1,749 research outputs found

    Review of Parameters in Routing Protocols in Vehicular Ad-hoc Networks

    Get PDF
    Vehicular Ad_hoc Network  (VANET) is a sophisticated elegance of devoted cellular network that permits automobiles to intelligently communicate for different   roadside infrastructure. VANETs bring with it some of demanding situations associated with Quality of Service (QoS) and performance. QoS relies upon on many parameters which includes packet transport ratio, bandwidth, postpone variance, records latency, etc. This paper, discuss numerous troubles associated with latency records, bandwidth usage, and transport of packet in VANETs. The demanding situations have been recognized in offering security, reliability and confidentiality of posted records. Finally, numerous packages of VANETs also are introduced in the modern computing scenario

    Connectivity Analysis in Vehicular Ad-hoc Network based on VDTN

    Get PDF
    In the last decade, user demand has been increasing exponentially based on modern communication systems. One of these new technologies is known as mobile ad-hoc networking (MANET). One part of MANET is called a vehicular ad-hoc network (VANET). It has different types such as vehicle-to-vehicle (V2V), vehicular delay-tolerant networks, and vehicle-to-infrastructure (V2I). To provide sufficient quality of communication service in the Vehicular Delay-Tolerant Network (VDTN), it is important to present a comprehensive survey that shows the challenges and limitations of VANET. In this paper, we focus on one type of VANET, which is known as VDTNs. To investigate realistic communication systems based on VANET, we considered intelligent transportation systems (ITSs) and the possibility of replacing the roadside unit with VDTN. Many factors can affect the message propagation delay. When road-side units (RSUs) are present, which leads to an increase in the message delivery efficiency since RSUs can collaborate with vehicles on the road to increase the throughput of the network, we propose new methods based on environment and vehicle traffic and present a comprehensive evaluation of the newly suggested VDTN routing method. Furthermore, challenges and prospects are presented to stimulate interest in the scientific community

    Solutions for vehicular communications: a review

    Get PDF
    Vehicular networks experience a number of unique challenges due to the high mobility of vehicles and highly dynamic network topology, short contact durations, disruption intermittent connectivity, significant loss rates, node density, and frequent network fragmentation. All these issues have a profound impact on routing strategies in these networks. This paper gives an insight about available solutions on related literature for vehicular communications. It overviews and compares the most relevant approaches for data communication in these networks, discussing their influence on routing strategies. It intends to stimulate research and contribute to further advances in this rapidly evolving area where many key open issues that still remain to be addressed are identified.Part of this work has been supported by the Instituto de Telecomunicações, Next Generation Networks and Applications Group (NetGNA), Portugal, in the framework of the Project VDTN@Lab, and by the Euro-NF Network of Excellence of the Seventh Framework Programme of EU, in the framework of the Specific Joint Research Project VDTN

    Impact of Direction Parameter in Performance of Modified AODV in VANET

    Get PDF
    A vehicular ad hoc network (VANET) is a technology in which moving cars are used as routers (nodes) to establish a reliable mobile communication network among the vehicles. Some of the drawbacks of the routing protocol, Ad hoc On-Demand Distance Vector (AODV), associated with VANETs are the end-to-end delay and packet loss. We modified the AODV routing protocols to reduce the number of route request (RREQ) and route reply (RREP) messages by adding direction parameters and two-step filtering. The two-step filtering process reduces the number of RREQ and RREP packets, reduces the packet overhead, and helps to select the stable route. In this study, we show the impact of the direction parameter in reducing the end-to-end delay and the packet loss in AODV. The simulation results show a 1.4% reduction in packet loss, an 11% reduction in the end-to-end delay, and an increase in throughput

    Reliable Routing in Vehicular Ad hoc Networks.

    Get PDF
    International audienceOne of the notoriously difficult problems in vehicular ad-hoc networks (VANET) is to ensure that established routing paths do not break before the end of data transmission. This is a difficult problem because the network topology is constantly changing and the wireless communication links are inherently unstable, due to high node mobility. In this paper we classify existing VANET routing protocols into five categories: connectivity-based, mobility-based, infrastructure-based, geographic-location-based, and probability-model-based, according to their employed routing metrics. For each category, we present the general design ideas and state of the art. Our objective is to attract more attention to the VANET routing problem and encourage more research efforts on developing reliable solutions

    Mobile ad hoc networks in transportation data collection and dissemination

    Get PDF
    The field of transportation is rapidly changing with new opportunities for systems solutions and emerging technologies. The global economic impact of congestion and accidents are significant. Improved means are needed to solve them. Combined with the increasing numbers of vehicles on the road, the net economic impact is measured in the many billions of dollars. Promising methodologies explored in this thesis include the use of the Internet of Things (IoT) and Mobile Ad Hoc Networks (MANET). Interconnecting vehicles using Dedicated Short Range Communication technology (DSRC) brings many benefits. Integrating DSRC into roadway vehicles offers the promise of reducing the problems of congestion and accidents; however, it comes with risks such as loss of connectivity due to power outages as well as controlling and managing loading in such networks. Energy consumption of vehicle communication equipment is a crucial factor in high availability sensor networks. Sending critical emergency messaged through linked vehicles requires that there always be energy and communication reserves. Two algorithms are described. The first controls energy consumption to guarantee an energy reserve for sending alert signals. The second exploits Long Term Evolution (LTE) to guarantee a reliable communication path
    corecore