5 research outputs found

    Body diode reliability investigation of SiC power MOSFETs

    Get PDF
    A special feature of vertical power MOSFETs, in general, is the inbuilt body diode which could eliminate the need of having to use additional anti-parallel diodes for current freewheeling in industrial inverter applications: this, clearly, subject to their demonstration of an acceptable level of reliability. Recent improvements in Silicon Carbide (SiC) power MOSFET device manufacturing technology has resulted in their wider commercial availability with different voltage and current ratings and from various manufacturers. Hence, it is essential to perform characterisation of its intrinsic body diode. This paper presents the reliability assessment of body diodes of latest generation discrete SiC power MOSFETs within a 3-phase 2-level DC-to-AC inverter representing realistic operating conditions for power electronic applications

    Wide Band Gap Power Semiconductor Devices and their Applications

    Get PDF
    DC power supplies are being widely used in almost every modern day appliance. Basic DC power supply should only consist of AC/DC rectification unit with bulk capacitor. But irregular current drawn by rectifier pollutes the power system. Standards related to power quality puts a limit on harmonics that are being injected by a device into power system. To comply with standards Power factor correction (PFC) circuits are employed with rectification unit. Addition of an extra unit, puts a limit on overall efficiency of power supply. Advent of Wide Band Gap (WBG) power semiconductor devices have provided us with the opportunity to improve the efficiency of existing electronic circuits with relatively simple control schemes. According to recent research, it has been forecasted that GaN based devices are ideal choice for medium voltage and high speed applications. However, SiC based devices are estimated to take over high voltage applications. Conventional PFC circuit based on bridged CCM average current controlled Boost converter was chosen for this study. Simulation was made to compare the performance of GaN, SiC and Si based switches. Results from simulation revealed that 38% reduction in switching losses can be achieved by using GaN HEMT instead of Si MOSFET. Practical evaluation was performed on Transphom Totem Pole PFC and All in One Power supply. Both of these devices are based on GaN HEMTs. Totem pole PFC is the major breakthrough achieved by GaN HEMT in the field of PFC circuit. Very low reverse recovery of switches made it possible to implement this circuit with very high efficiency for high power applications. 94% efficiency was observed during evaluation of DC power supply, which validates the claim of superior performance of WBG devices

    Design and Evaluation of High Efficiency Power Converters Using Wide-Bandgap Devices for PV Systems

    Get PDF
    The shortage of fossil resources and the need for power generation options that produce little or no environmental pollution drives and motivates the research on renewable energy resources. Power electronics play an important role in maximizing the utilization of energy generation from renewable energy resources. One major renewable energy source is photovoltaics (PV), which comprises half of all recently installed renewable power generation in the world. For a grid-connected system, two power stages are needed to utilize the power generated from the PV source. In the first stage, a DCDC converter is used to extract the maximum power from the PV panel and to boost the low output voltage generated to satisfy the inverter side requirements. In the second stage, a DC-AC inverter is used to convert and deliver power loads for grid-tied applications. In general, PV panels have low efficiency so high-performance power converters are required to ensure highly efficient PV systems. The development of wide-bandgap (WBG) power switching devices, especially in the range of 650 V and 1200 V blocking class voltage, opens up the possibility of achieving a reliable and highly efficient grid-tied PV system. This work will study the benefits of utilizing WBG semiconductor switching devices in low power residential scale PV systems in terms of efficiency, power density, and thermal analysis. The first part of this dissertation will examine the design of a high gain DC-DC converter. Also, a performance comparison will be conducted between the SiC and Si MOSFET switching devices at 650 V blocking voltage regarding switching waveform behavior, switching and conduction losses, and high switching frequency operation. A major challenge in designing a transformerless inverter is the circulating of common mode leakage current in the absence of galvanic isolation. The value of the leakage current must be less than 300mA, per the DIN VDE 0126-1-1 standard. The second part of this work investigates a proposed high-efficiency transformerless inverter with low leakage current. Subsequently, the benefits of using SiC MOSFET are evaluated and compared to Si IGBT at 1200 V blocking voltage in terms of efficiency improvement, filter size reduction, and increasing power rating. Moreover, a comprehensive thermal model design is presented using COMSOL software to compare the heat sink requirements of both of the selected switching devices, SiC MOSFET and Si IGBT. The benchmarking of switching devices shows that SiC MOSFET has superior switching and conduction characteristics that lead to small power losses. Also, increasing switching frequency has a small effect on switching losses with SiC MOSFET due to its excellent switching characteristics. Therefore, system performance is found to be enhanced with SiC MOSFET compared to that of Si MOSFET and Si IGBET under wide output loads and switching frequency situations. Due to the high penetration of PV inverters, it is necessary to provide advanced functions, such as reactive power generation to enable connectivity to the utility grid. Therefore, this research proposes a modified modulation method to support the generation of reactive power. Additionally, a modified topology is proposed to eliminate leakage current

    Novel TCAD-based Signal-Flow Graph Approaches for the Stability Analysis of Power Semiconductor Devices

    Get PDF
    Technological innovation in power electronics is desired to realize the social demand for the spread of renewable energy and the promotion of electrification of automobiles to achieve carbon neutrality. Power devices are key components in power electronics, and their performance has been improving. As their performance improves, the occurrence of unstable behaviors such as oscillation and noise in power device packages and circuits can cause system failures. Hence, a new design technology to ensure the stable operation is required. In this study, a novel design method is proposed and applied to oscillation phenomena of SiC-MOSFETs and Si-IGBTs during short-circuit operation. The effectiveness of the method is demonstrated by comparing the results calculated using the proposed method and the results obtained using conventional methods and experimental results. In chapter 1, the requirements for power semiconductors in the international effort to achieve zero CO2 emissions in 2050 are summarized. Then, the trend of research and development on the improvement of power device characteristics for smaller and higher efficiency power conversion systems is discussed, focusing on Si-IGBT and SiC-MOSFET. In chapter 2, previous studies on oscillation phenomena and its suppression are summarized, which can become issues as the power devices are improved. These previous studies can be classified into two categories: one based on equivalent circuits and the other based on device physics. However, there has not been sufficient discussion on the oscillation phenomenon that strongly couples circuits and devices, which is becoming more important as power devices become more high-performance. Technology computer aided design (TCAD) mixed mode simulation can handle both circuits and device physics, however, it is difficult to use it for realistic device design due to the large amount of calculation. In Chapter 3, a new method based on the S-parameter and the signal flow graph (SFG) is introduced to analyze the circuit stability. This method allows us to calculate the frequency response of the output current to the external field maintaining the response of the carrier distribution and electric field inside the device. The signal gain for the focused operating mode can be easily calculated by applying Mason’s rule to the SFG. Additionally, the stability analysis using the Nyquist plot enables not only the judgment of the system stability with respect to the design parameters but also the quantitative evaluation of the stable/unstable margin. In Chapter 4, the usefulness of the proposed method is verified by applying it to the oscillation phenomenon of SiC-MOSFETs during Type II short-circuit operation. The S-parameters are calculated from the TCAD model for a commercial SiC-MOSFET, and stability analysis is carried out using the SFG. The dependence of the gate resistance required for oscillation suppression obtained from the mixed mode simulation of TCAD is compared with the results obtained from the proposed method. The agreement between the proposed method and the results of TCAD mixed mode simulation is confirmed. Stability analysis is conducted for both the mode in which a single switching device oscillates by coupling with parasitic elements of the circuit and the mode in which oscillation occurs through switching devices connected in parallel. The characteristics of each mode during short-circuit operation are clarified, and the stability phase diagram in the design parameter space is calculated for each mode by taking advantage of the computational speed. It is shown that which mode becomes unstable depends on the design parameters. In Chapter 5, the proposed method is applied to the oscillation phenomenon of Si-IGBTs under Type II short-circuit operation and the oscillation mechanism is investigated. Experimental results revealed that the oscillation occurred during Type II short-circuit operation and it can be suppressed by increasing the gate resistance. The resistance required for oscillation suppression decreases as the collector voltage increases. The stability analysis is conducted using the proposed method. It is confirmed that the calculated critical gate resistance decreases as the collector voltage increases. The results are in good agreement with the experimental results. The internal behavior of the device under the oscillation state is also analyzed. During the short-circuit operation, a high electric field region is formed at the boundary between the base and drift layers, and the carrier distribution at both ends of the plasma region is modulated through the electron-hole plasma. This modulation becomes more responsive when the collector voltage is smaller. In Chapter 6, the development potential of the proposed method and future challenges are discussed. This study presents a new method for accelerating the development of power devices and power electronics systems that contribute to CO2 reduction, which is becoming an international effort. This method provides an integrated approach for managing the multilevel design hierarchy, from devices to power conversion systems. It is expected that this achievement will make it possible to fully use the potential of power devices and contribute to expanding the application field of power electronics.再生可胜゚ネルギヌの普及自動車などの電動化を掚進するためパワヌ゚レクトロニクスの技術革新が期埅されおいるパワヌデバむスはそのキヌずなる郚品であり高性胜化が進んでいる高性胜化に䌎いパワヌデバむスのパッケヌゞや回路で生じる発振・ノむズなどの䞍安定動䜜が課題ずなっおいるこのような䞍安定動䜜はシステムの故障や誀動䜜の原因ずなるため安定動䜜を担保する新しい蚭蚈技術が求められおいる本研究ではパワヌデバむスの内郚動䜜から回路やシステムたでを統䞀的に安定化する新たな蚭蚈手法を提案する第1章では2050幎のCO2排出量実質れロに向けた囜際的な取り組みの䞭でパワヌ゚レクトロニクスの効率改善適甚範囲拡倧に向けた取り組みのたずめを行ったさらに電力倉換システムの小型化・高効率化に向けた炭化ケむ玠-金属酞化膜電界効果トランゞスタSiC-MOSFETずシリコン-絶瞁ゲヌト型バむポヌラヌトランゞスタSi-IGBTの高性胜化の珟状をたずめた第2章ではパワヌデバむスの高性胜化に䌎い顕圚化する発振珟象ずその抑制に関する先行研究の到達点を敎理した先行研究は等䟡回路に基づく研究ずデバむス物理に基づく研究に分類されるしかしパワヌデバむスの高性胜化に䌎い顕圚化する回路ずデバむスがより匷く結合する発振珟象に぀いお十分な議論がされおいなかったTechnology computer aided designTCADのmixed modesimulationは回路ずデバむス物理の双方を取り扱えるが蚈算量が倚く珟実の玠子蚭蚈ぞの適甚は難しく課題ずなっおいる第3章ではパワヌデバむスの内郚動䜜から回路やシステムたでを統䞀的に蚭蚈する手法を提案する本手法ではデバむスモデルを元にTCADシミュレヌションの結果から求めたS-parameterず回路をsignal flow graphSFGを甚いお統䞀的に取り扱い安定性を解析するこの手法ではデバむス内郚のキャリア分垃や電界の倖堎応答を維持したモデル化が可胜であるSFGに察しおMason’s ruleを適甚するこずで着目した動䜜モヌドに察する信号ゲむンを容易に蚈算するこずができる安定性解析にNyquist plotを甚いるこずで蚭蚈パラメヌタに察する安定・䞍安定の刀定を行うだけでなく蚭蚈者が定量的にマヌゞンを蚭定するこずが可胜になる第4章では提案手法をSiC-MOSFETのType II短絡動䜜時の発振珟象に適甚するこずで手法の有甚性を瀺した垂販のSiC-MOSFETの動䜜を暡擬したTCADモデルからS-parameterを蚈算しSFGを䜿っお安定性解析を実斜したTCAD mixed mode simulationから求めた発振抑制に必芁なゲヌト抵抗の回路パラメヌタ䟝存性ず提案手法から求められた蚈算結果を比范し提案手法ずTCAD mixed mode simulationの結果が䞀臎する事を確認したたた単玠子が回路の寄生芁玠ず結合しお発振するモヌドず䞊列接続された玠子を通じお発振するモヌドの双方に぀いおそれぞれ安定性解析を実斜した短絡動䜜時の各モヌドの特城を明らかにするずずもに蚈算速床を生かしモヌド毎に蚭蚈パラメヌタ空間内での安定性の盞図を蚈算し蚭蚈パラメヌタにより䞍安定になるモヌドが異なる事を瀺した第5章では提案手法をSi-IGBTのType II短絡動䜜時の発振珟象に適甚したはじめにSi-IGBTのType II短絡動䜜時の発振を実隓的に調べ提案手法による蚈算結果が実隓結果ず䞀臎するこずを瀺したたた発振状態でのデバむス内郚動䜜の解析により短絡動䜜時にベヌスずドリフト局境界にキャリア密床が䜎䞋した高電界領域が圢成され倖堎によっおこの領域が䌞瞮する際電子正孔プラズマを介しおプラズマ領域䞡端のキャリア分垃が倉調されるこずがわかったこの倉調はコレクタ電圧が小さく高電界領域が狭いほど倧きいこずが分かった実隓結果の察応から短絡時に生じる高電界領域ずプラズマ領域の倖堎に察する応答が倖郚回路ずの結合により発振を匕き起こすず考えられる以䞊のように本手法は簡易な蚈算で回路安定性評䟡ずデバむス内郚状態解析を同時に行うこずができる第6章では本研究のたずめを行い本手法の発展性に぀いお述べた電磁界解析ず本手法を組み合わせたモゞュヌル構造最適化などに぀いお觊れた本論文は今埌囜際的な取り組みが高たるCO2削枛に貢献するパワヌ゚レクトロニクスシステムの開発を加速しデバむスからシステムたでの党䜓蚭蚈を行うための新しい手法を瀺したものである本手法はこれたでその特性を十分に生かしきれおいなかったパワヌデバむスの特性掻甚を進めパワヌ゚レクトロニクスの適甚範囲拡倧に貢献するこずが期埅される九州工業倧孊博士孊䜍論文 孊䜍蚘番号工博甲第542号 孊䜍授䞎幎月日什和4幎3月25日1 Overview of power electronics and power semiconductor|2 Oscillation phenomena in power semiconductor operation|3 Theory of oscillation analysis with a signal flow graph and a scattering parameter|4 Analysis of Oscillation phenomena of SiC MOSFETs|5 Analysis of Oscillation phenomena of Si-IGBTs|6 Conclusions九州工業倧孊倧孊院什和3幎

    Study on the suppression methods of bipolar degradation for SiC power semiconductor

    Get PDF
    本研究では、SiCパワヌ半導䜓の信頌性䜎䞋をもたらすバむポヌラ劣化珟象の新たなモデルを提案し、デバむス構造パラメヌタずバむポヌラ劣化の関係を理論的に明らかにした。さらに、Si蒞気圧゚ッチング法ず呌ぶSiC基板の衚面凊理を提案し、本凊理によりバむポヌラ劣化が抑制されるこずを実隓的に確認した。本成果はSiCの結晶品質、デバむス構造、動䜜環境に関する新たな指針を䞎え、パワヌ゚レクトロニクス機噚の信頌性向䞊に貢献する。第1章では、パワヌ゚レクトロニクス機噚の高効率化に期埅される半導䜓SiCの性胜ず省゚ネに察する効果ならびにSiCパワヌ半導䜓の実甚化の動向を抂説し、本研究の背景ずしおバむポヌラ動䜜するSiCパワヌ半導䜓においお信頌性䜎䞋をもたらすバむポヌラ劣化珟象に関しお蚀及した。バむポヌラ劣化の抑制手法ならびにそのメカニズムの理解においお、SiC基板内でバむポヌラ劣化の起点ずなる基底面転䜍を積極的に貫通刃状転䜍ぞ倉換させる手法に関しお報告された䟋はほずんどない。たた、基底面転䜍の䜍眮を考慮したデバむス構造パラメヌタずバむポヌラ劣化の関係に関しおも十分に明らかにされおいない。本研究ではこれらの課題に぀いお実隓的か぀理論的に明らかにするこずを目的ずし、バむポヌラ劣化の本質的解決における本研究の重芁性に぀いお述べた。第2章では、SiC基板衚面の熱化孊゚ッチングプロセスであるSi蒞気圧゚ッチング法を提案し、ダメヌゞフリヌ平坊化加工によるSiC基板の衚面改質がもたらす゚ピタキシャル膜の高品質化ならびに基板の機械的匷床の改善の効果を瀺すずずもに、基底面転䜍がSiC基板内で貫通刃状転䜍ぞ倉換する挙動ず定量的な倉換深さの効果を瀺した。Si蒞気圧゚ッチング法は、高品質゚ピタキシャル成長ならびにSiCパワヌ半導䜓の信頌性向䞊を実珟するSiC衚面の新たな高品質化技術ずしお期埅されるが、SiCパワヌ半導䜓にもたらすバむポヌラ劣化抑制効果を実隓的および理論的に怜蚌するたでには至っおおらず、基板䞭の基底面転䜍の貫通刃状転䜍ぞの倉換効果を定量的に瀺す必芁性に぀いお蚀及した。第3章では、4H-SiC PiNダむオヌドを䟋ずしおSiCパワヌ半導䜓䞭の基底面転䜍に起因するバむポヌラ劣化珟象の理論的な理解のために新たなモデルを提案した。具䜓的には、PiNダむオヌド構造䞭の基底面転䜍がシングルショックレヌ型積局欠陥ぞ拡匵する臚界ホヌル濃床を甚いおバむポヌラ劣化が発生する電流密床臚界電流密床を予枬するモデルを構築した。本モデルにおいおは、ドヌパントのむオン化、バンドギャップナロヌむング効果、および移動床などの枩床䟝存性を考慮した物理モデルを採甚し、498 Kたでの高枩条件䞋におけるバむポヌラ劣化の予枬を可胜ずした。第4章では、基板䞭の基底面転䜍がシングルショックレヌ型積局欠陥ぞ拡匵する電流密床および枩床の閟倀をPiNダむオヌドの詊䜜ならびに順方向通電ストレス詊隓より評䟡した。このずき、基板䞭の基底面転䜍によるバむポヌラ劣化においお拡匵起源の基底面転䜍のBurgersベクトル解析も行い、Burgersベクトルの成分は枩床および電流密床に察しお䟝存性がないこずを明らかにした。さらに、Si蒞気圧゚ッチング法により加工されたりェハを甚いたPiNダむオヌドは埓来加工法である化孊機械研磚されたりェハよりも基板䞭の基底面転䜍に起因するバむポヌラ劣化が発生しにくいこずを実隓的にはじめお明らかにした。たた、䞡者のりェハ間でのバむポヌラ劣化が発生したPiNダむオヌドの数の比率は、Si蒞気圧゚ッチング法による基板内の基底面転䜍の貫通刃状転䜍ぞの倉換率ず良い盞関を瀺すこずを明らかにした。第5章では、第4章の詊䜜PiNダむオヌド通電ストレス詊隓により埗られたバむポヌラ劣化の電流密床および枩床の閟倀から提案したモデル匏を甚いお臚界ホヌル濃床を掚定した。掚定された臚界ホヌル濃床をもずに基底面転䜍がPiNダむオヌド䞭のドリフト局、バッファ局、ならびに基板に䜍眮するずきのデバむス構造パラメヌタず臚界電流密床の関係を数倀的に明らかにし、バむポヌラ劣化を抑制するためのデバむス構造ならびに枩床に察する蚭蚈指針を䞎えた。さらに、基板のホヌルのラむフタむムを短くするこず、基板内の基底面転䜍貫通刃状転䜍の倉換䜍眮を深くするこずで臚界電流密床を向䞊させる効果が瀺されたこずから、䞡者の組み合わせによっお泚入ホヌルが基底面転䜍に䞀局到達しにくくなる盞乗効果が期埅できる。本モデルの結果は、バッファ局においおキャリア再結合の制埡を行わずずも基板の結晶品質を制埡するこずによっおバむポヌラ劣化を抑制する新たな手法を提案し、Si蒞気圧゚ッチング法による基板内の基底面転䜍の貫通刃状転䜍ぞの倉換効果がもたらすバむポヌラ劣化抑制の優䜍性を定量的に瀺した。第6章では、本研究により埗られた結果を総括しお本論文の結論ず今埌の展望ず課題をたずめた。九州工業倧孊博士孊䜍論文 孊䜍蚘番号生工博甲第365号 孊䜍授䞎幎月日什和2幎3月25日第1ç«  半導䜓SiCのパワヌ゚レクトロニクス機噚ぞの実甚化ず課題|第2ç«  Si蒞気圧゚ッチング法|第3ç«  SiCパワヌ半導䜓バむポヌラ劣化予枬モデルの蚭蚈|第4ç«  PiNダむオヌド通電ストレス詊隓|第5ç«  バむポヌラ劣化予枬モデルによるPiNダむオヌドの臚界電流密床の蚈算|第6ç«  結論九州工業倧孊什和元幎
    corecore