
A Peer-to-Peer Middleware Framework for
Resilient Persistent Programming

Alan Dearle, Graham N.C. Kirby, Stuart J. Norcross & Andrew J. McCarthy
School of Computer Science, University of St Andrews, St Andrews, Fife, Scotland.

{al, graham, stuart, ajm}@cs.st-and.ac.uk

ABSTRACT

The persistent programming systems of the 1980s offered

a programming model that integrated computation and

long-term storage. In these systems, reliable applications

could be engineered without requiring the programmer to

write translation code to manage the transfer of data to

and from non-volatile storage. More importantly, it sim-

plified the programmer‘s conceptual model of an applica-

tion, and avoided the many coherency problems that re-

sult from multiple cached copies of the same information.

Although technically innovative, persistent languages

were not widely adopted, perhaps due in part to their

closed-world model. Each persistent store was located on

a single host, and there were no flexible mechanisms for

communication or transfer of data between separate

stores. Here we re-open the work on persistence and

combine it with modern peer-to-peer techniques in order

to provide support for orthogonal persistence in resilient

and potentially long-running distributed applications. Our

vision is of an infrastructure within which an application

can be developed and distributed with minimal modifica-

tion, whereupon the application becomes resilient to cer-

tain failure modes. If a node, or the connection to it, fails

during execution of the application, the objects are re-

instantiated from distributed replicas, without their refer-

ence holders being aware of the failure. Furthermore, we

believe that this can be achieved within a spectrum of

application programmer intervention, ranging from

minimal to totally prescriptive, as desired. The same

mechanisms encompass an orthogonally persistent pro-

gramming model. We outline our approach to implement-

ing this vision, and describe current progress.

Keywords

distributed application, resilience, orthogonal persistence,

object, storage, replication, peer-to-peer, P2P

1. INTRODUCTION
During the 1980s, a dichotomy emerged between single

address-space programs, increasingly written in an ob-

ject-oriented style, and distributed programs written us-

ing socket abstractions. The syntactic gap between dis-

tributed and non-distributed programming then began to

close with the advent of middleware systems typified by

CORBA [25] and later Java RMI [35]. These systems

permitted programmers to program with remote objects

in the same manner as local objects. However, many dif-

ferences remained between such distributed object pro-

grams and single address space programs. The differ-

ences broadly fall into two categories: those concerning

the software engineering process and those concerning

differences between local and remote semantics. We dis-

cuss each of these in turn.

Industry-standard middleware systems—CORBA, Java

RMI, Microsoft COM [20], Microsoft .NET remoting

[24] and Web Services [37]—are complex, making the

creation of distributed applications difficult and error-

prone. Programmers must ensure that application classes

supporting remote access correctly adhere to the engi-

neering requirements of the middleware system in use,

for example, extending certain base classes, implement-

ing certain interfaces or handling distribution-related er-

ror conditions. This affects inheritance relationships be-

tween classes and often prevents application classes from

being remotely accessed if their super-classes do not

meet the necessary requirements. At best, this forces an

unnatural or inappropriate encoding of application se-

mantics because super-classes are often required to be

accessible remotely for the benefit of their sub-classes.

At worst, application classes that extend pre-compiled

classes cannot be made accessible remotely at all.

The above systems all require programmers to follow

similar steps in order to create remotely accessible

classes. Programmers must specify the interfaces be-

tween distribution boundaries, and then decide which

classes will implement them. Thus classes are hard-coded

at the source level to support remote accessibility; pro-

grammers must therefore know how the application ob-

jects will be distributed at run-time when defining

classes—early in the design cycle.

The semantic differences between local and remote pro-

grams have been widely discussed in the literature; many

regard A Note on Distributed Computing [12] as the de-

finitive discussion of these differences. This classifies as

local computing (local object invocation) those programs

that are confined to a single address space, and as dis-

tributed computing (remote object invocation) those pro-

grams that make calls to other address spaces, possibly

on remote machines. [12] states that the differences be-

tween local and distributed computing lie in four distinct

areas: latency, memory access, partial failure and concur-

rency. [12] argues that since remote invocation is be-

tween four and five orders of magnitude longer than a

local call, lack of attention to distribution in the design

cycle can lead to performance problems that cannot be

rectified. Since only local memory can be addressed from

within an address space, remote references (pointers) are

inherently different from local references. In a single

address space program, there is no partial failure; the

entire program either fails or runs to completion. By con-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/9821333?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

trast, in a distributed program, arbitrary components can

fail, leading to unpredictable results. Finally, a distributed

program exhibits true concurrent behaviour, leading to

indeterminacy in the order of invocations.

A rebuttal of these arguments appears in [32], in which

Spiegel argues that none of these arguments stand up to

close inspection. Spiegel states that the latency argument

hinges on the assumption that there must be a static deci-

sion on which objects (and classes) are remote and which

objects are clustered together. Whilst this is true of early

middleware systems, it is not true of some second and

third generation middleware systems such as ProActive

[6] and RAFDA [9, 16, 28, 38]. Given appropriate mid-

dleware support, it is possible to dynamically change the

object clustering to avoid latency problems.

High level programming languages such as Java and C#

abstract over direct memory access making the remote

references issue a non-problem. Similarly with the issue

of concurrency, most modern operating systems support

multi-threading and newer CPUs support multiple proc-

essor cores within what is traditionally thought of as a

single CPU. Thus true concurrency exists within a single

machine environment. Furthermore, the advent of thread-

ing concepts in modern programming languages mean

that programmers have to routinely deal with concur-

rency.

Spiegel argues that there are partial solutions to the prob-

lem of partial failures. He argues that in systems with

explicit failure detection, the only viable option in the

majority of cases is to shut down the program with an

error message. For example, with Java RMI, the applica-

tion programmer is obliged to handle occurrences of Re-

moteException and its subtypes. He argues that while

sophisticated retry and replication schemes that could

mask the failure are too complicated to be implemented

within the application logic, there is a need for infrastruc-

tures that can mask failures and shield the application

logic. We pick up this mantle here.

Waldo et al. attempt to dispel the vision of unified ob-

jects; Spiegel points out flaws in their arguments. In this

paper we extend the argument of Spiegel and assert that it

is possible to engineer unified object systems which en-

able distributed programs to be constructed that are su-

perior to single address space solutions, in terms of ap-

plication availability, probability of successful comple-

tion, and scalability with respect to storage and compute

cycles.

We believe that a distributed system can be engineered to

be more reliable than a centralised application. In fact,

we assert that it is possible to make use of distribution

and replication of active and passive state to provide arbi-

trary application resilience. Furthermore, we believe that

this can be achieved within a spectrum of application

programmer intervention, ranging from minimal to to-

tally prescriptive, as desired. In the minimal intervention

scenario, the programmer writes an application and the

infrastructure makes appropriate choices about active and

passive object replication and placement. Conversely, the

programmer may wish to exert explicit control over

where objects are placed, the manner in which they are

replicated, how recovery is performed, etc.

It is important to be clear about the type of application

resilience that we address. We are concerned with resil-

ience in the face of failures in the computing infrastruc-

ture, including power failures, disk failures, operating

system crashes, network outages, etc. We do not address

semantic errors: we assume correctness of the core appli-

cation logic.

In this paper, we explore the building blocks necessary to

achieve this application resilience, and outline our ap-

proach to implementing such a system by exploiting fa-

cilities from the domains of persistent programming,

peer-to-peer (P2P) architectures and code transformation.

2. VISION
Like the Aspect Oriented Programming community [13],

and in contrast to [12], we believe that it is possible to

separate persistence, distribution, replication and resil-

iency concerns completely from the core application

logic. These orthogonal aspects may be addressed sepa-

rately, with the consequence that they may be changed

more easily since re-engineering of the application is

unnecessary.

Our vision is to support an application development

methodology as follows. The application is initially de-

signed, implemented and tested without taking any ac-

count of how it will be distributed. The application code

is then transformed automatically such that all references

between objects become abstract. Rather than referring

to a specific extant object in the same address space as

the reference holder, each reference refers to an abstract

object identity.

When accessed, a reference‘s abstract identity is trans-

parently and automatically resolved—to a local object, to

an object in a remote address space, or to an object re-

constructed from its flattened object representation,

stored on a local or remote disk. A remote reference

mechanism allows an object in a remote address space to

be used in the same way as a local object. An instantia-

tion mechanism allows an object to be re-instantiated on

demand from a flattened representation. This flexibility is

used to support several distinct, though related, features:

 Objects are referenced in a location-independent

fashion, facilitating dynamic flexibility in distribu-

tion topology; an object may be migrated between

address spaces without the need to inform reference

holders.

 Objects are automatically replicated, with transpar-

ent fail-over to a replica when required; reference

holders need not be aware of the failure of a refer-

enced object.

 Orthogonal persistence allows objects to outlive a

particular run of an application, without the need for

the programmer to write any explicit save/restore

code.

 Object histories are available, since replicas of pre-

vious states may be preserved in the infrastructure.

Executing code may obtain and use an abstract reference

to an object without being aware of where on the network

that object exists, or indeed whether the object exists in

memory or is stored in quiescent form on disk. This is

achieved via a discovery service that maps globally-

scoped logical names to abstract references. Similarly,

code may be passed an abstract reference as a parameter;

it is again able to treat that reference in the same way as a

local reference. If the referenced object later migrates to

another address space, or is flushed to disk and then dis-

carded from memory, this is transparent to the holder of

the abstract reference. Information about the most re-

cently resolved target of an abstract reference is cached,

so that the resolution cost is not incurred on subsequent

accesses, unless the target changes as in the above exam-

ples.

Abstract references are resolved using a key-based rout-

ing service provided by a P2P infrastructure. This pro-

vides a scalable decentralised mechanism for locating

active objects and flattened representations anywhere in

the network.

At intervals determined via a flexible policy framework,

the current state of each object is reified and distributed,

to form one or more remote replicas.

If the cached remote target object of an abstract reference

becomes unavailable due to failure of the remote host or

the intervening network, a copy of the object‘s replicated

state is located via the P2P infrastructure, and instantiated

to give a new target. This fail-over process is transparent

to the reference holder, beyond the additional delay and

possible roll-back of the object‘s state.

The replication infrastructure also supports orthogonal

persistence [2] [4]. At the end of a program execution,

those objects reachable from a designated root of persis-

tence are replicated on local and/or remote disk. A subse-

quent execution of the same or another program, whether

in the same physical location or elsewhere, can retrieve

an object previously made persistent, by obtaining and

resolving an abstract reference via the distributed discov-

ery service.

By default, replicas of object states are preserved indefi-

nitely. This means that object version histories are avail-

able, allowing the programmer to recover the previous

state of an object as recorded at any replication point.

The storage cost can be influenced via policy frameworks

that control the frequency and granularity of replication,

as mentioned above, and the deletion of old replicas (if at

all). Although not required, the programmer may also

optionally exert control over a number of other policy

dimensions, including:

 the initial partitioning of application objects across

the network;

 policies for parameter passing semantics;

 recovery.

To summarise, our vision is of an infrastructure within

which a conventional application can be deployed and

distributed with minimal modification, whereupon the

application becomes resilient to certain failure modes. If

a node, or the connection to it, fails during execution of

the application, the objects are re-instantiated from dis-

tributed replicas, without their reference holders being

aware of the failure. The same mechanisms encompass

an orthogonally persistent programming model. Our aim

is to provide an abstraction to the programmer of a

global, ubiquitous, reliable, permanent single address-

space.

3. BACKGROUND
This section describes a number of technologies that we

have developed previously, which are exploited in the

infrastructure presented in this paper.

3.1 Orthogonal Persistence
The essential concept behind persistent programming is

that all data values within a programming context are

created in an address space that is conceptually perma-

nent and shared among applications [2]. This means that

long-term, typed data can be shared among independently

compiled units and relieves programmers of writing

translation code to manage the transfer of data to and

from non-volatile storage (e.g. a file or a database). More

importantly, it simplifies the programmer‘s conceptual

model of an application, and it avoids the many coher-

ency problems that result from multiple cached copies of

the same information. To quote from [22]:

Persistence is used to abstract over the physical

properties of data such as where it is kept, how

long it is kept and in what form it is kept, thereby

simplifying the task of programming. The benefits

can be summarised as:

 improving programming productivity as a

consequence of simpler semantics;

 avoiding ad hoc arrangements for data trans-

lation and long term data storage; and

 providing protection mechanisms over the

whole computational environment.

The persistence abstraction is designed to provide

an underlying technology for long-lived, concur-

rently accessed and potentially large bodies of

data and programs.

In an orthogonally persistent system, any data value can

be made persistent, without exception, regardless of its

type, how and when it was created, etc. PS-algol [3] was

the first language to have orthogonal persistence, while

Napier88 [23] was the first language to model persistence

within a sophisticated typing regime, including paramet-

ric polymorphism, existential data typing, and controlled

dynamic typing within a static context.

Although technically innovative, these languages were

not widely adopted, perhaps due in part to their closed-

world model. Each persistent store was located on a sin-

gle host, and there were no flexible mechanisms for

communication between, or transfer of data between,

separate stores.

Since the programmer may treat transient and persistent

objects in exactly the same way, any reference encoun-

tered during computation may refer to a local in-memory

object or to the stored representation of a persistent ob-

ject on disk. A fundamental implementation requirement

for a persistent system is thus support for read barriers.

Each reference must be checked before use, and if neces-

sary the referenced persistent object must be faulted from

disk and instantiated in main memory. Various ‗pointer

swizzling‘ techniques attempt to optimise this process

[11].

Conversely, new and modified persistent objects must be

written back from main memory to disk. At the mini-

mum, the infrastructure needs to be able to distinguish,

on program termination, which objects are new and

should now be made persistent, which are already persis-

tent, and of those, which have been modified since being

faulted in. Various schemes for identifying those objects

that should become persistent have been proposed; in

orthogonally persistent systems this is usually achieved

by tracing reachability from some root of persistence.

It is also desirable for the system to be able to evict per-

sistent objects from main memory during computation, in

order to free space. These must also be written back to

disk, if modified.

3.2 The RAFDA Run-Time
The RAFDA Run-Time [9, 16, 28, 38] (RRT) is a mid-

dleware system that separates distribution concerns com-

pletely from the core application logic. Unlike most mid-

dleware systems, the RRT permits arbitrary application

objects to be dynamically exposed for remote access.

This means that changes to distribution boundaries do not

require re-engineering of the application, making it easier

to change its distribution topology.

Object instances are exposed as Web Services through

which remote method invocations may be made. The

RRT has the following notable features:

1. The programmer need not decide statically which

classes support remote access. Any object instance

from any application, including compiled classes and

library classes, can be exposed as a Web Service

without the need to access or alter application class

source code. This is analogous to orthogonal persis-

tence, where any object instance may become persis-

tent, regardless of its type or method of creation.

2. The middleware integrates the notions of Web Ser-

vices, Grid Services and Distributed Object Models

by providing a remote reference scheme synergistic

with standard Web Services infrastructures, and ex-

tending the pass-by-value semantics provided by

Web Services with pass-by-reference semantics.

Specific object instances rather than object classes

are exposed as Web Services, further integrating the

Web Service and Distributed Object Models. This

contrasts with systems such as Apache Axis [1] in

which classes are deployed as Web Services.

3. Parameter passing mechanisms are flexible and may

be controlled dynamically. Parameters and result

values can be passed by-reference or by-value and

these semantics can be decided on a per-call basis.

4. When objects are passed by-reference to remote ad-

dress-spaces, they are automatically exposed for re-

mote access. Thus an object b that is returned by

method m of exposed object a is automatically ex-

posed before method m returns.

The RRT allows application developers to implement

application logic without regard for distribution bounda-

ries, and to separately implement code to define the dis-

tribution-related aspects. The developer can either ab-

stract over distribution boundaries, or implement distri-

bution-aware code, as appropriate. A flexible policy

framework, together with a library of default policies,

allows the developer to exert fine-grained control over

distribution concerns if required, but to ignore them if

not. Although the RRT is written in Java and is designed

to support Java applications, it does not rely on any fea-

tures unique to Java.

An application object may be exposed for remote access

in two ways: through an explicit call by the application,

or automatically through transmission of a reference to

the object. To explicitly expose an object, the application

makes a call to the local RRT infrastructure, passing a

local reference to the object, an interface type, and op-

tionally a logical name. The interface type specifies the

set of methods that will be exposed for remote access.

For flexibility, the object itself need not implement the

interface type, so long as it is structurally compatible.

The signature of the RRT operation used to expose an

object is:

void expose(Object objectToBeExposed,

 Class interfaceToBeExposed, String name)

Each exposed object is dynamically assigned a globally

unique identifier (GUID), which provides object identity

within the distributed system. The exposed object may be

remotely addressed using the pair (guid, net_addr),

where guid is the object‘s GUID and net_addr is the net-

work address (IP address and port) of the address-space

in which the object resides. Where a logical name was

provided at the point of exposure, this name may also be

used in place of the GUID. The signatures of the RRT

operations used to obtain a remote reference to an object

exposed in another address-space are:

Object getRemote(SocketAddress rrt, GUID g)

Object getRemote(SocketAddress rrt, String name)

The result returned from either of these operations is a

remote reference, typed as the interface with which the

remote object was exposed. This reference can then be

used by the application in exactly the same way as a con-

ventional local reference.

Just as orthogonal persistence allows an object to become

accessible from another address-space instantiated later

in time, the RRT allows an object to become accessible

from another address-space elsewhere on the network.

Although an RRT remote reference can be used without

knowing the actual location of the object referred to, the

remote reference does explicitly encode that network

location. If that location later becomes unavailable due to

host or network failure, the remote reference will become

unusable.

The work described in this paper provides mechanisms

whereby an object‘s global identity, that is its GUID, is

the only information required to be able to reliably ad-

dress that object. It extends the features of the RRT such

that:

 a remotely accessible object can be located and

bound-to from any location, without having to know

the object‘s current location;

 a reference may resolve to a local object, a remote

object or to an object reconstructed from a persistent

replica, without any difference between these being

apparent to the reference holder;

 a remotely accessible object remains available even

if the address-space currently containing that object

fails or becomes unreachable.

3.3 P2P Infrastructures
Our approach centres on the use of Peer-to-Peer (P2P)

mechanisms for the reliable addressing of data, stateful

services and application objects. P2P routing overlays

[27, 29, 34, 39] offer reliable and highly scalable routing

mechanisms that map each key in an abstract key-space

to a live host in a network. Such an overlay can be used

to construct P2P applications that benefit from location-

independent addressing of objects, data or services [7,

29]. In a key-based P2P application, each addressable

entity is bound to a value in the key-space, and the node

to which a particular key maps holds the entity bound to

that key, or its location. An addressable entity is thus

located by routing to its key in the overlay network.

While an overlay network provides a highly scalable,

reliable, self-repairing routing infrastructure, an applica-

tion built on top of an overlay must ensure that the ad-

dressable entities remain available in the face of host and

network failure. If the host responsible for a particular

range of the key-space fails, the overlay protocol will re-

arrange the network‘s routing data structures to ensure

that those keys continue to route to available hosts. It is

the responsibility of the application to ensure that the

entities bound to those keys are reliably stored and that

sufficient information to locate the entities is held at the

appropriate nodes in the overlay. This process requires

that replicas of the entities or the location information are

appropriately placed on the nodes that will take responsi-

bility for the corresponding keys in the event of failure.

[8] defines an API for P2P overlay systems, suitable for

the implementation of a range of applications. This de-

fines a routing API for location-independent addressing

and an up-call API via which the overlay announces net-

work topology changes to the application layer. This en-

ables applications to move or copy addressable entities

and location information to appropriate nodes in response

to changes in the mapping of the key-space to live nodes.

The ASA project [15] is developing an autonomically

managed storage system based on P2P routing overlay

techniques; a number of technologies resulting from this

are used in the work described in this paper. These in-

clude implementations of multiple overlay protocols and

a P2P application infrastructure that supports the con-

struction of applications using these overlays. Our P2P

infrastructure supports the construction of key-based P2P

applications that are independent of any particular over-

lay protocol.

4. APPROACH

4.1 General Principles
Interaction between applications and the P2P infrastruc-

ture that supports the middleware is based on the use of

keys to identify programming language objects and ver-

sions of those objects. A key is associated with an object

when the object‘s identity, or its flattened state, is pub-

lished on the network. It is useful to differentiate between

two syntactically identical types of keys: Globally

Unique IDentifiers (GUIDs) and Persistent IDentifiers

(PIDs). In our current prototype, both are represented as

160-bit strings—GUIDs are randomly generated, while

PIDs are based on content hashing.

GUIDs encompass the notion of identity in a global set-

ting. A GUID serves to identify an object over all time,

irrespective of the state of the object. Not all program-

ming language objects need associated GUIDS—only

those that take part in global interactions—thus GUIDs

are lazily allocated. An extant object associated with a

GUID may be located, if one exists, by looking up that

GUID in a distributed data structure known as the Object

Directory, which maps from GUIDs to object references.

A PID is used to identify the state of an object at some

particular time, created via a content hash of the serial-

ised state. Over time, as objects are modified, a sequence

of (PID, state) pairs is generated, and stored in the dis-

tributed Data Store. The historical sequence of object

states is related to object identities by the distributed Ver-

sion

Directory. This is an append-only store that maps from

object identity (GUID) to a sequence of PIDs associated

with that object. Using the PIDs, the state-change history

of an object may be discovered (and its state possibly

rolled back or forward).

When an object is re-instantiated from a serialised state,

its class must be known in order to perform the deseriali-

sation. This information is recorded in the distributed

Code Store, which maps from GUID to class. The dis-

tributed Policy Store is a repository for the various policy

choices that dictate the behaviour of the middleware sys-

tem.

The process of resolving an abstract reference involves

use of these various distributed data structures:

 extract GUID held in abstract reference and search for it in

Object Directory

 if an extant instance of object is found (either a local refer-

ence, or a remote reference to an instance in another ad-

dress space)

 then return reference to extant instance

 else

 search Version Directory for an appropriate PID asso-

ciated with GUID

 retrieve serialised state associated with that PID from

Data Store

 retrieve class associated with GUID from Code Store

 re-instantiate new instance using class and state

 record new instance in Object Directory

 return reference to newly instantiated instance

An abstraction layer is required to shield the application

programmer from this complexity. This is discussed in

the next section. Note that RRT functionality (as de-

scribed in Section 3.2) is used to allow the Object Direc-

tory to return remote references to extant instances,

which can be used by the application in exactly the same

way as local references.

4.2 The Middleware Interface
The middleware presents two APIs to the application,

shown in Figure 1 and Figure 2. The first,

NamedObjectDirectory, represents the simplest interface

against which it is possible to program. Using this, the

programmer is freed of any responsibility for replication,

coherency or recovery. The methods getObjectByName

and associateName are provided for naming and retriev-

ing objects, serving the same purpose as object naming

services in CORBA or Java. The difference is that the

objects made available using the associateName method

may be located using the getObjectByName method, irre-

spective of the longevity of the objects, the processes in

which they were created, or the context in which either

method was called.

The default behaviour of the commit method is to repli-

cate the state of the transitive closure of the object asso-

ciated with a given name n times, where n is a per-

address-space configuration parameter, initially set to 3.

This is intended to give reasonable resilience semantics

without impacting too greatly on the application pro-

grammer.

interface NamedObjectDirectory {

 Object getObjectByName(String name);

 void associateName(String name, Object o);

 void commit(String name);

}

Figure 1. The NamedObjectDirectory interface.

In addition to the NamedObjectDirectory interface, the

more general purpose PersistenceInfrastructure interface

is also provided. This provides access to the various dis-

tributed data structures briefly described in the last sec-

tion, permitting a variety of application-specific policies

to be written to control the replication, coherency and

recovery of objects.

The NameDirectory methods getGuidByName and

associateName permit the storage and retrieval of asso-

ciations between logical names and GUIDs.

The version history mapping each GUID to a sequence of

PIDs may be accessed using the VersionDirectory meth-

ods getLatestVersion and versionIterator, while new ver-

sions are published using publishVersion.

The ObjectDirectory method getObjects supplies the ap-

plication level with a reference to the extant instances

associated with the specified GUID. The getGuid method

returns the GUID associated with an object, allocating a

new GUID if necessary, while getCreationTime returns

the time at which a given GUID was allocated. A new

object cannot be accessed remotely until it is made glob-

ally available using publishInstance, which advertises the

object‘s existence in the Object Directory.

interface PersistenceInfrastructure {

 NameDirectory getNameDirectory();

 VersionDirectory getVersionDirectory();

 ObjectDirectory getObjectDirectory();

 DataStore getDataStore();

 CodeStore getCodeStore();

 PolicyStore getPolicyStore();

}

interface NameDirectory {

 GUID getGuidByName(String name);

 void associateName(String name, GUID guid);

}

interface VersionDirectory {

 PID getLatestVersion(GUID guid);

 Iterator versionIterator(GUID guid);

 void publishVersion(GUID guid, PID pid);

}

interface ObjectDirectory {

 Object[] getObjects(GUID guid);

 GUID getGuid(Object o);

 Date getCreationTime(GUID guid);

 void publishInstance(GUID guid);

}

interface DataStore {

 Data getObjectData(PID pid);

 void store(PID pid, Data data);

 PID generatePID(Data data);

 Date getCreationTime(PID pid);

}

interface CodeStore {

 Class getClass(GUID guid);

}

interface PolicyStore {

 void setResiliencePolicy(

 Class c, ResiliencePolicy p);

 void setResiliencePolicy(

 Object o, ResiliencePolicy p);

 // ... other policy hooks omitted

}

interface ResiliencePolicy {

 Data reify(GUID guid);

 Object instantiate(GUID guid);

 PID makeResilient(GUID guid);

 // ... other resilience policy hooks omitted

}

Figure 2. PersistenceInfrastructure and related inter-

faces.

The data associated with a PID is retrieved using the

DataStore method getObjectData. This returns an in-

stance of Data, which is an abstraction over the unstruc-

tured data (bytes) holding the object‘s serialised state.

The store method initiates the replication of the supplied

data, keyed by a given PID, while generatePID creates a

PID for the given data. The method getCreationTime

returns the time at which a given PID was generated.

The CodeStore method getClass retrieves the class asso-

ciated with a given GUID. Finally, the PolicyStore meth-

ods provide hooks for associating application-specific

policy with particular classes or objects. The next section

describes how this may be used to control resilience.

4.3 Controlling Policy
As mentioned in Section 2, one of our goals in develop-

ing the infrastructure described in this paper is to allow

applications to be deployed on the middleware with

minimal change, while at the same time making it possi-

ble for the programmer to exert fine-grained control over

the operation of the middleware if required. Extending

our RRT work, our approach is to identify the dimensions

suitable for the application of user-level policy, and then

to provide a framework that allows the programmer to

specify particular policies, together with default policies,

which are designed to be satisfactory for simple applica-

tions. To retain flexibility, each policy choice may be

specified independently of the application code, and may

be changed dynamically. Depending on the policy aspect,

policies may be associated with classes, methods, indi-

vidual method parameters, or with particular objects. We

now give an overview of the policy aspects that may be

controlled, with examples of how particular choices may

be specified.

4.3.1 Resilience Policy
Resilience is achieved through automatic object replica-

tion and recovery. A number of dimensions of the object

replication may be configured, including:

 application-level consistency requirements

 whether replica propagation is performed synchro-

nously with respect to the application code

 the number of replicas to be distributed, and con-

straints on their placement, including geographical

and whether in volatile or non-volatile storage

 the mechanisms used to transmit the replicas, includ-

ing serialising the entire current state, encoding a

delta relative to a previous state, sending a code

fragment to carry out the update, etc

 the format in which the replicas are stored, including

a direct serialised form, erasure encoding etc

 whether replicas of old versions should ever be de-

leted, and if so, when

These dimensions can be controlled by associating speci-

fied policy objects with application classes or instances

using the ResiliencePolicy interface. We first consider the

default resilience policies, which take no account of any

application-specific consistency requirements.

4.3.1.1 Replication Policy

Various replication policies may be composed from the

dimensions listed above, including extremes such as dis-

abling replication altogether—giving minimal overhead

with minimal resilience—and synchronous replication on

every field update—giving maximal resilience but with

higher overhead.

The default replication policy is for every object within

the transitive closure of a named object to be replicated

whenever the commit method from the NamedObjectDi-

rectory interface (Figure 1) is invoked on that name. The

implementation of commit is fixed; it simply invokes the

makeResilient method from the ResiliencePolicy inter-

face on the GUID corresponding to the given name. This

call is controlled by the resilience policy currently in ef-

fect in that context. The default implementation of mak-

eResilient is shown in Figure 3:

PID makeResilient(GUID guid) {

 Object obj = objectDirectory.getObject(guid);

 for each Object o in closure of obj {

 Data data = reify(o.getGuid());

 PID pid = dataStore.generatePID(data);

 dataStore.store(pid, data);

 versionDirectory.publishVersion(guid, pid);

 }

 return PID generated for initial object obj;

}

Figure 3. Default makeResilient implementation.

The first action of the method is to retrieve the object

corresponding to the given GUID from the Object Direc-

tory. For brevity, details of access to this and the other

distributed data structures are omitted; the expression:

 objectDirectory.getObject()

is used as a short-hand for:

 Infrastructure.getPersistenceInfrastructure().

 getObjectDirectory().getObject()

The makeResilient method then traverses the transitive

closure of the given object. Every object encountered is

converted to a flattened representation of its state with a

call to reify. Again, this call is controlled by the resilience

policy currently in effect. A PID is generated by hashing

the flattened state with a call to generatePID. The appro-

priate number of replicas is propagated to other nodes in

the network via store. Finally, the new state of the object

is published via publishVersion.

The action of replicating an object is equivalent to flush-

ing or checkpointing a persistent object to a persistent

store; in both cases the object can then be discarded from

volatile memory, since it can be re-instantiated from non-

volatile state if needed again. Thus the specification of

replication policy can also be thought of as controlling

the system‘s orthogonal persistence functionality.

Where this replication policy is unsuitable for an applica-

tion, the programmer may exert finer control by specify-

ing a customised implementation of ResiliencePolicy to

be associated with an application class or with a specific

object. Such customised versions may use any of the

functionality provided via the PersistenceInfrastructure

interface. The makeResilient method in such a policy

might, for example, omit the traversal of a particular part

of the object closure, if it is known that that part of the

graph should be treated as volatile and not made persis-

tent. Another example, concerning application-level con-

sistency, is discussed in the next section.

It is, of course, possible that a node or network failure

may occur during an execution of makeResilient. To re-

duce the probability of inconsistencies arising, the fol-

lowing properties are guaranteed by the infrastructure:

 The storage of an individual replica is atomic: it will

either be stored completely or not at all. Thus the ef-

fect of store is to store some number (possibly zero)

of complete replicas on the network.

 The overall effect of commit is atomic: it will either

succeed in replicating the complete closure or will

have no externally visible effect. Thus the closure re-

trieved by calling getObjectByName from another

node on the network always corresponds to an ex-

plicitly committed state.

4.3.1.2 Re-instantiation Policy

It may be necessary to re-instantiate an object from flat-

tened stored state in two situations: when the failure of a

live object is detected, and when access is made to a per-

sistent object not currently held in memory. Whenever an

object needs to be re-instantiated, the infrastructure in-

vokes the instantiate method from the ResiliencePolicy

interface on the corresponding GUID. This call is con-

trolled by the resilience policy currently in effect in that

context. The default implementation of instantiate is

shown in Figure 4:

Object instantiate(GUID guid){

 PID version =

 versionDirectory.getLatestVersion(guid);

 Data data = dataStore.getObjectData(version);

 Class c = codeStore.getClass(guid);

 Object o = instantiateObject(data, c);

 objectDirectory.publishInstance(guid);

 return o;

}

Figure 4. Default instantiate implementation.

The method first retrieves the most recent PID from the

Version Directory, and a serialised state replica corre-

sponding to that PID from the Data Store. The class of

the object is retrieved from the Code Store, and used to

re-instantiate the object from the replica, in the local ad-

dress-space. Finally, existence of the new instance is ad-

vertised in the Object Directory.

The programmer may register customised recovery code

by associating an alternative implementation of instanti-

ate with an application class or with a specific object.

Aspects that could be customised include the location of

the re-instantiated object—this could be in a different

address space from that initiating the recovery—and pol-

icy controlling the number of instantiations of the object

that may co-exist.

The operations makeResilient, reify and instantiate are

interdependent, hence their grouping in the Resilience-

Policy interface. Since they operate on unstructured data

(Data), the manner in which state is represented is di-

vorced from the infrastructure supporting that state. The

infrastructure has no knowledge of how persistent data is

stored—it could be as XML, Java serialised format, or

some optimised format taking advantage of application

domain knowledge. The application programmer can

control this by defining customised implementations of

ResiliencePolicy.

4.3.1.3 Customised Resilience Policies

Several example uses of customised resilience policies

have already been mentioned. Another arises with respect

to application-level consistency, for example in situations

traditionally addressed by ACID transactions. The atom-

icity of the commit operation is not sufficient to ensure

atomicity of concurrently executing programs.

For example, consider the archetypal banking example,

in which two concurrent or interleaved operations each

make a transfer between two accounts. Figure 5 shows a

simple data structure in which a named root ―bank root‖

refers to an object representing a bank. This, in turn, re-

fers to objects A, B, C and D, instances of class Account

representing individual accounts.

Figure 5. Example data structure.

Assume that threads 1 and 2 are executed concurrently to

perform the two transfers:

thread 1:

 get bank object via getObjectByName("bank root")

 subtract £10 from account A

 add £10 to account B

 commit("bank root")

thread 2:

 get bank object via getObjectByName("bank root")

 subtract £10 from account C

 add £10 to account D

 commit("bank root")

A problem arises if the threads are interleaved such that

the subtraction in thread 2 has been performed by the

time that thread 1 completes, and thread 2 is then killed

(or the node on which it is running crashes) before com-

pleting. In this situation the commit operation performed

by thread 1 will make resilient the bank data structure as

it was at the time of completion of thread 1. The newly

resilient data structure includes the updated state of ac-

count C, but not that of account D, since thread 2 did not

complete its commit operation. The result is an inconsis-

tent data structure, as shown in Figure 6, in which the

intended invariant (a transfer between accounts should

not alter the sum of the balances) has not been preserved:

Figure 6. Inconsistent state.

The problem in this example is due to the atomicity of

update to the persistent state of the entire object closure,

rather than the desired atomicity of the individual transfer

operations—the update operations of thread 2 are not

performed atomically, since the first update is made per-

sistent but not the second. A similar problem arises in

situations where multiple top-level roots share common

sub-structure: a commit performed on one has a (poten-

tially unexpected) effect on the others.

Such problems are well known; they have been addressed

in database and programming language systems by ACID

transactions. There is also a large body of work on more

flexible non-ACID approaches to consistency control. No

single set of semantics is suitable for all applications;

hence, we avoid building-in even ACID properties to our

middleware. Instead, our approach is to allow the appli-

cation programmer to implement appropriate policies,

when required, using the functionality provided through

the PersistenceInfrastructure interface1.

We now examine how the example problem can be ad-

dressed via customised policies, by implementing trans-

actional semantics at the application level. A customised

replication policy for the bank data structure can be es-

tablished by associating an alternative implementation of

makeResilient with the root object, and disabling the de-

fault policy for the Account class. A simple optimistic

scheme could be implemented as follows:

 associate a transaction identifier with each account update

operation

 maintain a data structure recording the identifiers of the

transactions updating each account object

 in the customised version of makeResilient, traverse the

object closure to determine which account objects have

been modified by this transaction

1 This approach is similar to that proposed in [33].

 if none of these account objects has also been modi-

fied by another transaction, propagate replicas for all

the modified objects and publish the new versions

 otherwise abort the transaction by returning immedi-

ately

4.3.2 Other Policy Aspects
Beyond resilience, several other aspects of the middle-

ware can be controlled by application-specific policy.

The initial partitioning of an application is determined by

object placement policy. This specifies the address spaces

in which new objects should be instantiated (in the same

way that recovery policies may specify locations for re-

instantiation). The default is for new objects to be instan-

tiated in the same address-space as the caller.

Fine control may be exerted over parameter passing se-

mantics [38]. Pass-by-value, pass-by-reference and hy-

brid schemes can be specified dynamically for classes,

methods and individual parameters. The default policy is

pass-by-reference.

5. IMPLEMENTATION
In this section, we discuss implementation related issues,

including the use of P2P abstractions, and the implemen-

tation of the six stores of which the system is logically

comprised (the version directory, the data store, the ob-

ject directory, the name directory, the policy store and the

code store).

5.1 Implementation Overview
Our approach centres on the use of P2P mechanisms for

reliably addressing extant application objects, their repli-

cas and flattened object state. The use of P2P is attractive

since they offer a highly scalable, reliable, self-repairing

routing infrastructure. Here we describe the P2P based

addressing and storage mechanisms that support the im-

plementation of our middleware system.

As described above, the storage model logically consists

of six storage categories corresponding to the Version

Directory, the Data Store, the Object Directory, the

Name Director, the Policy Store and the Code Store.

Each of these stores is implemented as a decentralised

service hosted on a P2P overlay network. A set of service

objects is instantiated on each of the nodes of the overlay

with each node providing service objects for all six stor-

age categories. Each node in the infrastructure is respon-

sible for some range of keys [kx,ky]. Each service object

hosted on a node is responsible for the storage of objects

that map to the key range of the hosting node. Thus if

node N1 is responsible for some range of keys [kx,ky] then

the Version Directory service object on node N1 holds the

version history for all GUIDs in the range [kx,ky], the

Data Store service object on node N1 records the serial-

ised state of objects whose keys are in the range [kx,ky]

and so on.

In order to address each of these storage service objects it

is necessary to be able to differentiate between them.

Each storage category is associated with a distinct Appli-

cation Identifier (AID). The AID is used by a decentral-

ized object location method called dol, provided by every

point of presence that offers access to the P2P infrastruc-

ture:

 public Object dol(Key k, AID serviceID);

The dol method permits the caller to obtain a reference to

the object that provides a particular service on the P2P

overlay and is responsible for the range of the key space

in which key k lies. Thus, a dol call for a key k with the

Version Directory AID will return a reference to the ob-

ject implementing the Version Directory service on the

node in the P2P overlay responsible for the key range

containing k. The effect of this key-based approach, as-

suming a random distribution of allocated keys, is to

spread the load among the nodes of the overlay and con-

sequently the instances of the storage components de-

ployed on the overlay. To carry out any operation on one

of the components, the client executes a dol call to obtain

a reference to the appropriate object in the network and

then calls the required method on that object.

5.2 Generic Reliable Storage
All the storage categories have broadly similar storage

requirements and therefore make use of generic common

storage service objects located on each node. Providing

generic common storage has the benefit of being able to

manage the replication and resiliency of data and meta-

data in a single place. The generic storage interface is

shown in Figure 7. This interface is locally available to

all the storage service objects located on a P2P node. It is

also exposed to the network to allow for the storage, up-

date and retrieval of replica data and metadata.

interface GenericStore {

 void put(Key k, Data data);

 Data get(Key k);

 Data update(Key k, Data data);

 void append(Key k, Data data);

 Data remove(Key k);

 Iterator getAll();

}

Figure 7. The GenericStore interface.

All of the common P2P overlay abstractions [27, 29, 34,

39] provide resilient routing in the face of node failure

and topology change. However, changes to the set of

nodes hosting the storage service objects impact the data

storage provision. For example, a new node may become

the primary node for data already stored on another node.

Consequently, some existing data may have to be copied

onto the new node serving as its primary node. Similarly,

data may have to be replicated further, as nodes holding

replicas of data leave the P2P network. Thus, the data

storage layer needs to have knowledge of changes in the

ring topology. To accommodate this need, the P2P layer

provides an up-call mechanism, which informs the ge-

neric storage system and other high-level components of

changes in the P2P topology. On reception of the up-call,

the store reconfigures the data that it holds in order to

effect repair with respect to the number of extant copies

of the data and their locations.

5.2.1 Storage Policy
We have explored a number of implementation strategies

for the data storage service. The first strategy is to co-

locate the storage of data associated with some key with

the data storage service object responsible for the key-

range in which that key lies. Using this strategy, the set

of nodes on which data is stored is determined by the

topology of the P2P overlay. We illustrate this using the

DataStore interface shown in Figure 2. With this inter-

face, no flexibility exists with regard to the placement of

data within or outwith the P2P overlay. The data is al-

ways stored on the node offering this service interface

and on the other nodes chosen by this node on which to

store replicas.

A second approach is to allow data to be stored on arbi-

trary hosts and to record the locations of the data in the

storage objects deployed on the overlay network. Using

this strategy, the storage service located on a P2P node

records the network locations of all instances of data with

keys that lie in that node‘s key-range. To permit this

flexibility, additional methods are required that permit

the service objects to be informed of the location of the

data and for clients to later retrieve it. These additional

methods are illustrated in Figure 8, in which the Generic-

Store interface is reused to describe storage services pro-

vided by arbitrary hosts. Such storage hosts need not be

part of the P2P overlay itself.

GenericStore[] getStore(PID pid);

void recordDataLocations(PID pid,

 GenericStore[] repositories);

Figure 8. Additional DataStore interface methods

Using these methods, client code can decide where to

store data and how many copies to make. Thus, using this

approach, the job of the storage components in the over-

lay is to resiliently record the locations of the copies; this

is effectively a discovery service. The benefit of this ap-

proach is that the storage policies are separated from the

policy for making the discovery services resilient using

the P2P overlay. This additional flexibility comes at a

cost—the overlay cannot guarantee that the data is resil-

ient, since this responsibility is assumed by the client

middleware.

6. RELATED WORK

6.1 Replication
The replication of processes and data is widely used to

increase availability, performance and fault-tolerance. In

distributed file systems such as Coda [30] replication is

used to increase the availability of data. Clients of the

Coda file system transparently communicate with a set of

replicated servers, which provide a level of fault toler-

ance and may perform local caching to facilitate discon-

nected operation. In the event of failures, Coda does not

provide any guarantees of consistency other than ensur-

ing any inconsistent replicas will be identified after the

failure is resolved and made available for manual resolu-

tion.

More recently, OceanStore [17] aims to provide ―Global-

Scale‖ persistent storage designed to operate over an un-

trusted infrastructure where servers are unreliable and

may not be available; servers are not trusted and may

leak information to unauthorised parties. OceanStore is

built upon the Tapestry [39] decentralized object location

and routing system (DOLR). In OceanStore, objects are

globally identifiable via their GUID, and consist of a

number of distinct versions, each identified by a version

GUID (VGUID). OceanStore employs a two-fold ap-

proach to consistency and replication management.

Firstly—related to the approach described here—changes

to an object‘s state result in a new read-only version of

the state being created and assigned a VGUID (analogous

to our PID); this state is then replicated. Secondly,

OceanStore utilises primary-copy replication, in which

each object has a single primary replica that manages all

updates to the object, propagating changes by publishing

a signed certificate mapping the object‘s GUID to the

latest VGUID.

Instead of replicating only data to increase availability

and fault tolerance, an alternative approach is to replicate

an application‘s active components. One example of this

approach is JGroup [21], which allows clients to commu-

nicate with a group of active replica objects as though

they were communicating with a single conventional

Java RMI [35] server object. Should the failure of one of

the replicas in the group occur, the client will remain

unaware and the infrastructure will allow the client to

automatically communicate with another suitable replica.

JGroup‘s Autonomous Replication Management (ARM)

[19] allows a group of replicas to be associated with a

customisable level of redundancy. During normal execu-

tion, ARM monitors the group of replicas and ensures

that a specified level of redundancy is maintained.

Should the current level of redundancy fall, ARM will

take appropriate steps to restore the redundancy level, for

example by instantiating new replicas. A framework for

the creation of application specific state merging proto-

cols is provided, which can be used to re-establish consis-

tency within an object group after a network partition

occurs.

6.2 Recovery Oriented Computing
The central thesis of Recovery Oriented Computing

(ROC) [5] is that any conventional application and par-

ticularly any distributed application will experience a

failure during its normal execution which will impede or

destroy its ability to continue fulfilling its design pur-

pose. Such failures may be due to internal causes such as

software errors and resource exhaustion, or may be due to

external factors including network/power outages, hard-

ware failures, security breaches or human errors. ROC

recognises that such failures are inevitable and in order to

build dependable and highly available systems, such

software must be built to quickly recover from failures.

The key concept behind ROC is the ―Three R‘s‖: Re-

wind, Repair and Replay. In essence, after a catastrophic

failure has occurred, the stricken system can be ‗re-

wound‘ to a state which corresponds to the state of the

system prior to the failure. The failure can then be pre-

empted and the execution of the system is ―replayed‖ or

restarted, and provided with all previous inputs to the

system as before. However the system no longer suffers

from the catastrophic failure and can therefore continue

to execute normally.

6.3 Middleware
The difficulties inherent in creating and configuring dis-

tributed applications using common middleware systems

were described in the introduction. These difficulties are

addressed by several second-generation middleware sys-

tems, which allow programmers to employ code trans-

formation techniques to generate distribution-related

code automatically. J-Orchestra [36] and Pangaea [32]

transform non-distributed applications into distributed

versions based on programmer input. They perform static

code analysis and employ tools to help programmers

choose suitable partitions. Distributed versions of appli-

cations are automatically generated from the local ver-

sions and so the re-engineering process is simplified,

making a trial and error approach to creating applications

more feasible.

ProActive [6] and JavaSymphony [10] allow objects to

be exposed to remote access dynamically. However, both

subtly alter application threading semantics and force

programmers to ensure referential integrity manually

through their use of active objects [18]. This requires

programmers to consider both application distribution

and the middleware system‘s threading model at class

creation time in order to ensure that thread safety is re-

tained after objects are exposed to remote access or mi-

grated to other address-spaces.

No current middleware systems, however, support loca-

tion-independent addressing of arbitrary application ob-

jects, with automatic fail-over to remote replicas, as de-

scribed in this paper.

6.4 Persistence
Many current systems aim to provide persistent object

functionality. Here we examine three of them: the

CORBA Persistent Object Service, Enterprise Java Beans

and Aspect-Oriented Computing.

The aim of the CORBA Persistent Object Service (POS)

is to provide common interfaces to the mechanisms used

for retrieving and managing the persistent state of

(CORBA) objects [26]. The CORBA POS is composed of

several (independent) abstractions that combine to pro-

vide a service:

 a Datastore provides a particular mechanism for

maintaining an object‘s persistent state;

 a Persistent Identifier identifies the location of an

object‘s persistent data in a Datastore;

 a Persistent Object is an object that supports an in-

terface allowing a client to control the persistence of

its state;

 the Persistent Object Manager redirects the abstract

persistence requests from a POS client to a particular

mechanism used to control an object‘s persistence;

and

 the Persistent Data Service provides an interface that

applies a protocol to a persistent object in order to

store its state in a particular Datastore.

While these abstractions relate to the ones we propose

here, the POS has a number of associated problems. Prin-

cipally, there is no failure model, resulting in applications

that cannot reason about failure, and there is a lack of

control mechanisms that allow for the persistence and

recovery of compound objects.

Enterprise Java Beans (EJB) support two styles of persis-

tence: Container Managed Persistence and Bean Man-

aged Persistence. Using Container Managed Persistence,

an entity bean relies on its container to manage the trans-

fer of data between the entity bean instance‘s variables

and the underlying resource manager (database). An enti-

ty bean with container managed persistence must not

code explicit data access: all data access must be deferred

to the container. Kienzle and Guerraoui [14] point out

that using Container Managed Persistence the container

does not have any knowledge of the semantics of the

methods of a bean, and therefore must make a ―blind‖

choice when implementing concurrency control (and per-

sistence). This is highly inefficient. By contrast, an entity

bean utilising Bean Managed Persistence is responsible

for managing its own state stored in an underlying data-

base. Using Bean Managed Persistence, the entity bean

provider typically writes database access calls using

JDBC or SQL directly in the entity bean component. The

commonality with this paper is that the EJB standard

specifies a protocol consisting of a number of states that

define the lifecycle of beans, giving the bean provider a

clear understanding of their responsibilities with respect

to object lifetime.

The approach described in this paper has much in com-

mon with the Aspect-Oriented Programming (AOP) ap-

proach. Persistence is one of the much cited aspects that

can be addressed using AOP techniques. Kienzle and

Guerraoui [14] examine the relationship between AOP

and transactions, concurrency and failures. Their

OPTIMA framework supports optimistic and pessimistic

concurrency and a variety of different recovery strategies.

They observe that ‗aspectising‘ transactions is doomed to

failure, because of the incompatibility of the linearisabil-

ity of method invocations provided by shared objects and

transaction serialisability. While separating the transac-

tional interfaces from the rest of the program can be

achieved using aspect-oriented programming techniques,

such separation is artificial since the transactional aspect

is actually part of the semantics of the object to which it

applies. These observations reinforce our approach of

appropriate levels of programmer intervention in persis-

tence, recovery (and transactions).

[31] specifically addresses persistence and distribution

aspects. The distribution aspects implement basic remote

access to (client-server) services using Java RMI and the

persistence aspects implement basic (non-replicated) per-

sistence functionality using relational databases. They

state that the (aspect oriented) patterns for persistence

and distribution may be encoded in code generation tools

and automatically generated for different applications.

This is synergistic with the approach taken here.

7. IMPLEMENTATION STATUS
The implementation of the work described in this paper is

ongoing. The ASA project has implemented a number of

P2P routing architectures including CAN, Pastry and

Chord with a common API. The distributed directories

described here have been implemented against this com-

mon API. The ASA project also supports the generic per-

sistent storage architecture described in this paper. The

RAFDA system is fully implemented and supports both

the P2P routing architectures and the directories imple-

mented above it. The RAFDA system also supports poli-

cies controlling various aspects of distribution. We are

currently integrating these disparate technologies into the

system described here.

8. CONCLUSIONS
Our aim is to provide an abstraction to the programmer of

a global, ubiquitous, reliable, permanent single address-

space. The motivation for this arises from our experience

with flexible middleware, P2P systems and persistent

programming systems.

The architecture combines aspects of the RAFDA mid-

dleware and persistent programming systems. In the for-

mer, the programmer can treat references to local and

remote objects in the same way, while in the latter, the

programmer can treat references to objects in memory

and their replicated flattened form stored on resilient

storage in the same way. In the work described here, all

three kinds of reference are combined into a single uni-

fied addressing model.

The persistent systems of the 1980s supported orthogonal

persistence meaning that persistence was orthogonal to

other aspects. Although technically innovative, persistent

languages were not widely adopted, perhaps due in part

to their closed-world model. Each persistent store was

located on a single host, and associated with fixed man-

agement policies. By integrating persistence with reli-

able, replicated P2P storage, data can become truly ubiq-

uitous and independent of any node. Furthermore, by

exposing suitable interfaces to the P2P infrastructure,

application specific resilience, recovery and transaction

policies can be implemented if desired. Thus the system

permits a spectrum of application programmer interven-

tion with respect to persistence, distribution and replica-

tion, ranging from none as is the case in orthogonally

persistent systems to totally prescriptive, which may be

desired in highly tuned commercial environments.

We have sketched an architecture that provides an ab-

straction to the programmer of a global, ubiquitous, reli-

able, permanent single address-space. This is superior to

a non-distributed solution in terms of application avail-

ability, probability of successful completion, and scal-

ability with respect to storage and compute cycles. We

have demonstrated that it is possible to achieve a useful

approximation to this ideal through data replication and

self-organising P2P overlays.

9. ACKNOWLEDGEMENTS
This work was supported by EPSRC grants GR/R51872

and GR/S44501/01 and by Nuffield grant URB/01597/G.

10. REFERENCES
[1] Apache Software Foundation. Apache Axis. 2004,

http://ws.apache.org/axis/

[2] Atkinson, M. P., Bailey, P. J., Chisholm, K. J., Cockshott,

W. P. and Morrison, R. An Approach to Persistent Pro-

gramming. Computer Journal, 26, 4, pp 360-365, 1983.

[3] Atkinson, M. P., Chisholm, K. J. and Cockshott, W. P. PS-

algol: An Algol with a Persistent Heap. ACM SIGPLAN

Notices, 17, 7, pp 24-31, 1982.

[4] Atkinson, M. P. and Morrison, R. Orthogonally Persistent

Object Systems. VLDB Journal, 4, 3, pp 319-401, 1995.

[5] Brown, A. and Patterson, D. A. Embracing Failure: A Case

for Recovery-Oriented Computing (ROC). In Proc. High

Performance Transaction Processing Symposium, Asilo-

mar, CA, USA, 2001.

[6] Caromel, D., Klauser, W. and Vayssiere, J. Towards

Seamless Computing and Metacomputing in Java. Concur-

rency Practice and Experience, 10, 11-13, pp 1043-1061,

1998.

[7] Dabek, F., Kaashoek, F., Karger, D., Morris, R. and

Stoica, I. Wide-Area Cooperative Storage With CFS. In

Proc. 18th ACM Symposium on Operating Systems Princi-

ples, pp 202-215, Banff, Canada, 2001.

[8] Dabek, F., Zhao, B., Druschel, P., Kubiatowicz, J. and

Stoica, I. Towards a Common API for Structured Peer-to-

Peer Overlays. In Proc. 2nd International Workshop on

Peer-to-Peer Systems (IPTPS '03), Berkeley, CA, USA,

2003.

[9] Dearle, A., Walker, S., Norcross, S., Kirby, G. N. C. and

McCarthy, A. RAFDA: Middleware Supporting the Sepa-

ration of Application Logic from Distribution Policy. Uni-

versity of St Andrews, 2005.

[10] Fahringer, T. and Jugravu, A. JavaSymphony: A New

Programming Paradigm to Control and to Synchronize Lo-

cality, Parallelism, and Load Balancing for Parallel and

Distributed Computing. Concurrency and Computation:

Practice and Experience, 17, 7-8, pp 1005-1025, 2002.

[11] Kemper, A. and Kossmann, D. Adaptable Pointer Swiz-

zling Strategies in Object Bases: Design, Realization and

Quantitative Analysis. VLDB Journal, 4, 3, 1995.

[12] Kendall, S. C., Waldo, J., Wollrath, A. and Wyant, G. A

Note on Distributed Computing. Sun Microsystems Report

TR-94-29, 1994.

[13] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,

Lopes, C., Loingtier, J.-M. and Irwin, J. Aspect-Oriented

Programming. In Proc. 11th European Conference on Ob-

ject-Oriented Programming (ECOOP), pp 220–242, 1997.

[14] Kienzle, J. and Guerraoui, R. AOP: Does it Make Sense?

The Case of Concurrency and Failures. In Proc. 16th

European Conference on Object-Oriented Programming

(ECOOP), University of Málaga, Spain, 2002.

[15] Kirby, G. N. C., Dearle, A., Norcross, S. J., Tauber, M.

and Morrison, R. Secure Location-Independent Storage

Architectures (ASA). 2004, http://www-systems.dcs.st-

and.ac.uk/asa/

[16] Kirby, G. N. C., Walker, S. M., Norcross, S. J. and Dearle,

A. A Methodology for Developing and Deploying Distrib-

uted Applications. In Proc. 3rd International Working

Conference on Component Deployment (CD2005), Greno-

ble, France, 2005.

[17] Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S.,

Eaton, P., Geels, D., G, R., Rhea, S., Weatherspoon, H.,

Weimer, W., Wells, C. and Zhao, B. OceanStore: An Ar-

chitecture for Global-Scale Persistent Storage. In Proc. 9th

international Conference on Architectural Support for

Programming Languages and Operating Systems

(ASPLOS), Cambridge, Massachusetts, USA, 2000.

[18] Lavender, R. G. and Schmidt, D. C. Active Object: An

Object Behavioral Pattern for Concurrent Programming. In

J. Vlissides, J.O. Coplien and N.L. Kerth (ed) Pattern

Languages of Program Design 2. Addison-Wesley, 1996,

pp 483-499.

[19] Meling, H. and Helvik, B. E. ARM: Autonomous Replica-

tion Management in JGroup. In Proc. 4th European Re-

search Seminar on Advances in Distributed Systems

(ERSADS), Bertinoro, Italy, 2001.

[20] Microsoft Corporation. The Component Object Model

Specification. 1995.

[21] Montresor, A. System Support for Programming Object-

Oriented Dependable Applications in Partitionable Sys-

tems. Ph.D. thesis, University of University of Bologna,

2000.

[22] Morrison, R., Connor, R. C. H., Cutts, Q. I., Dunstan, V. S.

and Kirby, G. N. C. Exploiting Persistent Linkage in Soft-

ware Engineering Environments. Computer Journal, 38, 1,

pp 1-16, 1995.

[23] Morrison, R., Connor, R. C. H., Kirby, G. N. C., Munro,

D. S., Atkinson, M. P., Cutts, Q. I., Brown, A. L. and

Dearle, A. The Napier88 Persistent Programming Lan-

guage and Environment. In M.P. Atkinson and R. Welland

(ed) Fully Integrated Data Environments. Springer, 1999,

pp 98-154.

[24] Obermeyer, P. and Hawkins, J. Microsoft.NET Remoting:

A Technical Overview. Microsoft Corporation, 2001.

[25] OMG. Common Object Request Broker Architecture: Core

Specification. 2004.

[26] OMG. Persistent Object Service Specification. COR-

BAservices: Common Object Services Specification, pp 5-1

to 5-44, 1995.

[27] Ratnasamy, S., Francis, P., Handley, M., Karp, R. and

Shenker, S. A Scalable Content-Addressable Network. In

Proc. ACM SIGCOMM, San Diego, USA, 2001.

[28] Rebón Portillo, Á. J., Walker, S., Kirby, G. N. C. and

Dearle, A. A Reflective Approach to Providing Flexibility

in Application Distribution. In Proc. 2nd International

Workshop on Reflective and Adaptive Middleware,

ACM/IFIP/USENIX International Middleware Conference

(Middleware 2003), pp 95-99, Rio de Janeiro, Brazil,

2003.

[29] Rowstron, A. I. T. and Druschel, P. Pastry: Scalable, De-

centralized Object Location, and Routing for Large-Scale

Peer-to-Peer Systems. In R. Guerraoui (ed) Lecture Notes

in Computer Science 2218. Springer, pp 329-350, 2001

[30] Satyanarayanan, M., Kistler, J., Kumar, P., Okasaki, M.,

Siegel, E. and Steere, D. Coda: A Highly Available File

System for a Distributed Workstation Environment. IEEE

Transactions on Computers, 39, 4, pp 447-459, 1990.

[31] Soares, S., Laureano, E. and Borba, P. Implementing Dis-

tribution and Persistence Aspects with AspectJ. In Proc.

Object-Oriented Programming, Systems, Languages &

Applications (OOPSLA), Seattle, Washington, USA.,

2002.

[32] Spiegel. Automatic Distribution of Object-Oriented Pro-

grams. Ph.D. thesis, University of FU Berlin, 2002.

[33] Stemple, D. and Morrison, R. Specifying Flexible Concur-

rency Control Schemes: An Abstract Operational Ap-

proach. In Proc. 15th Australian Computer Science Con-

ference, pp 873-891, Hobart, Tasmania, 1992.

[34] Stoica, I., Morris, R., Karger, D., Kaashoek, F. and

Balakrishnan, H. Chord: A Scalable Peer-To-Peer Lookup

Service for Internet Applications. In Proc. ACM

SIGCOMM 2001, pp 149-160, San Diego, CA, USA,

2001.

[35] Sun Microsystems. Java™ Remote Method Invocation

Specification. 1996-1999.

[36] Tilevich, E. and Smaragdakis, Y. J-Orchestra: Automatic

Java Application Partitioning. In B. Magnusson (ed) Lec-

ture Notes in Computer Science 2374 2002, pp 178-204.

[37] W3C. Web Services Architecture. 2004.

http://w3c.org/2002/ws/

[38] Walker, S. A Flexible Policy Aware Middleware System.

University of University of St Andrews, 2005.

[39] Zhao, B. Y., Huang, L., Stribling, J., Rhea, S. C., Joseph,

A. D. and Kubiatowicz, J. D. Tapestry: A Resilient Global-

Scale Overlay for Service Deployment. IEEE Journal on

Selected Areas in Communications, 22, 1, pp 41-53, 2004.

