12,385 research outputs found

    An Infrastructure for the Dynamic Distribution of Web Applications and Services

    Full text link
    This paper presents the design and implementation of an infrastructure that enables any Web application, regardless of its current state, to be stopped and uninstalled from a particular server, transferred to a new server, then installed, loaded, and resumed, with all these events occurring "on the fly" and totally transparent to clients. Such functionalities allow entire applications to fluidly move from server to server, reducing the overhead required to administer the system, and increasing its performance in a number of ways: (1) Dynamic replication of new instances of applications to several servers to raise throughput for scalability purposes, (2) Moving applications to servers to achieve load balancing or other resource management goals, (3) Caching entire applications on servers located closer to clients.National Science Foundation (9986397

    Simplified Distributed Programming with Micro Objects

    Full text link
    Developing large-scale distributed applications can be a daunting task. object-based environments have attempted to alleviate problems by providing distributed objects that look like local objects. We advocate that this approach has actually only made matters worse, as the developer needs to be aware of many intricate internal details in order to adequately handle partial failures. The result is an increase of application complexity. We present an alternative in which distribution transparency is lessened in favor of clearer semantics. In particular, we argue that a developer should always be offered the unambiguous semantics of local objects, and that distribution comes from copying those objects to where they are needed. We claim that it is often sufficient to provide only small, immutable objects, along with facilities to group objects into clusters.Comment: In Proceedings FOCLASA 2010, arXiv:1007.499

    Heterogeneous Relational Databases for a Grid-enabled Analysis Environment

    Get PDF
    Grid based systems require a database access mechanism that can provide seamless homogeneous access to the requested data through a virtual data access system, i.e. a system which can take care of tracking the data that is stored in geographically distributed heterogeneous databases. This system should provide an integrated view of the data that is stored in the different repositories by using a virtual data access mechanism, i.e. a mechanism which can hide the heterogeneity of the backend databases from the client applications. This paper focuses on accessing data stored in disparate relational databases through a web service interface, and exploits the features of a Data Warehouse and Data Marts. We present a middleware that enables applications to access data stored in geographically distributed relational databases without being aware of their physical locations and underlying schema. A web service interface is provided to enable applications to access this middleware in a language and platform independent way. A prototype implementation was created based on Clarens [4], Unity [7] and POOL [8]. This ability to access the data stored in the distributed relational databases transparently is likely to be a very powerful one for Grid users, especially the scientific community wishing to collate and analyze data distributed over the Grid

    Reliable Messaging to Millions of Users with MigratoryData

    Full text link
    Web-based notification services are used by a large range of businesses to selectively distribute live updates to customers, following the publish/subscribe (pub/sub) model. Typical deployments can involve millions of subscribers expecting ordering and delivery guarantees together with low latencies. Notification services must be vertically and horizontally scalable, and adopt replication to provide a reliable service. We report our experience building and operating MigratoryData, a highly-scalable notification service. We discuss the typical requirements of MigratoryData customers, and describe the architecture and design of the service, focusing on scalability and fault tolerance. Our evaluation demonstrates the ability of MigratoryData to handle millions of concurrent connections and support a reliable notification service despite server failures and network disconnections

    A Peer-to-Peer Middleware Framework for Resilient Persistent Programming

    Get PDF
    The persistent programming systems of the 1980s offered a programming model that integrated computation and long-term storage. In these systems, reliable applications could be engineered without requiring the programmer to write translation code to manage the transfer of data to and from non-volatile storage. More importantly, it simplified the programmer's conceptual model of an application, and avoided the many coherency problems that result from multiple cached copies of the same information. Although technically innovative, persistent languages were not widely adopted, perhaps due in part to their closed-world model. Each persistent store was located on a single host, and there were no flexible mechanisms for communication or transfer of data between separate stores. Here we re-open the work on persistence and combine it with modern peer-to-peer techniques in order to provide support for orthogonal persistence in resilient and potentially long-running distributed applications. Our vision is of an infrastructure within which an application can be developed and distributed with minimal modification, whereupon the application becomes resilient to certain failure modes. If a node, or the connection to it, fails during execution of the application, the objects are re-instantiated from distributed replicas, without their reference holders being aware of the failure. Furthermore, we believe that this can be achieved within a spectrum of application programmer intervention, ranging from minimal to totally prescriptive, as desired. The same mechanisms encompass an orthogonally persistent programming model. We outline our approach to implementing this vision, and describe current progress.Comment: Submitted to EuroSys 200

    Object Distribution Networks for World-wide Document Circulation

    Get PDF
    This paper presents an Object Distribution System (ODS), a distributed system inspired by the ultra-large scale distribution models used in everyday life (e.g. food or newspapers distribution chains). Beyond traditional mechanisms of approaching information to readers (e.g. caching and mirroring), this system enables the publication, classification and subscription to volumes of objects (e.g. documents, events). Authors submit their contents to publication agents. Classification authorities provide classification schemes to classify objects. Readers subscribe to topics or authors, and retrieve contents from their local delivery agent (like a kiosk or library, with local copies of objects). Object distribution is an independent process where objects circulate asynchronously among distribution agents. ODS is designed to perform specially well in an increasingly populated, widespread and complex Internet jungle, using weak consistency replication by object distribution, asynchronous replication, and local access to objects by clients. ODS is based on two independent virtual networks, one dedicated to the distribution (replication) of objects and the other to calculate optimised distribution chains to be applied by the first network

    Content-access QoS in peer-to-peer networks using a fast MDS erasure code

    Get PDF
    This paper describes an enhancement of content access Quality of Service in peer to peer (P2P) networks. The main idea is to use an erasure code to distribute the information over the peers. This distribution increases the users’ choice on disseminated encoded data and therefore statistically enhances the overall throughput of the transfer. A performance evaluation based on an original model using the results of a measurement campaign of sequential and parallel downloads in a real P2P network over Internet is presented. Based on a bandwidth distribution, statistical content-access QoS are guaranteed in function of both the content replication level in the network and the file dissemination strategies. A simple application in the context of media streaming is proposed. Finally, the constraints on the erasure code related to the proposed system are analysed and a new fast MDS erasure code is proposed, implemented and evaluated

    Simulating Wde-area Replication

    Get PDF
    We describe our experiences with simulating replication algorithms for use in far flung distributed systems. The algorithms under scrutiny mimic epidemics. Epidemic algorithms seem to scale and adapt to change (such as varying replica sets) well. The loose consistency guarantees they make seem more useful in applications where availability strongly outweighs correctness; e.g., distributed name service
    • 

    corecore