
tation of the “Thread” string, the 46 bytes of padding, and the 8-byte message length
len: m = Sequence ‖ “Thread” ‖ 0x80 0x00 . . . 0x00 ‖ len. It is easy to observe
that the only variable part of the message m is the Sequence number. Thus, the
attacker controls exactly four bytes of the input message of the HMAC function.

If the attacker could recover k1 = F (IV,MK⊕ipad) and k2 = F (IV,MK⊕opad),
then she could generate the MLE and MAC keys having only the correct Sequence
number, but not the master key MK. Though, having the current MAC and MLE
keys of the Thread network, the attacker can get the network master key from a
Thread node as described in Section 8.4.1. In order to recover k1 and k2, the attacker
will target executions of the compression function F (k1,m). The attacker controls
four bytes (a 32-bit word) of the input message, which are mixed in the first iteration
of the compression function F with constant but unknown bytes of the internal state.

8.4 Side-Channel Vulnerability Analysis 165

As a consequence, she can learn the relationship between four unknown but constant
32-bit words by attacking a 32-bit modular addition in the first iteration. The attack
stops here, because the attacker can not propagate it to the next iterations in absence
of known and variable data.

Thus, an attacker can not exploit executions of the HMAC function in unprotected
implementations using a CPA attack due to the limited control she has over the
input. Though, the attacker still has the option to perform a template attack. Due
to the complexity of the profiling phase required for mounting a template attack,
we decided to stop our investigation at this point and to explore other attack paths
instead.

8.4.4 Attack on the AES in CCM Mode

By injecting MLE Parent Request messages with the same Sequence number as the
one used by the target Thread network, an attacker triggers executions of the AES
in CCM mode with the current MLE key on the receiving Routers and REEDs.

A typical input block for the two stages (AES-CBC and AES-CTR) of the
AES-CCM is shown in Figure 8.3. The constant (fixed) input bytes are given in
hexadecimal notation, while the variable bytes are colored in gray. The first input
block of the AES in CBC mode is very similar to the first input block of the AES
in CTR mode. The first input byte is used for flags and thus is fixed. The last
three input bytes are also fixed. The antepenultimate byte specifies the security
level (0x05). As in the MAC layer of IEEE 802.15.4, this value indicates the use of
encryption and authentication with a 4-byte message integrity code (MIC). In the
case of AES-CBC the last two bytes are used to indicate the input plaintext length,
while in the case of AES-CTR they represent the counter value. The counter value
starts from one because the all-zero counter value is used for the computation of the
authentication tag [115]. The variable bytes for both input blocks are the 8-byte
source MAC address and the 4-byte frame counter.

(a) 49 Source MAC Address Frame Ctr 05 00 15

(b) 01 Source MAC Address Frame Ctr 05 00 01

Figure 8.3: Input format for the first block of (a) AES-CBC and (b) AES-CTR.

An attacker can choose to craft MLE Parent Request messages having different
payload lengths. As a consequence, the last byte of the AES-CBC is variable. This
additional variable byte does not improve the attack outcome, but it is very likely to
trigger an alert for abnormal network traffic in an intrusion detection/prevention
system (IDS/IPS), if available.

To successfully mount a CPA attack, the attacker needs to vary a part of the
input of the AES-CCM executions. As shown, an attacker can control up to 12 bytes
of the input for AES executions. Thus, she can target either the first execution of
the AES in CBC mode or the first execution of the AES in CTR mode.

166 An Electromagnetic Vulnerability Analysis of Thread

Since the attacker does not control all input bytes, she has to attack three rounds
of the AES in order to recover the 16-byte key. To propagate the CPA attack to the
later rounds, the attacker must use the method described by Jaffe [175] to compute
temporary keys that incorporate the constant input bytes. We found this MLE key
recovery attack vector very promising and we chose to exploit it. Details of the full
attack are given in Section 8.5.

8.5 Implementation of the Most Feasible Attack

In this section we describe each individual step of an attack path against a Thread
network that chains the vulnerabilities presented above in the most feasible way.
Then, we present the experimental setup we used to perform the attack. We show
and analyze the results of the attack. Finally, we discuss the cost and complexity of
the full attack.

The attack consists of the following four steps:

1. The attacker eavesdrops on the network traffic and records the Sequence
number present in the MLE Advertisement messages sent by Thread Routers
and REEDs.

2. The attacker observes and records the EM emanations of a target Router or
REED while she injects MLE Parent Request messages. The injected messages
use the observed Sequence number to trigger executions of the AES with the
current network MLE key. The variable and known inputs necessary to perform
the CPA attack are the source MAC address and frame counter fields. They are
randomly generated for each injected message. We stress that the side-channel
attack is applicable only to Thread Routers and REEDs because they process
the MLE Parent Request messages. This step requires the attacker to be in
the proximity of the target device such that she is able to reliably measure the
EM emissions. After the attacker has recorded enough traces, she continues
with the next step of the attack.

3. The attacker correlates the observed EM leakages with a hypothetical model
of a key-dependent sensitive intermediate variable in order to determine the
unknown key. In practice, CPA is an efficient technique and thus it is employed
to recover the MLE key used during the observed computations.

4. Having the current MLE key of the network, the attacker attaches to a Thread
Router. She asks the Router for the network configuration parameters including
the master key by sending an MLE Child ID Request message. The Router
will give the attacker the requested information in an MLE Child ID Response

message.

It is essential for the success of the attack that all the above-mentioned steps
succeed. Failure of any of these steps will render the full attack infeasible. The
success of the last step highly depends on how the Parent handles the MLE Child

ID Request messages and on the length of the MLE Child ID Response message as

8.5 Implementation of the Most Feasible Attack 167

discussed in Section 8.4.1. If the message is fragmented and therefore additionally
encrypted with the MAC key, the attacker will need to recover KMAC . For example,
the MAC key can be recovered by mounting a CPA attack on the AES-CCM
executions that use KMAC . Though this is a possible path, we believe that it makes
the attack even more complex and we do not analyze it further.

An important factor that can be controlled to a certain extent by the attacker is
the quality of the side-channel acquisition. The better the signal-to-noise ratio of
the recorded traces, the fewer traces the attacker will need. The number of traces
required to recover the MLE key influences the duration of the acquisition. Thus,
the risk of the attacker being noticed increases as she needs more EM traces. The
reason is twofold. Firstly, the attacker has to spend more time in the vicinity of
the target Router or REED. Secondly, she has to inject more messages to trigger
executions of the AES.

Once the attacker has the network configuration parameters, including the security
material, she has all the rights of a genuine member of the Thread network. Hence,
she is able to communicate with other nodes and can understand the communication
between other nodes. The attacker can commission new devices to the Thread
network. She can become a Router and then change the network parameters so that
the owner of the Thread network loses the control over his network.

8.5.1 Experimental Setup

8.5.1.1 Thread Network

We created our own Thread network consisting of two CC2538EM wireless micro-
controllers [349]. These devices were an obvious choice since they were the first
to support the OpenThread implementation [263]. Moreover, our experimental
network uses one of the seven products (device and software stack bundle) certified
by the Thread Group [352]. The CC2538EM microcontroller has an ARM Cortex-M3
processor clocked at 32 MHz, up to 512 KB of flash memory and an IEEE 802.15.4
radio transceiver. The purchasing cost of this hardware was much smaller than that
of similar devices shipped with proprietary implementations of Thread.

Initially, we experimented using the source code of Open-Thread to understand the
communication and the network mechanisms. Then, we modified the source code such
that we were able to generate various sequences of messages. Following this approach
we were able to better understand the source code and we inferred information about
part of the Thread specifications. We emphasize that OpenThread’s codebase is
very complex. Thus, understanding the relevant network mechanisms to our analysis
was a challenging task that required a tremendous effort. Finally, we modified the
state machine of the OpenThread implementation to make an attacker able to inject
custom-crafted messages.

8.5.1.2 Measurement Setup

For the acquisition of the EM emissions from the target device, we used a Teledyne
LeCroy WaveRunner 625Zi [347] oscilloscope. Initially, we ran AES encryptions in a

168 An Electromagnetic Vulnerability Analysis of Thread

loop on the target device and we used an EM probe to locate the spots that leak
information during these executions. To hasten the process we firstly checked the
area around the chip and then several decoupling capacitors we could identify using
the schematic and layout of the board [349].

(a) H-field probe. (b) Near field probe.

Figure 8.4: The EM probes used for measurement of the EM leakage.

We started to capture the EM signal with a relatively cheap NewAE H-field
probe having a 15 mm coil as shown in Figure 8.4a. Because the signal-to-noise ratio
was not satisfactory, we switched to a more precise (coil sizes of about 1 mm) and
relatively more expensive set of near field probes from Langer (see Figure 8.4b). We
set the probe a few millimeters above the target board. For the results reported in
this chapter we fixed the sampling rate to 1 GS/s. A lower sampling rate (500 MS/s)
significantly affected the attack outcome, while a higher sampling rate (5 GS/s) did
not significantly improve the results.

The attacker’s board running the custom implementation of OpenThread gen-
erated a trigger signal on an output port each time an injected message was sent.
This signal was used by the oscilloscope to record the EM emissions. The injected
messages and the corresponding EM traces acquired by the oscilloscope were saved on
a personal computer. The target board ran a genuine implementation of OpenThread
and acted as a Router in our Thread network. We stress that no dedicated trigger
signal was provided from the target board. We chose to power the target board from
a regulated power supply rather than from a PC USB port to reduce the noise. These
settings accurately replicate a real usage scenario of a Thread device. Admittedly,
the network traffic may not be similar to the one of a real Thread network with very
active data transfers.

8.5.2 Alignment of the Electromagnetic Traces

Once the side-channel acquisition is over, the attacker has to align the EM traces.
The timing of different events that occur during the acquisition of a trace are shown
in Figure 8.5. The injected message is sent at t0 and the oscilloscope is triggered.
The oscilloscope records the sampled signal between δmin and τ = δmax + tAES ,
while the relevant part for the attacker tAES is between t1 and t2.

The attacker has to determine experimentally the interval in which the relevant
part of the AES execution is very likely to start at δ ∈ [δmin, δmax]. Besides, she can

8.5 Implementation of the Most Feasible Attack 169

timet0 δmin t1 δmax t2 τ

δ ∈ [δmin, δmax]

tAES

recorded samples

Figure 8.5: Timing of various events that occur during the acquisition of an EM
trace.

record a sufficiently long interval that includes the relevant samples for most of the
measurements. For our experiments, the value of δ was in the interval [555, 564] µs,
while the relevant part of the AES execution tAES took 14.656 µs.

As illustrated by Figure 8.5, the relevant AES execution occurs at different
locations in the recorded traces. For the CPA attack to work, the attacker has to
extract and align the relevant samples from the recorded traces. To this end, the
attacker builds a pattern consisting of interesting samples by precisely identifying
the relevant computations within a trace. We were able to visually identify the first
round of the AES in the first trace and thus we used this part as the alignment
pattern.

We explored two methods for alignment of the EM traces: Sum of Absolute
Differences (SAD) and Cross-Correlation (CC). For the sake of accuracy we quantified
the precision of the alignment for each of the two methods. We raised a signal when
the relevant part of a trace starts and we compared the corresponding sample number
to the determined sample number by the SAD and CC methods. The comparison
showed that a difference between the two values of more than three samples occurs
for less than 1% of the traces. Therefore, both methods are very efficient. We chose
to use the SAD method because it was a little bit faster while discarding slightly
less traces than the CC method.

8.5.3 Attack Results

The most difficult step of the attack was the side-channel acquisition. Indeed, we
spent about half of the total time devoted to mount the full attack on improving the
side-channel attack outcome. This was an iterative process, which required a good
understanding of the EM leakage of the target and fine adjustments of the attack
parameters. The type and position of the probe are crucial for the quality of the
side-channel acquisition.

The number and quality of the EM traces required to recover the MLE key
determine the cost of the full attack. Our experimental results showed that 10,000
EM traces are sufficient. We note that two key bytes were much more difficult to
recover than the rest. We tried different side-channel techniques, including linear
regression attacks [218], but we did not see an improvement. This behaviour is
determined by the hardware characteristics of the target device, the clock frequency,

170 An Electromagnetic Vulnerability Analysis of Thread

and the sequence of instructions executed by the target device. It does not depend on
the value of the attacked key byte, but on its location. Similar results were reported
in the side-channel literature [219].

The acquisition of 10,000 EM traces took about three hours. Given the cost of
the active attack, a passive attack scenario is rendered almost impossible. It is very
likely that the temporary keys are changed before the attacker has observed enough
executions for different input messages.

The last step of the attack appeared to be impossible in a recent version of
the OpenThread implementation we experimented with (commit 11c1b49), because
the fragmentation of the MLE Child ID Response messages (and therefore their
additional encryption with KMAC) can not be avoided. We do not exclude the
possibility to get non-fragmented answers from other stacks depending on the Parent
implementation.

8.5.4 Improving the Attack

Although the attacker can control up to 12 bytes of the input as shown in Section 8.4.4,
she might want to fix the two input bytes corresponding to the key bytes that are
difficult to recover. This requires some understanding of the target’s leakage, but it is
by far easier to perform and much more reliable than a template attack. For example,
the attacker can use a similar device running OpenThread to learn which key bytes
are more difficult to attack and then adjust the variable input bytes accordingly.

To further optimize the attack, one can search an input configuration that
minimizes the number of attacked bytes while considering the input constraints. The
number of AES rounds that have to be attacked in order to recover the full key must
be kept to the minimum value of three, since attacking more rounds requires more
EM samples and thus increases the cost of the measurement equipment as well as
the duration of the offline attack.

In our case, there are 45 out of the 210 − 1 possible input configurations that
minimize the number of attacked bytes. Compared to the straightforward attack,
the improved attack reduces the number of individual CPA attacks from 44 to 37,
which results in a 16% improvement.

The novelty of the improved attack stems from the fact that the attacker can
adjust her attack strategy depending on the leakage of the target by fixing some
input bytes she can control. To the best of our knowledge, we are the first to use
this attack techniques to improve the outcome of a CPA attack. The total number
of traces required to recover the full key can be decreased by about 50%, to no more
than 5,000 EM traces. Another advantage of this approach is that the attack may
pass undetected when it uses fewer variable input bytes because the injected packets
resemble normal network traffic. A detailed description of the technique used to
improve this attack is provided in Chapter 7.

8.6 Feasibility and Limitations 171

8.6 Feasibility and Limitations

The main question arising is perhaps the relative complexity of the attack and the
realism of the setting where the attacker needs to be in a very close proximity of a
Thread Router or REED with a digital oscilloscope. This is a reasonable question,
especially in the setting where Thread brings IPv6 to the end nodes and opens up
the remote attack surface. We are realistic to state that the attacks we outlined
are currently beyond the reach of an average hacker familiar just with software and
networking techniques (and absolutely not for “script kiddies”), and apply only in
particular settings. Section 8.7 shows a formalized quantification of the attack effort
common to the smart card world.

8.6.1 Equipment Cost

The need of specialized equipment (i.e. a digital oscilloscope, an EM probe, and
if needed an amplifier) hinders fast widespread application of the attack. In our
experiments, we have used a high-end digital oscilloscope because we just had one
available. Our experiments suggest that perhaps the cheapest available side-channel
analysis hardware, ChipWhisperer [252], would not be sufficient to succeed on most
of the targets due to its relatively low sampling rate. However, low- to mid-range
digital oscilloscopes such as the Picoscope [275] should be sufficient. Combined with
the increased availability of tooling to perform the analysis part of the side-channel
attack, starting from the software tooling and tutorials of [252] to higher-performance
toolkits like [323] and [76], this makes us claim that the attack is well feasible. With
side-channel techniques and expertise becoming more mainstream in the hacker
community, the threat of such attacks increases.

8.6.2 Portability

Our attack is moderate in portability. Namely, on another target family (a different
hardware or software implementation) the attacker would most likely need to tune the
side-channel attack to that target in terms of probe position, alignment parameters,
etc. Hence, she has to invest into the identification phase of the attack. Due to the
physical nature of side-channel attacks, our complexity estimate is based on one
particular implementation we analyzed. For other implementations the complexity
may be lower or higher; the attack may require a less or more expensive oscilloscope;
however, for an unprotected cryptographic implementation we expect the same order
of magnitude in terms of the amount of traces (and therefore time).

8.6.3 Other Attacks

Though we considered in our analysis a side-channel capable adversary, we were
not excluding attack paths that do not require the use of side-channel techniques
and therefore specialized equipment. However, we did not discover any paths that
do not require specialized equipment. They may still exist, though. We did not
consider other implementation attacks such as fault injection attacks or timing

172 An Electromagnetic Vulnerability Analysis of Thread

Factors
Identification Exploitation

Rating Score Rating Score

Elapsed time more than 1 month 5 less than 1 day 3
Expertise expert 5 proficient 2
Knowledge of TOE public 0 public 0
Access to TOE less than 10 0 less than 10 0
Equipment specialized 3 specialized – standard 3
Open samples public/not required 0 – –
Sum 13 8

Total 21 (enhanced-basic)

Table 8.3: Attack rating using an adaptation of the rating for smart cards from Joint
Interpretation Library [330].

attacks. They may be applicable and there may be settings where they are a realistic
threat, especially timing attacks that can be performed remotely without specialized
equipment [3].

The advantage of our attack is that it would circumvent IP protocol protections
such as firewalls, akin to the recent ZigBee worm [300], thus may serve as a more
feasible entry-point to the system. A limitation of our attack is that it does not
address the application layer security mechanisms that would normally be deployed
on top of the Thread networking stack. However, such mechanisms are not addressed
by Thread.

8.7 Quantification of the Attack Effort

There is no standard procedure to quantify the attacker’s potential to perform an
attack on an IoT device. Thus, we use an adaptation of the rating for smart cards
from the Joint Interpretation Library [330] to rate our attack. The rating procedure
interprets the Common Criteria methodology based on smart card evaluation experi-
ence gained by the industry. It is used in practice by testing laboratories to quantify
the resistance of smart cards to various attacks, including protocol and side-channel
attacks. The aforementioned procedure distinguishes two independent phases for
an attack: identification and exploitation. The identification phase refers to the
demonstration of the attack, while the exploitation phase considers the impact of the
attack when all necessary tools are readily available from the identification phase.

Next, we briefly introduce the factors considered by the rating methodology. The
elapsed time defines the time required by the attacker to mount the attack from
the moment she has access to the target. The expertise reflects the knowledge the
attacker should have to mount the attack. The knowledge of the target of evaluation
(TOE) indicates the level of access to the specifications. In the case of our attack,
although the access to the official specifications is restricted, relevant information
can be inferred from the open-source implementation placed in the public domain.

8.8 Additional Attack Paths 173

The number of different devices on which the attacker needs to perform the attack is
captured by the access to TOE factor. The technical resources required for the attack
are comprised in the equipment factor. Finally, the open samples factor measures
to which extent the attacker is able to modify the software running on the target
device. For more details, we refer the reader to [330].

The individual scores for each factor are given in Table 8.3 for an implementation
where the last step of the attack is feasible. The final score of 21 classifies our attack
as an enhanced-basic attack. The rating places our attack in between basic attacks
that are easy to perform and enhanced attacks that require an advanced effort.

8.8 Additional Attack Paths

8.8.1 Attack on Loading the Security Material

Template attacks are powerful side-channel attacks that can recover sensitive values
using very few traces. Thus, an attacker can purchase a device similar to the one to
be attacked to create EM profiles. Then, she can force the targeted Thread device
to reset such that she can observe the EM emanations corresponding to the loading
of the network parameters from non-volatile memory. In particular, the attacker is
interested to capture the loading of the network master key MK and commissioning
key CK. Though powerful, template attacks depend on the quality of the templates
made in the profiling phase. Thus, we did not investigate this attack vector further.

8.8.2 Elliptic Curve Implementations

The execution of elliptic curve computations might be vulnerable to timing [198]
or Simple Power Analysis (SPA) [200] attacks if not properly implemented. The
OpenThread implementation of the Thread networking stack relies on mbed TLS [18]
for cryptographic services. Recently, Dugardin et al. showed that the point blinding
countermeasure must be activated in mbed TLS for elliptic curve implementations
to prevent horizontal and vertical template attacks [113]. We did not investigate
into this direction further.

8.9 Countermeasures

Although it is desirable to achieve a defense in depth for a Thread network by
employing redundant security mechanisms, other factors such as manufacturing costs
or usability pose major constraints. Thus, a trade-off between these contradicting
requirements should be sought to ensure an appropriate level of security. Though
inspired by our case study of Thread, the countermeasures laid out next are applicable
to other IoT protocols and devices as well. They are valuable for both protocol
designers and engineers of IoT products.

174 An Electromagnetic Vulnerability Analysis of Thread

8.9.1 Tamper Resistance

We suggest the use of shielded and tamper resistant components and cases. A
trade-off between cost and product dimensions would be to insert small air gaps
between the circuitry and the external case. This would most likely require device
disassembly to enable EM analysis, making the attack more cumbersome to perform.

8.9.2 Protected Cryptographic Implementations

We stress that in scenarios where side-channel attacks pose a threat, Thread imple-
mentations should employ side-channel protection mechanisms for the manipulation
of the security material. Consequently, the loading of the security material as well
as all cryptographic algorithm implementations should use countermeasures, such as
masking and hiding [223]. If the cost of the countermeasures is prohibitive, offloading
the cryptographic algorithms to hardware cryptographic engines might be a good
trade-off. In general, it is harder (but still feasible) to attack a hardware implemen-
tation than a software implementation. Protected hardware implementations should
be considered where both high security and high performance are necessary.

8.9.3 Fresh Re-keying

When the cost of protecting the cryptographic implementations of a block cipher is
too high, fresh re-keying schemes can be used to prevent side-channel attacks [236,
235, 110]. These schemes make use of a re-keying function to generate new session
keys based on the secret master key and random nonces for every block of message
to be encrypted. Although fresh re-keying has the benefit that the re-keying function
can be protected against side-channel attacks at a much lower cost than the block
cipher [109], it involves significant changes in the protocol.

8.9.4 Protocol-level Mitigations

We suggest to consider ways to mitigate the presented attack paths at the protocol
level, changing the network mechanisms that facilitate the attacks. Most importantly,
disabling or limiting the message exchange that allows a node to get the network
master key by sending an MLE Child ID Request message to its Parent should be
considered. Rate limiting the incoming MLE Parent Request messages processed
by a Parent (Router or REED) significantly slows the attacker, but care should be
taken not to expose the network to DoS attacks. A more complex solution would be
to design a mechanism for tracking valid commissioned devices in a Thread network.
Such a mechanism would have the benefit that it allows a Router to treat incoming
messages differently depending on the node status. This is a rough idea that needs
further investigation.

8.9.5 Security Certification Scheme

We recommend enforcing a security certification scheme for Thread products in
addition to the functional certification scheme currently in place. Although a

8.10 Summary 175

certification scheme can not prevent new attacks, the benefits for the security of
the whole ecosystems are obvious. A security certification seal increases consumer
awareness of possible security issues and attests resistance to known attacks. The
major drawbacks are an increase of the overall price and an additional delay before
the certified products are available on the market.

8.10 Summary

We conducted the first electromagnetic side-channel vulnerability analysis of the
Thread networking stack. We described how different network mechanisms that
can be learned by the attacker from the published OpenThread code can be used
to create attack vectors for side-channel attacks. We showed that some of the
side-channel attack paths are hard or impossible to exploit in the context of Thread.
We implemented the most promising attack path that provides complete access to
the Thread network. It exploits a chain of network mechanism and side-channel
attacks on executions of unprotected implementations of cryptographic algorithms.

The full attack did not succeed in an experimental network of OpenThread nodes.
We consider the setting where the last attack step is indirectly prevented by the MLE

Child ID Response payload size to be insufficient to rely upon. Firstly, it is not
in the design of the protocol that the master key is protected by both KMLE and
KMAC . Additional protection by the KMAC is a side effect (though, of course, a
fortunate one). Secondly, a possibility to request the master key having the derived
key(s) is questionable security-wise as it subverts the essence of key derivation using
HMAC. Hence, we suppose that the full attack may succeed with moderate effort in
other implementations of the stack.

The possibility of an arbitrary Thread device to trigger cryptographic operations
and responses from a commissioned Thread device at unlimited rate presents a
standalone risk of a denial-of-service attack.

The lessons learned from our work can be applied to other IoT systems and
protocols as well. Our threat model can be used to better shape the attack surface
of future IoT products and prevent issues such as: processing of invalid injected
messages, EM leakage, converting temporary keys into master key, and using a single
network master key to secure the whole network. In light of our results, designers
of future protocols for the IoT should carefully consider the threat of side-channel
attacks from the early inception.

In general, we demonstrated that in the context of a modern IoT network protocol
mounting a side-channel attack is not trivial. Similar to a modern software exploit,
it requires chaining multiple vulnerabilities. Nevertheless, such attacks are feasible.
Being perhaps too expensive for settings like smart homes, they pose a relatively
higher threat to commercial settings.

Part III

Side-Channel Countermeasures

Chapter 9

Optimal First-Order Boolean

Masking

Contents

9.1 Introduction . 179

9.1.1 Boolean Masking . 180

9.1.2 Contributions . 182

9.2 Search Algorithm . 182

9.2.1 Description . 182

9.2.2 Optimality . 183

9.2.3 Instruction Set Architecture (ISA) 185

9.2.4 Leakage Model . 185

9.2.5 Extension to Higher-Order Masking 185

9.2.6 Other Improvements . 185

9.2.7 Results . 185

9.3 Applications . 186

9.3.1 Modular Addition and Subtraction 186

9.3.2 Other Applications . 189

9.4 Implementations . 189

9.4.1 Masked Addition . 190

9.4.2 Lightweight Block Ciphers 191

9.5 Summary . 196

9.1 Introduction

The Internet of Things (IoT) is one of the technical revolutions of our time, with
vast amounts of IoT devices being deployed every day to create a global network
of smart objects. According to Gartner, 8.4 billion connected things will be in use
worldwide by the end of 2017 [136]. From 2018 onwards, Gartner forecasts that

180 Optimal First-Order Boolean Masking

devices to be used in smart buildings (LED lighting, HVAC, and physical security
systems) will have the biggest market share [136]. In light of the very recent security
vulnerabilities [84, 300] discovered in such devices, immediate action is required to
prevent large-scale security incidents similar to the Mirai botnet [14].

The attack surface of IoT devices is considerably larger than the attack surface
of classical Internet-connected systems due to the various use cases these gadgets,
sensors, and actuators are built for. Most of the IoT systems are characterized by
low physical security, with devices being deployed in easily accessible places. As a
consequence, attack vectors that exploit these weaknesses came to light. Side-channel
attacks, such as EM and power analysis attacks, fall into this category of attack
vectors that require physical proximity to the target system. If the target system
uses an unprotected implementation of a cryptographic algorithm, the adversary can
determine the secret key used by the system from the leakage generated during the
execution of the algorithm. Hence, countermeasures against side-channel attacks are
mandatory for the security of IoT devices.

There are two main requirements an implementation of a cryptographic algorithm
to be deployed in the IoT has to satisfy. On the one hand, the implementation must
be lightweight (i.e. consume few resources) considering the limited computational
resources of embedded devices for the IoT. On the other hand, the implementation
must be secure against side-channel attacks given the attack surface specific to
the IoT. Most implementations of the existing lightweight ciphers do not satisfy
the second requirement, either because the ciphers were not designed to facilitate
the integration of countermeasures, or because the best existing countermeasures
add significant performance penalties to the unprotected implementations of the
ciphers. Therefore, there is a need for more efficient countermeasures, especially DPA
countermeasures like masking. Any improvement of the existing masking schemes
brings us closer to the ultimate goal of a secure IoT.

9.1.1 Boolean Masking

Conceptually, Boolean masking of a block cipher is done by replacing each unpro-
tected operation by its masked counterpart. The most common operations used by
lightweight block ciphers are logical operations (NOT, AND, OR, XOR), rotations,
and modular addition/subtraction. Masked NOT is equivalent to the negation of a
single share, while masked XOR and rotations can be realized by simply applying
the operation to each pair of shares independently.

To our knowledge, the best known expression for first-order masking of bitwise
AND is based on the Trichina AND gate [358]. The same expression of the masked
AND was latter used by Coron et al. in their algorithm for masked addition on
Boolean shares [85]. The sequence of operations used to compute AND on Boolean
shares (i.e. SecAnd) is provably secure thanks to a random value that is mixed with the
input shares. While the expression of masked AND initially proposed by Trichina can
be easily found in the literature, there is almost no reference to a similar expression
for masked OR. Hence, one might try to derive such an expression by applying De
Morgan’s laws to the masked AND expression. The resulting expression requires

9.1 Introduction 181

Secure operation Cost Randoms

SecNot 1 0
SecXor 2 0
SecShift 4 1

SecShiftFill 6 1

SecAnd 8 1
SecOr 8 1

SecAdd 28 · n+ 4 2
SecSub 41 · n+ 4 2

Table 9.1: The cost (in number of elementary operations) and the number of randoms
of different secure operations; n = max

(

⌈log2(k − 1)⌉, 1
)

, where k is the size of the
shares in bits.

eleven elementary operations and a random value. However, Baek and Noh [25]
gave a better expression for a masked OR gate that requires only six elementary
operations and no random value. They also described how to compute an AND gate
using eight elementary operations and no random value. Their AND gate can be
seen as a version of the Trichina AND gate in which the random value is replaced by
one of the input shares. The best known algorithm for secure addition on Boolean
shares is based on the Kogge-Stone adder [85]. This algorithm is provably secure
because it uses provably secure operations and all its intermediates are uniformly
distributed.

In this chapter, we consider the Trichina AND gate [358] to be the reference
expression for performing a bitwise AND on Boolean shares. We consider the OR
gate proposed by Baek and Noh [25] with an injected random value as the reference
expression for bitwise OR. We selected these two expressions because they are
provably secure and hence they facilitate security proofs for more complex algorithms
such as secure addition on Boolean shares [85].

We divide the secure operations on Boolean shares into three classes according
to their computational cost. The first class includes all secure operations with
a cost of at most six instructions (e.g. SecXor, SecShift). Then, the second class
contains operations that can be masked using up to a dozen instructions (e.g. SecAnd,
SecOr). Finally, the third class is represented by operations that need more than 12
instructions. Secure algorithms for modular addition/subtraction on Boolean shares
(SecAdd, SecSub) belong to this latter class since they rely on secure operations from
the first two classes.

A detailed description of SecXor, SecShift, SecAnd, and SecAdd can be found
in [85, 367]. SecShiftFill shifts a sensitive value represented by Boolean shares n bits
to the left and sets the n − 1 least significant bits to 1. We briefly describe the
algorithms for secure addition (SecAdd) and subtraction (SecSub) on Boolean shares
in Section 9.3.

In this chapter, we study the efficiency of Boolean masking for embedded IoT

182 Optimal First-Order Boolean Masking

devices. Although our work is not limited to a specific microprocessor architec-
ture, we evaluate our implementations on a 32-bit ARM Cortex-M3 since these
microcontrollers are widely used for IoT applications [284].

9.1.2 Contributions

Firstly, we present an algorithm for efficient search of Boolean masking expressions
(Section 9.2). Thanks to several algorithmic optimizations, the search is very fast. As
a second contribution, we propose concrete expressions for Boolean masking of the
AND and OR operations (Section 9.2.7). We describe an expression of bitwise AND on
Boolean shares using fewer operations than the best known expression in the literature.
At the same time, our expression for secure AND does not require any randomness.
Thirdly, we improve the Kogge-Stone algorithm for addition/subtraction on Boolean
shares [85] by using our masking expressions and by processing the shares in a clever
way that does not require any randomness (Section 9.3.1). When implemented on an
ARM Cortex-M3 processor (Section 9.4.1), the addition/subtraction of 32-bit values
using the new algorithm is between 18% and 25% faster than similar implementations
using the original algorithm [85]. Finally, we use our expressions for Boolean masking
of AND and OR to develop first-order masked implementations of three lightweight
block ciphers, namely Simon, Speck, and RECTANGLE (Section 9.4.2). By
comparing the performance figures of the masked and unmasked implementations
of the three ciphers, we learn which design strategies facilitate efficient masked
implementations.

9.2 Search Algorithm

9.2.1 Description

Our search algorithm (Algorithm 6) uses a breadth-first approach to determine the
optimal masked representations of a given Boolean function. Its inputs are the number
of shares, the target function that has to be masked, a set of sensitive functions
that leak some information about the sensitive values, and a set of operations that
can be used to build new expressions. The search algorithm returns a set of pairs,
where each pair describes how to compute the shares of the target function in a way
that does not leak. For instance, we used the following input parameters to search
first-order masked expressions of bitwise AND:

• Number of shares: n = 2. Hence, the two input sensitive variables x and y
are split into two shares each such that x = x1 ⊕ x2 and y = y1 ⊕ y2.

• Target function: t(x1, x2, y1, y2) = (x1 ⊕ x2) ∧ (y1 ⊕ y2). The output of the
search algorithm is a set of pairs (z1, z2) such that z1 ⊕ z2 = t(x1, x2, y1, y2).

• Sensitive functions: S = {s0, s1, s0∧s1,¬s0∧s1, s0∧¬s1,¬s0∧¬s1}, where
s0 = x1 ⊕ x2 and s1 = y1 ⊕ y2. Each sensitive function s ∈ S leaks some
information about the values that have to be masked.

9.2 Search Algorithm 183

• Operations: O = {¬,⊕,∧,∨}. The algorithm builds expressions using opera-
tors from the set O.

The search algorithm explores sequences of expressions (or terms) until some
terms of a sequence can be used to compute the target function. The term of a
sequence which requires the highest number of operations determines the cost of
that sequence. The search starts with an empty sequence, which is extended using
the input shares and operators into sequences of cost 1. In subsequent steps, all
sequences of cost k (k ≥ 1) are extended into sequences of cost k + 1. A sequence is
extended using its previous terms, the input shares, and the input set of operators.

An expression is identified by its truth table, which is stored as a stream of bits
for efficiency reasons. The main role of a sequence is to avoid computing several
times the repeating terms of an expression. Hence, the search algorithm is faster,
but the memory requirement increases. The search space is greatly reduced by three
cut-off conditions:

• Leakage test. A sequence is extended only if the new expression e to be
added to that sequence does not leak information about the input sensitive
functions s ∈ S. In other words, the following relation must hold to consider
the extended sequence:

HW(s ∧ e)

HW(e)
=

HW(s ∧ ¬e)

HW(¬e)
,

where HW(f) denotes the Hamming weight of the truth table of function f .
In addition to this leakage test, which is a fast initial filter, the leakage of the
expressions returned by the search algorithm is assessed using Welch’s t-test.

• Ignoring the order of operations. If two or more sequences are equal (i.e.
they compute the same intermediate expressions), the algorithm explores only
the sequence that is reached first.

• Exploiting the symmetries of shares. The input and output shares of a
symmetric operation (e.g. AND) can be swapped without affecting the result.
This property allows the search algorithm to explore just one representative
sequence for all equivalent sequences.

9.2.2 Optimality

We stress that the algorithm is designed to find optimal expressions. Any optimal
expression can be computed using at least one non-leaking sequence of operations.
The search algorithm explores all possible sequences, except for those that are
discarded by the cut-off conditions. The first cut-off condition reduces the search to
non-leaking sequences, while the other two conditions limit the exploration to a single
representative per equivalence class of sequences. This representative has minimum
cost thanks to the breadth-first nature of the algorithm. Hence, the algorithm returns
pairs of optimal expressions that can be used to securely compute the target function.

184 Optimal First-Order Boolean Masking

Algorithm 6 Searching for optimal expression

Input:
number of input shares: n ⊲ Input shares: xi and yi for 1 ≤ i ≤ n
target function: t : F2n

2 → F2

set of sensitive functions: S = {si}, si : F
2n
2 → F2

set of operations: O = {oi}, oi : F
2
2 → F2

Output:
set of n functions Z = {zi}, zi : F

2n
2 → F2 such that z1 ⊕ z2 ⊕ . . .⊕ zn = t

1: opt_cost← −1
2: seq0 ← ∅
3: cost← 0
4: while cost 6= opt_cost do
5: seqcost ← ∅
6: cost← cost+ 1
7: for all seq ∈ seqcost−1 do
8: seq′ ← Extend(S, seq)
9: seqcost ← seqcost ∪ seq′

10: if ValidExpression(t, seq′) then
11: opt_cost← cost
12: yield seq′

13: end if
14: end for
15: end while
16: function Extend(S, seq)
17: for all a, b ∈ seq ∪ {x1, x2, . . . , xn, y1, y2, . . . yn} do
18: for all o ∈ O do
19: seq′ ← o(a, b)
20: if Explore(S, seq′) then ⊲ Check the cut-off conditions
21: yield seq′

22: end if
23: end for
24: end for
25: end function
26: function ValidExpression(t, seq)
27: for all z1, z2, . . . , zn ∈ seq do
28: if t == z1 ⊕ z2 ⊕ . . .⊕ zn then
29: return (z1, z2, . . . , zn)
30: end if
31: end for
32: end function

9.2 Search Algorithm 185

9.2.3 Instruction Set Architecture (ISA)

We distinguish between two classes of IoT devices depending on the operations
supported by the instruction set architecture (ISA): basic and enhanced devices.
Most IoT devices have instructions only for the following bitwise logical operations:
NOT, AND, OR, and XOR. We call these architectures basic ISAs. In addition to
these operations, the enhanced ISAs have dedicated instructions for other bitwise
logical operations, such as AND NOT or OR NOT. For example, the instruction set
of ARM Cortex-M3 includes the bic (AND NOT) and orn (OR NOT) instructions
that perform two basic bitwise logical operations in a single clock cycle instead of
two clock cycles. Most microcontrollers execute all logical instructions in a single
clock cycle.

9.2.4 Leakage Model

The power consumption of most microcontrollers is proportional to the number of bits
that are set in the processed sensitive value [223]. Therefore, the Hamming weight
power model is a reliable method for modeling the leakage of a sensitive variable. In
addition to the bit-level leakage verification performed by the search algorithm, we
performed a t-test leakage assessment [148] for each valid expression returned by the
algorithm to confirm the absence of any leakage. We used fixed-vs.-random t-test
evaluations and two leakage models: Hamming weight and Hamming distance.

9.2.5 Extension to Higher-Order Masking

Our algorithm can naturally be extended to search expressions for higher-order
masking. However, further optimizations are required to ensure that the algorithm
scales well for a higher number of shares. The main limiting factor of our algorithm
is the amount memory required to store the valid sequence of expressions, although
both computational and memory complexity increase with the number of shares (i.e.
masking order).

9.2.6 Other Improvements

Our search algorithm might benefit from the approach proposed by Groß [152] to
tackle a similar problem. Namely, instead of searching for an optimal sequence of
instructions, one can try all combinations of truth tables that give a target function
and then convert them to a circuit using a tool such as Logic Friday [217].

9.2.7 Results

The optimal expressions for masked SecOr use 6 instructions on both platforms,
while the optimal expressions for SecAnd have a cost of 7 on a basic device and 6
on ARM. The expressions for SecOr and SecAnd using basic instructions are unique
up to symmetries of the shares, whereas for ARM there are 48 different optimal
expressions for SecAnd and 50 different optimal expressions for SecOr. The unique
optimal expressions for a basic architecture are actually included in the optimal

186 Optimal First-Order Boolean Masking

Source Operation Expression Rand
Cost

Basic ARM

reference

SecAnd

z1 = r
1 8 8

z2 = z1 ⊕ (x1 ∧ y1)⊕ (x1 ∧ y2) ⊕
(x2 ∧ y1)⊕ (x2 ∧ y2)

SecOr

z1 = r
1 8 8

z2 = z1 ⊕ (x1 ∨ y1)⊕ (x1 ∧ y2) ⊕
(x2 ∨ y2)⊕ (x2 ∧ y1)

our
SecAnd

z1 = (x1 ∧ y1)⊕ (x1 ∨ ¬y2) 0 7 6
z2 = (x2 ∧ y1)⊕ (x2 ∨ ¬y2)

SecOr
z1 = (x1 ∧ y1)⊕ (x1 ∨ y2) 0 6 6
z2 = (x2 ∨ y1)⊕ (x2 ∧ y2)

Table 9.2: Expressions, number of randoms (“Rand”) and number of operations
(“Cost”) for different secure operations. Basic cost gives the number of elementary
operations, while the ARM cost gives the number of instructions. Expressions in
parentheses have priority and operations are executed from left to right.

expressions for the ARM architecture, which makes them universal. A comparison of
these two expressions with the reference expressions is given in Table 9.2. Our results
show that the expression of the masked OR gate proposed by Baek and Noh [25] is
optimal. On the other hand, our expression for bitwise AND uses less instructions
than the masked AND gate of Baek and Noh [25] and the Trichina AND gate [358].
Besides using less operations than the reference expressions, our optimal expressions
do not require a random value. Thanks to these two properties, our expressions have
a significant performance advantage over the reference ones.

9.3 Applications

9.3.1 Modular Addition and Subtraction

Coron et al. [85] proposed a logarithmic-time algorithm for modular addition on
Boolean shares based on the Kogge-Stone adder. Their algorithm for modular
addition uses the following three secure operations: SecAnd, SecXor, and SecShift.
The expression of SecAnd uses 8 elementary operations, the one of SecXor needs 2
elementary operations, while SecShift can be performed using 4 elementary operations.
Algorithms for all these operations are presented in [85, 367]. Although not described
in the original paper [85], the algorithm for modular subtraction can be obtained from
the algorithm for modular addition on Boolean shares by making several changes.
Namely, the SecShift operations from lines 7 and 15 of [85, Algorithm 6] have to be
replaced by SecShiftFill (secure operation for shift to the left by n bits followed by
OR of 2n − 1). Similarly, SecXor operations from lines 9 and 17 of [85, Algorithm 6]
must be replaced by SecOr. These changes affect the performance of the modular
subtraction algorithm since operations with a lower cost are replaced by operations

9.3 Applications 187

with a higher cost.
One can improve the algorithms for modular addition/subtraction based on

the Kogge-Stone adder by simply replacing the original expressions for SecAnd and
SecOr with our optimal expressions. Yet, the algorithm can be improved further by
replacing the expression of the SecShift operation, which requires a random variable,
by a more efficient expression that does not require any randomness. Hence, the
new versions of the algorithm do not require any randomness at all. The improved
algorithm for addition on Boolean shares is described in Algorithm 7, while the
analogous algorithm for subtraction is presented in Algorithm 8. It is important to
note that lines 3, 10, and 12 of Algorithm 7 are required to prevent composition
of operations that otherwise will leak. Similarly, lines 4, 10, 12, 14, and 19 of
Algorithm 8 avoid composing operations that leak.

Algorithm 7 Improved Kogge-Stone masked addition

Input: x1, x2, y1, y2 ∈ {0, 1}
k such that x = x1 ⊕ x2 and y = y1 ⊕ y2

Output: z1, z2 such that z = z1 ⊕ z2 = (x+ y) mod 2k

1: p1, p2 ← SecXor(x1, x2, y1, y2)
2: g1, g2 ← SecAnd(x1, x2, y1, y2)
3: g1 ← (g1 ⊕ x2)⊕ g2 ⊲ g2 = x2
4: n← max

(

⌈log2(k − 1)⌉, 1
)

5: for i := 1 to n− 1 do
6: h1, h2 ← SecShift(g1, g2, 2

i−1)
7: u1, u2 ← SecAnd(p1, p2, h1, h2)
8: g1, g2 ← SecXor(g1, g2, u1, u2)
9: h1, h2 ← SecShift(p1, p2, 2

i−1)
10: h1 ← (h1 ⊕ x2)⊕ h2 ⊲ h2 = x2
11: p1, p2 ← SecAnd(p1, p2, h1, h2)
12: p1 ← (p1 ⊕ y2)⊕ p2 ⊲ p2 = y2
13: end for
14: h1, h2 ← SecShift(g1, g2, 2

n−1)
15: u1, u2 ← SecAnd(p1, p2, h1, h2)
16: g1, g2 ← SecXor(g1, g2, u1, u2)
17: z1, z2 ← SecXor(y1, y2, x1, x2)
18: z1 ←

(

z1 ⊕ (g1 ≪ 1)
)

⊕ (x2 ≪ 1) ⊲ z2 = y2

9.3.1.1 Masking Cost

A comparison between the cost of the secure expressions used by the original version
of the algorithm and the new expressions used by the improved version of the
algorithm is provided in Table 9.3. Based on these values, one can compute the total
cost of these algorithms for different architectures and make an estimation of their
performance for different values of the operand size k.

The original version of the algorithm for modular addition on Boolean shares
requires 2 SecShift operations, 2 SecAnd operations, 1 SecXor operation and 2 other

188 Optimal First-Order Boolean Masking

Algorithm 8 Improved Kogge-Stone masked subtraction

Input: x1, x2, y1, y2 ∈ {0, 1}
k such that x = x1 ⊕ x2 and y = y1 ⊕ y2

Output: z1, z2 such that z = z1 ⊕ z2 = (x− y) mod 2k

1: y1, y2 ← SecNot(y1, y2)
2: p1, p2 ← SecXor(y1, y2, x1, x2)
3: g1, g2 ← SecAnd(x1, x2, y1, y2)
4: g1 ← (g1 ⊕ x2)⊕ g2 ⊲ g2 = x2
5: n← max

(

⌈log2(k − 1)⌉, 1
)

6: for i := 1 to n− 1 do
7: h1, h2 ← SecShiftFill(g1, g2, 2

i−1)
8: u1, u2 ← SecAnd(p1, p2, h1, h2)
9: g1, g2 ← SecOr(g1, g2, u1, u2)

10: g1 ← (g1 ⊕ x2)⊕ g2 ⊲ g2 = x2
11: h1, h2 ← SecShift(p1, p2, 2

i−1)
12: h1 ← (h1 ⊕ x2)⊕ h2 ⊲ h2 = x2
13: p1, p2 ← SecAnd(p1, p2, h1, h2)
14: p1 ← (p1 ⊕ y2)⊕ p2 ⊲ p2 = y2
15: end for
16: h1, h2 ← SecShiftFill(g1, g2, 2

n−1)
17: u1, u2 ← SecAnd(p1, p2, h1, h2)
18: g1, g2 ← SecOr(g1, g2, u1, u2)
19: g1 ← (g1 ⊕ x2)⊕ g2 ⊲ g2 = x2
20: z1, z2 ← SecXor(y1, y2, x1, x2)

21: z1 ←
(

z1 ⊕
(

(g1 ≪ 1) ∨ 1
)

)

⊕ (x2 ≪ 1) ⊲ z2 = y2

elementary operations in the main loop, hence 28 · (log2 k− 1) elementary operations.
Outside the main loop, it requires 1 SecShift operation, 2 SecAnd operations, 3
SecXor operations, and 4 other elementary operations. Therefore, the total cost is
28 · log2 k + 4 for both basic and enhanced architectures.

The cost of the improved algorithm for addition on Boolean shares can be
computed similarly. The main loop consists of 2 SecShit operations, 2 SecAnd

operations, 1 SecXor operation, and 4 elementary operations. The rest of the
algorithm uses 1 SecShift operation, 2 SecAnd operations, 3 SecXor operations, and
6 elementary operations. In other words, the cost of the improved algorithm for
modular addition on Boolean shares is 22 · log2 k + 4 on ARM and 22 · log2 k + 6 on
basic architectures.

In the same way, one can compute the cost of the original and improved algorithms
for modular subtraction on Boolean shares. All these values are summarized in
Table 9.4 alongside the gain of the improved algorithms over the original ones
for common values of the operand size k. We see that the improved algorithms
outperform the original algorithms on both platforms by at least 6 · log2 k elementary
operations, where k is the operand size.

9.4 Implementations 189

Platform Source
Cost

SecNot SecXor SecAnd SecOr SecShift SecShiftFill

Basic
reference 1 2 8 8 4 6
our 1 2 7 6 2 4

Improvement 0 0 1 2 2 2

ARM
reference 1 2 8 8 4 6
our 1 2 6 6 2 4

Improvement 0 0 2 2 2 2

Table 9.3: Comparison of the number of instructions required to perform different
secure operations.

9.3.1.2 Leakage Assessment

We evaluated the secure operations presented in this section, including the two
improved algorithms for addition and subtraction on Boolean shares, against first-
order attacks using Welch’s t-test [148]. Welch’s t-test is a fast and robust way to
verify the soundness of a masking scheme [103, 308]. To determine if there is any
leakage in our first-order implementations, we used a simple tool similar to the ones
described in [233, 271, 291]. Firstly, we validated the correctness of our tool by
performing evaluations against a set of masking schemes known to be either secure
or broken. Then, we carefully applied the t-test to avoid false negatives [333]. All
our secure implementations passed a set of fixed-vs.-random evaluations with up
to 106 traces using both Hamming weight and Hamming distance models for the
simulated leakage.

9.3.2 Other Applications

The optimal expressions for secure computation of AND and OR can be used to
mask more complex structures such as S-boxes. They can also be used to efficiently
mask ciphers that use only logical bitwise operations such as Simon [38], as well as
bit-sliced designs such as Noekeon [97], RECTANGLE [391], or RoadRunneR [35].
In Section 9.4, we evaluate how these expressions can be applied to unprotected im-
plementations of several lightweight block ciphers and we determine the performance
penalty of the resulting first-order protected implementations.

9.4 Implementations

In this section we describe our efficient implementations of several first-order secure
algorithms and block ciphers. All our implementations are written in assembly
language for a Cortex-M3 processor for two reasons. Firstly, we wanted to avoid
accidental leakages introduced by the transformations made by the GCC compiler
which is not optimized for masked implementations, but only for efficiency [28].
On the other hand, when coding in assembly language, the implementer has full

190 Optimal First-Order Boolean Masking

Operation Platform Expressions Rand
Operand size

k 8 16 32 64

SecAdd

Basic
reference 2 28 · log2 k + 4 88 116 144 172
our 0 22 · log2 k + 6 72 94 116 138

Improvement 2 6 · log2 k − 2 16 22 28 34

ARM
reference 2 28 · log2 k + 4 88 116 144 172
our 0 22 · log2 k + 4 70 92 114 136

Improvement 2 6 · log2 k 18 24 30 36

SecSub

Basic
reference 2 38 · log2 k + 4 118 156 194 232
our 0 32 · log2 k + 6 102 134 166 198

Improvement 2 6 · log2 k − 2 16 22 28 34

ARM
reference 2 38 · log2 k + 4 118 156 194 232
our 0 30 · log2 k + 6 96 126 156 186

Improvement 2 8 · log2 k − 2 22 30 38 46

Table 9.4: Cost and random numbers (“Rand”) required for Kogge-Stone addition/sub-
traction on Boolean shares for different values of the operand size k. Basic cost
gives the number of elementary operations, while the ARM cost gives the number of
instructions.

control of the register allocation and the sequence of instructions executed by the
microcontroller. Hence, she can avoid combining instructions and registers in a way
that leaks [28, 271]. Secondly, we wanted to get a clear picture of the performance
figures of our implementations in order to conduct a fair comparison of the first-order
implementations. Hence, the effort spent by a programmer on a more demanding
assembly implementation is paid off in the end by a better (i.e. more secure and
efficient) implementation.

In line with previous work, we do not include the cost of random number
generation for the implementations that need randomness since the cost of random
number generation is different from one device to the other and we want a device-
independent comparison.

9.4.1 Masked Addition

We implemented the original algorithms for addition and subtraction on Boolean
shares as well as the improved algorithms presented in this chapter. For each
algorithm we wrote a straightforward implementation and an implementation that
unrolls the main loop of the Kogge-Stone adder. The execution time and code size
of our implementations are given in Table 9.5.

The improved algorithms are between 18% and 25% faster than the original
algorithms. At the same time, the code size of the improved algorithms is between
22% and 37% smaller than the code size of the original ones. Unlike the original
algorithms, which require two random values, the improved algorithms do not require

9.4 Implementations 191

Impl. Expressions Rand
Time (cycles) Code size (bytes)

Addition Subtraction Addition Subtraction

rolled

reference 2 336 452 380 492
our 0 252 372 252 380

Improvement 2 84 80 128 112
% 25% 17.69% 33.68% 22.76%

unrolled

reference 2 274 359 764 1048
our 0 205 281 584 816

Improvement 2 69 78 180 232
% 25.18% 21.72% 23.56% 22.13%

Table 9.5: Execution time and code size for secure addition and subtraction on
Boolean shares using the Kogge-Stone adder.

any random value. The generation of a 32-bit random number takes between 37
cycles for a XorShift RNG [225] and 85 cycles for the built-in TRNG [16]. Hence,
the improved algorithms for addition and subtraction on Boolean shares outperform
the original algorithms in all categories: execution time, code size, and required
randomness.

9.4.2 Lightweight Block Ciphers

We selected the top-3 block ciphers that use a 64-bit block from the performance
evaluation conducted using the FELICS benchmarking framework [105] and we
protected them against first-order attacks using the best known algorithms for secure
operations on Boolean shares as well as the ones introduced in this chapter. Besides
their very lightweight software implementations, these three ciphers (Speck, Simon,
and RECTANGLE) have different design strategies. Hence, they facilitate an analysis
of the relationship between their design strategies and the performance figures of
their masked implementations.

9.4.2.1 Speck

Speck [38] is an ARX-based family of lightweight block ciphers designed for per-
formance in software. Nevertheless, all ciphers of this family perform very well in
hardware also. Speck-64/128 refers to the version of Speck characterized by a
64-bit block, a 128-bit key, and 27 rounds. The round function of Speck-64/128
uses only bitwise XOR, addition modulo 232, and rotations:

Rk(x, y) =
(

(

(x ≫ 8)⊞ y
)

⊕ k, (y ≪ 3)⊕
(

(x ≫ 8)⊞ y
)

⊕ k
)

,

where x and y are the two 32-bit branches of a Feistel network.
While the unprotected implementation of Speck requires only four registers

in order to process the cipher’s state, the protected implementations need all 13

192 Optimal First-Order Boolean Masking

Impl./Expr. Rand
Time (cycles) Code size (bytes) Penalty factor

Enc Dec Enc Dec Enc Dec

unprotected 0 318 530 44 52 1 1

rolled KSA/reference 2 8994 12018 428 564 28.28 22.67
rolled KSA/our 0 6583 9342 308 452 20.70 17.62

Improvement 2 2411 2676 120 112
% 26.80% 22.26% 28.03% 19.85%

unrolled KSA/reference 2 6890 9430 808 1108 21.66 17.79
unrolled KSA/our 0 5334 7305 612 844 16.77 13.78

Improvement 2 1556 2125 196 264
% 22.58% 22.53% 24.25% 23.82%

Table 9.6: Execution time, code size and performance penalty factor for different
secure implementations of Speck-64/128. For each set of expressions (best known,
our) we wrote two implementations that correspond to the two implementation
strategies of the Kogge-Stone adder (KSA): rolled/unrolled KSA.

general-purpose registers of the Cortex-M3 microcontroller. Moreover, the rolled
implementations have to save the content of a register on the stack at the beginning
of the secure addition/subtraction. The initial value of this register is recovered at
the end of the addition/subtraction operation. A pair of stack operations (i.e. push
and pop) adds 4 cycles to the total execution time of the algorithm.

The implementations of Speck based on the improved algorithms for modular
addition and subtraction on Boolean shares are faster and use less code space than
the implementations of Speck based on the original versions of the same algorithms
as can be seen in Table 9.6. The gain of the improved algorithms over the reference
ones is at least 28% for both rolled and unrolled implementations. On the other
hand, the improvement in code size varies between 20% and 28%.

9.4.2.2 Simon

Simon [38] is a family of lightweight block ciphers designed primarily for optimal
performance in hardware, but its instances perform very good in software as well.
The round function of Simon uses only bitwise XOR, bitwise AND, and rotations:

Rk(x, y) =
(

y ⊕ f(x)⊕ k, x
)

,

where f(x) = (x ≪ 1) ∧ (x ≪ 8) ⊕ (x ≪ 2). Simon-64/128 is the instance of
Simon that processes a 64-bit block using a 128-bit key in 44 rounds.

The two protected implementations of Simon are very efficient since the opera-
tions used by the cipher can be masked with a little impact on the execution time
and code size. The most costly operation is secure bitwise AND which, depending
on its expression, can be evaluated using 6 or 8 instructions. The other secure
operations require only 2 instructions each. The unprotected implementation of

9.4 Implementations 193

Impl./Expr. Rand
Time (cycles) Code size (bytes) Penalty factor

Enc Dec Enc Dec Enc Dec

unprotected 0 1068 1113 60 64 1 1

reference 1 1956 1904 160 164 1.83 1.71
our 0 1888 1670 140 144 1.76 1.50

Improvement 1 68 234 20 20
% 3.47% 12.28% 12.5% 12.19%

Table 9.7: Execution time, code size and performance penalty factor for different
secure implementations of Simon-64/128.

Simon needs only four registers. The first-order protected implementation based on
the reference expression of AND requires ten registers, while the one based on our
optimal expression of AND takes nine registers.

The gain in execution time of the implementation based on the improved expres-
sion of AND over the implementation based on the reference expression of AND
is modest for encryption (i.e. 3%) but significant for decryption (i.e. 12%). The
improvement in code size is about 12%. The results of these implementations are
presented in Table 9.7.

9.4.2.3 RECTANGLE

RECTANGLE [391] is a block cipher designed to facilitate lightweight and fast
implementations, both in hardware and software, using bit slicing. RECTANGLE
processes a 64-bit block in 25 rounds and supports keys of 80 and 128 bits. We refer
to the 128-bit version of RECTANGLE as RECTANGLE-64/128. The cipher’s state
is represented as a matrix of 4× 16 bits. Each round of RECTANGLE uses three
transformations: AddRoundKey (bitwise XOR), SubColumn (application of a 4-bit
S-box to the state columns), and ShiftRow (rotations of the state rows by 1, 12 and
13 bits). The S-box of RECTANGLE can be described using a sequence of 12 basic
logical instructions and hence the SubColumn transformation can be implemented in
a bit-sliced fashion.

The unprotected implementation of RECTANGLE requires seven registers for
encryption and eight for decryption. The protected implementations use all available
registers of the microcontroller and several pairs of stack operations (i.e. push and
pop). The protected implementation based on the reference expressions uses five pairs
of stack operations, while the one based on our optimal expressions uses only three
pairs for encryption and four pairs for decryption. The stack operations are necessary
because the protected implementations have to keep track of more intermediate
variables than they can fit into the registers of the ARM microcontroller.

The performance figures given in Table 9.8 show that the encryption based on
our expressions is 15% faster than encryption based on the reference expressions.
On the other hand, decryption takes roughly the same time for both reference and
improved expressions. The improvement in code size is modest for both encryption

194 Optimal First-Order Boolean Masking

Impl./Expr. Rand
Time (cycles) Code size (bytes) Penalty factor

Enc Dec Enc Dec Enc Dec

unprotected 0 945 994 200 160 1 1

reference 1 3470 3326 640 460 3.67 3.46
our 0 2937 3315 620 436 3.10 3.33

Improvement 1 533 11 20 24
% 15.36% 1.10% 3.12% 5.21%

Table 9.8: Execution time, code size and performance penalty factor for different
secure implementations of RECTANGLE-64/128.

0 500 1000 1500 2000 2500 3000 3500 4000
sample

8
6
4
2
0
2
4
6
8

t
v
a
lu

e

Figure 9.1: The result of the t-test applied to our implementation of Speck.

(i.e. 3%) and decryption (i.e. 5%).

9.4.2.4 Leakage Assessment

The tool we used to assess the security of our implementations against first-order
attacks is inspired from similar tools such as ELMO [233], ASCOLD [271], and the
one described in [291]. The simulated leakages are computed as follows. For each
register ri we store its previous value rj−1

i and its current value rji . At each step j

we dump two leakages HW(rji) and HD(rj−1
i , rji) = HW(rj−1

i ⊕ rji), where HW(r) is
the Hamming weight of r.

The result of the t-test applied to 106 simulated traces from our first-order pro-
tected implementation of Speck is exemplarily shown in Figure 9.1. Similar results
for Simon and RECTANGLE are given in Figure 9.2 and Figure 9.3, respectively. All
results are based on implementations that use our expressions for secure computation
of AND and OR on Boolean shares. We can see that the value of the t-statistic
is inside the ±4.5 interval for each point in time, which implies that the protected
implementations are secure against first-order attacks.

9.4.2.5 Comparison

When comparing the performance results of the unprotected implementations of
the three ciphers (see Figure 9.4), one can see that Speck is the fastest, followed
by RECTANGLE and Simon; each of them takes about three times more cycles

9.4 Implementations 195

0 200 400 600 800 1000 1200
sample

8
6
4
2
0
2
4
6
8

t
v
a
lu

e

Figure 9.2: The result of the t-test applied to our implementation of Simon.

0 500 1000 1500 2000 2500
sample

8
6
4
2
0
2
4
6
8

t
v
a
lu

e

Figure 9.3: The result of the t-test applied to our implementation of RECTANGLE.

than Speck. On the other hand, when comparing first-order protected implementa-
tions, the implementations of Simon and RECTANGLE take the lead, while the
implementation of Speck is the last one. The performance degradation of the first-
order protected implementation of Speck stems from the high overhead associated
with masking modular addition (see Table 9.5). The protected implementation of
RECTANGLE is roughly three times slower than its unprotected implementation.
Finally, the protected implementation of Simon is less than twice slower than its
unprotected implementation.

From this analysis, we learn that lightweight block ciphers that are very fast in
unprotected software implementations (e.g. Speck), might not be the most suitable
ones for first-order masking in software. A second key remark is that a cipher that
uses only bitwise operations can have an efficient first-order masked implementation
only if it has a small number of intermediate variables.

9.4.2.6 Discussion

Our implementations explored how far one can push the optimization level in Boolean
masking of various algorithms and ciphers. However, we lost the benefit of being
able to provide strong security proofs for our implementations. But, one can simply
insert a random value in our expressions for masked AND and OR to obtain provably
secure expressions similar to the reference expressions.

Our first-order implementations did not require fresh random values, but there
are situations where the composition of two expressions leaks. In such situations,
one can inject a fresh random value to preserve the security of the masking scheme.
Another option is to use our search algorithm to find an expression that computes

196 Optimal First-Order Boolean Masking

unprotected first-order

Implementation

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

E
xe

c
u
ti
o
n

ti
m

e
(c

y
c
le

s
)

SPECK SIMON RECTANGLE

Figure 9.4: Performance comparison of unprotected and first-order protected imple-
mentations of Speck, Simon, and RECTANGLE.

the composed operations in a secure way.

9.5 Summary

We described an efficient algorithm for searching of optimal Boolean masking ex-
pressions. Then, we proposed optimal expressions for the first-order masking of
bitwise AND and OR. They require less elementary operations and no random values
compared to the reference expressions in the literature. Based on these optimal
expressions, we presented an improved version of the algorithm for modular addition
on Boolean shares proposed by Coron et al. [85]. We implemented the original and
improved algorithms for modular addition/subtraction of 32-bit values on an ARM
Cortex-M3. Our results show that the improved algorithm is between 18% and 25%
faster than the original algorithm of Coron et al. [85]. Finally, we used our optimal
Boolean masking expressions to write first-order protected implementations of three
lightweight block ciphers, namely Simon, Speck, and RECTANGLE. The evaluation
of these implementations revealed that ciphers with simple structure, based solely on
bitwise logical operations and rotations, facilitate efficient software implementations
of first-order masking.

The work presented in this chapter can be improved in several ways. First, we
need to get a better understanding of what operations can be securely composed
in order to prevent sequences of operations that leak sensitive values. Second,
the security of the proposed implementations against first-order attacks should be
validated using traces measured from an actual device instead of simulated leakages.

Chapter 10

Conclusion

In this thesis, we studied efficient and secure implementations of lightweight symmet-
ric cryptographic primitives for resource-constrained devices that are widely used in
the IoT. In this context, our results provide a better understanding of how to design,
implement, and protect lightweight symmetric cryptographic algorithms for software
applications on various microcontrollers.

A major part of this work was devoted to efficient software implementations. At its
core sits the FELICS benchmarking framework, which addresses the need for fair and
consistent evaluation of software implementations of lightweight symmetric algorithms
in a transparent way. Namely, all implementations use the same programming
interface and are placed in the public domain together with the benchmarking
framework. FELICS extracts accurate values for three metrics (code size, RAM
consumption, and execution time) from three different microcontrollers (8-bit AVR,
16-bit MSP, and 32-bit ARM) in various usage scenarios specific to the IoT. Since
its initial release, the framework has become a reference point for assessing the
efficiency of software implementations of lightweight cryptographic algorithms. The
endorsement of the community is a clear confirmation that the project achieved its
initial design goals. We used FELICS to evaluate how suitable implementations of
19 lightweight block ciphers are for resource-constrained applications on the three
aforementioned platforms. The performance figures revealed that designs based
on simple operations (addition/AND, rotation, and XOR) yield the most efficient
implementations. The top performers are Chaskey, Speck, Simon, RECTANGLE,
LEA, and Sparx. The implementations of these ciphers have small code and RAM
requirements, while being very fast on all three platforms. FELICS facilitated
informed decision-making based on software efficiency in the design phase of the
Sparx family of lightweight block ciphers. As a result, Sparx is very fast in
software and provably secure against simple differential and linear cryptanalysis.
The benchmarking results of Sparx place it among the most efficient lightweight
block ciphers evaluated using FELICS. Thanks to its flexible structure, the execution
time of Sparx reaches the top 3 on MSP and the top 5 on AVR. Moreover, its
implementations broke the previous minimum RAM consumption records on AVR
and MSP. Finally, we employed FELICS to determine the cost of the main building
blocks used in lightweight symmetric algorithms. The results of this comprehensive

198 Conclusion

study are directly applicable to the design process of new symmetric ciphers intended
for efficient software implementations. The best building blocks use simple operations
on 32-bit values such as bitwise logical operations, modular addition/subtraction,
and rotations by carefully chosen amounts.

In the second part of this thesis, we evaluated the security of lightweight crypto-
graphic implementations from the viewpoint of an attacker. Our proactive approach
was geared towards security against side-channel attacks that exploit the power con-
sumption or the electromagnetic emanations of devices that execute a cryptographic
algorithm. We analyzed the efficiency of different selection functions commonly
used in correlation power analysis (CPA) attacks to identify the best operations
an adversary should target to mount an effective attack. Our results show that
lightweight block ciphers can be divided into two classes according to their resilience
against CPA attacks. The first class contains ciphers that are implemented using
lookup tables, while the second class comprises designs whose operations (modu-
lar addition/subtraction, bitwise logical operations) generally leak less than table
lookups. Then, we showed that unprotected implementations of the AES, such as
those found in many open-source cryptographic libraries, are vulnerable to side-
channel attacks even when the attacker has limited control of the input, which is the
case in network communication protocols. For this attack scenario, we introduced
an attack algorithm that can recover the master key using an optimal number of
CPA attacks. We broke unprotected implementations of the AES based on the S-box
and T-table strategies by controlling a single byte of the input with less than 1600
electromagnetic traces acquired from a 32-bit ARM Cortex-M3 processor. Knowledge
of the implementation strategy does not significantly improve the attack outcome,
nor does it reduce the attack complexity. Finally, we presented a side-channel
vulnerability analysis of the Thread networking stack. We identified an attack vector
that combines network-specific mechanisms with differential electromagnetic analysis
(DEMA) to get full access into a Thread network. The full attack did not succeed
against a TI CC2538 system on chip that runs OpenThread, a certified open-source
implementation of the stack, due to a fortunate packet fragmentation that is un-
related to security. The possibility to request the master key having the derived
key(s) is questionable security-wise as it subverts the essence of key derivation using
HMAC. We demonstrated that mounting a side-channel attack in the context of a
modern IoT network protocol is not trivial. Being perhaps too expensive for settings
like smart homes, such attacks may pose a relatively higher threat to the commercial
setting. However, the security problems we identified give a useful lesson to designers
of IoT systems.

The third part of this thesis covered the defensive side of security against side-
channel attacks. We proposed an algorithm for efficient search of masked Boolean
expressions that use an optimal number of elementary operations. In the case of
first-order Boolean masking, the optimal expression of bitwise AND can be performed
using less operations than the best known expression and does not require fresh
random values. On the other hand, the best know expression for bitwise OR is
optimal. The protected implementations of Speck, Simon, and RECTANGLE
revealed that ciphers that have a simple structure, based solely on bitwise logical

10.1 Impact 199

operations and rotations, facilitate efficient software implementations of first-order
masking.

10.1 Impact

Two of our research projects already have impact in the research community or in
industry.

First, the FELICS benchmarking framework is well known in the research commu-
nity. Many people contributed optimized implementations and the evaluation results
are becoming a common reference in the literature. Moreover, NIST is interested
in using FELICS for a fair comparison of candidates submitted to their portfolio of
lightweight algorithms recommended for the IoT.

Second, our vulnerability analysis of the Thread networking stack determined the
Thread group to elaborate a set of recommendations for implementers in order to
enhance the security of Thread products. In light of our results, designers of future
protocols for the IoT should carefully consider the threat of side-channel attacks
from the early inception.

10.2 Future Directions

Improving FELICS. FELICS can be improved in several ways. For example, the
framework can be extended to support more target devices, especially ultra-low-power
microcontrollers. At the same time, energy consumption of actual devices should
be measured in order to get a clear picture of the energy requirements of various
primitives. Such data is currently missing from the evaluation framework. Moreover,
energy requirement can not be reliably estimated since it is difficult to model the
power consumption of actual devices. Approximations based on execution time
are prone to errors because not all instructions have the same energy requirements.
Usually memory instructions take more energy than register-only instructions. Based
on energy figures measured from actual devices, one can determine which devices
and ciphers are more suitable for a given use case. These two improvements of
FELICS are very relevant for applications of cryptography on devices that run only
on harvested energy.

Another way of improving FELICS is to add an interface for benchmarking
implementations protected against side-channel attacks. We showed that side-channel
countermeasures such as Boolean masking influence the performance figures of
protected software implementations of lightweight ciphers differently when compared
to unprotected implementations. In other words, some ciphers favour efficient masked
implementations more than others. Hence, this improvement of FELICS is useful for
real-world applications of lightweight symmetric cryptography considering the need
for side-channel countermeasures that stems from the IoT threat model.

FELICS supports only symmetric cryptography, but there is also a need for fair
comparative results obtained from implementations of public key algorithms; and

200 Conclusion

yet there is no tool to satisfy this need. Therefore, FELICS can be extended to
benchmark post-quantum public key cryptography for example.

Side-Channel Attacks. In this work, we focused on side-channel attacks that
exploit the power consumption or the electromagnetic emissions of a target device.
Yet, there are many other interesting side-channel attack techniques such as timing
attacks, cache attacks, and fault attacks that can be applied against embedded
systems that perform lightweight cryptographic algorithms.

Energy-Efficient and Secure Communication Protocols. Most of the current
communication standards for the IoT use the AES to secure and authenticate
communication between end nodes. This is not ideal for several reasons. First, the
AES is less suitable for very constrained devices such as those that run on harvested
energy than many lightweight block ciphers. Second, the cost of protecting the
AES against side-channel attacks is much higher than the cost of protecting most
lightweight block ciphers due to its large S-box.

Bibliography

[1] Masayuki Abe, editor. Topics in Cryptology - CT-RSA 2007, The Cryptogra-
phers’ Track at the RSA Conference 2007, San Francisco, CA, USA, February
5-9, 2007, Proceedings, volume 4377 of Lecture Notes in Computer Science.
Springer, 2006. (Cited on pages 201 and 227.)

[2] Dennis G. Abraham, George M. Dolan, Glen P. Double, and James V. Stevens.
Transaction Security System. IBM Systems Journal, 30(2):206–229, 1991.
(Cited on page 36.)

[3] Onur Aciiçmez, Werner Schindler, and Çetin Kaya Koç. Cache Based Remote
Timing Attack on the AES. In Abe [1], pages 271–286. (Cited on page 172.)

[4] Wim Aerts, Eli Biham, Dieter De Moitie, Elke De Mulder, Orr Dunkelman,
Sebastiaan Indesteege, Nathan Keller, Bart Preneel, Guy A. E. Vandenbosch,
and Ingrid Verbauwhede. A Practical Attack on KeeLoq. Journal of Cryptology,
25(1):136–157, 2012. (Cited on page 5.)

[5] Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao, and Pankaj Rohatgi.
The EM Side-Channel(s). In Jr. et al. [180], pages 29–45. (Cited on page 20.)

[6] Dakshi Agrawal, Josyula R. Rao, and Pankaj Rohatgi. Multi-channel Attacks.
In Colin D. Walter, Çetin Kaya Koç, and Christof Paar, editors, Cryptographic
Hardware and Embedded Systems - CHES 2003, 5th International Workshop,
Cologne, Germany, September 8-10, 2003, Proceedings, volume 2779 of Lecture
Notes in Computer Science, pages 2–16. Springer, 2003. (Cited on page 27.)

[7] Dakshi Agrawal, Josyula R. Rao, Pankaj Rohatgi, and Kai Schramm. Templates
as Master Keys. In Rao and Sunar [289], pages 15–29. (Cited on page 28.)

[8] Mehdi-Laurent Akkar, Régis Bevan, Paul Dischamp, and Didier Moyart. Power
Analysis, What Is Now Possible... In Tatsuaki Okamoto, editor, Advances in
Cryptology - ASIACRYPT 2000, 6th International Conference on the Theory
and Application of Cryptology and Information Security, Kyoto, Japan, Decem-
ber 3-7, 2000, Proceedings, volume 1976 of Lecture Notes in Computer Science,
pages 489–502. Springer, 2000. (Cited on page 26.)

[9] Martin R. Albrecht, Benedikt Driessen, Elif Bilge Kavun, Gregor Leander,
Christof Paar, and Tolga Yalçin. Block Ciphers - Focus on the Linear Layer

202 Bibliography

(feat. PRIDE). In Garay and Gennaro [135], pages 57–76. (Cited on pages 65,
72, and 108.)

[10] Nadhem J. AlFardan, Daniel J. Bernstein, Kenneth G. Paterson, Bertram
Poettering, and Jacob C. N. Schuldt. On the Security of RC4 in TLS. In King
[187], pages 305–320. (Cited on page 5.)

[11] Jude Ambrose, Alexandar Ignjatovic, and Sri Parameswaran. Power Analysis
Side Channel Attacks: The Processor Design-level Context. VDM Publishing,
2010. (Cited on page 18.)

[12] Frédéric Amiel, Karine Villegas, Benoit Feix, and Louis Marcel. Passive and
Active Combined Attacks: Combining Fault Attacks and Side Channel Analysis.
In Luca Breveglieri, Shay Gueron, Israel Koren, David Naccache, and Jean-
Pierre Seifert, editors, Fourth International Workshop on Fault Diagnosis and
Tolerance in Cryptography, 2007, FDTC 2007: Vienna, Austria, 10 September
2007, pages 92–102. IEEE Computer Society, 2007. (Cited on page 19.)

[13] Ross J. Anderson. Security Engineering – A Guide to Building Dependable
Distributed Systems (Second Edition). Wiley, 2008. (Cited on pages 16 and 18.)

[14] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,
Jaime Cochran, Zakir Durumeric, J. Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, Deepak Kumar, Chaz Lever, Zane Ma, Joshua Mason, Damian Men-
scher, Chad Seaman, Nick Sullivan, Kurt Thomas, and Yi Zhou. Understanding
the Mirai Botnet. In Kirda and Ristenpart [188], pages 1093–1110. (Cited on
page 180.)

[15] Arduino. Arduino Due. https://store.arduino.cc/arduino-due. Accessed:
September 2017. (Cited on pages 59 and 61.)

[16] Random Number Generator (TRNG) API. https://forum.arduino.cc/
index.php?topic=129083.0, October 2012. Accessed: September 2017. (Cited
on page 191.)

[17] ARM. Cortex-M3 Devices Generic User Guide. http://infocenter.arm.com/
help/index.jsp?topic=/com.arm.doc.dui0552a/CHDBIBGJ.html. Accessed:
September 2017. (Cited on page 57.)

[18] ARM. mbed TLS. Available at https://tls.mbed.org/. Accessed: April 2017.
(Cited on pages 133, 137, and 173.)

[19] Scherbius Arthur. Ciphering Machine, January 1928. US Patent 1,657,411.
(Cited on page 3.)

[20] Dmitri Asonov and Rakesh Agrawal. Keyboard Acoustic Emanations. In
2004 IEEE Symposium on Security and Privacy (S&P 2004), 9-12 May 2004,
Berkeley, CA, USA, pages 3–11. IEEE Computer Society, 2004. (Cited on
page 18.)

https://store.arduino.cc/arduino-due
https://forum.arduino.cc/index.php?topic=129083.0
https://forum.arduino.cc/index.php?topic=129083.0
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0552a/CHDBIBGJ.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0552a/CHDBIBGJ.html
https://tls.mbed.org/

Bibliography 203

[21] Ahmad Atamli and Andrew P. Martin. Threat-Based Security Analysis for
the Internet of Things. In Gabriel Ghinita, Razvan Rughinis, and Ahmad-
Reza Sadeghi, editors, 2014 International Workshop on Secure Internet of
Things, SIoT 2014, Wroclaw, Poland, September 10, 2014, pages 35–43. IEEE
Computer Society, 2014. (Cited on pages 36, 37, and 161.)

[22] Atmel. ATmega128. http://www.atmel.com/images/doc2467.pdf. Accessed:
September 2017. (Cited on pages 57 and 58.)

[23] Michael Backes, Markus Dürmuth, Sebastian Gerling, Manfred Pinkal, and
Caroline Sporleder. Acoustic Side-Channel Attacks on Printers. In 19th
USENIX Security Symposium, Washington, DC, USA, August 11-13, 2010,
Proceedings, pages 307–322. USENIX Association, 2010. (Cited on page 18.)

[24] Stéphane Badel, Nilay Dagtekin, Jorge Nakahara Jr., Khaled Ouafi, Nicolas
Reffé, Pouyan Sepehrdad, Petr Susil, and Serge Vaudenay. ARMADILLO: A
Multi-purpose Cryptographic Primitive Dedicated to Hardware. In Mangard
and Standaert [224], pages 398–412. (Cited on page 13.)

[25] Yoo-Jin Baek and Mi-Jung Noh. Differential Power Attack and Masking
Method. Trends in Mathematics, 8(1):1–15, June 2005. (Cited on pages 181
and 186.)

[26] Josep Balasch, Baris Ege, Thomas Eisenbarth, Benoît Gérard, Zheng Gong,
Tim Güneysu, Stefan Heyse, Stéphanie Kerckhof, François Koeune, Thomas
Plos, Thomas Pöppelmann, Francesco Regazzoni, François-Xavier Standaert,
Gilles Van Assche, Ronny Van Keer, Loïc van Oldeneel tot Oldenzeel, and
Ingo von Maurich. Compact Implementation and Performance Evaluation of
Hash Functions in ATtiny Devices. In Stefan Mangard, editor, Smart Card
Research and Advanced Applications - 11th International Conference, CARDIS
2012, Graz, Austria, November 28-30, 2012, Revised Selected Papers, volume
7771 of Lecture Notes in Computer Science, pages 158–172. Springer, 2012.
(Cited on pages 14 and 48.)

[27] Josep Balasch, Baris Ege, Thomas Eisenbarth, Benoît Gérard, Zheng Gong,
Tim Güneysu, Stefan Heyse, Stéphanie Kerckhof, François Koeune, Thomas
Plos, Thomas Pöppelmann, Francesco Regazzoni, François-Xavier Standaert,
Gilles Van Assche, Ronny Van Keer, Loïc van Oldeneel tot Oldenzeel, and Ingo
von Maurich. Implementations of Hash Functions in Atmel AVR Devices. Avail-
able at http://perso.uclouvain.be/fstandae/source_codes/hash_atmel/.
Accessed: September 2017. (Cited on page 48.)

[28] Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and
François-Xavier Standaert. On the Cost of Lazy Engineering for Masked
Software Implementations. In Joye and Moradi [177], pages 64–81. (Cited on
pages 32, 189, and 190.)

http://www.atmel.com/images/doc2467.pdf
http://perso.uclouvain.be/fstandae/source_codes/hash_atmel/

204 Bibliography

[29] Josep Balasch, Benedikt Gierlichs, Oscar Reparaz, and Ingrid Verbauwhede.
DPA, Bitslicing and Masking at 1 GHz. In Güneysu and Handschuh [156],
pages 599–619. (Cited on pages 21 and 152.)

[30] Valentina Banciu, Elisabeth Oswald, and Carolyn Whitnall. Exploring the
Resilience of Some Lightweight Ciphers Against Profiled Single Trace Attacks.
In Stefan Mangard and Axel Y. Poschmann, editors, Constructive Side-Channel
Analysis and Secure Design - 6th International Workshop, COSADE 2015,
Berlin, Germany, April 13-14, 2015. Revised Selected Papers, volume 9064 of
Lecture Notes in Computer Science, pages 51–63. Springer, 2015. (Cited on
page 114.)

[31] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani,
Harunaga Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: A
Block Cipher for Low Energy. In Tetsu Iwata and Jung Hee Cheon, editors,
Advances in Cryptology - ASIACRYPT 2015 - 21st International Conference on
the Theory and Application of Cryptology and Information Security, Auckland,
New Zealand, November 29 - December 3, 2015, Proceedings, Part II, volume
9453 of Lecture Notes in Computer Science, pages 411–436. Springer, 2015.
(Cited on page 14.)

[32] Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall, and Claire
Whelan. The Sorcerer’s Apprentice Guide to Fault Attacks. Proceedings of the
IEEE, 94(2):370–382, 2006. (Cited on page 18.)

[33] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong Non-
Interference and Type-Directed Higher-Order Masking. In Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi,
editors, Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, October 24-28, 2016, pages 116–
129. ACM, 2016. (Cited on page 32.)

[34] Arthur O Bauer. Some Aspects of Military Line Communications as Deployed
by the German Armed Forces prior to 1945, December 2004. Available at
http://www.cdvandt.org/Wirecomm99.pdf. Accessed: September 2017. (Cited
on page 16.)

[35] Adnan Baysal and Sühap Sahin. RoadRunneR: A Small and Fast Bitslice
Block Cipher for Low Cost 8-Bit Processors. In Tim Güneysu, Gregor Leander,
and Amir Moradi, editors, Lightweight Cryptography for Security and Privacy -
4th International Workshop, LightSec 2015, Bochum, Germany, September 10-
11, 2015, Revised Selected Papers, volume 9542 of Lecture Notes in Computer
Science, pages 58–76. Springer, 2015. (Cited on pages 65, 73, 108, 109, and 189.)

[36] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The SIMON and SPECK Families of Lightweight

http://www.cdvandt.org/Wirecomm99.pdf

Bibliography 205

Block Ciphers. IACR Cryptology ePrint Archive, 2013:404, 2013. (Cited on
pages 65, 68, 73, 74, and 109.)

[37] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. SIMON and SPECK: Block Ciphers for the
Internet of Things. IACR Cryptology ePrint Archive, 2015:585, 2015. (Cited
on page 114.)

[38] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The SIMON and SPECK Lightweight Block
Ciphers. In Proceedings of the 52nd Annual Design Automation Conference,
San Francisco, CA, USA, June 7-11, 2015, pages 175:1–175:6. ACM, 2015.
(Cited on pages 108, 189, 191, and 192.)

[39] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. Notes on the Design and Analysis of SIMON and
SPECK. IACR Cryptology ePrint Archive, 2017:560, 2017. (Cited on page 99.)

[40] GT Becker, J Cooper, E DeMulder, G Goodwill, J Jaffe, G Kenworthy,
T Kouzminov, A Leiserson, M Marson, P Rohatgi, and S Saab. Test Vec-
tor Leakage Assessment (TVLA) Methodology in Practice. In International
Cryptographic Module Conference, 2013. (Cited on page 33.)

[41] Arthur Beckers, Josep Balasch, Benedikt Gierlichs, and Ingrid Verbauwhede.
Design and Implementation of a Waveform-Matching Based Triggering System.
In Standaert and Oswald [337], pages 184–198. (Cited on pages 22 and 25.)

[42] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY
Family of Block Ciphers and Its Low-Latency Variant MANTIS. In Robshaw
and Katz [298], pages 123–153. (Cited on page 105.)

[43] Janine Bennett, Ray W. Grout, Philippe P. Pébay, Diana C. Roe, and David C.
Thompson. Numerically Stable, Single-Pass, Parallel Statistics Algorithms. In
Proceedings of the 2009 IEEE International Conference on Cluster Computing,
August 31 - September 4, 2009, New Orleans, Louisiana, USA, pages 1–8. IEEE
Computer Society, 2009. (Cited on page 30.)

[44] Olivier Benoît and Thomas Peyrin. Side-Channel Analysis of Six SHA-3
Candidates. In Mangard and Standaert [224], pages 140–157. (Cited on
page 115.)

[45] Daniel J. Bernstein and Tanja Lange (editors). eBACS: ECRYPT Benchmark-
ing of Cryptographic Systems. Available at http://bench.cr.yp.to/. Accessed:
September 2017. (Cited on pages 46, 48, and 63.)

[46] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak.
In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology -
EUROCRYPT 2013, 32nd Annual International Conference on the Theory and

http://bench.cr.yp.to/

206 Bibliography

Applications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013.
Proceedings, volume 7881 of Lecture Notes in Computer Science, pages 313–314.
Springer, 2013. (Cited on page 8.)

[47] Régis Bevan and Erik Knudsen. Ways to Enhance Differential Power Analysis.
In Lee and Lim [211], pages 327–342. (Cited on page 27.)

[48] Shivam Bhasin, Tarik Graba, Jean-Luc Danger, and Zakaria Najm. A Look
into SIMON from a Side-Channel Perspective. In 2014 IEEE International
Symposium on Hardware-Oriented Security and Trust, HOST 2014, Arlington,
VA, USA, May 6-7, 2014, pages 56–59. IEEE Computer Society, 2014. (Cited
on page 114.)

[49] Eli Biham and Adi Shamir. Differential Fault Analysis of Secret Key Cryp-
tosystems. In Burton S. Kaliski Jr., editor, Advances in Cryptology - CRYPTO
’97, 17th Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 17-21, 1997, Proceedings, volume 1294 of Lecture Notes in
Computer Science, pages 513–525. Springer, 1997. (Cited on page 17.)

[50] Alex Biryukov, Daniel Dinu, and Johann Großschädl. Correlation Power Anal-
ysis of Lightweight Block Ciphers: From Theory to Practice. In Mark Manulis,
Ahmad-Reza Sadeghi, and Steve Schneider, editors, Applied Cryptography and
Network Security - 14th International Conference, ACNS 2016, Guildford, UK,
June 19-22, 2016. Proceedings, volume 9696 of Lecture Notes in Computer
Science, pages 537–557. Springer, 2016. (Cited on pages 138 and 152.)

[51] Alex Biryukov and Eyal Kushilevitz. Improved Cryptanalysis of RC5. In Kaisa
Nyberg, editor, Advances in Cryptology - EUROCRYPT ’98, International
Conference on the Theory and Application of Cryptographic Techniques, Espoo,
Finland, May 31 - June 4, 1998, Proceeding, volume 1403 of Lecture Notes in
Computer Science, pages 85–99. Springer, 1998. (Cited on page 72.)

[52] Alex Biryukov, Gaëtan Leurent, and Arnab Roy. Cryptanalysis of the "Kindle"
Cipher. In Knudsen and Wu [195], pages 86–103. (Cited on page 5.)

[53] Alex Biryukov and Léo Perrin. State of the Art in Lightweight Symmetric
Cryptography. IACR Cryptology ePrint Archive, 2017:511, 2017. (Cited on
page 5.)

[54] Alex Biryukov and David A. Wagner. Slide Attacks. In Lars R. Knudsen, editor,
Fast Software Encryption, 6th International Workshop, FSE ’99, Rome, Italy,
March 24-26, 1999, Proceedings, volume 1636 of Lecture Notes in Computer
Science, pages 245–259. Springer, 1999. (Cited on page 87.)

[55] George Robert Blakley. Safeguarding Cryptographic Keys. In Proceedings of
AFIPS 1979 National Computer Conference, pages 313–317, 1979. (Cited on
page 31.)

Bibliography 207

[56] Céline Blondeau and Kaisa Nyberg. Links between Truncated Differential and
Multidimensional Linear Properties of Block Ciphers and Underlying Attack
Complexities. In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances
in Cryptology - EUROCRYPT 2014 - 33rd Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Copenhagen,
Denmark, May 11-15, 2014. Proceedings, volume 8441 of Lecture Notes in
Computer Science, pages 165–182. Springer, 2014. (Cited on page 72.)

[57] David G. Boak. A History of U.S. Communications Security. The David G.
Boak Lectures, volume I. National Security Agency, July 1973. Declassified:
October 2015. Available at http://www.cryptomuseum.com/intel/nsa/files/
nsa_history_comsec_1.pdf, Accessed: September 2017. (Cited on page 16.)

[58] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: an ultra-lightweight block cipher. In Paillier and Verbauwhede
[270], pages 450–466. (Cited on pages 65, 68, and 71.)

[59] Andrey Bogdanov, Gregor Leander, Christof Paar, Axel Poschmann, Matthew
J. B. Robshaw, and Yannick Seurin. Hash Functions and RFID Tags: Mind
the Gap. In Oswald and Rohatgi [267], pages 283–299. (Cited on page 13.)

[60] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the Importance
of Checking Cryptographic Protocols for Faults (Extended Abstract). In Wal-
ter Fumy, editor, Advances in Cryptology - EUROCRYPT ’97, International
Conference on the Theory and Application of Cryptographic Techniques, Kon-
stanz, Germany, May 11-15, 1997, Proceeding, volume 1233 of Lecture Notes
in Computer Science, pages 37–51. Springer, 1997. (Cited on page 17.)

[61] Steve Bono, Matthew Green, Adam Stubblefield, Ari Juels, Aviel D. Rubin,
and Michael Szydlo. Security Analysis of a Cryptographically-Enabled RFID
Device. In Patrick D. McDaniel, editor, Proceedings of the 14th USENIX
Security Symposium, Baltimore, MD, USA, July 31 - August 5, 2005. USENIX
Association, 2005. (Cited on page 5.)

[62] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar,
Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin.
PRINCE - A Low-Latency Block Cipher for Pervasive Computing Applications
- Extended Abstract. In Wang and Sako [375], pages 208–225. (Cited on pages
65, 68, 72, and 114.)

[63] Carsten Bormann and Zach Shelby. Block-Wise Transfers in the Constrained
Application Protocol (CoAP). RFC 7959, Internet Engineering Task Force,
September 2016. Available at https://tools.ietf.org/html/rfc7959. Ac-
cessed: September 2017. (Cited on page 56.)

http://www.cryptomuseum.com/intel/nsa/files/nsa_history_comsec_1.pdf
http://www.cryptomuseum.com/intel/nsa/files/nsa_history_comsec_1.pdf
https://tools.ietf.org/html/rfc7959

208 Bibliography

[64] Paul Bottinelli and Joppe W. Bos. Computational Aspects of Correlation
Power Analysis. Journal of Cryptographic Engineering, 7(3):167–181, 2017.
(Cited on page 30.)

[65] Christina Boura, María Naya-Plasencia, and Valentin Suder. Scrutinizing and
Improving Impossible Differential Attacks: Applications to CLEFIA, Camellia,
LBlock and Simon. In Sarkar and Iwata [304], pages 179–199. (Cited on
page 71.)

[66] Walter H Brattain and Bardeen John. Three-Electrode Circuit Element utilizing
Semiconductive Materials, October 1950. US Patent 2,524,035. (Cited on
page 3.)

[67] Eric Brier, Christophe Clavier, and Francis Olivier. Optimal Statistical Power
Analysis. IACR Cryptology ePrint Archive, 2003:152, 2003. (Cited on page 27.)

[68] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation Power Analysis
with a Leakage Model. In Joye and Quisquater [179], pages 16–29. (Cited on
pages 27, 116, and 132.)

[69] Stephen D Brown, Robert J Francis, Jonathan Rose, and Zvonko G Vranesic.
Field-Programmable Gate Arrays, volume 180. Springer Science & Business
Media, 2012. (Cited on page 11.)

[70] Frederick J Bruwer, Willem Smit, and Gideon J Kuhn. Microchips and Remote
Control Devices Comprising same, May 1996. US Patent 5,517,187. (Cited on
page 5.)

[71] CAESAR Competition. CAESAR: Competition for Authenticated En-
cryption: Security, Applicability, and Robustness. Available at http://

competitions.cr.yp.to/caesar.html. Accessed: September 2017. (Cited on
pages 47, 48, 55, and 56.)

[72] Anne Canteaut, Thomas Fuhr, Henri Gilbert, María Naya-Plasencia, and
Jean-René Reinhard. Multiple Differential Cryptanalysis of Round-Reduced
PRINCE. In Cid and Rechberger [82], pages 591–610. (Cited on page 72.)

[73] Claude Carlet. On Highly Nonlinear S-Boxes and Their Inability to Thwart
DPA Attacks. In Subhamoy Maitra, C. E. Veni Madhavan, and Ramarathnam
Venkatesan, editors, Progress in Cryptology - INDOCRYPT 2005, 6th Interna-
tional Conference on Cryptology in India, Bangalore, India, December 10-12,
2005, Proceedings, volume 3797 of Lecture Notes in Computer Science, pages
49–62. Springer, 2005. (Cited on page 115.)

[74] Mickaël Cazorla, Sylvain Gourgeon, Kevin Marquet, and Marine Minier. Im-
plementations of Lightweight Block Ciphers on a WSN430 Sensor. Available at
http://bloc.project.citi-lab.fr/library.html. Accessed: September 2017.
(Cited on pages 45, 72, and 81.)

http://competitions.cr.yp.to/caesar.html
http://competitions.cr.yp.to/caesar.html
http://bloc.project.citi-lab.fr/library.html

Bibliography 209

[75] Mickaël Cazorla, Kevin Marquet, and Marine Minier. Survey and Benchmark
of Lightweight Block Ciphers for Wireless Sensor Networks. In Pierangela
Samarati, editor, SECRYPT 2013 - Proceedings of the 10th International
Conference on Security and Cryptography, Reykjavík, Iceland, 29-31 July, 2013,
pages 543–548. SciTePress, 2013. (Cited on pages 45 and 46.)

[76] Cees-Bart Breunesse and Ilya Kizhvatov. Jlsca: Side-channel Toolkit in Julia.
Available at https://github.com/Riscure/Jlsca. Accessed: September 2017.
(Cited on pages 30, 155, and 171.)

[77] Kaushik Chakraborty, Sumanta Sarkar, Subhamoy Maitra, Bodhisatwa Mazum-
dar, Debdeep Mukhopadhyay, and Emmanuel Prouff. Redefining the Trans-
parency Order. Designs, Codes and Cryptography, 82(1-2):95–115, 2017. (Cited
on page 117.)

[78] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
Sound Approaches to Counteract Power-Analysis Attacks. In Wiener [382],
pages 398–412. (Cited on pages 27 and 31.)

[79] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template Attacks. In Jr.
et al. [180], pages 13–28. (Cited on pages 21 and 27.)

[80] Huaifeng Chen and Xiaoyun Wang. Improved Linear Hull Attack on Round-
Reduced Simon with Dynamic Key-Guessing Techniques. In Peyrin [274], pages
428–449. (Cited on page 73.)

[81] Omar Choudary and Markus G. Kuhn. Template Attacks on Different Devices.
In Prouff [281], pages 179–198. (Cited on page 28.)

[82] Carlos Cid and Christian Rechberger, editors. Fast Software Encryption - 21st
International Workshop, FSE 2014, London, UK, March 3-5, 2014. Revised
Selected Papers, volume 8540 of Lecture Notes in Computer Science. Springer,
2015. (Cited on pages 208 and 216.)

[83] Christophe Clavier, Benoit Feix, Georges Gagnerot, and Mylène Roussellet.
Passive and Active Combined Attacks on AES: Combining Fault Attacks and
Side Channel Analysis. In Luca Breveglieri, Marc Joye, Israel Koren, David
Naccache, and Ingrid Verbauwhede, editors, 2010 Workshop on Fault Diagnosis
and Tolerance in Cryptography, FDTC 2010, Santa Barbara, California, USA,
21 August 2010, pages 10–19. IEEE Computer Society, 2010. (Cited on page 19.)

[84] Lucian Constantin. Hackers Found 47 New Vulnerabilities in 23 IoT Devices
at DEF CON. http://www.csoonline.com/article/3119765/security/
hackers-found-47-new-vulnerabilities-in-23-iot-devices-at-def-

con.html, September 2016. Accessed: September 2017. (Cited on page 180.)

[85] Jean-Sébastien Coron, Johann Großschädl, Mehdi Tibouchi, and Praveen Ku-
mar Vadnala. Conversion from Arithmetic to Boolean Masking with Loga-
rithmic Complexity. In Gregor Leander, editor, Fast Software Encryption -

https://github.com/Riscure/Jlsca
http://www.csoonline.com/article/3119765/security/hackers-found-47-new-vulnerabilities-in-23-iot-devices-at-def-con.html
http://www.csoonline.com/article/3119765/security/hackers-found-47-new-vulnerabilities-in-23-iot-devices-at-def-con.html
http://www.csoonline.com/article/3119765/security/hackers-found-47-new-vulnerabilities-in-23-iot-devices-at-def-con.html

210 Bibliography

22nd International Workshop, FSE 2015, Istanbul, Turkey, March 8-11, 2015,
Revised Selected Papers, volume 9054 of Lecture Notes in Computer Science,
pages 130–149. Springer, 2015. (Cited on pages 32, 180, 181, 182, 186, and 196.)

[86] Jean-Sébastien Coron and Ilya Kizhvatov. Analysis and Improvement of the
Random Delay Countermeasure of CHES 2009. In Mangard and Standaert
[224], pages 95–109. (Cited on pages 24 and 30.)

[87] Jean-Sébastien Coron, Paul C. Kocher, and David Naccache. Statistics and
Secret Leakage. In Yair Frankel, editor, Financial Cryptography, 4th Inter-
national Conference, FC 2000 Anguilla, British West Indies, February 20-24,
2000, Proceedings, volume 1962 of Lecture Notes in Computer Science, pages
157–173. Springer, 2000. (Cited on pages 26, 27, and 33.)

[88] Jean-Sébastien Coron, David Naccache, and Paul C. Kocher. Statistics and
Secret Leakage. ACM Transactions on Embedded Computer Systems, 3(3):492–
508, 2004. (Cited on pages 27 and 33.)

[89] Common Criteria. Publications. Available at http://

www.commoncriteriaportal.org/cc/. Accessed: September 2017. (Cited on
page 29.)

[90] cryptlib. The cryptlib Security Software Development Toolkit. Available at
http://www.cryptlib.com/. Accessed: April 2017. (Cited on page 137.)

[91] Crypto++. Crypto++: a Free C++ Class Library of Cryptographic Schemes.
Available at https://www.cryptopp.com/. Accessed: April 2017. (Cited on
page 137.)

[92] CryptoLUX. Block Ciphers Brief Results. Available at https://

www.cryptolux.org/index.php/FELICS_Block_Ciphers_Brief_Results. Ac-
cessed: September 2017. (Cited on pages 92 and 94.)

[93] CryptoLUX. FELICS – Fair Evaluation of Lightweight Cryptographic Sys-
tems. Available at https://www.cryptolux.org/index.php/FELICS. Accessed:
September 2017. (Cited on pages 45, 52, 57, 61, 62, 66, 75, 80, 81, 93, 114,
and 118.)

[94] CryptoLUX. SPARX. Available at https://www.cryptolux.org/index.php/
SPARX. Accessed: September 2017. (Cited on page 93.)

[95] CryptoLUX. SPARX – The SPARX Family of Lightweight Block Ciphers. Avail-
able at https://github.com/cryptolu/SPARX. Accessed: September 2017.
(Cited on page 93.)

[96] Guillaume Dabosville, Julien Doget, and Emmanuel Prouff. A New Second-
Order Side Channel Attack Based on Linear Regression. IEEE Transactions
on Computers, 62(8):1629–1640, 2013. (Cited on page 28.)

http://www.commoncriteriaportal.org/cc/
http://www.commoncriteriaportal.org/cc/
http://www.cryptlib.com/
https://www.cryptopp.com/
https://www.cryptolux.org/index.php/FELICS_Block_Ciphers_Brief_Results
https://www.cryptolux.org/index.php/FELICS_Block_Ciphers_Brief_Results
https://www.cryptolux.org/index.php/FELICS
https://www.cryptolux.org/index.php/SPARX
https://www.cryptolux.org/index.php/SPARX
https://github.com/cryptolu/SPARX

Bibliography 211

[97] Joan Daemen, Michaël Peeters, Gilles Van Assche, and Vincent Rijmen. Nessie
Proposal: NOEKEON. In First Open NESSIE Workshop, pages 213–230, 2000.
(Cited on pages 74, 86, and 189.)

[98] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Ad-
vanced Encryption Standard. Information Security and Cryptography. Springer,
2002. (Cited on pages 7, 68, 69, 134, and 136.)

[99] Damian Gryski. go-sparx: SPARX Lightweight Cipher. Available at
https://github.com/dgryski/go-sparx. Accessed: September 2017. (Cited
on page 94.)

[100] Patrick Derbez and Pierre-Alain Fouque. Exhausting Demirci-Selçuk Meet-
in-the-Middle Attacks Against Reduced-Round AES. In Moriai [243], pages
541–560. (Cited on page 69.)

[101] Whitfield Diffie and Martin Hellman. New Directions in Cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976. (Cited on page 3.)

[102] Whitfield Diffie and Martin E Hellman. Privacy and Authentication: An
introduction to Cryptography. Proceedings of the IEEE, 67(3):397–427, 1979.
(Cited on page 7.)

[103] A. Adam Ding, Cong Chen, and Thomas Eisenbarth. Simpler, Faster, and
More Robust T-Test Based Leakage Detection. In Standaert and Oswald [337],
pages 163–183. (Cited on page 189.)

[104] Daniel Dinu, Alex Biryukov, Johann Großschädl, Dmitry Khovratovich,
YL Corre, and Léo Perrin. FELICS–Fair Evaluation of Lightweight Cryp-
tographic Systems. In NIST Workshop on Lightweight Cryptography, 2015.
(Cited on page 97.)

[105] Daniel Dinu, Yann Le Corre, Dmitry Khovratovich, Léo Perrin, Johann
Großschädl, and Alex Biryukov. Triathlon of Lightweight Block Ciphers
for the Internet of Things. IACR Cryptology ePrint Archive, 2015:209, 2015.
(Cited on pages 97, 114, 125, and 191.)

[106] Daniel Dinu, Léo Perrin, Aleksei Udovenko, Vesselin Velichkov, Johann
Großschädl, and Alex Biryukov. Design Strategies for ARX with Provable
Bounds: Sparx and LAX. In Jung Hee Cheon and Tsuyoshi Takagi, editors,
Advances in Cryptology - ASIACRYPT 2016 - 22nd International Conference
on the Theory and Application of Cryptology and Information Security, Hanoi,
Vietnam, December 4-8, 2016, Proceedings, Part I, volume 10031 of Lecture
Notes in Computer Science, pages 484–513, 2016. (Cited on pages 65, 68, 74,
83, 99, and 108.)

[107] Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. Key Recovery
Attacks on 3-round Even-Mansour, 8-step LED-128, and Full AES2. In Sako
and Sarkar [303], pages 337–356. (Cited on page 71.)

https://github.com/dgryski/go-sparx

212 Bibliography

[108] dlbeer Engineering. MSPDebug. http://dlbeer.co.nz/mspdebug/. Accessed:
September 2017. (Cited on page 61.)

[109] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, and Florian Mendel.
On the Security of Fresh Re-keying to Counteract Side-Channel and Fault
Attacks. In Joye and Moradi [177], pages 233–244. (Cited on page 174.)

[110] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel, and
Thomas Unterluggauer. ISAP - Towards Side-Channel Secure Authenticated
Encryption. IACR Transactions on Symmetric Cryptology, 2017(1):80–105,
2017. (Cited on page 174.)

[111] Christoph Dobraunig, François Koeune, Stefan Mangard, Florian Mendel, and
François-Xavier Standaert. Towards Fresh and Hybrid Re-Keying Schemes
with Beyond Birthday Security. In Naofumi Homma and Marcel Medwed,
editors, Smart Card Research and Advanced Applications - 14th International
Conference, CARDIS 2015, Bochum, Germany, November 4-6, 2015. Revised
Selected Papers, volume 9514 of Lecture Notes in Computer Science, pages
225–241. Springer, 2015. (Cited on page 31.)

[112] Julien Doget, Emmanuel Prouff, Matthieu Rivain, and François-Xavier Stan-
daert. Univariate Side Channel Attacks and Leakage Modeling. Journal of
Cryptographic Engineering, 1(2):123–144, 2011. (Cited on page 28.)

[113] Margaux Dugardin, Louiza Papachristodoulou, Zakaria Najm, Lejla Batina,
Jean-Luc Danger, and Sylvain Guilley. Dismantling Real-World ECC with
Horizontal and Vertical Template Attacks. In Standaert and Oswald [337],
pages 88–108. (Cited on page 173.)

[114] Orr Dunkelman and Liam Keliher, editors. Selected Areas in Cryptography -
SAC 2015 - 22nd International Conference, Sackville, NB, Canada, August 12-
14, 2015, Revised Selected Papers, volume 9566 of Lecture Notes in Computer
Science. Springer, 2016. (Cited on page 14.)

[115] Morris J Dworkin. Recommendation for Block Cipher Modes of Operation: The
CCM Mode for Authentication and Confidentiality. NIST Special Publication
800-38C, 2007. (Cited on pages 132 and 165.)

[116] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-Resilient Cryptography.
In 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2008, October 25-28, 2008, Philadelphia, PA, USA, pages 293–302. IEEE
Computer Society, 2008. (Cited on page 31.)

[117] William F Ehrsam, Carl HW Meyer, John L Smith, and Walter L Tuchman.
Message Verification and Transmission Error Detection by Block Chaining,
February 1978. US Patent 4,074,066. (Cited on page 7.)

[118] Thomas Eisenbarth, Zheng Gong, Tim Güneysu, Stefan Heyse, Sebastiaan
Indesteege, Stéphanie Kerckhof, François Koeune, Tomislav Nad, Thomas Plos,

http://dlbeer.co.nz/mspdebug/

Bibliography 213

Francesco Regazzoni, François-Xavier Standaert, and Loïc van Oldeneel tot
Oldenzeel. Compact Implementation and Performance Evaluation of Block
Ciphers in ATtiny Devices. In Aikaterini Mitrokotsa and Serge Vaudenay,
editors, Progress in Cryptology - AFRICACRYPT 2012 - 5th International
Conference on Cryptology in Africa, Ifrance, Morocco, July 10-12, 2012. Pro-
ceedings, volume 7374 of Lecture Notes in Computer Science, pages 172–187.
Springer, 2012. (Cited on pages 14 and 48.)

[119] Thomas Eisenbarth, Zheng Gong, Tim Güneysu, Stefan Heyse, Sebastiaan
Indesteege, Stéphanie Kerckhof, François Koeune, Tomislav Nad, Thomas Plos,
Francesco Regazzoni, François-Xavier Standaert, and Loïc van Oldeneel tot
Oldenzeel. Implementations of Low Cost Block Ciphers in Atmel AVR Devices.
Available at http://perso.uclouvain.be/fstandae/lightweight_ciphers/.
Accessed : September 2017. (Cited on pages 48 and 81.)

[120] Thomas Eisenbarth, Timo Kasper, Amir Moradi, Christof Paar, Mahmoud
Salmasizadeh, and Mohammad T. Manzuri Shalmani. On the Power of Power
Analysis in the Real World: A Complete Break of the KeeLoqCode Hopping
Scheme. In David A. Wagner, editor, Advances in Cryptology - CRYPTO 2008,
28th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 17-21, 2008. Proceedings, volume 5157 of Lecture Notes in Computer
Science, pages 203–220. Springer, 2008. (Cited on page 5.)

[121] Thomas Eisenbarth, Sandeep S. Kumar, Christof Paar, Axel Poschmann, and
Leif Uhsadel. A Survey of Lightweight-Cryptography Implementations. IEEE
Design & Test of Computers, 24(6):522–533, 2007. (Cited on pages 45 and 81.)

[122] Dave Evans. The Internet of Things: How the Next Evolution of the In-
ternet is Changing Everything, April 2011. Cisco IBSG white paper, avail-
able for download at http://www.cisco.com/web/about/ac79/docs/innov/
IoT_IBSG_0411FINAL.pdf. Accessed: September 2017. (Cited on page 36.)

[123] Martin Feldhofer, Sandra Dominikus, and Johannes Wolkerstorfer. Strong
Authentication for RFID Systems Using the AES Algorithm. In Joye and
Quisquater [179], pages 357–370. (Cited on page 68.)

[124] Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare,
Tadayoshi Kohno, Jon Callas, and Jesse Walker. The Skein Hash Function
Family. Submission to NIST (round 3), 7(7.5):3, 2010. (Cited on page 85.)

[125] Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno. Cryptography Engi-
neering: Design Principles and Practical Applications. John Wiley & Sons,
2011. (Cited on page 4.)

[126] Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. Security Analysis of
Emerging Smart Home Applications. In IEEE Symposium on Security and
Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016, pages 636–654. IEEE
Computer Society, 2016. (Cited on page 156.)

http://perso.uclouvain.be/fstandae/lightweight_ciphers/
http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf

214 Bibliography

[127] Earlence Fernandes, Justin Paupore, Amir Rahmati, Daniel Simionato, Mauro
Conti, and Atul Prakash. FlowFence: Practical Data Protection for Emerging
IoT Application Frameworks. In Holz and Savage [164], pages 531–548. (Cited
on page 156.)

[128] Julie Ferrigno and Martin Hlavác. When AES blinks: introducing optical side
channel. IET Information Security, 2(3):94–98, 2008. (Cited on page 20.)

[129] Microchip (former Atmel). ARM Cortex-M3 Datasheet. Available at http://
www.microchip.com/wwwproducts/en/ATSAM3X8E. Accessed: September 2017.
(Cited on page 59.)

[130] Frank Denis. rust-sparx: SPARX Block Ciphers Implementations for Rust.
Available at https://github.com/jedisct1/rust-sparx. Accessed: Septem-
ber 2017. (Cited on page 94.)

[131] Jeffrey Friedman. TEMPEST: A Signal Problem. NSA Cryp-
tologic Spectrum, 1972. Declassified: September 2007. Available
at https://www.nsa.gov/news-features/declassified-documents/
cryptologic-spectrum/assets/files/tempest.pdf. Accessed: Septem-
ber 2017. (Cited on pages 16 and 17.)

[132] Kris Gaj, Ekawat Homsirikamol, and Marcin Rogawski. Fair and Comprehen-
sive Methodology for Comparing Hardware Performance of Fourteen Round
Two SHA-3 Candidates Using FPGAs. In Mangard and Standaert [224], pages
264–278. (Cited on page 44.)

[133] Kris Gaj, Jens-Peter Kaps, Venkata Amirineni, Marcin Rogawski, Ekawat
Homsirikamol, and Benjamin Y. Brewster. ATHENa - Automated Tool for
Hardware EvaluatioN: Toward Fair and Comprehensive Benchmarking of
Cryptographic Hardware Using FPGAs. In International Conference on Field
Programmable Logic and Applications, FPL 2010, August 31 2010 - September
2, 2010, Milano, Italy, pages 414–421. IEEE Computer Society, 2010. (Cited
on page 48.)

[134] Taher El Gamal. A Public Key Cryptosystem and a Signature Scheme Based
on Discrete Logarithms. In G. R. Blakley and David Chaum, editors, Advances
in Cryptology, Proceedings of CRYPTO ’84, Santa Barbara, California, USA,
August 19-22, 1984, Proceedings, volume 196 of Lecture Notes in Computer
Science, pages 10–18. Springer, 1984. (Cited on page 9.)

[135] Juan A. Garay and Rosario Gennaro, editors. Advances in Cryptology -
CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara, CA,
USA, August 17-21, 2014, Proceedings, Part I, volume 8616 of Lecture Notes
in Computer Science. Springer, 2014. (Cited on pages 202 and 215.)

[136] Gartner. Gartner Says 8.4 Billion Connected "Things" Will Be in Use in 2017,
Up 31 Percent From 2016. http://www.gartner.com/newsroom/id/3598917,
February 2017. Accessed: September 2017. (Cited on pages 36, 179, and 180.)

http://www.microchip.com/wwwproducts/en/ATSAM3X8E
http://www.microchip.com/wwwproducts/en/ATSAM3X8E
https://github.com/jedisct1/rust-sparx
https://www.nsa.gov/news-features/declassified-documents/cryptologic-spectrum/assets/files/tempest.pdf
https://www.nsa.gov/news-features/declassified-documents/cryptologic-spectrum/assets/files/tempest.pdf
http://www.gartner.com/newsroom/id/3598917

Bibliography 215

[137] Gemalto. What are the differences between contactless smart cards and RFID?,
June 2017. Available at https://www.justaskgemalto.com/us/what-are-
differences-between-contactless-smart-cards-and-rfid/. Accessed:
September 2017. (Cited on page 35.)

[138] Daniel Genkin, Adi Shamir, and Eran Tromer. RSA Key Extraction via
Low-Bandwidth Acoustic Cryptanalysis. In Garay and Gennaro [135], pages
444–461. (Cited on pages 18 and 20.)

[139] Daniel Genkin, Adi Shamir, and Eran Tromer. Acoustic Cryptanalysis. Journal
of Cryptology, 30(2):392–443, 2017. (Cited on page 20.)

[140] Benoît Gérard, Vincent Grosso, María Naya-Plasencia, and François-Xavier
Standaert. Block Ciphers That Are Easier to Mask: How Far Can We Go? In
Guido Bertoni and Jean-Sébastien Coron, editors, Cryptographic Hardware and
Embedded Systems - CHES 2013 - 15th International Workshop, Santa Barbara,
CA, USA, August 20-23, 2013. Proceedings, volume 8086 of Lecture Notes in
Computer Science, pages 383–399. Springer, 2013. (Cited on page 114.)

[141] Benedikt Gierlichs, Lejla Batina, Pim Tuyls, and Bart Preneel. Mutual
Information Analysis. In Oswald and Rohatgi [267], pages 426–442. (Cited on
pages 27 and 30.)

[142] Benedikt Gierlichs, Kerstin Lemke-Rust, and Christof Paar. Templates vs.
Stochastic Methods. In Goubin and Matsui [150], pages 15–29. (Cited on
page 28.)

[143] GitHub. libtomcrypt: A Fairly Comprehensive, Modular and Portable Cryp-
tographic Toolkit. Available at https://github.com/libtom/libtomcrypt.
Accessed: April 2017. (Cited on page 137.)

[144] GitHub. mbed TLS – An Open Source, Portable, Easy to Use, Readable and
Flexible SSL Library. Avialable at https://github.com/ARMmbed/mbedtls/
blob/development/library/aes.c. Accessed: April 2017. (Cited on page 137.)

[145] Virgil D. Gligor. Light-Weight Cryptography – How Light is Light? Keynote
presentation at the Information Security Summer School, Florida State
University. Available at http://www.sait.fsu.edu/conferences/2005/is3/
resources/slides/gligorv-cryptolite.ppt, May 2005. Accessed: Septem-
ber 2017. (Cited on page 34.)

[146] GnuPG. Libgcrypt: A General Purpose Cryptographic Library Based on the
Code from GnuPG. Available at https://gnupg.org/software/libgcrypt/
index.html. Accessed: April 2017. (Cited on page 137.)

[147] Dan Goodin. Actively Exploited iOS Flaws that Hijack iPhones Patched
by Apple, August 2016. Available at https://arstechnica.com/security/
2016/08/actively-exploited-ios-flaws-that-hijack-iphones-likely-

spread-for-years/. Accessed: September 2017. (Cited on page 155.)

https://www.justaskgemalto.com/us/what-are-differences-between-contactless-smart-cards-and-rfid/
https://www.justaskgemalto.com/us/what-are-differences-between-contactless-smart-cards-and-rfid/
https://github.com/libtom/libtomcrypt
https://github.com/ARMmbed/mbedtls/blob/development/library/aes.c
https://github.com/ARMmbed/mbedtls/blob/development/library/aes.c
http://www.sait.fsu.edu/conferences/2005/is3/resources/slides/gligorv-cryptolite.ppt
http://www.sait.fsu.edu/conferences/2005/is3/resources/slides/gligorv-cryptolite.ppt
https://gnupg.org/software/libgcrypt/index.html
https://gnupg.org/software/libgcrypt/index.html
https://arstechnica.com/security/2016/08/actively-exploited-ios-flaws-that-hijack-iphones-likely-spread-for-years/
https://arstechnica.com/security/2016/08/actively-exploited-ios-flaws-that-hijack-iphones-likely-spread-for-years/
https://arstechnica.com/security/2016/08/actively-exploited-ios-flaws-that-hijack-iphones-likely-spread-for-years/

216 Bibliography

[148] Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj Rohatgi. A Testing
Methodology for Side-Channel Resistance Validation. In NIST Non-Invasive
Attack Testing Workshop, pages 158–172, 2011. (Cited on pages 33, 185,
and 189.)

[149] Louis Goubin. A Sound Method for Switching between Boolean and Arithmetic
Masking. In Çetin Kaya Koç, David Naccache, and Christof Paar, editors,
Cryptographic Hardware and Embedded Systems - CHES 2001, Third Interna-
tional Workshop, Paris, France, May 14-16, 2001, Proceedings, volume 2162
of Lecture Notes in Computer Science, pages 3–15. Springer, 2001. (Cited on
page 32.)

[150] Louis Goubin and Mitsuru Matsui, editors. Cryptographic Hardware and
Embedded Systems - CHES 2006, 8th International Workshop, Yokohama,
Japan, October 10-13, 2006, Proceedings, volume 4249 of Lecture Notes in
Computer Science. Springer, 2006. (Cited on pages 215, 218, and 235.)

[151] Louis Goubin and Jacques Patarin. DES and Differential Power Analysis (The
"Duplication" Method). In Koç and Paar [196], pages 158–172. (Cited on
page 31.)

[152] Hannes Groß. Sharing is Caring - On the Protection of Arithmetic Logic Units
against Passive Physical Attacks. In Stefan Mangard and Patrick Schaumont,
editors, Radio Frequency Identification. Security and Privacy Issues - 11th
International Workshop, RFIDsec 2015, New York, NY, USA, June 23-24,
2015, Revised Selected Papers, volume 9440 of Lecture Notes in Computer
Science, pages 68–84. Springer, 2015. (Cited on page 185.)

[153] Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, and Kerem Varici.
LS-Designs: Bitslice Encryption for Efficient Masked Software Implementations.
In Cid and Rechberger [82], pages 18–37. (Cited on pages 65, 68, 70, 73, 105,
and 114.)

[154] Sylvain Guilley, Philippe Hoogvorst, and Renaud Pacalet. Differential Power
Analysis Model and Some Results. In Jean-Jacques Quisquater, Pierre Parad-
inas, Yves Deswarte, and Anas Abou El Kalam, editors, Smart Card Re-
search and Advanced Applications VI, IFIP 18th World Computer Congress,
TC8/WG8.8 & TC11/WG11.2 Sixth International Conference on Smart Card
Research and Advanced Applications (CARDIS), 22-27 August 2004, Toulouse,
France, volume 153 of IFIP, pages 127–142. Kluwer/Springer, 2004. (Cited on
page 118.)

[155] Sylvain Guilley, Philippe Hoogvorst, Renaud Pacalet, and Johannes Schmidt.
Improving Side-Channel Attacks by Exploiting Substitution Boxes Proper-
ties. In International Workshop on Boolean Functions: Cryptography and
Applications, pages 1–25, 2007. (Cited on page 118.)

Bibliography 217

[156] Tim Güneysu and Helena Handschuh, editors. Cryptographic Hardware and
Embedded Systems - CHES 2015 - 17th International Workshop, Saint-Malo,
France, September 13-16, 2015, Proceedings, volume 9293 of Lecture Notes in
Computer Science. Springer, 2015. (Cited on pages 204, 223, and 232.)

[157] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw.
The LED Block Cipher. In Preneel and Takagi [278], pages 326–341. (Cited
on pages 65, 68, and 71.)

[158] Peter Gutmann. Data Remanence in Semiconductor Devices. In Dan S. Wallach,
editor, 10th USENIX Security Symposium, August 13-17, 2001, Washington,
D.C., USA. USENIX, 2001. (Cited on page 19.)

[159] Byoungjin Han, Hwanjin Lee, Hyuncheol Jeong, and Yoojae Won. The HIGHT
Encryption Algorithm. Internet-Draft draft-kisa-hight-00, Internet Engineering
Task Force (IETF), June 2011. https://tools.ietf.org/id/draft-kisa-
hight-00.txt. (Cited on page 70.)

[160] Helena Handschuh, Pascal Paillier, and Jacques Stern. Probing Attacks on
Tamper-Resistant Devices. In Koç and Paar [196], pages 303–315. (Cited on
page 19.)

[161] Christoph Herbst, Elisabeth Oswald, and Stefan Mangard. An AES Smart Card
Implementation Resistant to Power Analysis Attacks. In Jianying Zhou, Moti
Yung, and Feng Bao, editors, Applied Cryptography and Network Security, 4th
International Conference, ACNS 2006, Singapore, June 6-9, 2006, Proceedings,
volume 3989 of Lecture Notes in Computer Science, pages 239–252, 2006. (Cited
on pages 30 and 32.)

[162] Thomas Hobbes. Leviathan. A&C Black, 2006. (Cited on page 1.)

[163] Gael Hofemeier and Robert Chesebrough. Introduction to Intel
AES-NI and Intel Secure Key Instructions. Technical report avail-
able at https://software.intel.com/sites/default/files/m/d/4/1/d/8/
Introduction_to_Intel_Secure_Key_Instructions.pdf. Accessed: April
2017. (Cited on pages 133 and 137.)

[164] Thorsten Holz and Stefan Savage, editors. 25th USENIX Security Sympo-
sium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016. USENIX
Association, 2016. (Cited on pages 214 and 222.)

[165] Ekawat Homsirikamol, Marcin Rogawski, and Kris Gaj. Comparing Hardware
Performance of Fourteen Round Two SHA-3 Candidates Using FPGAs. IACR
Cryptology ePrint Archive, 2010:445, 2010. (Cited on page 48.)

[166] Deukjo Hong, Jung-Keun Lee, Dong-Chan Kim, Daesung Kwon, Kwon Ho
Ryu, and Donggeon Lee. LEA: A 128-Bit Block Cipher for Fast Encryption on
Common Processors. In Yongdae Kim, Heejo Lee, and Adrian Perrig, editors,
Information Security Applications - 14th International Workshop, WISA 2013,

https://tools.ietf.org/id/draft-kisa-hight-00.txt
https://tools.ietf.org/id/draft-kisa-hight-00.txt
https://software.intel.com/sites/default/files/m/d/4/1/d/8/Introduction_to_Intel_Secure_Key_Instructions.pdf
https://software.intel.com/sites/default/files/m/d/4/1/d/8/Introduction_to_Intel_Secure_Key_Instructions.pdf

218 Bibliography

Jeju Island, Korea, August 19-21, 2013, Revised Selected Papers, volume 8267
of Lecture Notes in Computer Science, pages 3–27. Springer, 2013. (Cited on
pages 65 and 71.)

[167] Deukjo Hong, Jaechul Sung, Seokhie Hong, Jongin Lim, Sangjin Lee, Bonseok
Koo, Changhoon Lee, Donghoon Chang, Jesang Lee, Kitae Jeong, Hyun Kim,
Jongsung Kim, and Seongtaek Chee. HIGHT: A New Block Cipher Suitable
for Low-Resource Device. In Goubin and Matsui [150], pages 46–59. (Cited on
pages 65, 68, and 70.)

[168] Russell Housley. Using Advanced Encryption Standard (AES) CCM Mode with
IPsec Encapsulating Security Payload (ESP). RFC 4309, Internet Engineering
Task Force, December 2005. Available at https://tools.ietf.org/html/
rfc4309. Accessed: September 2017. (Cited on page 132.)

[169] Michael Hutter and Jörn-Marc Schmidt. The Temperature Side Channel and
Heating Fault Attacks. In Aurélien Francillon and Pankaj Rohatgi, editors,
Smart Card Research and Advanced Applications - 12th International Con-
ference, CARDIS 2013, Berlin, Germany, November 27-29, 2013. Revised
Selected Papers, volume 8419 of Lecture Notes in Computer Science, pages
219–235. Springer, 2013. (Cited on page 20.)

[170] IEEE. IEEE Standard for Low-Rate Wireless Networks. Available at https://
standards.ieee.org/about/get/802/802.15.html. Accessed: September 2017.
(Cited on pages xvii, 54, 67, 132, and 157.)

[171] Sebastiaan Indesteege, Nathan Keller, Orr Dunkelman, Eli Biham, and Bart
Preneel. A Practical Attack on KeeLoq. In Nigel P. Smart, editor, Advances
in Cryptology - EUROCRYPT 2008, 27th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Istanbul, Turkey,
April 13-17, 2008. Proceedings, volume 4965 of Lecture Notes in Computer
Science, pages 1–18. Springer, 2008. (Cited on page 5.)

[172] International Organization for Standardization. ISO/IEC 19772:2009. Infor-
mation Technology – Security Techniques – Authenticated Encryption, Febru-
ary 2009. Available at https://www.iso.org/standard/46345.html. Accessed:
September 2017. (Cited on page 8.)

[173] International Organization for Standardization. ISO/IEC 19772:2009. Infor-
mation Technology – Security Techniques – Lightweight Cryptography – Part 3:
Stream Ciphers, October 2012. Available at https://www.iso.org/standard/
56426.html. Accessed: September 2017. (Cited on page 8.)

[174] Yuval Ishai, Amit Sahai, and David A. Wagner. Private Circuits: Securing
Hardware against Probing Attacks. In Dan Boneh, editor, Advances in Cryptol-
ogy - CRYPTO 2003, 23rd Annual International Cryptology Conference, Santa
Barbara, California, USA, August 17-21, 2003, Proceedings, volume 2729 of
Lecture Notes in Computer Science, pages 463–481. Springer, 2003. (Cited on
page 32.)

https://tools.ietf.org/html/rfc4309
https://tools.ietf.org/html/rfc4309
https://standards.ieee.org/about/get/802/802.15.html
https://standards.ieee.org/about/get/802/802.15.html
https://www.iso.org/standard/46345.html
https://www.iso.org/standard/56426.html
https://www.iso.org/standard/56426.html

Bibliography 219

[175] Joshua Jaffe. A First-Order DPA Attack Against AES in Counter Mode with
Unknown Initial Counter. In Paillier and Verbauwhede [270], pages 1–13.
(Cited on pages 132, 134, 156, and 166.)

[176] Anthony Journault, François-Xavier Standaert, and Kerem Varici. Improving
the Security and Efficiency of Block Ciphers Based on LS-Designs. Designs,
Codes and Cryptography, 82(1-2):495–509, 2017. (Cited on pages 73 and 105.)

[177] Marc Joye and Amir Moradi, editors. Smart Card Research and Advanced
Applications - 13th International Conference, CARDIS 2014, Paris, France,
November 5-7, 2014. Revised Selected Papers, volume 8968 of Lecture Notes in
Computer Science. Springer, 2015. (Cited on pages 203 and 212.)

[178] Marc Joye and Francis Olivier. Side-Channel Analysis. In Henk C. A. van
Tilborg and Sushil Jajodia, editors, Encyclopedia of Cryptography and Security,
2nd Ed., pages 1198–1204. Springer, 2011. (Cited on page 20.)

[179] Marc Joye and Jean-Jacques Quisquater, editors. Cryptographic Hardware
and Embedded Systems - CHES 2004: 6th International Workshop Cambridge,
MA, USA, August 11-13, 2004. Proceedings, volume 3156 of Lecture Notes in
Computer Science. Springer, 2004. (Cited on pages 208, 213, and 222.)

[180] Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors. Cryptographic
Hardware and Embedded Systems - CHES 2002, 4th International Workshop,
Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers, volume 2523
of Lecture Notes in Computer Science. Springer, 2003. (Cited on pages 201
and 209.)

[181] David Kahn. The Codebreakers: The Comprehensive History of Secret Com-
munication from Ancient Times to the Internet. Simon and Schuster, 1996.
(Cited on pages 2 and 3.)

[182] Mohamed Karroumi, Benjamin Richard, and Marc Joye. Addition with Blinded
Operands. In Prouff [281], pages 41–55. (Cited on page 32.)

[183] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography.
CRC Press, 2014. (Cited on pages 3, 4, and 5.)

[184] Stéphanie Kerckhof, François Durvaux, Cédric Hocquet, David Bol, and
François-Xavier Standaert. Towards Green Cryptography: A Comparison
of Lightweight Ciphers from the Energy Viewpoint. In Prouff and Schaumont
[283], pages 390–407. (Cited on page 45.)

[185] Auguste Kerckhoffs. La Cryptographie Militaire. Journal des Sciences Mil-
itaires, IX:5–83, January 1883. Available at http://www.petitcolas.net/
kerckhoffs/crypto_militaire_1.pdf. Accessed: September 2017. (Cited on
page 4.)

http://www.petitcolas.net/kerckhoffs/crypto_militaire_1.pdf
http://www.petitcolas.net/kerckhoffs/crypto_militaire_1.pdf

220 Bibliography

[186] Khoongming Khoo, Thomas Peyrin, Axel York Poschmann, and Huihui Yap.
FOAM: Searching for Hardware-Optimal SPN Structures and Components
with a Fair Comparison. In Lejla Batina and Matthew Robshaw, editors, Cryp-
tographic Hardware and Embedded Systems - CHES 2014 - 16th International
Workshop, Busan, South Korea, September 23-26, 2014. Proceedings, volume
8731 of Lecture Notes in Computer Science, pages 433–450. Springer, 2014.
(Cited on pages 13 and 76.)

[187] Samuel T. King, editor. Proceedings of the 22th USENIX Security Symposium,
Washington, DC, USA, August 14-16, 2013. USENIX Association, 2013. (Cited
on pages 202 and 238.)

[188] Engin Kirda and Thomas Ristenpart, editors. 26th USENIX Security Sympo-
sium, USENIX Security 2017, Vancouver, BC, Canada, August 16-18, 2017.
USENIX Association, 2017. (Cited on pages 202 and 224.)

[189] Ilya Kizhvatov. pysca: Toolbox for Advanced Differential Power Analysis
of Symmetric Key Cryptographic Algorithm Implementations. Available at
https://github.com/ikizhvatov/pysca. Accessed: September 2017. (Cited
on page 30.)

[190] Ilya Kizhvatov. Side Channel Analysis of AVR XMEGA Crypto Engine.
In Dimitrios N. Serpanos and Wayne H. Wolf, editors, Proceedings of the
4th Workshop on Embedded Systems Security, WESS 2009, Grenoble, France,
October 15, 2009. ACM, 2009. (Cited on page 156.)

[191] Ilya Kizhvatov. Physical Security of Cryptographic Algorithm Implementations.
PhD thesis, University of Luxembourg, 2011. (Cited on page 22.)

[192] kmarquet. BLOC – Source Code Developed in the BLOC Project. https:

//github.com/kmarquet/bloc. Accessed: September 2017. (Cited on page 46.)

[193] Miroslav Knezevic. Efficient Hardware Implementations of Cryptographic
Primitives (Efficiënte hardware implementaties van cryptografische primitieven).
PhD thesis, Katholieke Universiteit Leuven, Belgium, 2011. (Cited on page 34.)

[194] Miroslav Knezevic, Ventzislav Nikov, and Peter Rombouts. Low-Latency
Encryption - Is "Lightweight = Light + Wait"? In Prouff and Schaumont
[283], pages 426–446. (Cited on pages 15 and 45.)

[195] Lars R. Knudsen and Huapeng Wu, editors. Selected Areas in Cryptography,
19th International Conference, SAC 2012, Windsor, ON, Canada, August 15-
16, 2012, Revised Selected Papers, volume 7707 of Lecture Notes in Computer
Science. Springer, 2013. (Cited on pages 206 and 235.)

[196] Çetin Kaya Koç and Christof Paar, editors. Cryptographic Hardware and Em-
bedded Systems, First International Workshop, CHES’99, Worcester, MA, USA,
August 12-13, 1999, Proceedings, volume 1717 of Lecture Notes in Computer
Science. Springer, 1999. (Cited on pages 216 and 217.)

https://github.com/ikizhvatov/pysca
https://github.com/kmarquet/bloc
https://github.com/kmarquet/bloc

Bibliography 221

[197] Çetin Kaya Koç and Christof Paar, editors. Cryptographic Hardware and
Embedded Systems - CHES 2000, Second International Workshop, Worcester,
MA, USA, August 17-18, 2000, Proceedings, volume 1965 of Lecture Notes in
Computer Science. Springer, 2000. (Cited on pages 224 and 232.)

[198] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In Neal Koblitz, editor, Advances in Cryptology -
CRYPTO ’96, 16th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 18-22, 1996, Proceedings, volume 1109 of Lecture
Notes in Computer Science, pages 104–113. Springer, 1996. (Cited on pages
17, 20, and 173.)

[199] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Introduction to Differen-
tial Power Analysis and Related Attacks, 1998. Technical Report. Avail-
able at https://www.rambus.com/introduction-to-differential-power-
analysis-and-related-attacks/. Accessed: September 2017. (Cited on
pages 18, 20, 22, and 25.)

[200] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis.
In Wiener [382], pages 388–397. (Cited on pages 18, 20, 25, 26, 31, and 173.)

[201] Paul C. Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. Introduction
to Differential Power Analysis. Journal of Cryptographic Engineering, 1(1):5–27,
2011. (Cited on pages 22 and 25.)

[202] Paul C Kocher, Joshua M Jaffe, and Benjamin C Jun. Using Unpredictable
Information to Minimize Leakage from Smartcards and Other Cryptosystems,
December 2001. US Patent 6,327,661. (Cited on page 31.)

[203] Boris Köpf and David A. Basin. An Information-Theoretic Model for Adaptive
Side-Channel Attacks. In Peng Ning, Sabrina De Capitani di Vimercati,
and Paul F. Syverson, editors, Proceedings of the 2007 ACM Conference on
Computer and Communications Security, CCS 2007, Alexandria, Virginia,
USA, October 28-31, 2007, pages 286–296. ACM, 2007. (Cited on page 29.)

[204] Hugo Krawczyk, Mihir Bellare, and Ran Canetti. HMAC: Keyed-Hashing for
Message Authentication. RFC 2104, Internet Engineering Task Force, February
1997. Available at https://tools.ietf.org/html/rfc2104. Accessed: Septem-
ber 2017. (Cited on page 8.)

[205] Markus G. Kuhn. Optical Time-Domain Eavesdropping Risks of CRT Displays.
In 2002 IEEE Symposium on Security and Privacy, Berkeley, California, USA,
May 12-15, 2002, pages 3–18. IEEE Computer Society, 2002. (Cited on page 18.)

[206] Markus G. Kuhn. Compromising Emanations: Eavesdropping Risks of Com-
puter Displays. Technical Report UCAM-CL-TR-577, University of Cambridge,
Computer Laboratory, December 2003. Available at http://www.cl.cam.ac.uk/
techreports/UCAM-CL-TR-577.pdf. Accessed: September 2017. (Cited on
pages 16, 17, and 18.)

https://www.rambus.com/introduction-to-differential-power-analysis-and-related-attacks/
https://www.rambus.com/introduction-to-differential-power-analysis-and-related-attacks/
https://tools.ietf.org/html/rfc2104
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-577.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-577.pdf

222 Bibliography

[207] Ian Kuon and Jonathan Rose. Measuring the Gap Between FPGAs and ASICs.
IEEE Transactions on CAD of Integrated Circuits and Systems, 26(2):203–215,
2007. (Cited on page 11.)

[208] Das Labor. XBX Embedded Hashing. Available at https://github.com/das-
labor/xbx/. Accessed: September 2017. (Cited on page 47.)

[209] Yee Wei Law, Jeroen Doumen, and Pieter H. Hartel. Survey and Benchmark of
Block Ciphers for Wireless Sensor Networks. TOSN, 2(1):65–93, 2006. (Cited
on page 45.)

[210] Gregor Leander, Brice Minaud, and Sondre Rønjom. A Generic Approach to
Invariant Subspace Attacks: Cryptanalysis of Robin, iSCREAM and Zorro.
In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology -
EUROCRYPT 2015 - 34th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30,
2015, Proceedings, Part I, volume 9056 of Lecture Notes in Computer Science,
pages 254–283. Springer, 2015. (Cited on page 73.)

[211] Pil Joong Lee and Chae Hoon Lim, editors. Information Security and Cryptology
- ICISC 2002, 5th International Conference Seoul, Korea, November 28-29,
2002, Revised Papers, volume 2587 of Lecture Notes in Computer Science.
Springer, 2003. (Cited on pages 206 and 223.)

[212] Kerstin Lemke, Kai Schramm, and Christof Paar. DPA on n-Bit Sized Boolean
and Arithmetic Operations and Its Application to IDEA, RC6, and the HMAC-
Construction. In Joye and Quisquater [179], pages 205–219. (Cited on page 124.)

[213] Kerstin Lemke-Rust and Christof Paar. Gaussian Mixture Models for Higher-
Order Side Channel Analysis. In Paillier and Verbauwhede [270], pages 14–27.
(Cited on page 28.)

[214] Gaëtan Leurent. Improved Differential-Linear Cryptanalysis of 7-Round
Chaskey with Partitioning. In Marc Fischlin and Jean-Sébastien Coron, editors,
Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Vienna,
Austria, May 8-12, 2016, Proceedings, Part I, volume 9665 of Lecture Notes in
Computer Science, pages 344–371. Springer, 2016. (Cited on page 70.)

[215] libsodium. The Sodium Crypto Library (libsodium). Available at https:

//download.libsodium.org/doc/. Accessed: April 2017. (Cited on page 137.)

[216] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan
Mangard. ARMageddon: Cache Attacks on Mobile Devices. In Holz and
Savage [164], pages 549–564. (Cited on page 137.)

[217] Logic Friday. Free Software for Boolean Logic Optimization, Analysis, and
Synthesis. Available at https://sontrak.com/. Accessed: September 2017.
(Cited on page 185.)

https://github.com/das-labor/xbx/
https://github.com/das-labor/xbx/
https://download.libsodium.org/doc/
https://download.libsodium.org/doc/
https://sontrak.com/

Bibliography 223

[218] Victor Lomné, Emmanuel Prouff, and Thomas Roche. Behind the Scene of
Side Channel Attacks. In Sako and Sarkar [303], pages 506–525. (Cited on
pages 25, 30, and 169.)

[219] Jake Longo, Elke De Mulder, Dan Page, and Michael Tunstall. SoC It to
EM: ElectroMagnetic Side-Channel Attacks on a Complex System-on-Chip. In
Güneysu and Handschuh [156], pages 620–640. (Cited on pages 21 and 170.)

[220] LoRa Alliance. Wide Area Networks for IoT. Available at https://www.lora-
alliance.org/. Accessed: April 2017. (Cited on page 132.)

[221] Joe Loughry and David A. Umphress. Information Leakage from Optical
Emanations. ACM Transactions on Information and System Security, 5(3):262–
289, 2002. (Cited on page 18.)

[222] Stefan Mangard. A Simple Power-Analysis (SPA) Attack on Implementations
of the AES Key Expansion. In Lee and Lim [211], pages 343–358. (Cited on
page 25.)

[223] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis Attacks
– Revealing the Secrets of Smart Cards. Springer, 2007. (Cited on pages 18, 19,
21, 22, 23, 24, 25, 29, 174, and 185.)

[224] Stefan Mangard and François-Xavier Standaert, editors. Cryptographic Hard-
ware and Embedded Systems, CHES 2010, 12th International Workshop, Santa
Barbara, CA, USA, August 17-20, 2010. Proceedings, volume 6225 of Lecture
Notes in Computer Science. Springer, 2010. (Cited on pages 203, 205, 210, 214,
and 239.)

[225] George Marsaglia et al. Xorshift RNGs. Journal of Statistical Software,
8(14):1–6, 2003. (Cited on page 191.)

[226] Keith Martin. Everyday Cryptography: Fundamental Principles and Applica-
tions. Oxford University Press, 2012. (Cited on page 6.)

[227] James L Massey. Guessing and Entropy. In Proceedings of 1994 IEEE Interna-
tional Symposium on Information Theory, page 204. IEEE, 1994. (Cited on
page 29.)

[228] Ramya Jayaram Masti, Devendra Rai, Aanjhan Ranganathan, Christian Müller,
Lothar Thiele, and Srdjan Capkun. Thermal Covert Channels on Multi-core
Platforms. In Jaeyeon Jung and Thorsten Holz, editors, 24th USENIX Security
Symposium, USENIX Security 15, Washington, D.C., USA, August 12-14,
2015., pages 865–880. USENIX Association, 2015. (Cited on page 18.)

[229] Luke Mather, Elisabeth Oswald, and Carolyn Whitnall. Multi-target DPA
Attacks: Pushing DPA Beyond the Limits of a Desktop Computer. In Sarkar
and Iwata [304], pages 243–261. (Cited on page 128.)

https://www.lora-alliance.org/
https://www.lora-alliance.org/

224 Bibliography

[230] Mitsuru Matsui. Linear Cryptanalysis Method for DES Cipher. In Tor Helleseth,
editor, Advances in Cryptology - EUROCRYPT ’93, Workshop on the Theory
and Application of Cryptographic Techniques, Lofthus, Norway, May 23-27,
1993, Proceedings, volume 765 of Lecture Notes in Computer Science, pages
386–397. Springer, 1993. (Cited on page 117.)

[231] Mitsuru Matsui and Yumiko Murakami. Minimalism of Software Implementa-
tion - Extensive Performance Analysis of Symmetric Primitives on the RL78
Microcontroller. In Moriai [243], pages 393–409. (Cited on page 45.)

[232] Rita Mayer-Sommer. Smartly Analyzing the Simplicity and the Power of
Simple Power Analysis on Smartcards. In Koç and Paar [197], pages 78–92.
(Cited on pages 26 and 27.)

[233] David McCann, Elisabeth Oswald, and Carolyn Whitnall. Towards Practical
Tools for Side Channel Aware Software Engineering: ’Grey Box’ Modelling for
Instruction Leakages. In Kirda and Ristenpart [188], pages 199–216. (Cited on
pages 189 and 194.)

[234] David A. McGrew and John Viega. The Security and Performance of the
Galois/Counter Mode (GCM) of Operation. In Anne Canteaut and Kapalee
Viswanathan, editors, Progress in Cryptology - INDOCRYPT 2004, 5th Inter-
national Conference on Cryptology in India, Chennai, India, December 20-22,
2004, Proceedings, volume 3348 of Lecture Notes in Computer Science, pages
343–355. Springer, 2004. (Cited on page 7.)

[235] Marcel Medwed, Christophe Petit, Francesco Regazzoni, Mathieu Renauld,
and François-Xavier Standaert. Fresh Re-keying II: Securing Multiple Parties
against Side-Channel and Fault Attacks. In Prouff [280], pages 115–132. (Cited
on page 174.)

[236] Marcel Medwed, François-Xavier Standaert, Johann Großschädl, and Francesco
Regazzoni. Fresh Re-keying: Security against Side-Channel and Fault Attacks
for Low-Cost Devices. In Daniel J. Bernstein and Tanja Lange, editors, Progress
in Cryptology - AFRICACRYPT 2010, Third International Conference on
Cryptology in Africa, Stellenbosch, South Africa, May 3-6, 2010. Proceedings,
volume 6055 of Lecture Notes in Computer Science, pages 279–296. Springer,
2010. (Cited on pages 31 and 174.)

[237] Florian Mendel, Vincent Rijmen, Deniz Toz, and Kerem Varici. Differential
Analysis of the LED Block Cipher. In Wang and Sako [375], pages 190–207.
(Cited on page 71.)

[238] Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. Handbook of
Applied Cryptography. CRC Press, 1996. (Cited on page 4.)

[239] Thomas S. Messerges. Securing the AES Finalists Against Power Analysis
Attacks. In Bruce Schneier, editor, Fast Software Encryption, 7th International

Bibliography 225

Workshop, FSE 2000, New York, NY, USA, April 10-12, 2000, Proceedings,
volume 1978 of Lecture Notes in Computer Science, pages 150–164. Springer,
2000. (Cited on page 32.)

[240] Thomas S. Messerges, Ezzy A. Dabbish, and Robert H. Sloan. Investigations
of Power Analysis Attacks on Smartcards. In Scott B. Guthery and Peter
Honeyman, editors, Proceedings of the 1st Workshop on Smartcard Technology,
Smartcard 1999, Chicago, Illinois, USA, May 10-11, 1999. USENIX Association,
1999. (Cited on page 26.)

[241] Thomas S. Messerges, Ezzy A. Dabbish, and Robert H. Sloan. Examining
Smart-Card Security under the Threat of Power Analysis Attacks. IEEE
Transactions on Computers, 51(5):541–552, 2002. (Cited on page 26.)

[242] Microsoft. Internet of Things Security Architecture, July 2017.
Available at https://docs.microsoft.com/en-us/azure/iot-suite/iot-
security-architecture. Accessed: September 2017. (Cited on page 161.)

[243] Shiho Moriai, editor. Fast Software Encryption - 20th International Workshop,
FSE 2013, Singapore, March 11-13, 2013. Revised Selected Papers, volume
8424 of Lecture Notes in Computer Science. Springer, 2014. (Cited on pages
211 and 224.)

[244] Nicky Mouha, Bart Mennink, Anthony Van Herrewege, Dai Watanabe, Bart
Preneel, and Ingrid Verbauwhede. Chaskey: An Efficient MAC Algorithm for
32-bit Microcontrollers. In Antoine Joux and Amr M. Youssef, editors, Selected
Areas in Cryptography - SAC 2014 - 21st International Conference, Montreal,
QC, Canada, August 14-15, 2014, Revised Selected Papers, volume 8781 of
Lecture Notes in Computer Science, pages 306–323. Springer, 2014. (Cited on
pages 65, 70, and 109.)

[245] Steven J. Murdoch. Hot or Not: Revealing Hidden Services by their Clock Skew.
In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors,
Proceedings of the 13th ACM Conference on Computer and Communications
Security, CCS 2006, Alexandria, VA, USA, Ioctober 30 - November 3, 2006,
pages 27–36. ACM, 2006. (Cited on page 18.)

[246] National Institute of Standards and Technology (NIST). Hash Functions. Avail-
able at http://csrc.nist.gov/groups/ST/hash/sha-3/. Accessed: Septem-
ber 2017. (Cited on pages 44, 47, 48, and 64.)

[247] National Institute of Standards and Technology (NIST). Lightweight
Cryptography. Available at https://csrc.nist.gov/Projects/Lightweight-
Cryptography. Accessed: September 2017. (Cited on pages 37, 44, and 64.)

[248] National Institute of Standards and Technology (NIST). Lightweight
Cryptography Workshop 2015. Available at https://www.nist.gov/news-
events/events/2015/07/lightweight-cryptography-workshop-2015. Ac-
cessed: September 2017. (Cited on pages 37 and 44.)

https://docs.microsoft.com/en-us/azure/iot-suite/iot-security-architecture
https://docs.microsoft.com/en-us/azure/iot-suite/iot-security-architecture
http://csrc.nist.gov/groups/ST/hash/sha-3/
https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://www.nist.gov/news-events/events/2015/07/lightweight-cryptography-workshop-2015
https://www.nist.gov/news-events/events/2015/07/lightweight-cryptography-workshop-2015

226 Bibliography

[249] National Institute of Standards and Technology (NIST). Lightweight
Cryptography Workshop 2016. Available at https://www.nist.gov/news-
events/events/2016/10/lightweight-cryptography-workshop-2016. Ac-
cessed: September 2017. (Cited on pages 37 and 44.)

[250] National Institute of Standards and Technology (NIST). Specification for
the Advanced Encryption Standard (AES). Federal Information Processing
Standards Publication (FIPS) 197, 2001. (Cited on pages 44, 64, 65, 68, 69,
132, and 134.)

[251] Nettle. Nettle – A Low-Level Cryptographic Library. Available at http:

//www.lysator.liu.se/~nisse/nettle/. Accessed: April 2017. (Cited on
page 137.)

[252] NewAE. ChipWhisperer. Available at https://newae.com/tools/
chipwhisperer/. Accessed: September 2017. (Cited on pages 29, 155, and 171.)

[253] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold Imple-
mentations Against Side-Channel Attacks and Glitches. In Peng Ning, Sihan
Qing, and Ninghui Li, editors, Information and Communications Security, 8th
International Conference, ICICS 2006, Raleigh, NC, USA, December 4-7, 2006,
Proceedings, volume 4307 of Lecture Notes in Computer Science, pages 529–545.
Springer, 2006. (Cited on page 32.)

[254] Thank you Bob Anderson, September 1994. Email sent to cypher-
punk mailing list from nobody@jpunix.com. Available at https:

//web.archive.org/web/20010722163902/http://cypherpunks.venona.com/
date/1994/09/msg00304.html. Accessed: September 2017. (Cited on page 5.)

[255] Karsten Nohl, David Evans, Starbug, and Henryk Plötz. Reverse-Engineering
a Cryptographic RFID Tag. In Paul C. van Oorschot, editor, Proceedings of
the 17th USENIX Security Symposium, July 28-August 1, 2008, San Jose, CA,
USA, pages 185–194. USENIX Association, 2008. (Cited on page 19.)

[256] Matt Novak. Hackers Shut Down The Key Card Machine In This Ho-
tel Until a Bitcoin Ransom Was Paid [Corrected], January 2017. Avail-
able at http://gizmodo.com/hackers-locked-every-room-in-this-hotel-
until-a-bitcoin-1791769502. Accessed: September 2017. (Cited on
page 155.)

[257] The Editors of Encyclopædia Britannica. Personal Computer (PC). Encyclopæ-
dia Britannica, November 2016. Available at https://www.britannica.com/
technology/personal-computer. Accessed: September 2017. (Cited on
page 3.)

[258] Colin O’Flynn and Zhizhang Chen. A Case Study of Side-Channel Analysis
Using Decoupling Capacitor Power Measurement with the OpenADC. In
Joaquín García-Alfaro, Frédéric Cuppens, Nora Cuppens-Boulahia, Ali Miri,

https://www.nist.gov/news-events/events/2016/10/lightweight-cryptography-workshop-2016
https://www.nist.gov/news-events/events/2016/10/lightweight-cryptography-workshop-2016
http://www.lysator.liu.se/~nisse/nettle/
http://www.lysator.liu.se/~nisse/nettle/
https://newae.com/tools/chipwhisperer/
https://newae.com/tools/chipwhisperer/
https://web.archive.org/web/20010722163902/http://cypherpunks.venona.com/date/1994/09/msg00304.html
https://web.archive.org/web/20010722163902/http://cypherpunks.venona.com/date/1994/09/msg00304.html
https://web.archive.org/web/20010722163902/http://cypherpunks.venona.com/date/1994/09/msg00304.html
http://gizmodo.com/hackers-locked-every-room-in-this-hotel-until-a-bitcoin-1791769502
http://gizmodo.com/hackers-locked-every-room-in-this-hotel-until-a-bitcoin-1791769502
https://www.britannica.com/technology/personal-computer
https://www.britannica.com/technology/personal-computer

Bibliography 227

and Nadia Tawbi, editors, Foundations and Practice of Security - 5th Inter-
national Symposium, FPS 2012, Montreal, QC, Canada, October 25-26, 2012,
Revised Selected Papers, volume 7743 of Lecture Notes in Computer Science,
pages 341–356. Springer, 2012. (Cited on page 21.)

[259] Colin O’Flynn and Zhizhang Chen. Power Analysis Attacks Against IEEE
802.15.4 Nodes. In Standaert and Oswald [337], pages 55–70. (Cited on pages
132, 133, 156, and 157.)

[260] Colin O’Flynn and Zhizhang (David) Chen. ChipWhisperer: An Open-Source
Platform for Hardware Embedded Security Research. In Prouff [281], pages
243–260. (Cited on page 29.)

[261] OpenSSL. Cryptography and SSL/TLS Toolkit. Available at https://

www.openssl.org/. Accessed: April 2017. (Cited on pages 133 and 137.)

[262] OpenSSL. OpenSSL – TLS/SSL and Crypto Library. Available at https:

//github.com/openssl/openssl/blob/master/crypto/aes/aes_core.c. Ac-
cessed: April 2017. (Cited on page 137.)

[263] OpenThread. OpenThread: An Open-Source Implementation of the
Thread Networking Protocol. Available at https://github.com/openthread/
openthread. Accessed: September 2017, 2016. (Cited on pages 157, 158,
and 167.)

[264] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks and Counter-
measures: The Case of AES. In David Pointcheval, editor, Topics in Cryptology
- CT-RSA 2006, The Cryptographers’ Track at the RSA Conference 2006, San
Jose, CA, USA, February 13-17, 2006, Proceedings, volume 3860 of Lecture
Notes in Computer Science, pages 1–20. Springer, 2006. (Cited on page 137.)

[265] David Oswald, Bastian Richter, and Christof Paar. Side-Channel Attacks on
the Yubikey 2 One-Time Password Generator. In Salvatore J. Stolfo, Angelos
Stavrou, and Charles V. Wright, editors, Research in Attacks, Intrusions, and
Defenses - 16th International Symposium, RAID 2013, Rodney Bay, St. Lucia,
October 23-25, 2013. Proceedings, volume 8145 of Lecture Notes in Computer
Science, pages 204–222. Springer, 2013. (Cited on page 21.)

[266] Elisabeth Oswald and Stefan Mangard. Template Attacks on Masking - Resis-
tance Is Futile. In Abe [1], pages 243–256. (Cited on page 28.)

[267] Elisabeth Oswald and Pankaj Rohatgi, editors. Cryptographic Hardware and
Embedded Systems - CHES 2008, 10th International Workshop, Washington,
D.C., USA, August 10-13, 2008. Proceedings, volume 5154 of Lecture Notes in
Computer Science. Springer, 2008. (Cited on pages 207 and 215.)

[268] Onur Özen, Kerem Varici, Cihangir Tezcan, and Çelebi Kocair. Lightweight
Block Ciphers Revisited: Cryptanalysis of Reduced Round PRESENT and

https://www.openssl.org/
https://www.openssl.org/
https://github.com/openssl/openssl/blob/master/crypto/aes/aes_core.c
https://github.com/openssl/openssl/blob/master/crypto/aes/aes_core.c
https://github.com/openthread/openthread
https://github.com/openthread/openthread

228 Bibliography

HIGHT. In Colin Boyd and Juan Manuel González Nieto, editors, Infor-
mation Security and Privacy, 14th Australasian Conference, ACISP 2009,
Brisbane, Australia, July 1-3, 2009, Proceedings, volume 5594 of Lecture Notes
in Computer Science, pages 90–107. Springer, 2009. (Cited on page 70.)

[269] Daniel Page. A Practical Introduction to Computer Architecture. Springer
Science & Business Media, 2009. (Cited on page 15.)

[270] Pascal Paillier and Ingrid Verbauwhede, editors. Cryptographic Hardware and
Embedded Systems - CHES 2007, 9th International Workshop, Vienna, Austria,
September 10-13, 2007, Proceedings, volume 4727 of Lecture Notes in Computer
Science. Springer, 2007. (Cited on pages 207, 219, and 222.)

[271] Kostas Papagiannopoulos and Nikita Veshchikov. Mind the Gap: Towards
Secure 1st-Order Masking in Software. In Sylvain Guilley, editor, Construc-
tive Side-Channel Analysis and Secure Design - 8th International Workshop,
COSADE 2017, Paris, France, April 13-14, 2017, Revised Selected Papers,
volume 10348 of Lecture Notes in Computer Science, pages 282–297. Springer,
2017. (Cited on pages 189, 190, and 194.)

[272] Eric Peeters. Advanced DPA Theory and Practice. Springer, 2013. (Cited on
page 18.)

[273] Adrian Perrig, Robert Szewczyk, J. D. Tygar, Victor Wen, and David E.
Culler. SPINS: Security Protocols for Sensor Networks. Wireless Networks,
8(5):521–534, 2002. (Cited on page 72.)

[274] Thomas Peyrin, editor. Fast Software Encryption - 23rd International Con-
ference, FSE 2016, Bochum, Germany, March 20-23, 2016, Revised Selected
Papers, volume 9783 of Lecture Notes in Computer Science. Springer, 2016.
(Cited on pages 85, 209, and 230.)

[275] Pico Technology. Pico Oscilloscope Range. Available at https:

//www.picotech.com/products/oscilloscope. Accessed: September 2017.
(Cited on page 171.)

[276] Gilles Piret, Thomas Roche, and Claude Carlet. PICARO - A Block Ci-
pher Allowing Efficient Higher-Order Side-Channel Resistance. In Feng Bao,
Pierangela Samarati, and Jianying Zhou, editors, Applied Cryptography and
Network Security - 10th International Conference, ACNS 2012, Singapore,
June 26-29, 2012. Proceedings, volume 7341 of Lecture Notes in Computer
Science, pages 311–328. Springer, 2012. (Cited on page 114.)

[277] Axel York Poschmann. Lightweight Cryptography: Cryptographic Engineering
for a Pervasive World. PhD thesis, Ruhr University Bochum, 2009. (Cited on
pages 13 and 34.)

[278] Bart Preneel and Tsuyoshi Takagi, editors. Cryptographic Hardware and
Embedded Systems - CHES 2011 - 13th International Workshop, Nara, Japan,

https://www.picotech.com/products/oscilloscope
https://www.picotech.com/products/oscilloscope

Bibliography 229

September 28 - October 1, 2011. Proceedings, volume 6917 of Lecture Notes in
Computer Science. Springer, 2011. (Cited on pages 217 and 233.)

[279] Emmanuel Prouff. DPA Attacks and S-Boxes. In Henri Gilbert and Helena
Handschuh, editors, Fast Software Encryption: 12th International Workshop,
FSE 2005, Paris, France, February 21-23, 2005, Revised Selected Papers,
volume 3557 of Lecture Notes in Computer Science, pages 424–441. Springer,
2005. (Cited on page 117.)

[280] Emmanuel Prouff, editor. Smart Card Research and Advanced Applications
- 10th IFIP WG 8.8/11.2 International Conference, CARDIS 2011, Leuven,
Belgium, September 14-16, 2011, Revised Selected Papers, volume 7079 of
Lecture Notes in Computer Science. Springer, 2011. (Cited on pages 224
and 231.)

[281] Emmanuel Prouff, editor. Constructive Side-Channel Analysis and Secure
Design - 5th International Workshop, COSADE 2014, Paris, France, April 13-
15, 2014. Revised Selected Papers, volume 8622 of Lecture Notes in Computer
Science. Springer, 2014. (Cited on pages 209, 219, 227, and 230.)

[282] Emmanuel Prouff and Matthieu Rivain. Theoretical and Practical Aspects of
Mutual Information Based Side Channel Analysis. In Michel Abdalla, David
Pointcheval, Pierre-Alain Fouque, and Damien Vergnaud, editors, Applied
Cryptography and Network Security, 7th International Conference, ACNS 2009,
Paris-Rocquencourt, France, June 2-5, 2009. Proceedings, volume 5536 of
Lecture Notes in Computer Science, pages 499–518, 2009. (Cited on page 27.)

[283] Emmanuel Prouff and Patrick Schaumont, editors. Cryptographic Hardware
and Embedded Systems - CHES 2012 - 14th International Workshop, Leuven,
Belgium, September 9-12, 2012. Proceedings, volume 7428 of Lecture Notes in
Computer Science. Springer, 2012. (Cited on pages 219 and 220.)

[284] Public Comments Received on “Profiles for the Lightweight Cryptography
Standardization Process”. https://www.nist.gov/sites/default/files/
documents/2017/06/20/public-comments-profiles-i-ii-june2017.pdf,
June 2017. Accessed: September 2017. (Cited on page 182.)

[285] Quininer Kel. sparx-cipher: Another SPARX Block Cipher Implementation for
Rust. Available at https://github.com/quininer/sparx-cipher. Accessed:
September 2017. (Cited on page 94.)

[286] Jean-Jacques Quisquater and David Samyde. ElectroMagnetic Analysis (EMA):
Measures and Counter-Measures for Smart Cards. In Isabelle Attali and
Thomas P. Jensen, editors, Smart Card Programming and Security, Interna-
tional Conference on Research in Smart Cards, E-smart 2001, Cannes, France,
September 19-21, 2001, Proceedings, volume 2140 of Lecture Notes in Computer
Science, pages 200–210. Springer, 2001. (Cited on page 20.)

https://www.nist.gov/sites/default/files/documents/2017/06/20/public-comments-profiles-i-ii-june2017.pdf
https://www.nist.gov/sites/default/files/documents/2017/06/20/public-comments-profiles-i-ii-june2017.pdf
https://github.com/quininer/sparx-cipher

230 Bibliography

[287] Rambus. DPA Workstation Analysis Platform. Available at https:

//www.rambus.com/security/dpa-countermeasures/dpa-workstation-
platform/. Accessed: September 2017. (Cited on page 29.)

[288] Randombit. mbed TLS. Available at https://botan.randombit.net/. Ac-
cessed: April 2017. (Cited on page 137.)

[289] Josyula R. Rao and Berk Sunar, editors. Cryptographic Hardware and Embedded
Systems - CHES 2005, 7th International Workshop, Edinburgh, UK, August 29
- September 1, 2005, Proceedings, volume 3659 of Lecture Notes in Computer
Science. Springer, 2005. (Cited on pages 201 and 231.)

[290] Christian Rechberger and Elisabeth Oswald. Practical Template Attacks. In
Chae Hoon Lim and Moti Yung, editors, Information Security Applications, 5th
International Workshop, WISA 2004, Jeju Island, Korea, August 23-25, 2004,
Revised Selected Papers, volume 3325 of Lecture Notes in Computer Science,
pages 440–456. Springer, 2004. (Cited on page 21.)

[291] Oscar Reparaz. Detecting Flawed Masking Schemes with Leakage Detection
Tests. In Peyrin [274], pages 204–222. (Cited on pages 189 and 194.)

[292] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid
Verbauwhede. Consolidating Masking Schemes. In Rosario Gennaro and
Matthew Robshaw, editors, Advances in Cryptology - CRYPTO 2015 - 35th
Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015,
Proceedings, Part I, volume 9215 of Lecture Notes in Computer Science, pages
764–783. Springer, 2015. (Cited on page 32.)

[293] Oscar Reparaz, Benedikt Gierlichs, and Ingrid Verbauwhede. A Note on the
Use of Margins to Compare Distinguishers. In Prouff [281], pages 1–8. (Cited
on page 120.)

[294] Riscure. Inspector SCA. Available at https://www.riscure.com/security-
tools/inspector-sca/. Accessed: September 2017. (Cited on page 29.)

[295] Matthieu Rivain, Emmanuel Prouff, and Julien Doget. Higher-Order Masking
and Shuffling for Software Implementations of Block Ciphers. In Christophe
Clavier and Kris Gaj, editors, Cryptographic Hardware and Embedded Systems
- CHES 2009, 11th International Workshop, Lausanne, Switzerland, September
6-9, 2009, Proceedings, volume 5747 of Lecture Notes in Computer Science,
pages 171–188. Springer, 2009. (Cited on page 30.)

[296] Ronald L. Rivest. The RC5 Encryption Algorithm. In Bart Preneel, editor,
Fast Software Encryption: Second International Workshop. Leuven, Belgium,
14-16 December 1994, Proceedings, volume 1008 of Lecture Notes in Computer
Science, pages 86–96. Springer, 1994. (Cited on pages 65, 68, 72, and 114.)

[297] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems. Communications
of the ACM, 21(2):120–126, 1978. (Cited on page 9.)

https://www.rambus.com/security/dpa-countermeasures/dpa-workstation-platform/
https://www.rambus.com/security/dpa-countermeasures/dpa-workstation-platform/
https://www.rambus.com/security/dpa-countermeasures/dpa-workstation-platform/
https://botan.randombit.net/
https://www.riscure.com/security-tools/inspector-sca/
https://www.riscure.com/security-tools/inspector-sca/

Bibliography 231

[298] Matthew Robshaw and Jonathan Katz, editors. Advances in Cryptology -
CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II, volume 9815
of Lecture Notes in Computer Science. Springer, 2016. (Cited on pages 205
and 232.)

[299] Thomas Roche, Victor Lomné, and Karim Khalfallah. Combined Fault and
Side-Channel Attack on Protected Implementations of AES. In Prouff [280],
pages 65–83. (Cited on page 19.)

[300] Eyal Ronen, Adi Shamir, Achi-Or Weingarten, and Colin O’Flynn. IoT Goes
Nuclear: Creating a ZigBee Chain Reaction. In 2017 IEEE Symposium on
Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017, pages
195–212. IEEE Computer Society, 2017. (Cited on pages 156, 172, and 180.)

[301] Michael Rushanan, Aviel D. Rubin, Denis Foo Kune, and Colleen M. Swanson.
SoK: Security and Privacy in Implantable Medical Devices and Body Area
Networks. In 2014 IEEE Symposium on Security and Privacy, SP 2014,
Berkeley, CA, USA, May 18-21, 2014, pages 524–539. IEEE Computer Society,
2014. (Cited on page 156.)

[302] Sami Saab, Pankaj Rohatgi, and Craig Hampel. Side-Channel Protections for
Cryptographic Instruction Set Extensions. IACR Cryptology ePrint Archive,
2016:700, 2016. (Cited on page 137.)

[303] Kazue Sako and Palash Sarkar, editors. Advances in Cryptology - ASIACRYPT
2013 - 19th International Conference on the Theory and Application of Cryp-
tology and Information Security, Bengaluru, India, December 1-5, 2013, Pro-
ceedings, Part I, volume 8269 of Lecture Notes in Computer Science. Springer,
2013. (Cited on pages 211 and 223.)

[304] Palash Sarkar and Tetsu Iwata, editors. Advances in Cryptology - ASIACRYPT
2014 - 20th International Conference on the Theory and Application of Cryp-
tology and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11,
2014. Proceedings, Part I, volume 8873 of Lecture Notes in Computer Science.
Springer, 2014. (Cited on pages 208 and 223.)

[305] Naveen Sastry and David Wagner. Security Considerations for IEEE 802.15.4
Networks. In Markus Jakobsson and Adrian Perrig, editors, Proceedings of the
2004 ACM Workshop on Wireless Security, Philadelphia, PA, USA, October 1,
2004, pages 32–42. ACM, 2004. (Cited on page 132.)

[306] Patrick Schaumont. A Practical Introduction to Hardware/Software Codesign.
Springer, 2010. (Cited on page 10.)

[307] Werner Schindler, Kerstin Lemke, and Christof Paar. A Stochastic Model for
Differential Side Channel Cryptanalysis. In Rao and Sunar [289], pages 30–46.
(Cited on pages 28 and 30.)

232 Bibliography

[308] Tobias Schneider and Amir Moradi. Leakage Assessment Methodology - A
Clear Roadmap for Side-Channel Evaluations. In Güneysu and Handschuh
[156], pages 495–513. (Cited on page 189.)

[309] Tobias Schneider, Amir Moradi, and Tim Güneysu. ParTI - Towards Combined
Hardware Countermeasures Against Side-Channel and Fault-Injection Attacks.
In Robshaw and Katz [298], pages 302–332. (Cited on page 30.)

[310] Bruce Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code
in C. John Wiley & Sons, 2007. (Cited on page 3.)

[311] Bruce Schneier. The Discovery of TEMPEST, January 2009. Available at https:
//www.schneier.com/blog/archives/2009/01/the_discovery_o.html. Ac-
cessed: September 2017. (Cited on page 16.)

[312] Kai Schramm, Thomas J. Wollinger, and Christof Paar. A New Class of
Collision Attacks and Its Application to DES. In Thomas Johansson, editor,
Fast Software Encryption, 10th International Workshop, FSE 2003, Lund,
Sweden, February 24-26, 2003, Revised Papers, volume 2887 of Lecture Notes
in Computer Science, pages 206–222. Springer, 2003. (Cited on page 28.)

[313] Torsten Schütze. Side-Channel Analysis (SCA) – A Compara-
tive Approach on Smart Cards, Embedded Systems, and High Se-
curity Solutions, July 2010. Presented at Workshop on Applied
Cryptography, Nanyang Technological University, Singapore. Avail-
able at http://www1.spms.ntu.edu.sg/~ccrg/WAC2010/slides/session_3/
3_1_Schuetze_SCA-ComparativeApproach.pdf. Accessed: September 2017.
(Cited on page 18.)

[314] Peter Schwabe and Ko Stoffelen. All the AES you need on cortex-m3 and
M4. In Roberto Avanzi and Howard M. Heys, editors, Selected Areas in
Cryptography - SAC 2016 - 23rd International Conference, St. John’s, NL,
Canada, August 10-12, 2016, Revised Selected Papers, volume 10532 of Lecture
Notes in Computer Science, pages 180–194. Springer, 2016. (Cited on pages 81
and 136.)

[315] Ravikumar Selvam, Dillibabu Shanmugam, and Suganya Annadurai. Vul-
nerability analysis of PRINCE and RECTANGLE using CPA. In Jianying
Zhou and Douglas Jones, editors, Proceedings of the 1st ACM Workshop on
Cyber-Physical System Security, CPSS 2015, Singapore, Republic of Singapore,
April 14 - March 14, 2015, pages 81–87. ACM, 2015. (Cited on page 114.)

[316] Adi Shamir. How to Share a Secret. Communications of the ACM, 22(11):612–
613, 1979. (Cited on page 31.)

[317] Adi Shamir. Protecting Smart Cards from Passive Power Analysis with De-
tached Power Supplies. In Koç and Paar [197], pages 71–77. (Cited on page 31.)

https://www.schneier.com/blog/archives/2009/01/the_discovery_o.html
https://www.schneier.com/blog/archives/2009/01/the_discovery_o.html
http://www1.spms.ntu.edu.sg/~ccrg/WAC2010/slides/session_3/3_1_Schuetze_SCA-ComparativeApproach.pdf
http://www1.spms.ntu.edu.sg/~ccrg/WAC2010/slides/session_3/3_1_Schuetze_SCA-ComparativeApproach.pdf

Bibliography 233

[318] Dillibabu Shanmugam, Ravikumar Selvam, and Suganya Annadurai. Differen-
tial Power Analysis Attack on SIMON and LED Block Ciphers. In Rajat Subhra
Chakraborty, Vashek Matyas, and Patrick Schaumont, editors, Security, Pri-
vacy, and Applied Cryptography Engineering - 4th International Conference,
SPACE 2014, Pune, India, October 18-22, 2014. Proceedings, volume 8804 of
Lecture Notes in Computer Science, pages 110–125. Springer, 2014. (Cited on
page 114.)

[319] Claude E Shannon. A Mathematical Theory of Communication. Bell Systems
Technical Journal, 27:623–656, 1948. (Cited on page 3.)

[320] Claude E Shannon. Communication Theory of Secrecy Systems. Bell Labs
Technical Journal, 28(4):656–715, 1949. (Cited on pages 3 and 7.)

[321] Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari, Atsushi Mitsuda, Toru
Akishita, and Taizo Shirai. Piccolo: An Ultra-Lightweight Blockcipher. In
Preneel and Takagi [278], pages 342–357. (Cited on pages 65, 68, 71, and 114.)

[322] Robert Shirey. Internet Security Glossary. RFC 2828, Internet Engineering Task
Force, May 2000. Available at http://www.rfc-editor.org/rfc/rfc2828.txt.
Accessed: September 2017. (Cited on page 1.)

[323] SideChannelMarvels. Daredevil. Available at https://github.com/
SideChannelMarvels/Daredevil. Accessed: September 2017. (Cited on pages
30, 155, and 171.)

[324] Gustavus J Simmons. Cryptology. Encyclopædia Britannica, August 1988.
Available at https://www.britannica.com/topic/cryptology. Accessed: Au-
gust 2017. (Cited on page 1.)

[325] Simon Singh. The Code Book: The Science of Secrecy from Ancient Egypt to
Quantum Cryptography. Anchor, 2000. (Cited on page 2.)

[326] Dmitry Sklyarov and Andy Malyshev. eBooks Security – Theory
and Practice, July 2001. Presented at DEF CON Nine, Las Vegas,
Nevada, USA. Available at https://www.defcon.org/html/defcon-9/defcon-
9-speakers.html#Dmitry%20Sklyarov. Accessed: September 2017. (Cited on
page 5.)

[327] Sergei Skorobogatov. Low Temperature Data Remanence in Static RAM.
Technical Report UCAM-CL-TR-536, University of Cambridge, Computer
Laboratory, June 2002. Available at https://www.cl.cam.ac.uk/techreports/
UCAM-CL-TR-536.pdf. Accessed: September 2017. (Cited on page 19.)

[328] Sergei P. Skorobogatov. Using Optical Emission Analysis for Estimating
Contribution to Power Analysis. In Luca Breveglieri, Israel Koren, David Nac-
cache, Elisabeth Oswald, and Jean-Pierre Seifert, editors, Sixth International
Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2009,

http://www.rfc-editor.org/rfc/rfc2828.txt
https://github.com/SideChannelMarvels/Daredevil
https://github.com/SideChannelMarvels/Daredevil
https://www.britannica.com/topic/cryptology
https://www.defcon.org/html/defcon-9/defcon-9-speakers.html#Dmitry%20Sklyarov
https://www.defcon.org/html/defcon-9/defcon-9-speakers.html#Dmitry%20Sklyarov
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-536.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-536.pdf

234 Bibliography

Lausanne, Switzerland, 6 September 2009, pages 111–119. IEEE Computer
Society, 2009. (Cited on page 20.)

[329] Michael John Sebastian Smith. Application-Specific Integrated Circuits.
Addison-Wesley Professional, 2008. (Cited on page 11.)

[330] SOG-IS. Joint Interpretation Library – Application of Attack Po-
tential to Smartcards. Version 2.9, January 2013. Available at
http://www.sogis.org/documents/cc/domains/sc/JIL-Application-
of-Attack-Potential-to-Smartcards-v2-9.pdf. Accessed: September 2017.
(Cited on pages xx, 172, and 173.)

[331] Junhyuk Song, Radha Poovendran, Jicheol Lee, and Tetsu Iwata. The AES-
CMAC Algorithm. RFC 4493, Internet Engineering Task Force, June 2006.
Available at https://tools.ietf.org/html/rfc4493. Accessed: September
2017. (Cited on page 132.)

[332] Ling Song, Zhangjie Huang, and Qianqian Yang. Automatic Differential
Analysis of ARX Block Ciphers with Application to SPECK and LEA. In
Joseph K. Liu and Ron Steinfeld, editors, Information Security and Privacy -
21st Australasian Conference, ACISP 2016, Melbourne, VIC, Australia, July
4-6, 2016, Proceedings, Part II, volume 9723 of Lecture Notes in Computer
Science, pages 379–394. Springer, 2016. (Cited on page 74.)

[333] François-Xavier Standaert. How (not) to Use Welch’s T-test in Side-Channel
Security Evaluations. IACR Cryptology ePrint Archive, 2017:138, 2017. (Cited
on page 189.)

[334] François-Xavier Standaert, Lejla Batina, Elke De Mulder, Kerstin Lemke,
Stefan Mangard, Elisabeth Oswald, and Gilles Piret. Electromagnetic Analysis
and Fault Attacks: State of the Art. ECRYPT deliverable D.VAM.4. Revision
3, May 2005. Available at http://www.ecrypt.eu.org/ecrypt1/documents/
D.VAM.4-3.pdf. Accessed: September 2017. (Cited on pages 18, 23, and 24.)

[335] François-Xavier Standaert, Lejla Batina, Elke De Mulder, Kerstin Lemke, Nele
Mentens, Elisabeth Oswald, and Eric Peeters. Report on DPA and EMA attacks
on FPGAs. ECRYPT deliverable D.VAM.5. Revision 1, July 2005. Available
at http://www.ecrypt.eu.org/ecrypt1/documents/D.VAM.5-1.pdf. Accessed:
September 2017. (Cited on page 24.)

[336] François-Xavier Standaert, Tal Malkin, and Moti Yung. A Unified Framework
for the Analysis of Side-Channel Key Recovery Attacks. In Antoine Joux,
editor, Advances in Cryptology - EUROCRYPT 2009, 28th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Cologne, Germany, April 26-30, 2009. Proceedings, volume 5479 of Lecture
Notes in Computer Science, pages 443–461. Springer, 2009. (Cited on pages 28
and 119.)

http://www.sogis.org/documents/cc/domains/sc/JIL-Application-of-Attack-Potential-to-Smartcards-v2-9.pdf
http://www.sogis.org/documents/cc/domains/sc/JIL-Application-of-Attack-Potential-to-Smartcards-v2-9.pdf
https://tools.ietf.org/html/rfc4493
http://www.ecrypt.eu.org/ecrypt1/documents/D.VAM.4-3.pdf
http://www.ecrypt.eu.org/ecrypt1/documents/D.VAM.4-3.pdf
http://www.ecrypt.eu.org/ecrypt1/documents/D.VAM.5-1.pdf

Bibliography 235

[337] François-Xavier Standaert and Elisabeth Oswald, editors. Constructive Side-
Channel Analysis and Secure Design - 7th International Workshop, COSADE
2016, Graz, Austria, April 14-15, 2016, Revised Selected Papers, volume 9689
of Lecture Notes in Computer Science. Springer, 2016. (Cited on pages 205,
211, 212, and 227.)

[338] François-Xavier Standaert, Olivier Pereira, Yu Yu, Jean-Jacques Quisquater,
Moti Yung, and Elisabeth Oswald. Leakage Resilient Cryptography in Practice.
In Ahmad-Reza Sadeghi and David Naccache, editors, Towards Hardware-
Intrinsic Security - Foundations and Practice, Information Security and Cryp-
tography, pages 99–134. Springer, 2010. (Cited on page 31.)

[339] Didier Stevens. ROT13 is used in Windows? You’re joking!, July 2006.
Available at https://blog.didierstevens.com/2006/07/24/rot13-is-used-
in-windows-you%E2%80%99re-joking/. Accessed: September 2017. (Cited on
page 5.)

[340] STMicroelectronics. STM32 MCU Nucleo. Available at http://www.st.com/en/
evaluation-tools/stm32-mcu-nucleo.html. Accessed: April 2017. (Cited on
pages 133 and 137.)

[341] Ko Stoffelen. Intrinsic Side-Channel Analysis Resistance and Efficient Masking,
2015. Master’s thesis, Radboud University. (Cited on page 118.)

[342] Daehyun Strobel, Benedikt Driessen, Timo Kasper, Gregor Leander, David
Oswald, Falk Schellenberg, and Christof Paar. Fuming Acid and Cryptanalysis:
Handy Tools for Overcoming a Digital Locking and Access Control System. In
Ran Canetti and Juan A. Garay, editors, Advances in Cryptology - CRYPTO
2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August
18-22, 2013. Proceedings, Part I, volume 8042 of Lecture Notes in Computer
Science, pages 147–164. Springer, 2013. (Cited on page 155.)

[343] Student. The Probable Error of a Mean. Biometrika, pages 1–25, 1908.
Available at http://www.jstor.org/stable/2331554. Accessed: September
2017. (Cited on page 33.)

[344] Tomoyasu Suzaki, Kazuhiko Minematsu, Sumio Morioka, and Eita Kobayashi.
TWINE: A Lightweight Block Cipher for Multiple Platforms. In Knudsen and
Wu [195], pages 339–354. (Cited on pages 65, 68, and 74.)

[345] Daisuke Suzuki and Minoru Saeki. Security Evaluation of DPA Countermea-
sures Using Dual-Rail Pre-charge Logic Style. In Goubin and Matsui [150],
pages 255–269. (Cited on page 31.)

[346] Jürgen Teich. Hardware/Software Codesign: The Past, the Present, and
Predicting the Future. Proceedings of the IEEE, 100(Centennial-Issue):1411–
1430, 2012. (Cited on page 10.)

https://blog.didierstevens.com/2006/07/24/rot13-is-used-in-windows-you%E2%80%99re-joking/
https://blog.didierstevens.com/2006/07/24/rot13-is-used-in-windows-you%E2%80%99re-joking/
http://www.st.com/en/evaluation-tools/stm32-mcu-nucleo.html
http://www.st.com/en/evaluation-tools/stm32-mcu-nucleo.html
http://www.jstor.org/stable/2331554

236 Bibliography

[347] Teledyne LeCroy. WaveRunner 625Zi. Available at http:

//teledynelecroy.com/oscilloscope/oscilloscopemodel.aspx?modelid=
4779. Accessed: September 2017. (Cited on page 167.)

[348] Texas Instruments. MSP430F1611. http://www.ti.com/lit/ds/symlink/
msp430f1611.pdf. Accessed: September 2017. (Cited on pages 45, 46, 57,
and 58.)

[349] Texas Instruments. CC2538 Powerful Wireless Microcontroller System-On-
Chip for 2.4-GHz IEEE 802.15.4, 6LoWPAN, and ZigBee Applications, April
2015. Available at http://www.ti.com/lit/ds/symlink/cc2538.pdf. Accessed:
September 2017. (Cited on pages 167 and 168.)

[350] James Thrasher. RFID vs. NFC: What’s the Difference?, October 2013. Avail-
able at http://blog.atlasrfidstore.com/rfid-vs-nfc. Accessed: Septem-
ber 2017. (Cited on page 35.)

[351] Thread Group. Thread. Available at https://www.threadgroup.org/. Ac-
cessed: September 2017. (Cited on pages 155 and 157.)

[352] Thread Group. Thread Certified Products. Available at http:

//threadgroup.org/technology/ourtechnology#certifiedproducts.
Accessed: September 2017. (Cited on page 167.)

[353] Thread Group. Thread Group Broadens Focus to Encompass
the Places Where People Live and Work with Expansion Into
Commercial Building Space, November 2016. Available at http:

//threadgroup.org/news-events/press-releases/ID/124/Thread-Group-
Broadens-Focus-to-Encompass-the-Places-Where-People-Live-and-

Work-with-Expansion-Into-Commercial-Building-Space. Accessed:
September 2017. (Cited on page 157.)

[354] Kris Tiri, Moonmoon Akmal, and Ingrid Verbauwhede. A Dynamic and
Differential CMOS Logic with Signal Independent Power Consumption to
Withstand Differential Power Analysis on Smart Cards. In Proceedings of the
28th European Solid-State Circuits Conference, 2002. ESSCIRC 2002, Florence,
Italy, September, 24 - 26, 2002, pages 403–406. IEEE, 2002. (Cited on page 31.)

[355] Kris Tiri and Ingrid Verbauwhede. A Logic Level Design Methodology for
a Secure DPA Resistant ASIC or FPGA Implementation. In 2004 Design,
Automation and Test in Europe Conference and Exposition (DATE 2004),
16-20 February 2004, Paris, France, pages 246–251. IEEE Computer Society,
2004. (Cited on page 31.)

[356] Ben L Titzer, Daniel K Lee, and Jens Palsberg. Avrora - The AVR Simula-
tion and Analysis Framework. Available at http://compilers.cs.ucla.edu/
avrora/. Accessed: September 2017. (Cited on page 61.)

http://teledynelecroy.com/oscilloscope/oscilloscopemodel.aspx?modelid=4779
http://teledynelecroy.com/oscilloscope/oscilloscopemodel.aspx?modelid=4779
http://teledynelecroy.com/oscilloscope/oscilloscopemodel.aspx?modelid=4779
http://www.ti.com/lit/ds/symlink/msp430f1611.pdf
http://www.ti.com/lit/ds/symlink/msp430f1611.pdf
http://www.ti.com/lit/ds/symlink/cc2538.pdf
http://blog.atlasrfidstore.com/rfid-vs-nfc
https://www.threadgroup.org/
http://threadgroup.org/technology/ourtechnology#certifiedproducts
http://threadgroup.org/technology/ourtechnology#certifiedproducts
http://threadgroup.org/news-events/press-releases/ID/124/Thread-Group-Broadens-Focus-to-Encompass-the-Places-Where-People-Live-and-Work-with-Expansion-Into-Commercial-Building-Space
http://threadgroup.org/news-events/press-releases/ID/124/Thread-Group-Broadens-Focus-to-Encompass-the-Places-Where-People-Live-and-Work-with-Expansion-Into-Commercial-Building-Space
http://threadgroup.org/news-events/press-releases/ID/124/Thread-Group-Broadens-Focus-to-Encompass-the-Places-Where-People-Live-and-Work-with-Expansion-Into-Commercial-Building-Space
http://threadgroup.org/news-events/press-releases/ID/124/Thread-Group-Broadens-Focus-to-Encompass-the-Places-Where-People-Live-and-Work-with-Expansion-Into-Commercial-Building-Space
http://compilers.cs.ucla.edu/avrora/
http://compilers.cs.ucla.edu/avrora/

Bibliography 237

[357] Ben L. Titzer, Daniel K. Lee, and Jens Palsberg. Avrora: Scalable Sensor
Network Simulation with Precise Timing. In Proceedings of the Fourth In-
ternational Symposium on Information Processing in Sensor Networks, IPSN
2005, April 25-27, 2005, UCLA, Los Angeles, California, USA, pages 477–482.
IEEE, 2005. (Cited on page 61.)

[358] Elena Trichina. Combinational Logic Design for AES SubByte Transformation
on Masked Data. IACR Cryptology ePrint Archive, 2003:236, 2003. (Cited on
pages 32, 180, 181, and 186.)

[359] George Mason University. ATHENa - Automated Tool for Hardware EvaluatioN.
Available at http://cryptography.gmu.edu/athena/. Accessed: September
2017. (Cited on page 48.)

[360] U.S. Department Of Commerce/National Institute of Standards and Tech-
nology. Data Encryption Standard (DES). Federal Information Processing
Standards Publication. FIPS PUB 46-3, pages 1–27, January 1977. Available
at http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf. Ac-
cessed: September 2017. (Cited on page 3.)

[361] U.S. Department Of Commerce/National Institute of Standards and Technology.
Advanced Encryption Standard (AES). Federal Information Processing Stan-
dards Publication. FIPS PUB 197, pages 1–51, November 2001. Available
at http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf. Accessed:
September 2017. (Cited on page 7.)

[362] U.S. Department Of Commerce/National Institute of Standards and Technology.
Recommendation for Block Cipher Modes of Operation: The CCM Mode for
Authentication and Confidentiality. NIST Special Publication 800-38C, pages
1–27, May 2004. Available at http://nvlpubs.nist.gov/nistpubs/Legacy/
SP/nistspecialpublication800-38c.pdf. Accessed: September 2017. (Cited
on page 7.)

[363] U.S. Department Of Commerce/National Institute of Standards and Technol-
ogy. Recommendation for Block Cipher Modes of Operation: Galois/Counter
Mode (GCM) and GMAC. NIST Special Publication 800-38D, pages 1–39,
November 2007. Available at http://nvlpubs.nist.gov/nistpubs/Legacy/
SP/nistspecialpublication800-38d.pdf. Accessed: September 2017. (Cited
on page 7.)

[364] U.S. Department Of Commerce/National Institute of Standards and Tech-
nology. Secure Hash Standard (SHS). Federal Information Processing Stan-
dards Publication. FIPS PUB 180-4, pages 1–39, March 2012. Available
at http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf.
Accessed: September 2017. (Cited on page 8.)

[365] U.S. Department Of Commerce/National Institute of Standards and Tech-
nology. Digital Signature Standard (DSS). NIST Federal Information

http://cryptography.gmu.edu/athena/
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

238 Bibliography

Processing Standard. FIPS PUB 186-4, pages 1–130, July 2013. Avail-
able at http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf. Ac-
cessed: September 2017. (Cited on page 9.)

[366] U.S. Department Of Commerce/National Institute of Standards and Technology.
SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions.
Federal Information Processing Standards Publication. FIPS PUB 202, pages
1–37, August 2015. Available at http://nvlpubs.nist.gov/nistpubs/FIPS/
NIST.FIPS.202.pdf. Accessed: September 2017. (Cited on page 8.)

[367] Praveen Kumar Vadnala. Provably Secure Countermeasures against Side-
channel Attacks. PhD thesis, University of Luxembourg, 2015. (Cited on pages
181 and 186.)

[368] Praveen Kumar Vadnala. Time-Memory Trade-Offs for Side-Channel Resistant
Implementations of Block Ciphers. In Helena Handschuh, editor, Topics in
Cryptology - CT-RSA 2017 - The Cryptographers’ Track at the RSA Conference
2017, San Francisco, CA, USA, February 14-17, 2017, Proceedings, volume
10159 of Lecture Notes in Computer Science, pages 115–130. Springer, 2017.
(Cited on page 152.)

[369] Wim van Eck. Electromagnetic Radiation from Video Display Units: An
Eavesdropping Risk? Computers & Security, 4(4):269–286, 1985. (Cited on
page 17.)

[370] Joel VanLaven, Mark Brehob, and Kevin J. Compton. Side Channel Analysis,
Fault Injection and Applications - A Computationally Feasible SPA Attack
on AES via Optimized Search. In Ryôichi Sasaki, Sihan Qing, Eiji Okamoto,
and Hiroshi Yoshiura, editors, Security and Privacy in the Age of Ubiquitous
Computing, IFIP TC11 20th International Conference on Information Security
(SEC 2005), May 30 - June 1, 2005, Chiba, Japan, volume 181 of IFIP, pages
577–588. Springer, 2005. (Cited on page 25.)

[371] Serge Vaudenay. A Classical Introduction to Cryptography: Applications for
Communications Security. Springer Science & Business Media, 2006. (Cited
on pages 2 and 5.)

[372] Roel Verdult, Flavio D. Garcia, and Baris Ege. Dismantling Megamos Crypto:
Wirelessly Lockpicking a Vehicle Immobilizer. In King [187], pages 703–718.
(Cited on page 5.)

[373] Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof, and François-
Xavier Standaert. Shuffling against Side-Channel Attacks: A Comprehensive
Study with Cautionary Note. In Wang and Sako [375], pages 740–757. (Cited
on pages 24 and 31.)

[374] John Von Neumann. First Draft of a Report on the EDVAC. IEEE Annals of
the History of Computing, 15(4):27–75, 1993. (Cited on page 3.)

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

Bibliography 239

[375] Xiaoyun Wang and Kazue Sako, editors. Advances in Cryptology - ASIACRYPT
2012 - 18th International Conference on the Theory and Application of Cryptol-
ogy and Information Security, Beijing, China, December 2-6, 2012. Proceedings,
volume 7658 of Lecture Notes in Computer Science. Springer, 2012. (Cited on
pages 207, 224, and 238.)

[376] Yanfeng Wang and Wenling Wu. Improved Multidimensional Zero-Correlation
Linear Cryptanalysis and Applications to LBlock and TWINE. In Willy Susilo
and Yi Mu, editors, Information Security and Privacy - 19th Australasian
Conference, ACISP 2014, Wollongong, NSW, Australia, July 7-9, 2014. Pro-
ceedings, volume 8544 of Lecture Notes in Computer Science, pages 1–16.
Springer, 2014. (Cited on page 74.)

[377] Bernard L Welch. The Generalization of Student’s Problem when Several
Different Population Variances are Involved. Biometrika, 34(1/2):28–35, 1947.
Available at http://www.jstor.org/stable/2332510. Accessed: September
2017. (Cited on page 33.)

[378] Christian Wenzel-Benner and Jens Gräf. XBX: eXternal Benchmarking eXten-
sion for the SUPERCOP Crypto Benchmarking Framework. In Mangard and
Standaert [224], pages 294–305. (Cited on page 47.)

[379] Christian Wenzel-Benner, Jens Gräf, John Pham, and Jens-Peter Kaps. XBX
Benchmarking Results January 2012. In Third SHA-3 Candidate Conference
(March 2012), 2012. (Cited on page 47.)

[380] Doug Whiting, Russell Housley, and Niels Ferguson. Counter with CBC-
MAC (CCM). RFC 3610, Internet Engineering Task Force, September 2003.
Available at https://tools.ietf.org/html/rfc3610. Accessed: September
2017. (Cited on pages 7 and 132.)

[381] Carolyn Whitnall and Elisabeth Oswald. A Comprehensive Evaluation of
Mutual Information Analysis Using a Fair Evaluation Framework. In Phillip
Rogaway, editor, Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryp-
tology Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings,
volume 6841 of Lecture Notes in Computer Science, pages 316–334. Springer,
2011. (Cited on page 27.)

[382] Michael J. Wiener, editor. Advances in Cryptology - CRYPTO ’99, 19th Annual
International Cryptology Conference, Santa Barbara, California, USA, August
15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer Science.
Springer, 1999. (Cited on pages 209 and 221.)

[383] wolfSSL. wolfCrypt Embedded Crypto Engine. Available at https://

www.wolfssl.com/wolfSSL/Products-wolfcrypt.html. Accessed: April 2017.
(Cited on page 137.)

[384] Peter Wright. Spycatcher: The Candid Autobiography of a Senior Intelligence
Officer. Heinemann Publishers Australia, 1987. (Cited on page 17.)

http://www.jstor.org/stable/2332510
https://tools.ietf.org/html/rfc3610
https://www.wolfssl.com/wolfSSL/Products-wolfcrypt.html
https://www.wolfssl.com/wolfSSL/Products-wolfcrypt.html

240 Bibliography

[385] Fred B. Wrixon. Codes, Ciphers & Other Cryptic & Clandestine Communica-
tion: Making and Breaking Secret Messages from Hieroglyphs to the Internet.
Black Dog & Leventhal Pub, 1998. (Cited on page 2.)

[386] Wenling Wu and Lei Zhang. LBlock: A Lightweight Block Cipher. In Javier
Lopez and Gene Tsudik, editors, Applied Cryptography and Network Security
- 9th International Conference, ACNS 2011, Nerja, Spain, June 7-10, 2011.
Proceedings, volume 6715 of Lecture Notes in Computer Science, pages 327–344,
2011. (Cited on pages 65, 68, 71, and 114.)

[387] Qianqian Yang, Lei Hu, Siwei Sun, Kexin Qiao, Ling Song, Jinyong Shan, and
Xiaoshuang Ma. Improved Differential Analysis of Block Cipher PRIDE. In
Javier Lopez and Yongdong Wu, editors, Information Security Practice and
Experience - 11th International Conference, ISPEC 2015, Beijing, China, May
5-8, 2015. Proceedings, volume 9065 of Lecture Notes in Computer Science,
pages 209–219. Springer, 2015. (Cited on page 72.)

[388] Qianqian Yang, Lei Hu, Siwei Sun, and Ling Song. Extension of Meet-in-
the-Middle Technique for Truncated Differential and Its Application to Road-
RunneR. In Jiageng Chen, Vincenzo Piuri, Chunhua Su, and Moti Yung,
editors, Network and System Security - 10th International Conference, NSS
2016, Taipei, Taiwan, September 28-30, 2016, Proceedings, volume 9955 of
Lecture Notes in Computer Science, pages 398–411. Springer, 2016. (Cited on
page 73.)

[389] John L. Young. NSA TEMPEST Documents. Available at https://

cryptome.org/nsa-tempest.htm. Accessed: September 2017. (Cited on
page 18.)

[390] John L. Young. TEMPEST Timeline. Available at https://cryptome.org/
tempest-time.htm. Accessed: September 2017. (Cited on page 18.)

[391] Wentao Zhang, Zhenzhen Bao, Dongdai Lin, Vincent Rijmen, Bohan Yang,
and Ingrid Verbauwhede. RECTANGLE: A Bit-slice Lightweight Block Cipher
Suitable for Multiple Platforms. SCIENCE CHINA Information Sciences,
58(12):1–15, 2015. (Cited on pages 65, 73, 108, 109, 189, and 193.)

[392] Li Zhuang, Feng Zhou, and J. D. Tygar. Keyboard Acoustic Emanations
Revisited. In Vijay Atluri, Catherine A. Meadows, and Ari Juels, editors,
Proceedings of the 12th ACM Conference on Computer and Communications
Security, CCS 2005, Alexandria, VA, USA, November 7-11, 2005, pages 373–
382. ACM, 2005. (Cited on page 18.)

[393] ZigBee Alliance. ZigBee Wireless Standard. Available at http://

www.zigbee.org/. Accessed: September 2017. (Cited on pages 54, 56, and 67.)

[394] Michael Zohner, Michael Kasper, and Marc Stöttinger. Butterfly-Attack on
Skein’s Modular Addition. In Werner Schindler and Sorin A. Huss, editors,

https://cryptome.org/nsa-tempest.htm
https://cryptome.org/nsa-tempest.htm
https://cryptome.org/tempest-time.htm
https://cryptome.org/tempest-time.htm
http://www.zigbee.org/
http://www.zigbee.org/

Bibliography 241

Constructive Side-Channel Analysis and Secure Design - Third International
Workshop, COSADE 2012, Darmstadt, Germany, May 3-4, 2012. Proceedings,
volume 7275 of Lecture Notes in Computer Science, pages 215–230. Springer,
2012. (Cited on page 128.)

[395] Michael Zohner, Michael Kasper, Marc Stöttinger, and Sorin A. Huss. Side
Channel Analysis of the SHA-3 Finalists. In Wolfgang Rosenstiel and Lothar
Thiele, editors, 2012 Design, Automation & Test in Europe Conference &
Exhibition, DATE 2012, Dresden, Germany, March 12-16, 2012, pages 1012–
1017. IEEE, 2012. (Cited on page 115.)

Publications

• Daniel Dinu, Alex Biryukov, Johann Großschädl, Dmitry Khovratovich, Yann
Le Corre, and Léo Perrin. FELICS – Fair Evaluation of Lightweight Crypto-
graphic Systems. NIST Workshop on Lightweight Cryptography. 2015.

Artifacts: https://www.cryptolux.org/index.php/FELICS

• Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich. Argon2: New Genera-
tion of Memory-Hard Functions for Password Hashing and Other Applications.
IEEE European Symposium on Security and Privacy – EuroS&P 2016. pages
292–302, IEEE, 2016.

Internet Engineering Task Force (IETF), Active Internet-Draft: https://

datatracker.ietf.org/doc/draft-irtf-cfrg-argon2/

Artifacts: https://github.com/P-H-C/phc-winner-argon2

• Alex Biryukov, Daniel Dinu, and Johann Großschädl. Correlation Power
Analysis of Lightweight Block Ciphers: From Theory to Practice. Applied
Cryptography and Network Security – ACNS 2016. Lecture Notes in Computer
Science, volume 9696, pages 537–557, Springer, 2016.

• Daniel Dinu, Léo Perrin, Aleksei Udovenko, Vesselin Velichkov, Johann
Großschädl, and Alex Biryukov. Design Strategies for ARX with Provable
Bounds: Sparx and LAX. Advances in Cryptology – ASIACRYPT 2016.
Lecture Notes in Computer Science, volume 10031, pages 484–513, Springer,
2016.

Artifacts: https://www.cryptolux.org/index.php/SPARX

• Alex Biryukov, Daniel Dinu, and Yann Le Corre. Side-Channel Attacks
Meet Secure Network Protocols. Applied Cryptography and Network Security –
ACNS 2017. Lecture Notes in Computer Science, volume 10355, pages 435–454,
Springer, 2017.

Artifacts: https://github.com/cryptolu/aes-cpa

• Daniel Dinu, Johann Großschädl, and Yann Le Corre. Efficient Masking of
ARX-Based Block Ciphers Using Carry-Save Addition on Boolean Shares.
Information Security Conference – ISC 2017. Lecture Notes in Computer
Science, volume 10599, pages 39–57, Springer, 2017.

https://www.cryptolux.org/index.php/FELICS
https://datatracker.ietf.org/doc/draft-irtf-cfrg-argon2/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-argon2/
https://github.com/P-H-C/phc-winner-argon2
https://www.cryptolux.org/index.php/SPARX
https://github.com/cryptolu/aes-cpa

244 Publications

• Alex Biryukov, Daniel Dinu, Yann Le Corre, and Aleksei Udovenko. Optimal
First-Order Boolean Masking for Embedded IoT Devices. Smart Card Research
and Advanced Application Conference – CARDIS 2017. To appear.

Artifacts: https://github.com/cryptolu/ofom

• Daniel Dinu, Yann Le Corre, Dmitry Khovratovich, Léo Perrin, Johann
Großschädl, and Alex Biryukov. Triathlon of Lightweight Block Ciphers
for the Internet of Things. Journal of Cryptographic Engineering – JCEN. To
appear.

• Daniel Dinu. SoK: Efficient and Secure Lightweight Symmetric Cryptography
for Embedded IoT Systems. In submission.

• Daniel Dinu and Ilya Kizhvatov. EM Analysis in the IoT Context: Lessons
Learned from an Attack on Thread. In submission.

https://github.com/cryptolu/ofom

Appendices

Appendices 247

A Assembly Code for Basic 8-bit Rotations

MCU AVR MSP ARM

Data a a a

≪ 1 1. lsl a
2. adc a, R1

1. rla.b a
2. adc.b a

1. bfi a, #8, #7
2. ror a, a, #7

≪ 4 1. swap a – –

≫ 1 1. bst a, 0
2. ror a
3. bld a, 7

1. bit #1, a
2. rrc.b a

1. bfi a, #8, #1
2. ror a, a, #1

≫ 4 1. swap a – –

B Assembly Code for Basic 16-bit Rotations 249

B Assembly Code for Basic 16-bit Rotations

MCU AVR MSP ARM

Data a, b a a

≪ 1 1. lsl b
2. rol a
3. adc b, R1

1. rla a
2. adc a

≪ 4 1. swap b
2. swap a
3. mov c, b
4. eor c, a
5. andi c, 0x0F
6. eor b, c
7. eor a, c

– –

≪ 8 1. eor a, b
2. eor b, a
3. eor a, b

1. swpb a 1. rev16 a, a

≫ 1 1. bst b, 0
2. ror a
3. ror b
4. bld a, 7

1. bit #1, a
2. rrc a

1. bfi a, #16, #1
2. ror a, a, #1

≫ 4 1. swap b
2. swap a
3. mov c, b
4. eor c, a
5. andi c, 0xF0
6. eor b, c
7. eor a, c

– –

≫ 8 1. eor a, b
2. eor b, a
3. eor a, b

1. swpb a 1. rev16 a, a

C Assembly Code for Basic 32-bit Rotations 251

C Assembly Code for Basic 32-bit Rotations

MCU AVR MSP ARM

Data a, b, c, d a, b a

≪ 1 1. lsl d
2. rol c
3. rol b
4. rol a
5. adc d, R1

1. rla b
2. rlc a
3. adc b

1. ror a, a, #31

≪ 5 1. push R1
2. ldi e, 32
3. mov f , c
4. mov g, a
5. mul d, e
6. movw d, R1
7. mul b, e
8. movw b, R1
9. mul f , e

10. eor c, R1
11. eor b, R1
12. mul g, e
13. eor a, R1
14. eor d, R1
15. pop R1

– –

≪ 8 1. mov e, d
2. mov d, a
3. mov a, b
4. mov b, c
5. mov c, e

1. swpb a
2. swpb b
3. mov.b a, c
4. xor.b b, c
5. xor c, a
6. xor c, b

1. ror a, a, #24

≪ 16 1. movw f , d
2. movw d, b
3. movw b, f

1. xor b, a
2. xor a, b
3. xor b, a

1. ror a, a, #16

≫ 1 1. bst d, 0
2. ror a
3. ror b
4. ror c
5. ror d
6. bld a, 7

1. bit #1, b
2. rrc a
3. rrc b

1. ror a, a, #1

252 Appendices

≫ 4 1. swap d
2. swap c
3. swap b
4. swap a
5. mov f , d
6. andi f , 0xF0
7. andi d, 0x0F
8. mov e, c
9. andi e, 0xF0

10. eor d, e
11. andi c, 0x0F
12. mov e, b
13. andi e, 0xF0
14. eor c, e
15. andi b, 0x0F
16. mov e, a
17. andi e, 0xF0
18. eor b, e
19. andi a, 0x0F
20. eor a, f

– –

≫ 8 1. mov e, b
2. mov b, a
3. mov a, d
4. mov d, c
5. mov c, e

1. mov.b b, c
2. xor.b a, c
3. swpb b
4. swpb a
5. swpb c
6. xor c, b
7. xor c, a

1. ror a, a, #8

≫ 16 1. movw f , d
2. movw d, b
3. movw b, f

1. xor b, a
2. xor a, b
3. xor b, a

1. ror a, a, #16

	Title Page
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Listings
	1 Introduction
	1.1 From Classical to Modern Cryptography
	1.2 Modern Cryptography
	1.2.1 Security Services
	1.2.2 Kerckhoffs' Principle
	1.2.3 Adversarial Models

	1.3 Cryptographic Toolkit
	1.3.1 Symmetric Cryptography
	1.3.1.1 Block Ciphers
	1.3.1.2 Stream Ciphers
	1.3.1.3 Hash Functions
	1.3.1.4 Message Authentication Codes
	1.3.1.5 Authenticated Ciphers

	1.3.2 Asymmetric Cryptography
	1.3.2.1 Public-Key Encryption
	1.3.2.2 Digital Signatures
	1.3.2.3 Public Key Infrastructure (PKI)

	1.3.3 Symmetric vs. Asymmetric Cryptography

	1.4 Implementations
	1.4.1 Hardware Implementations
	1.4.2 Software Implementations
	1.4.3 Hardware vs. Software Implementations
	1.4.4 Implementation Efficiency
	1.4.5 Metrics for Hardware Implementations
	1.4.6 Metrics for Software Implementations
	1.4.7 Optimization Strategies

	1.5 Implementation Attacks
	1.5.1 Short History
	1.5.2 Classification

	1.6 Side-Channel Attacks
	1.6.1 Power Analysis Attacks
	1.6.2 Electromagnetic Analysis Attacks
	1.6.3 Attack Toolkit
	1.6.3.1 Measurement Setup
	1.6.3.2 Signal Processing
	1.6.3.3 Attack Algorithms
	1.6.3.4 Metrics
	1.6.3.5 Tools

	1.7 Countermeasures against Side-Channel Attacks
	1.7.1 Masking
	1.7.1.1 Boolean Masking
	1.7.1.2 Provable Security

	1.7.2 Leakage Detection Tests

	1.8 Internet of Things (IoT)
	1.8.1 Constraints
	1.8.2 Lightweight Cryptography
	1.8.3 Device Types
	1.8.3.1 Lower Bound for the Computational Power of IoT Devices
	1.8.3.2 Upper Bound for the Computational Power of IoT Devices
	1.8.3.3 Middle Range IoT Devices

	1.8.4 Threat Model

	1.9 Motivation
	1.10 Research Contributions
	1.10.1 Part I – Efficient Implementations
	1.10.2 Part II – Side-Channel Attacks
	1.10.3 Part III – Side-Channel Countermeasures

	I Efficient Implementations
	2 Fair Evaluation of Lightweight Cryptographic Systems
	2.1 Introduction
	2.1.1 Research Contribution

	2.2 Related Work
	2.2.1 BLOC Project
	2.2.2 eBACS Project
	2.2.3 XBX Project
	2.2.4 ATHENa Project
	2.2.5 ECRYPT II Project – Performance Evaluation on ATtiny45

	2.3 Motivation
	2.4 Goals
	2.5 Benchmarking Framework
	2.5.1 Structure
	2.5.1.1 Core Module
	2.5.1.2 Block Ciphers Module
	2.5.1.3 Stream Ciphers Module
	2.5.1.4 Authenticated Ciphers Module
	2.5.1.5 Hash Functions Module

	2.5.2 Export Formats

	2.6 Target Devices
	2.6.1 8-bit AVR ATmega128 Microcontroller
	2.6.2 16-bit MSP430F1611 Microcontroller
	2.6.3 32-bit ARM Cortex-M3 Microcontroller

	2.7 Metrics
	2.7.1 Code Size
	2.7.2 RAM
	2.7.3 Execution Time

	2.8 Summary

	3 Fair Evaluation of Lightweight Block Ciphers
	3.1 Introduction
	3.1.1 Our Contributions

	3.2 Benchmarking Framework
	3.2.1 Usage Scenarios
	3.2.1.1 Scenario 1: Communication Protocol
	3.2.1.2 Scenario 2: Challenge-Response Authentication

	3.3 Analyzed Ciphers
	3.4 Results
	3.4.1 Methodology
	3.4.2 Discussion of Results
	3.4.3 Comparison with other Benchmarking Results

	3.5 Summary

	4 On the Efficiency of the Sparx Family of Lightweight Block Ciphers
	4.1 Introduction
	4.2 Short Description
	4.3 Choosing the arx-box A
	4.4 Choosing the Linear Layer λw
	4.5 Key Schedule
	4.6 Implementation
	4.6.1 Main Components
	4.6.2 Flexibility
	4.6.3 Evaluation
	4.6.4 Comparison

	4.7 Test Vectors
	4.8 Other Implementations
	4.9 Summary

	5 Efficient Lightweight Symmetric Cryptography
	5.1 Introduction
	5.1.1 Our Contribution

	5.2 Efficient Implementations
	5.2.1 Bitwise Operations
	5.2.2 Modular Arithmetic Operations
	5.2.3 Rotations
	5.2.3.1 8-bit Operand on AVR
	5.2.3.2 16-bit Operand on AVR
	5.2.3.3 32-bit Operand on AVR
	5.2.3.4 8-bit Operand on MSP
	5.2.3.5 16-bit Operand on MSP
	5.2.3.6 32-bit Operand on MSP
	5.2.3.7 ARM

	5.2.4 Table-Based Lookups
	5.2.4.1 8-bit Table on AVR
	5.2.4.2 4-bit Table on AVR
	5.2.4.3 8-bit Table on MSP
	5.2.4.4 4-bit Table on MSP
	5.2.4.5 8-bit Table on ARM
	5.2.4.6 4-bit Table on ARM

	5.2.5 Stack Operations

	5.3 Discussion
	5.3.1 Choosing the Best Operations
	5.3.2 Choosing the Best Word Size
	5.3.3 Substitution Layer
	5.3.4 Linear Layer
	5.3.5 Cipher's State
	5.3.6 Structure

	5.4 Summary

	II Side-Channel Attacks
	6 Resilience to Correlation Power Analysis Attacks
	6.1 Introduction
	6.1.1 Research Contributions

	6.2 Preliminaries
	6.2.1 Theoretical Metrics for the SCA Resistance of S-Boxes

	6.3 Evaluation Framework
	6.3.1 Measurement Setup
	6.3.2 Metrics

	6.4 Quantifying the Leakage
	6.4.1 Understanding the Device's Leakage
	6.4.2 Comparison of Different Selection Functions

	6.5 Analyzed Ciphers
	6.6 Experimental Results
	6.7 Summary

	7 Correlation Power Analysis Attacks on Communication Protocols
	7.1 Introduction
	7.1.1 Research Contributions

	7.2 Preliminaries
	7.2.1 Description of the AES
	7.2.2 Attacking Temporary Key Bytes
	7.2.3 Software Implementations of the AES
	7.2.4 Measurement Setup

	7.3 Quantifying the Leakage
	7.4 Generating the Evaluation Cases
	7.5 The Attack
	7.5.1 Optimality
	7.5.2 Choosing the Best Attack Strategy

	7.6 Results
	7.6.1 Electromagnetic Leakage
	7.6.2 Simulated Leakage
	7.6.3 Detailed Results

	7.7 Countermeasures
	7.8 Summary

	8 An Electromagnetic Vulnerability Analysis of Thread
	8.1 Introduction
	8.1.1 Attack Surface and Threats for Connected Devices
	8.1.2 Motivation
	8.1.3 Contribution
	8.1.4 Related Work
	8.1.5 Responsible Disclosure

	8.2 Thread
	8.2.1 Security Material
	8.2.2 Mesh Link Establishment (MLE)

	8.3 Threat Model
	8.4 Side-Channel Vulnerability Analysis
	8.4.1 Relationship between MK and KMLE
	8.4.2 Processing of an MLE Parent Request
	8.4.3 Attack on Key Generation
	8.4.4 Attack on the AES in CCM Mode

	8.5 Implementation of the Most Feasible Attack
	8.5.1 Experimental Setup
	8.5.1.1 Thread Network
	8.5.1.2 Measurement Setup

	8.5.2 Alignment of the Electromagnetic Traces
	8.5.3 Attack Results
	8.5.4 Improving the Attack

	8.6 Feasibility and Limitations
	8.6.1 Equipment Cost
	8.6.2 Portability
	8.6.3 Other Attacks

	8.7 Quantification of the Attack Effort
	8.8 Additional Attack Paths
	8.8.1 Attack on Loading the Security Material
	8.8.2 Elliptic Curve Implementations

	8.9 Countermeasures
	8.9.1 Tamper Resistance
	8.9.2 Protected Cryptographic Implementations
	8.9.3 Fresh Re-keying
	8.9.4 Protocol-level Mitigations
	8.9.5 Security Certification Scheme

	8.10 Summary

	III Side-Channel Countermeasures
	9 Optimal First-Order Boolean Masking
	9.1 Introduction
	9.1.1 Boolean Masking
	9.1.2 Contributions

	9.2 Search Algorithm
	9.2.1 Description
	9.2.2 Optimality
	9.2.3 Instruction Set Architecture (ISA)
	9.2.4 Leakage Model
	9.2.5 Extension to Higher-Order Masking
	9.2.6 Other Improvements
	9.2.7 Results

	9.3 Applications
	9.3.1 Modular Addition and Subtraction
	9.3.1.1 Masking Cost
	9.3.1.2 Leakage Assessment

	9.3.2 Other Applications

	9.4 Implementations
	9.4.1 Masked Addition
	9.4.2 Lightweight Block Ciphers
	9.4.2.1 Speck
	9.4.2.2 Simon
	9.4.2.3 RECTANGLE
	9.4.2.4 Leakage Assessment
	9.4.2.5 Comparison
	9.4.2.6 Discussion

	9.5 Summary

	10 Conclusion
	10.1 Impact
	10.2 Future Directions

	Bibliography
	Publications
	Appendices
	A Assembly Code for Basic 8-bit Rotations
	B Assembly Code for Basic 16-bit Rotations
	C Assembly Code for Basic 32-bit Rotations

