101,364 research outputs found

    Structural reliability analysis for implicit performance function using radial basis function network

    Get PDF
    AbstractThis is the second paper of our work on structural reliability analysis for implicit performance function. The first paper proposed structural reliability analysis methods using multilayer perceptron artificial neural network [Deng, J., Gu, D.S., Li, X.B., Yue, Z.Q., 2005. Structural reliability analysis for implicit performance function using artificial neural network. Structural Safety 25 (1), 25–48]. This paper presents three radial basis function network (RBF) based reliability analysis methods, i.e. RBF based MCS, RBF based FORM, and RBF based SORM. In these methods, radial basis function network technique is adopted to model and approximate the implicit performance functions or partial derivatives. The RBF technique uses a small set of the actual data of the implicit performance functions, which are obtained via physical experiments or normal numerical analysis such as finite element methods for the complicated structural system, and are used to develop a trained RBF generalization algorithm. Then a large number of the function values and partial derivatives of implicit performance functions can be readily obtained by simply extracting information from the established and successfully trained RBF network. These function values and derivatives are used in conventional MCS, FORM or SORM to constitute RBF based reliability analysis algorithms. Examples are presented in the paper to illustrate how the proposed RBF based methods are used in structural reliability analysis. The results are well compared with those obtained by the conventional reliability methods such as the Monte-Carlo simulation, multilayer perceptrons networks, the response surface method, the FORM method 2, and so on. The examples showed the proposed approach is applicable to structural reliability analysis involving implicit performance functions

    Predicting the Inelastic Response of Base Isolated Structures Utilizing Regression Analysis and Artificial Neural Network

    Get PDF
    Indeed, utilizing a base isolation system in RC structures can remarkably minimize the possibility of failure, particularly in seismic-prone countries. Despite that, the design of these structures is a long procedure that consists of choosing the appropriate isolator to optimize the nonlinear behavior of the superstructure. Moreover, the numerical simulations require huge computational effort when high accuracy is required. In recent decades, scientists and engineers have applied numerous estimation approaches such as multiple linear regression and artificial neural networks to decrease the required cost and time for daily design problems. Thus, this study's main objective is to solve the difficulty of rapid response prediction by using soft-computing techniques. Additionally, it aims to study the capability of multiple linear regression and artificial neural networks in estimating the seismic performance of base-isolated RC structures under earthquakes. A nonlinear response history analysis of four different lead rubber-bearing isolated RC structures will be performed in order to determine the responses of these structures. Subsequently, the prediction models will be developed using the responses of the structures as inputs for multiple linear regression and artificial neural networks. Lastly, the reliability of both estimation approaches in terms of the response of base-isolated structures will be investigated by comparing the prediction models' capability. In general, the results of the study show that artificial neural networks provide considerably better accuracy in estimating base-isolated structures compared to multiple linear regression, and their performance results in reliable prediction. Doi: 10.28991/CEJ-2022-08-06-07 Full Text: PD

    Fault-Tolerant Logic Gates Using Neuromorphic CMOS Circuits

    Get PDF
    Fault-tolerant design methods for VLSI circuits, which have traditionally been addressed at system level, will not be adequate for future very-deep submicron CMOS devices where serious degradation of reliability is expected. Therefore, a new design approach has been considered at low level of abstraction in order to implement robustness and faulttolerance into these devices. Moreover, fault tolerant properties of multi- layer feed-forward artificial neural networks have been demonstrated. Thus, we have implemented this concept at circuit-level, using spiking neurons. Using this approach, the NOT, NAND and NOR Boolean gates have been developed in the AMS 0.35 µm CMOS technology. A very straightforward mapping between the value of a neural weight and one physical parameter of the circuit has also been achieved. Furthermore, the logic gates have been simulated using SPICE corners analysis which emulates manufacturing variations which may cause circuit faults. Using this approach, it can be shown that fault-absorbing neural networks that operate as the desired function can be built

    Failure mode prediction and energy forecasting of PV plants to assist dynamic maintenance tasks by ANN based models

    Get PDF
    In the field of renewable energy, reliability analysis techniques combining the operating time of the system with the observation of operational and environmental conditions, are gaining importance over time. In this paper, reliability models are adapted to incorporate monitoring data on operating assets, as well as information on their environmental conditions, in their calculations. To that end, a logical decision tool based on two artificial neural networks models is presented. This tool allows updating assets reliability analysis according to changes in operational and/or environmental conditions. The proposed tool could easily be automated within a supervisory control and data acquisition system, where reference values and corresponding warnings and alarms could be now dynamically generated using the tool. Thanks to this capability, on-line diagnosis and/or potential asset degradation prediction can be certainly improved. Reliability models in the tool presented are developed according to the available amount of failure data and are used for early detection of degradation in energy production due to power inverter and solar trackers functional failures. Another capability of the tool presented in the paper is to assess the economic risk associated with the system under existing conditions and for a certain period of time. This information can then also be used to trigger preventive maintenance activities

    Sensorless Speed Control of Traveling Wave Ultrasonic Motor

    Get PDF
    Ultrasonic motors are a good alternative to electromagnetic motors in medical robotics, since they are electromagnetically compatible. Estimating speed instead of using encoders reduces cost and dimension of the robot on the one hand and increases reliability on the other hand. However, no sensorless speed controller is yet industrialized. Analytical models of the traveling wave ultrasonic motor being too complex to be exploited for sensorless control purpose, we suggest speed estimation based on artificial neural networks. The artificial neural network is designed based on a sensitivity analysis using design of experiments methods. Factorial designs have been chosen to find out the effects of each input factor, but also the effect of their interactions. First results show that speed estimation using artificial neural networks is a promising approach. The artificial neural network optimized with design of experiments methods is a valid model of the traveling wave ultrasonic motor to estimate speed

    Multilevel HfO2-based RRAM devices for low-power neuromorphic networks

    Get PDF
    Training and recognition with neural networks generally require high throughput, high energy efficiency, and scalable circuits to enable artificial intelligence tasks to be operated at the edge, i.e., in battery-powered portable devices and other limited-energy environments. In this scenario, scalable resistive memories have been proposed as artificial synapses thanks to their scalability, reconfigurability, and high-energy efficiency, and thanks to the ability to perform analog computation by physical laws in hardware. In this work, we study the material, device, and architecture aspects of resistive switching memory (RRAM) devices for implementing a 2-layer neural network for pattern recognition. First, various RRAM processes are screened in view of the device window, analog storage, and reliability. Then, synaptic weights are stored with 5-level precision in a 4 kbit array of RRAM devices to classify the Modified National Institute of Standards and Technology (MNIST) dataset. Finally, classification performance of a 2-layer neural network is tested before and after an annealing experiment by using experimental values of conductance stored into the array, and a simulation-based analysis of inference accuracy for arrays of increasing size is presented. Our work supports material-based development of RRAM synapses for novel neural networks with high accuracy and low-power consumption. (C) 2019 Author(s)

    Machine learning and its applications in reliability analysis systems

    Get PDF
    In this thesis, we are interested in exploring some aspects of Machine Learning (ML) and its application in the Reliability Analysis systems (RAs). We begin by investigating some ML paradigms and their- techniques, go on to discuss the possible applications of ML in improving RAs performance, and lastly give guidelines of the architecture of learning RAs. Our survey of ML covers both levels of Neural Network learning and Symbolic learning. In symbolic process learning, five types of learning and their applications are discussed: rote learning, learning from instruction, learning from analogy, learning from examples, and learning from observation and discovery. The Reliability Analysis systems (RAs) presented in this thesis are mainly designed for maintaining plant safety supported by two functions: risk analysis function, i.e., failure mode effect analysis (FMEA) ; and diagnosis function, i.e., real-time fault location (RTFL). Three approaches have been discussed in creating the RAs. According to the result of our survey, we suggest currently the best design of RAs is to embed model-based RAs, i.e., MORA (as software) in a neural network based computer system (as hardware). However, there are still some improvement which can be made through the applications of Machine Learning. By implanting the 'learning element', the MORA will become learning MORA (La MORA) system, a learning Reliability Analysis system with the power of automatic knowledge acquisition and inconsistency checking, and more. To conclude our thesis, we propose an architecture of La MORA

    Feasibility of using neural networks to obtain simplified capacity curves for seismic assessment

    Get PDF
    The selection of a given method for the seismic vulnerability assessment of buildings is mostly dependent on the scale of the analysis. Results obtained in large-scale studies are usually less accurate than the ones obtained in small-scale studies. In this paper a study about the feasibility of using Artificial Neural Networks (ANNs) to carry out fast and accurate large-scale seismic vulnerability studies has been presented. In the proposed approach, an ANN was used to obtain a simplified capacity curve of a building typology, in order to use the N2 method to assess the structural seismic behaviour, as presented in the Annex B of the Eurocode 8. Aiming to study the accuracy of the proposed approach, two ANNs with equal architectures were trained with a different number of vectors, trying to evaluate the ANN capacity to achieve good results in domains of the problem which are not well represented by the training vectors. The case study presented in this work allowed the conclusion that the ANN precision is very dependent on the amount of data used to train the ANN and demonstrated that it is possible to use ANN to obtain simplified capacity curves for seismic assessment purposes with high precision.info:eu-repo/semantics/publishedVersio
    • …
    corecore