5 research outputs found

    On modelling the performance and reliability of multimode computer systems

    Get PDF
    We present an effective technique for the combined performance and reliability analysis of multi-mode computer systems. A reward rate (or a performance level) is associated with each mode of operation. The switching between different modes is characterized by a continuous time Markov chain. Different types of service-interruption interactions (as a result of mode switching) are considered. We consider the execution time of a given job on such a system and derive the distribution of its completion time. A useful dual relationship, between the completion time of a given job and the accumulated reward up to a given time, is noted. We demonstrate the use of our technique by means of a simple example

    Characterization of real-time computers

    Get PDF
    A real-time system consists of a computer controller and controlled processes. Despite the synergistic relationship between these two components, they have been traditionally designed and analyzed independently of and separately from each other; namely, computer controllers by computer scientists/engineers and controlled processes by control scientists. As a remedy for this problem, in this report real-time computers are characterized by performance measures based on computer controller response time that are: (1) congruent to the real-time applications, (2) able to offer an objective comparison of rival computer systems, and (3) experimentally measurable/determinable. These measures, unlike others, provide the real-time computer controller with a natural link to controlled processes. In order to demonstrate their utility and power, these measures are first determined for example controlled processes on the basis of control performance functionals. They are then used for two important real-time multiprocessor design applications - the number-power tradeoff and fault-masking and synchronization

    Performability: a retrospective and some pointers to the future

    Full text link
    As computing and communication systems become physically and logically more complex, their evaluation calls for continued innovation with regard to measure definition, model construction/solution, and tool development. In particular, the performance of such systems is often degradable, i.e., internal or external faults can reduce the quality of a delivered service even though that service, according to its specification, remains proper (failure-free). The need to accommodate this property, using model-based evaluation methods, was the raison d'etre for the concept of performability. To set the stage for additional progress in its development, we present a retrospective of associated theory, techniques, and applications resulting from work in this area over the past decade and a half. Based on what has been learned, some pointers are made to future directions which might further enhance the effectiveness of these methods and broaden their scope of applicability.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30223/1/0000615.pd

    Computer aided reliability, availability, and safety modeling for fault-tolerant computer systems with commentary on the HARP program

    Get PDF
    Many of the most challenging reliability problems of our present decade involve complex distributed systems such as interconnected telephone switching computers, air traffic control centers, aircraft and space vehicles, and local area and wide area computer networks. In addition to the challenge of complexity, modern fault-tolerant computer systems require very high levels of reliability, e.g., avionic computers with MTTF goals of one billion hours. Most analysts find that it is too difficult to model such complex systems without computer aided design programs. In response to this need, NASA has developed a suite of computer aided reliability modeling programs beginning with CARE 3 and including a group of new programs such as: HARP, HARP-PC, Reliability Analysts Workbench (Combination of model solvers SURE, STEM, PAWS, and common front-end model ASSIST), and the Fault Tree Compiler. The HARP program is studied and how well the user can model systems using this program is investigated. One of the important objectives will be to study how user friendly this program is, e.g., how easy it is to model the system, provide the input information, and interpret the results. The experiences of the author and his graduate students who used HARP in two graduate courses are described. Some brief comparisons were made with the ARIES program which the students also used. Theoretical studies of the modeling techniques used in HARP are also included. Of course no answer can be any more accurate than the fidelity of the model, thus an Appendix is included which discusses modeling accuracy. A broad viewpoint is taken and all problems which occurred in the use of HARP are discussed. Such problems include: computer system problems, installation manual problems, user manual problems, program inconsistencies, program limitations, confusing notation, long run times, accuracy problems, etc

    Acta Scientiarum Mathematicarum : Tomus 43. Fasc. 1-2.

    Get PDF
    corecore