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[LÁSZLÓ RÉDEI 

(1900—1980) 

On November 21, 1980, six days after completing his eightieth year, passed 
away László Rédei, member of the editorial board of our Acta since its eleventh 
volume, professor emeritus and doctor honoris causa of our University, Nestor of 
the Hungarian algebraists. 

He was born near Budapest and went to secondary school in the capital. His 
mathematical abilities presented themselves these years already; in 1918 he was 
a prize-winner of the Eötvös Competition. After having graduated from the Uni-
versity of Budapest, he became a secondary school teacher of mathematics and 
physics first in the town Miskolc, and then in Mezőtúr. In 1940, he was appointed 
professor in the University of Szeged, where he spent 27 years: the most fruitful 
years of his life. In 1967 he moved to Budapest, where he lead the Algebra Depart-



ment of the Mathematical Institute of the Hungarian Academy of Sciences until 
his retirement in 1971. 

The creative activity of László Rédei started in the twenties with algebraic 
number theory. He achieved deep results in the study of class groups of quadratic 
number fields, he determined among others the number of those invariants which 
are divisible by 2k (the case k = 1 was already settled by Gauss). Since 1940 his 
interests were more and more shifted to abstract algebra, and his enthusiastic works 
and lectures attracted many of his pupils to this subject also. Almost all algebraists 
working now in Hungary are his direct or indirect disciples. Particularly productive 
was his collaboration with the untimely deceased young mathematician Tibor Szele; 
among others, they were the first to recognize the functional completeness of finite 
fields. Rédei's further work on finite fields has also a growing interest in view of its 
connections with combinatorial theory. 

In abstract algebra, group theory was Rédei's most favourite topic; even in 
his last year of life he studied the subdirect irreducibles in the variety of nilpotent 
groups of class 2. Today, when the old problem of finite simple groups is completely 
solved, we have to remind of Rédei's pioneering paper "Ein Satz über die endlichen 
einfachen Gruppen" (Acta Math., 84 (1950), 129—153), which was a forerunner 
for the development of this area in the last three decades. 

Besides about one and a half hundred papers, László Rédei was also the author of 
the books "Algebra", "The theory of finitely generated commutative semigroups", 
"Foundation of the Euclidean and non-Euclidean geometries", and "Lacunary 
polynomials over finite fields". The first and the third of these are advanced text-
books with rich contents while the other two books summarize Rédei's own results 
in monographical form. 

The merits of Professor Rédei were widely acknowledged by the competent 
communities. He was elected a corresponding member of the Hungarian Academy 
of Sciences in 1949, and an ordinary member in 1955. He was awarded the Kossuth 
prize two times and also several further high decorations. 

László Rédei was one of the great Masters of Hungarian mathematics. He was 
a teacher and advisor for generations, and also an interesting personality, hero of 
numerous anecdotes and legends. He was an attractive lecturer with a fine sense of 
humour and self-irony. Last but not least, he had the rare endowment of being 
fully devoted to his beloved profession. His decease is a heavy loss for this journal 
also. We shall cherish his memory. 

The Editors 
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Reflexive and hyper-reflexive operators of class C0 

H. BERCOVICI, C. FOIA§, B. SZ.-NAGY 

Dedicated to P. R. Ha I mo s on his 65 th birthday 

The Jordan model of a finite matrix was used for the first time in the study of 
reflexive operators (on finite dimensional spaces) by DEDDENS and FILLMORE [5]. 
Their result was extended in [1] to the class of algebraic operators on Hilbert space, 
using the quasi-similar Jordan model (in fact in [1] the notion of para-reflexivity is 
studied, but one can easily see that reflexivity and para-reflexivity are equivalent for 
algebraic operators). The possibility of extending these results to the entire class 
C0 was then indicated in [6] for the separable case and [2] (where a sketch of proof 
is done) for the nonseparable case. It appeared that the reflexivity of an operator 
of class C0 is equivalent, to the reflexivity of a single "Jordan block" S(m) (cf. § 1 
below for the precise statement). 

In this note we give a simplified version of the proofs of [6] and [2]. We further 
study the related notion of hyper-reflexivity (stronger than reflexivity for the class 
C„) and prove an analogous characterization of hyper-reflexive operators of class C„. 

1. Notations and results 

We shall denote by § a complex Hilbert space and by the algebra of linear 
and bounded operators acting on For an algebra ¿/cz &(§>), Lat s i will stand 
for the set of closed linear subspaces 9Jlc:£j invariant with respect to all elements 
of st\ XaJlcaR, X^stf. For a family i f of closed linear subspaces of §>, Alg £f 
will denote the algebra of operators Xd & (§) for which X9Jlc9ft whenever 9Jl£ ¿¡P. 
The algebra is called reflexive if j s /=AlgLat stf. An operator 36 ($) 
is reflexiveii the weakly closed algebra s>2T generated by Tand / g is a reflexive algebra. 
An operator T£ id (§) will be called hyper-reflexive if its commutant {T}'=(stfT)' 
is a reflexive algebra. 

Received September 26, 1980. 
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Recall that a completely nonunitary contraction T(i3S(Sj) is an operator of 
class C0 if u(T) = 0 for some u£Hm, u^O (cf. [10], ch. V). The simplest operators 
of class C0 are the "Jordan blocks" S(m), with m£H°° an inner function, defined by 

(1.1) S(m)u = P^m)(zu(z)),u^(m) = H2QmH2. 

By the results of [11], [4] and [3], every operator T of class C0 is quasi-similar 
to a unique Jordan operator, that is to an operator of the form 

(1.2) S = ® S ( 0 
a 

where the values of a are ordinal numbers and the inner functions ma are subject 
to the conditions 

(1.3) mx = 1 for some a ^ 0; 

(1.4) m3 divides i n w h e n e v e r a = 

(1.5) ma = mp whenever card (a) = card (/?). 

Let us note that m0 coincides with the minimal function mT of T. The operators 
quasi-similar to some S(m) are precisely the cyclic operators of class C0 (multiplicity-
free operators). For multiplicity-free T it follows from [12] that Lat r = L a t {T}' 
and so for such operators reflexivity and hyper-reflexivity are equiv-
alent. 

We are now able to state the main results of this note. 

T h e o r e m A. An operator T of class C0 with Jordan model 5 = ® S(ma) is 
a 

reflexive if and only if S(mQ/m^) is reflexive. 

T h e o r e m B. Let T and S be as in Theorem A.. Then T is hyper-reflexive if 
and only if S(m0) is reflexive. 

Recently P. Y. Wu [15] published a proof of Theorem A for the particular case 
of operators of class C0 with finite defect indices. 

2. Preliminary results 

The following theorem plays an important role in the study of reflexive opera-
tors of class C0 (cf. [13] and [14] for the proof). 

T h e o r e m 2.1. For every operator T of class C0 we have 

(2.1) = {T}" = {T}' n Alg Lat T. 
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C o r o l l a r y 2.2. An operator T of class C0 is reflexive if and only if Alg Lat Tcz 
c {J}'. — Obvious from relation (2.1). 

C o r o l l a r y 2.3. Let be an operator of class C0 and let Sit, £ Lat T 
(j£J) be such that rlSOl.- is reflexive for each j. If §= V then T is reflexive. 

J€J 
P r o o f . It follows from Corollary 2.2 that it is enough to show that every 

X£ Alg Lat T commutes with T. But it is obvious that for XgAlg Lat T we have 
Alg Lat (r|9Jl7) so that { r p , } ' by the hypothesis. Therefore, 

ktr(XT-TX) 3 V = that is Xe{T}'. 
jiJ 

C o r o l l a r y 2.4. Let be a reflexive operator of class C0. For every 
X£siT the operator r|(Al?j)- is reflexive. 

P r o o f . Let us take T^Alg L a t ( r | ( Z § ) - ) . Since Z ^ A l g L a t T we infer 
YXe Alg Lat T and therefore YX£{T}', by the reflexivity of T and Corollary 2.2. 
As X and T commute, we have YT• X=YX• T=TY• X such that Y£{T!(*$)-}' 
and the conclusion follows again by Corollary 2.2. 

We shall introduce now an auxiliary property. 

D e f i n i t i o n 2.5. A completely nonunitary contraction T has property (*) 
if for any quasi-affinity X£ {T}' there exists a quasi-affinity Y£ {T}' such that 

(2.3) XY = YX= u(T) for some K€ H°° 
for some u£H°°. 

L e m m a 2.6. Let T and T' be two quasi-similar completely nonunitary contrac-
tions. If T has property (*) then T' does also. Moreover, if T has property (*) then 
there exist quasi-affinities A, B such that T'B=BT, TA = AT' and 

(2.4) AB = u{T), BA = u(T") for some u£H°°. 

P r o o f . Let us assume that 7"has property ( * ) and A, B' are two quasi-affinities 
such that T'B'=B'T and TA=AT'. For any quasi-affinity X£ {T'}' we have 
AXB'e{T}' so that, by the assumption, we have AXB' • Y' — Y' • AXB'=u(T) for 
some quasi-affinity Y'£ {T}' and u£H°°. We obviously have 

A(X-B'Y'A-u(T')) = AXB' Y' - A—Au(T') = u(T)A-Au(T') = 0, 

{B'Y'A-X-u{T'))B' = B' • Y'AXB' — u(T')B' = B'u{T)-u{T')B' = 0 

so that X-B'Y'A=u(T') by the injectivity of A, and B'Y'A-X=u(T') by the 
quasi-surjectivity of B'. So we have XY=YX=u(T') for Y=B' Y'A and therefore 
T' has property (*) . For the last assertion of the Lemma it is enough to set B=B' Y' 
where Y' is obtained from the preceding proof for X—I. The Lemma follows. 
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L e m m a 2.7. Every Jordan operator of the form S=S(jn0)©S(/n1) has prop-
erty ( *). 

P r o o f . Let X£ {5}' be a quasi-affinity. By the Lifting Theorem ([10], sec. II. 2.3) 

there exists a 2 x 2 matrix = ^J with entries in such that 

(2.5) P6A(I-Pf)) = 0 on H2®H\ and X = PbA on § = §(»io)®S(™i)-

Let us remark that 

(2.6) aAbAm0 = 1. 

Indeed, if q=aAbAm0^l it follows that q — (1 — g(0)#)©0 is a non-zero vector 
in § such that for every vector of the form Xh (h = h0®h1£9y) we have 

(XII, q) = (PftAh, q) = (Ah, q) = J ((ajq)h0 +(b/q)h,) (q-q(0)) = 0, 

and this is impossible since X has dense range. Moreover, we have 

(2.7) . detAAm1 = 1. 

Indeed, let us set />=det At\ml and denote h— -b(m1/p)(Qa(m1/p). Then we have, 
by (2.5), 

X P ^ h = P s A P s h = P f j A h = P 6 ( 0 ® m i - ( & t X A ) l p ) = 0 

and therefore P6h — 0 by the injectivity of X. Hence, h£m0H2@m1H2, which 
implies that p divides b and a; taking account of the definition ot p we infer that 
p divides aA^AwjAdet A also. Then (2.6) forces p to equal 1, concluding the proof 
of (2.7). From (2.6—7) it obviously follows that 

detAAm1aAm1bAm0 — 1 

so that [7] (cf. also [9]) implies the existence of c', d ' , ( e v e n constans) such 
that (det A + m1(ad' — be') + ntge')Amo ~ 1 or, equivalently, 

(2.8) (det A+ m1(ad/-be')) A m0 = 1. 

Let us remark now that the matrix A' = f , a , , , ^ ,,] satisfies the [c-t-mjc a + m ^ J 
relations analogous to (2.5) and moreover det A'AmQ~ 1 by (2.8). Let us define 

Yh=Pf)Bh for A€§ = S(ro0)®S(»»i), where B=\_d+mid', ~ A ] . It follows by I C ^ ^ J 
direct computation that {5}' and XY= YX=u(S) with w=det A'. Now u(S) is 
a quasi-afBnity because uAm0= 1 (cf. [10], Prop. III. 4.7b) and therefore Y is also 
a quasi-afiBnity. The Lemma follows. 

R e m a r k 2.8. Lemma 2.7 also applies to operators of the form S=S(m) (take 
i«1=-l). By the celebrated theorem of SARASON [8] we have then, in fact, X=u(S) 
with some u£H°°, for every 
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3. Reflexive operators 

The role of property ( * ) in the study of reflexive operators is underlined by 
the following result. 

L e m m a 3.1. Let T and T' be two quasi-similar operators of class C0 having 
property (*). Then T is reflexive if and only if T' is reflexive. 

P r o o f . By Lemma 2.6 there exist quasi-affinities A, B such that T'B=BT, 
TA=AT' and AB=u(T), BA=u(T') for some u£H°°. Assume T is reflexive. 
For any X e A l g L a t r and 9Jl£Lat T we have A X B № ^ A { B m ) - a { A B № ) - = 
=(u( r )2R)-c2rc because (MR)"6Lat T' and w(F)£Alg Lat T. By the reflexivity 
of T we have AXBe {T}' and from the relations 

A-XT'-B = AXB-T =T -AXB = A-T'X-B 

it follows that X£{T'}'. The reflexivity of T' follows then by Corollary 2.2, and 
Lemma 3.1 is proved. 

For easier reference, let us formulate the following: 

L e m m a 3.2. For two ('comparable') inner functions, say p and q, the operator 
Vpq: S O ) d e f i n e d by 

(3.1) JPS ( 9 )fc if q divides p 
(3.2) Vpqh=[(q/P)h if p divides q 

intertwines S(p) and S(q). 

P r o o f . If q divides p, we have for h£$>(p), using (1.1) and (3.1), 

(S(q)Vpq-VpqS(p))h = P ^ z P ^ h - P ^ z h ) = 0 

because zPí¡(q)h=z(h + qw)=zh + qw', P6^zh=zh+pw'=zh + qw" with some 
w,w',w"£H\ and hence {...}iqH2. 

If, conversely,/? divides q, then we use the relation P&(m)u^=u—m[mu]+, valid 
for any inner m and for any u£H2, [...]+ denoting here the natural projection 

We get by (1.1) and (3.2) 

(S(q)Vp,q-Vp,qS(p))h = p5(9)zjh-jps(p)(zh) = 

= [zjh-q[qzjh]+)-j(zh-plpzh]+) = 0 

because qq=l,—=p on the circle {z: |z| = l}. 
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L e m m a 3.3. Let S=5(/?70)©5(»I1) be a Jordan operator. Then for every 
X^Wg Lat S there exists such that X—Y=Z® 0 with some operator Z 
on 5(m0) and the zero operator on 

P r o o f . The subspaces §(w0)@ {0} and {0} ©§(/??!) are invariant for S so 
the assumption Alg Lat S implies 

X = X0®X1, *,-eAlg Lat S(m}) (J = 1, 2). 

Consider the (obviously isometric) operator V=V„o mi defined by (3.2), and the 
subspaces 

{VhQh: A€${mi)> and {VS(mi)h@h: /le^rnO}. 

By Lemma 3.2, both are invariant for S, and hence for X also. So we infer 

X0Vh = VX1h and X0VS(m,)h = VSOnJX^ for 
Apply the first equation for S(m^)h in place of h and compare the results to obtain 
VX1S(m1)h=VS(mjX1h for all h£f>(md. Hence, X1S(m1)^S(m^X1. By a 
well-known theorem of SARASON [8] this implies that X1=u(S(m1)) for some u£H°°. 
Hence, Y=u(S)=u(S(m0))®u(S(m1)) has the property we needed. 

L e m m a 3.4. Let S= S(m0)© S(mj) be a Jordan operator and let Z be an 
operator on §>(m0) such that ZffiOgAlg Lat S. Then 

(3.3) Z(qH2Qm0H2) c qm^Qm^H2 

for every inner divisor q of w0//Mi-

P r o o f . As m1 is a divisor of m j q , which, in turn, is a divisor of m0 , we can 
consider the operators V0=Vmo/q,mo and Vi = Vmo/q>mi defined by (3.2) and (3.1), 
respectively, and observe that {V0h®V1h: h£$j>(mjq)} is a subspace invariant 
for S (closure follows from the fact that V0 is an isometry, namely multiplication 
by the inner function q). Then it is invariant for Z ® 0 also. Hence we infer that 
for every h£&(m0/q) there exists h'£f>(m0/q) such that ZV0h=V0h' and 0 = V1h'. 

As V1W = P l l m ^ by (3.1), we must have h ' ^ H 2 Q ^ • H ^ Q { H t Q m 1 H t ) i.e. 

h ' e m ^ ^ Q ^ - H 2 . We conclude that Zq% 772 j , and this 

obviously implies (3.3). 

R e m a r k . In the particular cases q= 1 and q—— (3.3) implies mi 

(3.4) raaZczm^QmoH2 and k e r Z 3 (m0lmJH2Qm0H2. 
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In the proof of the following result we shall use the unitary operator 

(3.5) R: m1H2Qm0H2 §(m 0 / ' n i ) defined by Rh = h/m1, 

which satisfies the relation 

(3.6) RS{m0)\(miH2Qm0H2) = S(mJm1)R = P^mo/mi)S(m0)R. 

P r o p o s i t i o n 3.5. The Jordan operator S=S(m0)® S(mj) is reflexive when-
ever SÇmJntj) is reflexive. 

P r o o f . By Lemmas 3.3, 3.4, and Corollary 2.2 it suffices to show that every 
operator ZÇAlg Lat S(m0) satisfying (3.3) commutes with S(m0). We claim that 
for such a Z we have RZ\$j (mjm,) £ Al g Lat S(m0/mx). Indeed, the general form of 
the subspaces in Lat Simjm^) is qH2 Q (mjm^ H2 for q a divisor of mjm1. By 
(3.3—4) we have RZ(qH2Q(mQ[m1)H2)czRZ(qH2Qm0H2)c:R(qm1H2Qm0H2) = 
=qH2Q(m0/m1)H2. The reflexivity of Simjm^ implies RZ\9){mJm^(: {Sfmjm^y. 
Therefore, 

R(ZS(mJ-S(mJZ)\$>(mJmj) = (( JRZ)5(m0)- /?S(m0)Z) |§(m0 /m1) = 

= {(RZ) P s ( m o / m i ) S(m0) - S(mjmi) RZ) | § (mjm,) = 0 

so that Z commutes with S(m0) on $>(m0/mj). Because by (3.4) we have ZS(m0) = 
= S(m0)Z=0 on ( m 0 l m ^ H 2 Q m 0 H 2 it follows that Z€{S(m0)}'. The Proposition 
is proved. 

P r o o f of T h e o r e m A. Let T£âS(Ç>) be of class C„, with Jordan model 
5 = © S ( w J on § = © io(mx). If T is reflexive we infer by Corollary 2.4 that 

a a 

T^m^T)?))- is reflexive. But r | ( /n 1 (T)§) _ is quasi-similar to S(m0/mx) and 
the reflexivity of S(m0/m1) follows by Lemma 3.1 and Remark 2.8. 

Conversely, let us assume that S(mjm^) is reflexive. Let X be any quasi-affinity 
such that TX—XS. Let us consider the spaces § a=(A r5(w a))~ and Rx= 
=(XkeTmx(S\§)(m0)))- for every ordinal number a. Then the restriction r | § 0 V § i 
is quasi-similar to S(m0)©Sim^ and T \ S l x \ / 1 ) is quasi-similar to 
S(mx)@S(mlx). All these restrictions are reflexive by Lemmas 2.7, 3.1 and Proposi-
tion 3.5 so that the reflexivity of T follows by Corollary 2.3 because (§0V£>i)V 
V ( v (Ô«va«))= V otBl IËO 

C o r o l l a r y 3.6. Let T and T' be two quasi-similar operators of class C0. Then T 
is reflexive if and only if T' is reflexive. 

P r o o f . Two operators of class C„ are quasi-similar if and only if they have 
he same Jordan model. Corollary obviously follows from Theorem A. 
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4. Hyper-reflexive operators 

P r o p o s i t i o n 4.1. Jf the operators T and T' are quasi-similar and one of them 
is hyper-reflexive then so is the other. 

Proo f . Let X and Y be two quasi-affinities such that T'X=XT and TY=YT' 
and let viÇAlgLat {T}'. Then XA Alg Lat {T'}'; indeed, for each 93? € Lat {T'Y 
we have 
(4.1) 9Î = V ZY9JÏ£Lat {T}' 

Z£{r}' 

and V XZYWa V Z'93i=2TC. In particular, XAYWlczXAyicXyiczm 
zi{ry z-e{T'}' 

and XAYÇAlg Lat {7"}' because 9Jl£Lat {T'Y is arbitrary. 
If r is hyper-reflexive it follows that XAYÇ {T'Y so that X-AT- Y=XAY• T' = 

= T'-XAY=X-TA-Y and A£{TY because Z a n d F a r e quasi-affinities. It fol-
lows that T is hyper-reflexive. The Proposition is proved. 

P r o o f of T h e o r e m B. By the preceding proposition it is enough to consider 
the case T= S. Let us assume that S is hyper-reflexive and take AÇ Alg Lat S(m0). 
Then the operator B=@Aa, where A0=A and Ax=0 for a s l , belongs to 

a 
Alg Lat {S}'. Indeed, since each ft 6 Lat {5}' has the form © ft,, where 

ftaeLat S(mJ, we have 5 f t e f t . It follows that Be {S}' and this implies AÇ {S(m0)}'. 
The reflexivity of S(m0) follows by Corollary 2.2. 

Conversely, let us assume that S(m0) is reflexive. Because S(mJ is unitarily 
equivalent to 5(/?70)|(ran ux(S(m0))~ (ua=m0fm^ it follows by Corollary 2.4 that S(mJ 
is reflexive for every a. We consider the operators R^Ç {5}' defined by hy) = 

y 
— @ky where ky=0 for y ^ a and y 

[Pfxmjhe whenever 
ka - - \ ( m j m j h f w h e n ever a^p. 

Cf. (3.1—2). Obviously, Pa=Raa coincides with the orthogonal projection of ©§(m y ) 
y 

a-component space. 
Let ^ € A l g L a t { 5 } ' ; we have P ^ P ^ A l g Lat {S}' and A= 2 p*APfs in 

the strong operator topology. To conclude the proof it is enough to show that 
PaAPpe {5}'. Let us note that the operators R^P^APp and PaAPeRPx belong to 
Alg Lat {5} 'and are of the form © J1, with Ty=0 for y^fi and y^a, respec-

y 
tively. Considering the spaces of the form ker m(S)€Lat {5}' for m a divisor of 
m0, it is easily seen that necessarily T^Alg Lat S(my) so that Ty£ {S(my)Y by 
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the reflexivity of S(my). I t fol lows t h a t R^P^APp a n d PaAPpRPx commute with S 
and therefore 

R t ^ P . A P f S - S P ^ P , ) = ( P a A P p S - S P a A P p ) R ^ = 0. 

If the range of Rfx does n o t contain ran Pfi it follows t h a t / ¡ < a and therefore 
Rpx is one-to-one on ran Px, therefore in b o t h cases we infer PaAPf€{S}'. The 
Theorem is proved. 

R e m a r k 4.2. I t fol lows f r o m Theorems A a n d B tha t each hyper-reflexive 
opera tor of class C0 is also reflexive. This fact can be proved directly also, by using 
Theorem 2.1. 
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On the commutant of Cu-contractions 
LÁSZLÓ KERCHY 

1. We say that a Hilbert space operator T has property (P), or belongs to the 
operator class if every injection X£ {7"}' is a quasi-affinity. B. SZ.-NAGY and 
C. FOIA§ [1] proved that the operators of class C0 and of finite multiplicity have 
property (P). H. BERCOVICI [2] characterized the class of all C0-operators having prop-
erty (P). Recently P. Y. Wu [3] showed that every completely non-unitary (c. n. u.) 
Cn -contraction with finite defect indices belongs to the class 2?. (Actually, he proved 
more.) The main purpose of this note is to characterize the class of all Cu-contractions 
having property CP). 

The author is indebted to Dr. H. Bercovici for his valuable remarks, and 
in particular for his suggestions that helped to simplify the proof of Lemma 1. 

2. Only bounded linear operators on complex separable Hilbert spaces will 
be considered. Separability does not mean a restriction of generality, as it will 
turn out in section 5. We follow the notation and the terminology used in [4]. 

It is well-known that every contraction Tof class C u is quasi-similar to a unitary 
operator U (cf. [4], II.3.5). Moreover, since quasi-similar unitary operators are 
unitarily equivalent (cf. [4], II.3.4), the operator U is uniquely determined up to 
unitary equivalence. 

If T is, moreover, a c. n. u. contraction of class C u , then T is quasi-similar to 
the operator U of multiplication by e" on the Hilbert space AL2((£). (Cf. [4], VI.2.3.) 
Here A is the operator-valued function defined by A(eu) = [r-0(e")* 6>(e")]l/2, 
where 0 denotes the characteristic function of T. This operator U has absolutely 
continuous spectral measure on the unit circle (i.e., is an a. c. u. operator). So U 
is unitarily equivalent to an operator M of the form M=MEi@MEi®..., where 
{£•„}„ is a decreasing sequence of measurable subsets of the unit circle C of C, and 
ME denotes the operator of multiplication by e" on the space L2 (E„). (We consider the 
normalized Lebesgue measure m on C.) For every measurable subset F of C let 
F = denote the closed support of the measure m\F, the restriction of m on the set F. 

Received April 30, 1980. 
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If it is assumed that En=E= for every n, then the operator M is uniquely determined 
(cf. [5]). M will be called the canonical functional model of the a. c. u. operator U, 
and the Jordan model of the c. n. u. Cu-contraction T (cf. [6]). 

Now we can state our main result: 

T h e o r e m 1. Let T be a c. n. u. contraction of class C u on the separable Hilbert 
space f j , and let M—ME^ © MEn ©... be its Jordan model. Then T has property (P) 
if and only if w ( n £'n)=0. 

nsl 
Sufficiency and necessity of this condition will be proved in sec. 3 and sec. 4, 

respectively. In sec. 5 some corollaries are treated, while in sec. 6 we consider arbi-
trary C u -contractions. 

We shall use the following notation. For an operator-valued function N let 
dN(eu) denote the rank of the operator N(e"). If T is a c. n. u. Cu-contraction, then 
let dTbe the function defined by dT(e")=dA(e"), where A=A (e") is the operator-
valued function derived from the characteristic function 0(e") of T. 

For two operators, 7\ and T2, we denote by S(Tls T2) the set of intertwining 
operators S(Tlt T2) = {X\XT1=TiX}. Let Hyp lat (T) denote the lattice of hyper-
invariant subspaces of T. 

A system {§„}nS1 of subspaces of § will be called basic if, for any n, the sub-
spaces §„, V St are complementary and D ( V § * ) = { 0 } (cf- [7]). 

k&n nml tsn 

3. We shall need some lemmas. The first one should be contrasted with [4], 
VI. Th.6.1. 

L e m m a 1. Let N(e") (0sts2n) be a function with values operators on a 
(separable) Hilbert space (£, and measurable. Let us denote by U the restriction of 
the operator of multiplication by e" on its reducing subspace = NL2 ((£); and let 

© MEn ©... be its canonical functional model. Then dN (e " )=ran k N(e") is a 
measurable function and for every «si we have 

En = {e»\dN(e«) S «}=. 

P r o o f . Let {ej}j be an orthonormal basis of (£. We denote by /} the bounded 
measurable functions fj(eit)=N{ei')eJ. Obviously the set {y}(e")}j- generates 
(N{elt)^)- for every e*£C, and therefore by [8], Ch. II, Prop. 9 it follows that 
the family §(e i ')=(A f(e")G)~, supplied with the notion of measurability induced 
by the constant field St(e")=(E, is a measurable field of Hilbert spaces. Now we 
infer by [8], Ch. II, Prop. 1 that the function dN is measurable. Moreover, by 

© 
[8], Ch. II, Prop. 7 we have 91= f F>(e")dm, and so U is the diagonal operator 

c 
® 
f e"dm. Denoting by Fm the measurable sets Fm = {e"\dN(e'')=m} [m = 1,2, . . . ; K0) 

c 
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and applying [8], Ch. II, Prop. 3, we get that 
® 9 

U^ f eudm s © ( / eudm) ~ © M£> ~ © MBn, q m p M R 

where En={eu\dN{elt)^.n}='. (For an arbitrary operator ,S, 5(l") denotes the direct 
sum of m copies of S.) 

Taking into account this Lemma we get a characterization for the measurable 
subsets in the Jordan model of a c. n. u. Cu-contraction. Namely, we have 

C o r o l l a r y 1. IfTisac. n. u. contraction of class C u on a (separable) Hilbert 
space § and M=MEi®MEt®... is its Jordan model, then is a measurable 
function, and for every natural number n we have 

En = {e^dAe") ^ 

We shall frequently use the following: 

L e m m a 2. If T £ a n d Hyp lat 2" (n=1, 2, ...) are such that £> = V 
and r | f j „ has property (P) for every n, then T has property (P). asl 

L e m m a 3. Let U be an a. c. u. operator on the separable Hilbert space let 
M=MEi®MEi® be its canonical functional model, and let E be the set 
defined by E= p| £„. Then the following conditions are equivalent: 

nsl 
(i) (ii) m(E) = 0. 

P r o o f . 
a) Let us assume that m(E)>-0. Then 

U= MEi®MEi®... ~ (MEi^E®Me^Ei®...y®(ME®ME®...) m 

= (MEiKE®ME^E®...)®(ME®ME®...)®(MB®ME®...) ^ 

^ (MEi®MEi®...)®(ME®ME®...)=M®Mi*<J. 

It is evident that Therefore and so U i &>. 
b) Let us assume that m(E)=0. For every n let and R„ be the subspaces 

defined by S n = f e n ( t / ) 5 and - ®L*(Ett-,\En). 
Since A/|R„ has finite multiplicity, and U |§„ is unitary equivalent to 
we infer by [3], Lemma 2.5 that U\§>„ belongs to SP for every n. On the other hand 
§„ is a hyperinvariant subspace of U for every n, and in virtue of the assumption 
V § „ = § • The Proposition follows by Lemma 2. 

nil 
We shall need yet the following: 

L e m m a A.IfT is a c. n. u. contraction of class C u on a separable Hilbert space 
and @T(e")* &T(e")^S holds a.e. for some constant ¿>0, then T is similar 

to a unitary operator. (Here 0T denotes the characteristic function of T.) 

2 
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P r o o f . We infer by Propositions [4], V.7.1 and V.4.1 that 0T has an oitter 
function scalar multiple u such that |n(ei')|s<51/2 a.e. Then | |0 r(A) - 1 | | h a sa bound 
independent of A, and this implies by [4], Theorem IX. 1.2 that T is similar to a 
unitary operator. 

- We are now able to prove the sufficiency. i n 
m 

. P r o p o s i t i o n 1. Let. T be a c. n. u. contraction of class C u on a (separable) 
Hilberi space and let M—ME @ME ©... be its Jordan model. If m( E„)=fO, 1 - 2 n i l " 
then r 

-' • P r o o f . Let @67/°°(if((£)) coincide with the characteristic function: of r . 
Let N€ L°° (<£ (<£)) be the function defined by N(e")=[0 (e")* 0 ( e i t ) ] l / 2 =[/ - /4 2(e*)]V?. 
In virtue of Corollary 1 we infer by the assumption that 

(1) dAe") = dAt(e") < =o a.e. 

On the other hand since T£CU, it follows that 0 is outer from both sides, 
therefore N(e") is a quasi-affinity a.e. (Cf. [4], VI.3.5 and V.2.4.) Now we infer 
easily from these facts that N(elt) is invertible a.e. Therefore its lower bound func-
tion. m{eir)=inf {(Nie*)e, e)\e£(£, ||e\\ = 1} is positive 

(2) ' ' m(eu) > 0 a.e, / ' ' 

For every natural number n let a„ be the measurable set defined by 

(3) a„ = { e " |m(e") > - I} . - . ' • " 

It is evident that {<xn}„ is increasing: 

(4) ' ' 7- ' ••••••• AI § A 2 G . . . . 

Moreover, in virtue of (2) we have 

(5) m ( C \ ( U O ) = 0. 
- . - • • - - . . »si • • ,; 

By the proof of Theorem VII.5.2 of [4], T has hyperinyariant subspaces £>„, 
sucli that 
(6) : V S , = § ; 

(&(e'')*0(e") a.e, on a„ 
(7) = , 7 

" l T Here arid in the sequel we also use the notation Ca for the set C \ a , where a "is'any 
subset of C. • 
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where @„ denotes a tontractive analytic • function suclithat the purely boritractive 
part, of &„ coincides with the, characteristic function of T\Sr)n\ 
.1' ^ i o l I ]/!•>> ...|> h - U -I.-E- .,/.. -.y: . . . . . . v...' 
(8) l-' • - ^ = for every n. 

We infer by ^miria|4'tihat,! for every n, f n is similar io a Unitary operator. " 1 

Quasi-similar unitary operators being. unitarily equivalent Tn is similar to its 
Jordan model M„=Mem(BMem@ .... We infer.by (7) that , 

(9) ' ' ^ d r j e " ) W ax., ' ' ' ' 
and it follows by (1) that 
(10)' "1-. > ; j ' dTn(e") < co a.e. ' 

By i Corollary! 1 and iiemma: 3 we see that • M„ Since similarity- preserves prop -
"erty (P) ,so ' for every « 
( 1 1 ) • ' - ; T n i 0 > . ••:.'.-.•. 

, ; Taking into acxoupt.(6) and (1,1), we infer by Lemma 2, that T£ • The proof 
is finished. 

I Preparing for the proof of Necessity we consider some Lemmas concerning 
a. c. u. operators. ' ; u 

L e m m a 5. Let U1 and U2 be a. c. u. operators having property (P). Then the 
operator U — t/x©i/2 has also property (P). • 

V P r o o f . L e t \ : M ^ M ^ . f f i ' M ^ © ; - a r i d -M2=MFi®©...£.£?(§") 
be the canonical functional models of the operators U1 and U2 respectively. It, is 
enough to prove that the operator M=MX © = ¡¡V © ?j") has the prop-
erty (P). 

Taking into account that the sequences {£„}„ and {Fn}„ are decreasing we infer 
by Lemma 3 that m( f j (E„U F„))=0. Therefore the hyperinvariarit subspaces §„, 

defined by 2, ..:), span the space Moreover M|§„ has 
finite multiplicity, and so it belongs to ^5 by Lemma 3. It follows that the operator 
M also has the property (P). 

Lemma 6. Let ... be a. c. u. operators. If mi f j i r i © t/»))>-0, then 

there exists a strictly increasing sequence {n$k of natural numbers such that nx=0 

and m f f | a ( ©' t / , i |>0 . (<r(T) denotes the spectrum of T.) 
VtSl jl(=lll, + l ) ) . 

P roo f . . ,. 

:: - a) First of all we show that Jim m |<r | © © t/*) . If £•„(.•) denotes 
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OO I 

the spectral measure of Ua for every n, then £ ( • ) = © £„( • ) will be the spectral meas-
•=i 

ure of the a. c. u. operator U= © Un. Therefore E | J a i / t j j j = 0 , 

and so m ( © L® t /*))) = S i n c e a ( ® = ^ l ) , W C 

have Jim m |<r | © C / ^ j ^ m | < f | © l / t j j . 

b) Let a denote the set a = (") ff(© Uk). Let us assume that we have defined 
»SI *Sn 

0 = « ! < n 2 < . . . < 7 i r such tha t f o r every 1 S f c ^ r — 1 we have m © i / , j j < 

< . Applying the result of a) we infer that the sequence jm |<r\<x ̂  © C/^ j j 

tends to zero. Therefore there exists an index/i r+1>-/i r such that m ^ © 

< The sequence defined by recursion in this way has the property that 
4' 

m 

t he proof is finished. 
[ ° \ { n A X T h e r e f o r e w , ( i 0 1

( x ( ( i ^ l ) ^ 0 , a n d 

L e m m a 7. Let t/1£.Sf(ijj1), i/2€^(¡Da). ••• be a. c. u. operators having property 

(P). Then the a. c. u. operator U= © (/„£:?($) has property (P) if and only if 
n = 1 

' K n * ( © uk))=Q. 

' HS1 ksn 

P r o o f . a) Let us assume that m( <x(© £/»))>0. In virtue of Lemma 6 there exists »ex kmn 
a sequence {«J», («1=0), such that m(ff)>0, where a— P | o ( V k ) and Vk = 

*S1 
"t+i • 

= © t/( for every natural number k. Then for every k we can decompose Vk l = nk + l 
into the direct sum Vk=Vk®Vk such that Vk is unitary equivalent to Ma. Let 
Xke^(Vk, K+i) ^ a unitary operator, and Xke{Vk}' be the identity operator 
(Ac= 1, 2, ...). In this way we get an injection X£ {U}' which is not a quasi-
suijection. Therefore U^SP. 

b) Let us assume now that F„)=0, where F„=a( © UkI. Then the 
»si u=» / , 

hyperinvariant subspaces 9JI„=Xcf (U)9) (« = 1,2, ...) of U span the space f j : 
V 9M„ = f>. On the other hand, for every natural number k, y_CF (Uk)<ok reduces 

»SI " 
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Uk, and so Uk\XcF (£/»)&€ Since "© Uk\XcF (Uk)%k, we infer by 

Lemma 5 that U f o r every n. Therefore U€&>, and this completes the 
proof. 

Now we are ready to prove: 

P r o p o s i t i o n 2. Let T be a c. n. u. contraction of class C u on a (separable) 
Hilbert space 5), and let M—ME ®ME ffi... be its Jordan model on the Hilbert 
space ft. If m ( f | £„)>0, then 

nil 

P r o o f . 
a) Since T is quasi-similar to the unitary operator M, we infer by [7] that there 

exist a basic system {§„}„ of invariant subspaces of T, and a reducing decomposition 
ft= © ft„ of ft such that for every n T„=T\§>„ is similar to the a. c. u. operator 

a 
Un=M|ft„. For every n let C„iJ(Un, T„) be an affinity, and let Pn denote the 
canonical projection of onto §„ determined by the decomposition § = § „ + ( V §*)• 

b) We can reduce the proof to the following two special cases: 
(i) There exists an n such that Un $ 3P. 

(ii) m( n o(U„)) > 0. 
nmi 

Indeed, assuming that !/„£ & for every n, and taking into account that 
M= © XJ„ $ g? (cf. Lemma 3), we infer by Lemmas 7 and 6 that there exists a 

n s i 

sequence («i=0), such that m\ f ] a\ © Ul =-0. Replacing the basic 
V/=nk+l )) 

system {§„}„ by where + . . . + § n j t + i , and the affinities C„ 

(n=1,2,...) by q = C „ t + 1 © . . . © C n t + i {k=\, 2, ...), we gain the case (ii). (It can 
be easily seen that for every finite index-set Nx the linear manifolds + and 

"k + l 
( V §*) + ( V are closed. Therefore the operators Ck= © C, (k=l, 2, ...) 
kiN1 kiNt

 !="fc + l 
will be affinities, and will be a basic system.) 

c) Let us assume that there exists an n such that It can be sup-
posed that n=1. Since similarity preserves the property (P), we infer that 3?. 
Therefore there exists an injection which is not a quasi-surjection. Let 
{<*„}„ be a sequence of positive numbers such that 2 «„ II-PJ and let {T}' 

n = 1 

be the operator defined by Xf=a1X1P1f+ j? ockPkf ( / € § ) . If Xf=0 ( / € 5 ) , then 
'«¡ = 2 

for every n P„f— 0, and we can prove by induction that / 6 ( V %>k) for every n. 
' ksn 

Therefore / = 0 , and so X is an injection. On the other hand, (ran X)~ = 
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==(ran2rj)-4r(V S O ^ Ö i + t-V §,)=5, , \ - that-is:'Xis>nçta\qü^i-$utjection. There-
ngí ' n&a. ' 

fore T does not belong to the class, â?. ..-= • .. ^ d) Let us now suppose that 0, where a— H a(U„). Then for every n 
nsl 

there exists a reducing decomposition such ' that is unitary 
equivalent to the operator Ma. Let and §>"n denote the subspaces defined by 

= Then + and similai; tö r ; + 1 = 
= Ttt+1\9y'n+1 for every n. ; / , 

Let be an affinity, and let P'„ dénote thé canonical projection 
of §„ onto SX determined by the decomposition §„ = 5» + §„'> moreover let PZ 
be the projection: P^ = IS)n — P'n. Let {a„}„ .be a. sequence of positive numbers such 

thát •¿an(| |Zn | | | | / 'B ' | | + I I P J c » , and let Xi{T}' denote the operator defined 
»1 = 1 CO 

by Xf= 2! «n (Xn P'n + K) PJ ( / £ § ) • As in the preceding point, it can be easily 
n 1. . 

seen that X is an injection. On the other hand (ran X)' = V §„) + 
e . ns2 

+ ( V §„) = Ö, that is A' is not a quasi-surjection. Therefore T does not have n£2 . . . 
property (P), and the proof is completed. 

5. In this section we consider some corollaries of Theorem l j 

C o r o l l a r y 2. Let T be a c. n. u. contraction of class C u . Then T belongs to 
if and only if its Jordan model Af=A/¿l©M£2©... does. 

P r o o f . Cf. Theorem 1 and Lemma 3. 

C o r o l l a r y 3. Property (P) is a quasi-similarity invariant fór c. n. u. C^-con-
tractions. , 

C o r o l l a r y 4. If T is a c. n. u. C^-contraction having property (P), then its 
adjoint T* also has property (P). 

P r o o f . We have only to note that the adjoint of an operator of the form ME 

is unitary equivalent to the operator ME~, where E ={eu\e~"£E}. 

C o r o l l a r y 5. Let T be a c. n. u. contraction of class C u on the non-necessarily 
separable Hilbert space If T has property (P), then the space is separable. 

P r o o f . Let us assume that Thas property (P) and the space § is non-separable. 
Then there exists a decomposition § = © £>x reducing for T, such that for every 

ordinal a less than the ordinal /? the space" § a is separable. Let Ma= © ME be 

the Jordan model of the operator ,Ta=T|§a. Since m(Ea J>0 for every a 
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and p is non-denumerable, there exist a positive number e > 0 and a Sequence 
K } ~ 1 of ordinals less than /?, such that for every n we have m(Ex 

OO 
Let T' be the operator defined by T' = © T on the separable Hilbert space 

n=l 

© Taking into account that we infer that T Z & , and Ta£&> 
n = 1 

CO 

for every a</?. T' being quasi-similar to the unitary operator 0 M , it follows 
n = l 

that © Mx is unitary equivalent to the Jordan model of T'. By Corollary 2 we 
n = l " 

infer that © Mx € 0>, and Ma for every n. Now it follows by Lemma 7 that 

l i m m H © ~ M j ) = 0 . n-o° fcsn 
On the other hand for every n we have mU.r(© Mx ))^m(a(Mx ))=m(E )>e , 

kmn k " 
what is a contradiction. Therefore the space §> can't be separable, and the proof is 
completed. 

C o r o l l a r y 6. Let T be a c. n. u. contraction of class C u . If T has property (P) 
and £ is an invariant subspace of T such that 7T |£iC1 1 , then T"|fl has property 
(P) also. 

P r o o f . We infer by [4], VI.2.3, VII.1.1, VII.2.1 and VII.3.3 that d m ( e i r ) ^ 
^d T ( e u ) a.e. Now it follows by Corollary 1 and Theorem 1 that :T|£ has prop-
erty (P). 

C o r o l l a r y 7. Let T1 and T2 be c. n. u. contractions of class C n . If T1 and T2 

belong to the class then the direct sum Tx © T2 has property (P) also. 

Proof. We have only to refer to Corollary 2 and Lemma 5. 

C o r o l l a r y 8. Let 7 \ , T2, ... be c. n. u. contractions of class C u having prop-
oo 

erty (P). Then the contraction T= © Tn belongs to the class & if and only if 
n=l 

oo 
the series 2 ^Tn(eit) converges a.e. 

n = l 

P r o o f . Since Tn£ S?, it follows that dT (e")«=°o a.e., and the Jordan model 
Mn of T„ has property (P). (Cf. Theorem 1, Corollary 1 and Lemma 3.) On the 
other hand we infer by Corollary 2 that the condition T£ 0> is equivalent to the 

condition © But this latter is equivalent to m ( f | <r(© ^ k ) ) = 0 by 
n=l » s i kmn 

Lemma 7. On account of Corollary 1 and the proof of Lemma 6 we see that 
00 

m( p | <r(© M j ) = 0 holds if and only if ? dT ( e " ) « = o a.e., and this completes 
nSl tSB n = l n 

the proof. 
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6. Finally we intend to characterize the non-necessarily c.n.u. contractions of 
class C n having property (P). First of all we prove the following: 

Lemma 8. Let T€£?($>) be a c. n. u. contraction of class C u , and let i /6 JSf(91) 
be an a. c. u. operator. If both T and U have property (P), then their direct sum 
S=T®U£&(<&) belongs to Sf also. 

P r o o f . Let M£Se(S<) denote the Jordan model of T. By [7] there exist a 
basic system {fit}* of invariant subspaces of T, and a decomposition ft = © 93fc 

ksl 
of ft reducing for M, such that for every k r | £ t is similar to M't=M\^&k. Let 
Ck£J(M'k, T!£*) be an affinity (fc=l , 2,. . .) . 

Since T£ SP, we infer by Corollary 2 that SP also. Now by Lemma 7 it 
follows that m( f |C f f „ )=0 , where on=Co(Q> Mk) («=1, 2, ...). For every n let 

ft,, defined by ftn=Zff ( M ) f t = © ftn,„ ft>Zc ( M ) f t - © St'n k, ksl i s i 

where S^k=x.JL*Q*k, K*=Xc„„ (K>»* (k=1,2,...), and V 
" " ksl 

= v Kk> where § n > k = C t f t n i 4 , $ ; k = C t f t ; t ( f c= l ,2 , ...). It is clear that for 
ksl 

every n ft„ k={0} if k>n, and so ft„=© ft„ k . It follows that §„*={()} if 
k = l 

k > n , that is § „ = § „ , i + ••• + §„,„• Therefore the subspaces §>n and 9)'n are com-
plementary: + = and Tn = T\9)n is similar to M„=M\S<„. Moreover 
T'„=T\§'n is quasi-similar to M'n=M\Wn, and m(a(M^Aa^=m(a(M'n)ACa„)=0 
for every n. 

For every n let the subspaces 5R„, 5?^, <Sn, (£'n be defined by tRn=xa (C/)9i, 
SR^=XCff i i(^)9i.«„=§„©9in and Then the decomposition ( g = g n + g ; 
reduces S, moreover the restriction Sn=S\<£n=Tn®U„ (Un=U|9?„) of S onto G„ 
is similar to Mn®U„, and the restriction S'n=S\V„=T'n@U'„ (U'^U^'J of S 
onto <£'„ is quasi-similar to M'n © U'n. 

Let X£ {5}' be an arbitrary operator, and let n be a natural number. Let 

№ 
be the matrix of X in the decomposition + On account of Z e i s ' } ' we 
infer that X^eS(Sn, S'n). Let YneS(Mn®Un, Sn) and ZniJ(S'„,M'n®U'n) be 
quasi-affinities. Then the operator X'n=ZnX™Yn belongs to J(Mn®Un, M'n®U'n) 
and we infer by [9], Lemma 4.1 that (ker X'J-1 and (ran X'n)~ are reducing subspaces 
of Mn®U„ and M'n®U'„ respectively, and (Mnffi i /J | (ker X^)1- is unitary equiv-
alent to (M'n®U'„)\(Tza X'n)~. Since m(a(Mn©Un)Aan)=m(a(M'n© U'n)ACan) = 0, 
and M„®Un, M'n®U'n are a. c. u. operators, it follows that X'n=0, and so 
Therefore G„6Hyp lat (S). 
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On the other hand we infer by the equation m((~)Ca„)=0 that V ®« = ®-
RSI "SI 

Since we have that S„£ 0> for every n (cf. Lemma 5), an argument similar to the end 
of the proof of Proposition 1 completes the proof. 

It is well-known that for every contraction T of class C u on the Hilbert space 
f> there exists a (unique) "canonical" decomposition § = § 1 © § 2 ® of § reducing 
for T, such that J ' 1 = r | § 1 is a c. n. u. contraction of class C u , T2=T|§2 is an 
a. c. u. operator and T3=T|<jj3 is a singular unitary operator. (Cf. [4], 1.3.2.) 

T h e o r e m 2. Let T be a contraction of class C l l p and let T= © JT2 © T3 be 
its "canonical" decomposition. Then T has property (P) if and only if Tt belongs to 8? 
for i=l,2,3. 

P r o o f . Let us assume that Tfc SP for i = l , 2, 3. (The other part of the proof 
is trivial.) 

[X X 1 
v11 v12 be its matrix in the A 21 22J 

decomposition § = ( § i © § 2 ) © § 3 - Then X21 Zg ©T2, Ta), where M1 is the 
Jordan model of 7 \ , and Z ^ J ( M X @ T 2 , Tx©T2) is a quasi-affinity. Since M t ® T 2 

is an a. c. u. operator and T3 is a singular unitary operator, we infer by [9], Lemma 4.1 
that X21Z=0, and so Z 2 1 =0. A similar argument shows that X12=0 also holds, 
therefore © § 2 and § 3 belong to Hyp lat (T). Applying Lemma 8 the Theorem 
follows. 

It can be given a "canonical" functional model for an arbitrary singular unitary 
operator also. Now a singular measure fi plays the role of the Lebesgue measure, 
and the form of the space of the functional model is L2(Ej) © L^E^ © . . . , 

Lemma 3 also holds its validity if condition (ii) is replaced by 
n(E)=0. Taking into account the previous theorems, it can be easily seen that 
Corollaries 2—8 hold for arbitrary contractions of class C n also. 

* 

In a subsequent paper shall continue the study of the class 3? fl C n . Among 
others we shall show that, for quasi-similar ^ n c u -contractions, the lattices of C n -
invariant subspaces are isomorphic. (An invariant subspace £ for T is called C u -
invariant if T | f i € C u . ) 
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Beitrag zur Theorie der starken Summierbarkeit 
mit einer Anwendung auf Orthonormalreihen 

K U R T E N D L 

§ 1 . Einleitung 

1. Der Begriff der starken Summierbarkeit — ursprünglich eingeführt von 
HARDY u n d LITTLEWOOD i m Z u s a m m e n h a n g m i t F o u r i e r r e i h e n — findet s i ch in 
der Literatur in verschiedenen Formen. Wir legen hier die Definition nach BOR-
WEIN zugrunde, der in einer grundlegenden Arbeit [2] insbesondere die starke Sum-
mierbarkeit mittels Hausdorff-Verfahren untersucht hatte. 

D e f i n i t i o n 1. Es sei P=(p„v) eine positive Matrix (pBV^0), Q=(qnv) eine 
beliebige Matrix und 0. Eine Folge heißt bezüglich P, Q stark limitierbar 
von der Ordnung k gegen s: 

sn-s([P,Qf) 

wenn die folgenden Reihen alle existieren und wenn gilt: 

ZPn 2 tfvJlSx-S 
k 

o ( l ) . für n 
x=o 

Wir werden uns hier besonders mit der [Cß, CJ^-Summierbarkeit ( ß > 0 , a > — 1) 
beschäftigen, die in der Vergangenheit schon sehr oft untersucht wurde. Ohne 
Anspruch auf Vollständigkeit seien etwa erwähnt: HARDY—LITTLEWOOD [3] (ß=l, 

A = 0 , k=1,2), ZYGMUND [9] ^ = 1 , C T > - Y , k=2^; ALEXITS [1] (>5=1, O C > - L , 

k=2; [ Q , C A _ J A h e i ß t d o r t d i e s t a r k e C a - S u m m i e r b a r k e i t ) ; SUNOUCHI [7] 
1 \ 2 

a > — — , FC=ll; LEINDLER [6] ( a l l g e m e i n e P a r a m e t e r ) . 

2. Aus der starken Summierbarkeit läßt sich auf gewöhnliche Summierbarkeit 
schließen. So gilt allgemein, wenn P regulär und k^ 1 ist: [P, Q]FC=>Ö- (BOR-

Eingegangen am 5. September 1979, und in überarbeiteter Form am 22. Juli 1980. 
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WEIN [2], Theorem 3.) In unserem Fall gilt also [Cß, CJk=>CßCx~Cß+x (fcfel). 
Für läßt sich sogar auf kleinere Ordnungen schließen. 

Sa tz 1. Es sei ß>0, k> 1. Dann gilt 

(1) f u r * > - l + T . [ ^ ' C J - j f f i i M ) + a = 0 ( ( l n n ) 1 _ ( 1 / t ) ) ) 

(2) für a = -1 + [Cß, CJ» => *<«*>+«+• = o((ln ny-d/*)) (e s 0). 

Der erste Teil der Aussage (1) wurde in Spezialfalien bewiesen von ZYGMUND [9] 
( / } = 1 , 2), KUTTNER [5] ( ß = l , a=0, k> 1), HYSLOP [4] ( ß = l , k> 1). 

8 1 
B e m e r k u n g . Wählen wir für ein £ > 1 ß=k—l, so ist —= 1—— d . h . für 

I ß 
a = —1+— ist — + a = 0 und wir erhalten k k. 

, C_1+(1 / t )]* => o°„ = s„ = o((In n)1-W*>). 

Für k=2 liefert dies einen Satz von ZYGMUND [9]: 

[ Q , C_1 / 2]2S„ = 

3. Während man, wie oben erwähnt, für ß>0, aus der starken Summier-
barkeit [Cß, CJ* immer auf die gewöhnliche Summierbarkeit CßCx schließen kann, 
ist das Umgekehrte nicht der Fall. So hat schon WINN [8] ein Beispiel einer Folge 
gegeben, die CxCa-summierbar ist, aber nicht [Clt CJ1-summierbar. Man benötigt, 
um von der gewöhnlichen Summierbarkeit auf starke Summierbarkeit schließen zu 
können, noch eine starke Tauberbedingung. Da diese Bedingung öfters vorkommt, 
ist es zweckmäßig, eine Abkürzung einzuführen. OO 

D e f i n i t i o n 2. Eine Reihe 2 an genügt der Tauberbedingung T([P, Q f ) falls 
o 

' , na„ - 0([P,Qf). 

HYSLOP [4] z e ig t e n u n f ü r FCSL: 

{Ci Ca, TdC,, C, CJk)} o [Q, C x f . 

Dieses Resultat wurde verallgemeinert von BOR WEIN [2]. Er zeigte für eine beliebige 
Hausdorffmatrix H und k^l 

{Ci H, TdC,, C, H]k)} <=> [C,, H f . 
Wir werden zeigen: 

Sa t z 2. Es sei 0 < / ? ^ l , a > - l , k^ 1. Dann gilt 

{Cß Cx, T([Cß, Q C J ' ) } <=> [Cß, CJ. 
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B e m e r k u n g e n . 1) In der Richtung => läßt sich der Satz verschärfen. Es 
genügt, Cx Ca vorauszusetzen. 

2) Ist P regulär, so folgt für beliebige Matrizen Q und Q=>LP, Q]k 

(vgl. BORWEIN [2], Theorem 3). In unserem Fall lautet die Aussage: Ca=>[Cß, CJ*. 
Mit der Verschärfung unseres letzten Satzes können wir zeigen, daß wir den Index a 
in der Folgerung erniedrigen können. Ersetzen wir nämlich dort a durch a —1, so 
lautet die Aussage 

4. Als nächstes zeigen wir, daß Orthonormalreihen unter einer gewissen Koeffi-
zientenbedingung eine starke Tauberbedingung erfüllen. 

Sa tz 3. Es sei 0 < / ? S l und y cn<p„(x) eine beliebige Orthonormalreihe. Dann 
folgt aus 

0 ) ¿ n 1 - ' ^ « - für 
I 

(2) 2 nl~ß l n ncl ^00 f ^ « = 

die Tauberbedingung T([Cß, CJ2) f . ü. 

Aus den beiden vorangehenden Sätzen folgt schließlich aus Bemerkung 2 zu 
Satz 2 und Satz 3: 

Sa t z 4. Es sei 0 < j ? S l und 2 cn<Pn(x) eine beliebige Orthonormalreihe. Dann 
folgt aus der Cx - Summierbarkeit f . ü. und 

(1) ¿n1-'^«» für 
I 

(2) 2 M1—^ ln /JCJ < °° für « = 1 

die [Cß, Ca _ J2-Summierbarkeit f . ü. 

§ 2. Beweis von Satz 1 

Wir benutzen öfters, mit der üblichen Bezeichnung = die Beziehung 

n-1 jft . . . . . . °° 
2 — I n n (y>- — 1). Ferner definieren wir wie üblich für eine Reihe 2 a* 

v=i n — v »=0 
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mit Partiälsummenfolge { i j " die. n-ten Gesaromittel der Ordnung a: . 

j » 1 " 's" ' 

' . . . • • v=0 ' • • ' n • • 

v > 1) Es genügt, den Satz unter der Annahme, g cr„.= 0([C«, CJ*) zu beweisen. 
, J '. ".' \ 0 

Ist nämlich 2 a n = s ([Cß> ^ J ' ) ' so folgt für die Reihe 2 =.(a0—s).+.avf.... 

0 . . . . , 0 

wegen ö*n=ol-s: 2 ä„=o([Cß, CJ ') . Hieraus folgt dann 0 bzw. 

¿^№+«+«=0((ln ¿ i - u / * ) ) u n d damit ; bzw. 
.„,,, -2).Es.sei ,al§ou ¿ A n < = 0 < l C . t r C £ ) , .d. h... J Klk=.o(«0- Dann folgt mit 

0 v=0 
der Hölder'schen Ungleichung für eSO: • 

mit 

'=0 
n I ( n 1 

v=0 I ly=0 > 

Nun ist : T-': 

S; = O ( l ) j ( n _ 1 + ( 1 / l ) + £ ) ' ' / ( l ' - 1 ) + {{n - = 

= 0 ( 1 ) { » " 
v=l 

1 k a) für a > —1+ —, d .h . a - — — 1 u n d £ > 0 ergibt sich 

?„ = 0 ( l ) { n -

= 0 ( 1 ) 2 A^'M-VA'M-» = v=0 

Es folgt s V n + ' + t = o ( n " k ) 0 ( n a + * ) order a ^ + x + c = o(l). 

b) Für 0 0 —1+-^- und e = 0 ergibt sich 

{n-l i .(i / t-1) 1 

n - i + 2 ^ _ + „ * w « - i > } = 

• V = 1 n — V - ) • 

= ÖiO^n-1 +n« Wfc-U in M + „•€*/*-!)} = Orn'W'-^lnn). ¿S: folgt sWt>+» = o(> /*) -Ö(«at(ln «)<* oder a<' / , !>+I=o((in n)«Ll>"). 
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c) Für a = — u n d £ > 0 ergibt sich . ; { ! ; 

5„ = 0 ( l ){n - H C < ' i / 4 - 1 >+ ^ ^ ^ + n _ 1 | = 

= 0 ( l ) { n - 1 + t W ' - 1 i + r 1 + t < t " - 1 ) l i i : n + » - 1 } = 0(n-1+eWk~innn. 

Eä folgt s^ l k ) + a + e =o(n ß l k ) -0(n~ i k ~ l l k ^ + , : ( lnny k ~ 1 ^ k ) oder ' 'V 

o<''k>+'+t--.= ofclnn)«-1»!1). , 

d) Für a = —1+4- und £ = 0 ergibt sich K 

= + ^ J ( 7 + ^ 3 7 ) } = 0 ( l ) | 2 w - 1 + - ^ - l n n j = O i n - ^ l n n ) . 

Es folgt s +* = o(nßlk) •0(n-(k~1>/k(\r\nyk-r»k) oder <r^*>+*==o((ln n)< f c^k) . 

§ 3. Beweis von Satz 2 

1) Es sei 2 ° n = s dCß , CJ*). Dann folgt zuerst (Cß, Ca). . Fjerner 
mit der bekannten Beziehung 

(3-1) = A .V.:l . . . 

N V=L A N V = 1 

= °V)\-Jß 2 J? ¿ ^ i r K ' - s l } = 0(l){(l)+(2)}. lsln v=o /i„ y-0 J 

Da aus der Cß Ca-Summierbarkeit die C1Ca~C1+1I-Summierbarkeit folgt, gilt 
<r"+1—s und wegen der Regularität von Cß folgt ( l )=o ( l ) . Die Voraussetzung 
besagt gerade (2)=o(l) . Damit ist gezeigt, daß 0 ([Cß, C 1 + J k ) d. h. esgi l t 
T([Cß, C1+j): 

2) Es sei 2 <¡=3(^0 und es ge l t eT([C ß , C1+a\k). Mit ( a - M ) < = t « + 1 + 
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+ ( a + l ) < r j + 1 und (a+ l ) (o^—s)=T^ + , +(a+l ) ( f f^ + 1 —i) folgt 

4f i ^ K - ' l ' = 2Alz)K+1\k+^r ¿^K^-si*} = An y=0 F=0 <*n F=o J 

= 0(1) {(3)+(4)}. 

Die Voraussetzung Z a * = s ( Q Q ) besagt — s. Hieraus folgt wegen der 
o 

Regularität von Cß (4)=o( l ) . Die Voraussetzung T([Cß, C1 +JK) bedeutet gerade 
(4)=o( l ) . Damit ist die [Cß, CJ*-Summierbarkeit gezeigt. 

§ 4. Beweis von Satz 3 

Die zu beweisende Tauberbedingung T([Cß, Cx]k) lautet 

4? ¿^-v|til2 = o(l). Aa v=0 
Wir setzen > 

öH(ß, a; 2 ; * ) : = 1 ^ ! < ( * ) - < " W 

und haben also wegen (3.1) zu zeigen: S„(ß, a; 2; ,x)=o x ( l ) f. ü. 

1) Wir behandeln zuerst den Fall 

a) Für v s l gilt (vgl. etwa ALEXITS [1] S. 67): 

ftf-a%-^dx = - Z / W - - ) ) ^ . 

Hieraus folgt 

f s . ( ß , a; 2 ; x)dx = -L- J A ^ - ^ - Zj2(A°z)Yc*j = 
a a v-1 j= 1 

**AZ£} (Aty • 

Wegen — 1 — 1 < 0 ist mit fc monoton abnehmend, also Aß
nz)^ \ . Wegen 

R j ~ , ? j i Ä « r - 0 I t J 
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(vgl. etwa ALEXITS [1], S. 102) ergibt sich 

¡ S M 2; S = O W ^ h c ) . 

Für eine beliebige Folge {«¡}~ natürlicher Zahlen mit folgt (n o=0): 

2 f S m ( ß , «; 2; x)dx =S 0(1) f j f j c j = 
• = i ; ¡=i j=i 

= o ( i ) i - i . ( i 1 ¿4 = 0(1) 2 Z-ir 2 ic) = 

1=1 A«, J=nk_x+1 ' k=li=k slni ^=nl[_1+l 

fc=iy=Bfc_1+i ;=<c -^n, 
Wählen wir «¡=2'" (i = l , 2 , . . . ) , so gilt 

~ 1 ~ 1 ~ 1 0(1) ~ 1 1 

Nun gilt für j ' s 2 ß k . Es folgt 

2 f s v ( ß , «; 2; x)dx ^ 0(1) J 2 j1''^'^ S 0(1) ¿ ^ - ' c j 
i=l„ lt=iy=2fc-» + l 7=0 

Hierausfolgt ö2n(ß, a; 2; x)—0 f. ü. 
b) Für 2"<fc<2" + 1 folgt mit *„(*) : = ( < ( * ) - o f 1 ^ ) ) 8 aus , 

ök(ß,«;2-,x)-ö„(ß,x;2;x)= 2 {<5V(0, a; 2; x ) - ^ . ^ , <x; 2; x)}: 
v = 2 n + l 

(l) = | ^ 0 ? , a ; 2 ; x ) - 5 2 „ ( ^ a ; 2 ; x ) | ^ 2 I W «; 2; x)-S^1(ß, oc; 2; x)| s 
v=2"+l 

2«+l v _ l / jß-1 A ß - 1 \ i ß - 1 

Aus O s & ^ v — l < v folgt und hieraus 

'-t AU-k _ (v-k+ß-1 v .) __ AtU kß-v 
£ AUi M-x \ v - f c 'v+ß ) A?_! "(v-fe)(v + Ä 
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Hieraus ergibt sich unter Berücksichtigung von Aß
0~1=\: 

2» + l v - l / j ß - 1 jß-1) 2" + 

V = 2 " + L * = 0 > V = 2"M 

2"+1 f j W 
2"+l A> 

2" + 1 v-2 Aß-l 2» + 1 ,r /V^ 

V=2N + L * = 0 V = 2" + 1 

2 N + 1 V - 1 Aß-} 2N + 1 „ /"V"» 

- 2 2 = v = 2"+l*=0 v=2" + l 

2» + l_ L „ - 1 jß-1 2" + 1 „ 

= 2 2 ^ o k ( x ) + 2 ^ j T 1 -
11 = 2" k =0 v = 2»+l 

2» + l v_l jß-1 2" + 1 „ 

- 2 2 2 = 
V = 2N + L K = 0 ^ V V=2 N +L ^ V 

2 " - L 

= 2 ¿ = 0 A$„ 

2N + 1— 
ok(x)~ 2 

k — 0 

1 Aß-l 

A$„+i 

2" 

^ 2 
T = 0 

Aß-1 A2"-k 
2» + L 

**(*)+ 2 • 
* = 0 

2" 

^ 2 
T = 0 n 

2» + L 

**(*)+ 2 • 
* = 0 A» , 

V , ' TvOc) 

=¿2-0?, a ; 2; + «; 2 ; x) + 2 2 
v = 2n 

°° ff (x) 
Da die letzte Summe ein Cauchy-Abschnitt der Reihe 2 \ ß ist, folgt mit 1) die 

1 v 
Aussage lim ök(ß, a ; 2; JC)=0 f. ü. wenn wir noch die Konvergenz f. ü. dieser k~-oo 
Reihe zeigen. Dies folgt aber aus 

1 OO oo 1 " 1 ~ ( AX~1\2 °° 

- — y i«C2. VILLLZIL < _L Y ;2C2_L Y ^v-j) _ Q( I\ y ;l-ßc2 

2) Wir betrachten nun den Fall a = y -
a) Hier ergibt sich im Beweisschritt la) eine andere Abschätzung für JtV2: 

°° (A-1'?)2 2J 
DL/2 _ Y '• V - J / _ Y I Y 

J A (ji/z\2 A"1" A . • 
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Es ergibt sich 

, 1 a W F J K ' ^ = 0 ( 1 ) 7 (' + i " r ) - ' 0 

2 = o ( i ) i i ! ^ t i = o ( i ) 2 i = 
v=2y+l v=2j+l V v=2./+l v \] J 

Es ergib t sich a lso Hie raus fo lg t schließlich ¿2„(ß, a;2; x)=ox(l) 

f. ü. , wenn wir die Vorausse tzung de r Aussage (2) heranz iehen . 
b) D e r zweite Teil des Beweises ver läuf t ana log wie l b ) bis z u m Schluß, w o 

wieder d ie obige Abschä tzung f ü r RV2 u n d d a n n die Vorausse tzung der Aussage (2) 
herangezogen werden m u ß . 
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The boundedness of closed linear maps in C*-algebras 
SEIJI WATANABE 

The domain of a closed ""-derivation in a C*-algebra has many properties. 
In particular, OTA [6] studied such domains by using Lorentz representation and 
obtained some interesting results on the boundedness of closed ""-derivations. Espe-
cially, he showed that a closed ""-derivation, which is bounded on the unitary group 
of the domain, is bounded. 

Now in connection with strongly continuous one-parameter semi-groups of 
positive maps on C*-algebras, we are interested in the boundedness of more general 
closed linear maps. One of the crucial points in [6] is that the domain of a closed 
""-derivation becomes a semi-simple Banach ""-algebra under the graph norm. Although 
such fact is not valid in our general situation, we have some generalizations of results 
in [6] by virtue of a simple lemma on Banach algebras. 

Let A and A0 be respectively a unital C ""-algebra and a ""-subalgebra of A which 
contains the identity e of A. The following lemma is elementary, but it is essential 
in what follows. 

L e m m a . Suppose that there exists a closed linear map $ of A0 into a Banach 
space. Then A0 is a semi-simple Banach algebra with an isometric involution under 
some norm || • ||' which is equivalent to the graph norm || • II" II+ 11 ̂ (Oil-

P r o o f . Since (A0, || • || 0) is a Banach space, by the closed graph theorem, the 
product in A0 is separately continuous with respect to || • ||®. and hence A0 is a 
Banach algebra under some norm which is equivalent to || • Ĥ  (see [8, p. 5]). Since 
A0 is semi-simple by the proof of [8, Theorem 4.4.10], JOHNSON'S theorem [5] implies 
that the involution is continuous in || • IL> and hence we have the desired norm 
|| • ||' by another equivalent renorming. The proof is complete. 

By the above lemma and [8, Theorem 4.1.5], it follows that a ""-subalgebra A0, 
which is the domain of a closed linear map, has sufficiently many unitary elements, 
more precisely, every element of A0 is a linear combination of unitary elements 
of A0. 
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An involutive Banach algebra is said to be C Equiva lent if it is *-isomorphic 
to some C*-algebra. B. Russo and H. A. DYE [9] showed that a linear map on a 
unital C*-algebra, which is bounded on the unitary group, is bounded. This result 
and the above mentioned remark suggest the following: 

T h e o r e m 1. Let <P be a closed linear map of A0 into a Banach space. If $ is 
norm bounded on the unitary group of A0, then A0 is a C*-algebra and $ is 
bounded. 

P r o o f . Since the norm || • ||' in the Lemma is equivalent to the graph norm 
|| • II,,), there exists a constant N > 0 such that M '^ -WIM® for all a£A0. Then 
we have 

sup{||u| | ' : u is unitary in A0} S iVsup {1 + ||<P(M)|| : u is unitary .in A0} ^ 
S N+Nsup {||#(tt)||: u is unitary in /4 0 }< + » . 

Hence from [7, Corollary 12] A0 is C*-equivalent, which implies that A0 is a C*-alge-
bra. Hence by the closed graph theorem or by Corollary 1 in [9] <P is bounded. 

Theorem 1 implies that any closed * -homomorphism of A„ into A is automat-
ically bounded. Moreover, this assertion is true for a more general class of maps. 
More precisely, let $ be a 2-positive map from A0 into another C*-algebra B, that 
is, for all pairs x2} in A0, the matrices (<P(xfxj)) are positive in the C*-algebra 
of all 2 x 2 matrices over B. Then the Schwarz inequality <P(a*) <P(a)^|| $(e)| | $(a*a) 
(a€A0) follows easily ([1], [4]), and hence $ is bounded if it is closed. 

It is natural to ask if every closed positive linear map <P from A0 into another 
C*-algebra B is automatically bounded, where positivity of 0 means that &(a*a) 
is positive in B for all a£A0. We have however no answer to this question. 

Now let (f be a completely positive linear map on A and put Lai(x) = <P(x) — 

- j {<P(e)x+x<P(e)} for x£A. Then the generator of a uniformly continuous 

semi-group of unital completely positive maps on A is essentially determined by 
two/classes of operators, that is, *-derivations on A and maps of the form L9 for <P 
([2]). In this connection, the following corollary is interesting. 

C o r o l l a r y . Suppose that A0 is strongly dense in A. Let 4> be a completely 
positive map from A0 into A. If L0 generates a strongly continuous semi-group of 
linear maps on A, then A0=A, that is, <t> is everywhere defined. 

A linear map <5 f rom A0 into A is called a Jordan derivation if S(h!:)=hS(h)+ 
+5(h)h for all h=h* in A0. Then we have the following theorem, which is a 
generalization of Theorem 2.4 in [6]. 

T h e o r e m 2. Suppose that A„ is strongly dense in A. Let 8 be a closed Jordan 
derivation from A0 into A. If A0 is closed under the square root operation of positive 
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elements A0C\A+ where A+ denotes the positive part of A, then S is everywhere 
defined and is bounded. 

P r o o f . Since the norm || • ||' in the Lemma is equivalent to the graph norm 
|| • ||a, lim ||JCb||J/b exists and is equal to lim | |xT 1 / n for x£A0. Hence, for h=h*£A0 n-+<x> n — oo 
we have 

lim|| W = lim (||ft||2"+ [|<5(ft2")ll)1/2n ^ n — oo n-*oo 
^ lim ||ft||{l 4-(2"||<5(ft)||)/||ft||}1'2" = ||A|| 

because \\d(hin)\\^2n\\hf"-1\\d(h)\\ ( « = 1 , 2 , 3 , . . . ) where H I is the norm of A. 
Hence 

lim ||fin|r1/n ||ft|| = inf {21^,1: ft = " . ' s are unitaries in A) == 

S i n f { 2 U i h ft = 2 ¿¡"i* "i's a r e unitaries in A0} 
which implies that the semi-simple involutive Banach algebra A0 is hermitian from 
[7, Corollary 5 and 9]. Denote the spectrum of an element x of A0 in A (resp. A0) 
by sp (x) (resp. sp0 (x)). Now let h be a hermitian element of A0. If sp0 (ft) ̂ 0 , then 
sp (ft)=0, and hence there exists a hermitian element k in A0 such that k4=h f rom 
our assumption. Hence sp0 (k2) = {A2: l6sp„ since A0 is hermitian. There-
fore, A0 is C*-equivalent f rom [3, Corollary], which implies that A0=A, and hence 
5 is bounded from the closed graph theorem. The proof is completed. 
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On the Korovkin closure 
V. KOMORNIK 

Let X be a topological space and denote by C(X) the vector lattice of all con-
tinuous real functions defined on X. Given a linear subspace §><^C(X), we denote 
by $o, as usual, the set of all ^-bounded, continuous functions: 

So = { /€C(Z) : B A i . M S with h s / s h2}. 
We define the Korovkin closure of frj as the set of all functions / € § 0 having the fol-
lowing property: "For every net (£;),• of positive linear maps L{. £)„-*-§„ such 
that L.h converges to h pointwise on X for all LJalso converges to / point-
wise on X." 

We denote the Korovkin closure of the linear subspace § by Kor (§). The fol-
lowing inclusions are obvious: 

S c K o r ( § ) c § 0 c C ( I ) . 

This paper is devoted to the characterization of Kor (§) in some general cases. 
We shall extend some results of H . BAUER [1] and K . DONNER [2]. 

To formulate our theorems, we recall the definition due to H. Bauer, of the 
space of S-affine functions. This space, denoted by consists of all /€£j 0 satisfying 
the equality 

sup h s / } = inf h s / } . 
We shall prove: 

T h e o r e m 1. If X is locally compact and Hausdorjf, then for all linear subspaces 
§ of C(X) the following identity holds: 

Kor (S) = 

R e m a r k 1. This identity was proved by H. BAUER [1], Theorem 3.3, in the 
special case when the linear subspace § is adapted, i.e. satisfies the following three 
conditions: 

(i) S = where = h i- 0}, 
(ii) MxdX 3hx£$>: hx(x) ^ 0, 

(iii) 3 V e > 0: the closure of {t£X: \h(t)\ > £• |fcx(0l> i s compact 
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R e m a r k 2. Recently K. DONNER [2] proved a general theorem which can be applied 
to our situation when $ 0 is a vector lattice. But Sj0 is a vector lattice if and only if 
S j = § + — §+ . Thus Donner's result yields that special case of our theorem when the 
linear subspace § satisfies the condition § = § + — 

Theorem 1 will be got as a special case of the following more general one: 

T h e o r e m 2. If X is a topological space and § is a linear subspace of C(X), 
then each of the following five conditions implies the identity Kor ( § ) = § : 

(a) X is locally compact and totally regular, 
(b) 
(c) dim 
(d) all the functions in § are bounded, 
(e) each point of X has a neighbourhood in the weak topology, induced by 

C(X), where all the functions from § are bounded. 

In the proof we shall use the following lemma, essentially proved by H. Bauer: 

L e m m a . For any g£ f j 0 , xdX and c^R such that 

sup {h(x ) : g ^ c s inf {h(x): g 
there exists a positive linear functional ¡x: §0-»R with 

(A) fi(g) = c, and 
(B) n(h) = h(x) for all 

P r o o f (compare with [1; 2.2 Lemma]). On § 0 the map /»-•inf {h(x): 
is a sublinear functional p. This functional majorizes the linear form X-g^-X-c 
defined on the linear subspace of § 0 generated by g. The Hahn—Banach theorem 
hence implies the existence of a linear form \i on § 0 satisfying (A) and the relation 
f i ^ p . (B) and the positivity of /i follow from this latter inequality. 

P r o o f of T h e o r e m 2. The relation i j c K o r (§) is well-known (see [1], 
Corollary 1.3). Conversely, we shall show that given any § 0 \ § , S does not 
belong to Kor (§). 

As condition (e) is weaker than conditions (a), (c), (d), we treat only cases 
(b) and (e). 

Because of there is a point x£X and a number c£R such that 

sup {fc(x): g a / ,£§} < c < inf {h(x): g ^ c * g(x). 

Let us fix by the above Lemma a positive linear functional ¡i satisfying (A) and (B). 

By the relation g€£>0\§> we can choose a function h0 with 

(C) /i0<E§, / i „ S 0, ft0(x) > 1. 

(Indeed, for any functions hlth2£9), h^g^h2 we have h2—h1^0 and h2(x) — 
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If condition (b) is satisfied, fix a neighbourhood base 3d of x in the weak topology 
induced by C{X) so as to satisfy 

(D) h0(t) > 1 for any te U£t%. 

If condition (e) is satisfied, fix a neighbourhood base 38 of x in the weak topology 
induced by C(X), satisfying over and above (D) also the following condition: 

(E) Each function from § is bounded on each element of 38. 
Assign to every U£3S a function qv£C(X) such that 

(F) O s i j s l , qv(x) = 1, qv(t) = 0 for all t£X\U. 

(This is possible because the weak topology is totally regular.) 
For U£38 and / € § 0 we define 

Lvf= /*(/) • qv+f-f- <lu-

Obviously, Lv\ §0—C(X) is a positive linear map. Moreover, Lu: § 0 - » § 0 is also 
true: being § 0 a linear subspace, this will follows from the two relations q ^ h o 
and f - q ^ t o (for all U£38 and /€§„) . The first relation follows from (C), (D) 
and (F): 0 ^ q u ^ h a . If condition (b) is satisfied, then there is an h£9> with —/zS 
s f - ^ h from which we get — h ^ f - q u ^ h , proving the second relation. If condi-
tion (e) is satisfied, then / • qv is bounded by (E), (F) and vanishes on X\U then 
there is therefore by (C) and (D) a real number d with —d-h^f-qu^d-h0. Hence 
again § 0 . 

Finally, take the net (Lu)uesl of positive linear maps Lü: §0—5j0. An easy 
computation shows that the net (Luh)uees converges to h pointwise (moreover uni-
formly) on X for all h£§> (n(h)=h(x) by (B)), but the net (Lug)ui3i does not con-
verge to g pointwise on X because ((Lug)(x))ue^ is a constant net with the constant 
H(g)—c^g(x) by (A). Thus g does not belong to the Korovkin closure of § and 
the theorem is proved. 

R e m a r k . The results of this paper (and the proofs) remain valid if we replace 
pointwise convergence by uniform convergence on the compact subsets of X in the 
definition of the Korovkin closure. The author wishes to thank Dr. Z. Sebestyén 
for having followed with attention these investigations. 
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On the convergence of solutions of 
functional differential equations 

T. KRISZTIN 

1. Introduction 

The application of Ljapunov functions and funct ional has proved to be useful 
in the study of the stability of solutions of functional differential equations. Such 
i n v e s t i g a t i o n s w e r e i n i t i a t e d b y N . N . KRASOVSKII [9] a n d B. S . RAZUMIKHIN [10]. 

The Ljapunov functions and functionals are usable for studying other properties, 
t o o . F o r i n s t a n c e , S. R . BERNFELD a n d J . R . HADDOCK ([1], [2], [4]) e x a m i n e d t h e 

existence of the limit of solutions as t— °° by the aid of Ljapunov functions. But 
their method was not applicable when the right-hand side of the equation is the sum 
of an ordinary and a functional part of the same order. But such equations have 
occurred in the applications, for example in the investigation of biological popula-
tions [3]. In this case the problem was solved for certain autonomous and periodic 
equations only [5], [6]. In this paper we give a sufficient condition for the existence 
of the limit of solutions in case of non-periodic equations. Our main result guarantees 
the existence of the limit of a Ljapunov function along the solutions as /-•«>. We 
present several applications in which we show that the solutions or their norm tend 
to a constant as / — <*>. Among these, we study a stability example of N. N. KRA-
SOVSKII proving that his assumptions imply the existence of the limit of solutions 
in addition to the stability of the zero solution. 

The main theorems are valid results for functional differential equations in 
any Banach space X. But they also yield new results for the special case X=R 
(Section 4). 
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2. Notations and definitions 

Let R be the set of real numbers and R+ the set of nonnegative real numbers . 
Let X be a Banach space with norm | • | and let C—C([—r, 0], X) denote the space 
of continuous functions which map the interval [—r, 0] into X, where r > 0 . For 
(p€C define | M | = max^ |q»(s)|. If x: [/„—r, X is a continuous function 
(t0£R+, 0<A^<=°), then for t£[t0,t0+A) the function x,£C is defined by x,(s) = 
=x(t+s), -rSiS0. 

We consider the nonlinear, non-autonomous functional differential equation 

(2.1) x(t) = F(t,x,l 
where F: R+xCr-~X, C f c C . 

Let t0£R+ and (p0£CF be given. A function x(-)=x(t0, cp0)(•) is said to 
be a solution of (2.1) (with the initial function (p0 at t0) if there exists a number A 
(0</4^«>) such that * ( • ) is defined and continuous on [t0—r, t^+A), absolutely 
continuous on the bounded intervals of ft0 , t0+A), x,o=(p0, x,£CF for t0 + A) 
and x(t)=F(t, xt) almost everywhere on [?0, t0+A). In this paper we suppose 
A = ° i . e . the solutions of (2.1) exist for t=ta (see, for example, [7], [8]). 

By a Ljapunov function we mean a continuous function V: [—r, °°)xX-~R. 
The upper right-hand derivative Z)(+ 1}V of a Ljapunov function V with respect to 
system (2.1) is defined by 

£(+2.I> V(t, <p) = „Em j \V(t + h, <p(0) + hF(t, <p))- V(t, <p(0))] ((/, cp^R+X CF). 

If V is a Ljapunov function and ( t , c p ) £ R + x C F , then let 

V(t,(p)= sup V(t + s, <p(s)), V(t,(p)= inf V(t+s, <p(s)). 
- rgsso —rssao 

Finally, for a Ljapunov function V and given numbers O o / ^ e define 

n, £) = {(/, <p)dR+xCF: V(t, <p(0)) £ £, V ( f , <p) ^ 2s, V ( f , <p)-V(t, <p{0)) < f/}, 

S(V, n, e) = {(i, <p)£R+XCF: V(t, <p(0)) ss -£, 
V(t, <p) is - 2 e , V(t,<p(0))-V(t, <p) < r,}. 

3. The main result 

The main result guarantees the existence of the limit of a Ljapunov function 
along the solutions of (2.1) as t—<*=. 

T h e o r e m 3.1. Suppose that for a nonnegative Ljapunov function V there exists 
a functional W\ R+XCF—R with the following property: for every e > 0 there exist 
r\ = t){e)>0 and c = i ( e ) > 0 such that 
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(i) if (t,<p)€S(V,ti,e), then 

(3.1) Wit, cp) ^ C [V(t, q>) - V(t, <p (0))], 

(ii) if x(-) is a solution of (2.1) and (t, x,)aS(V, t], e) for every f€[/i, /2] 
(ta^tl^t2), then 

fs 
(3.2) V{ts,x(t^)-V(tltx(t^)^ f W(t,x,)dt. 

'i 

Then for each solution x(-) of (2.1) Hm V(t, x(t)) exists. 

We first prove the following lemma. 

L e m m a . If the conditions of Theorem 3.1 are satisfied, then for each solution 
x( •) of (2.1) the function V( -, x.) is non-increasing. 

P r o o f . Assume that (2.1) has a solution x ( - ) such that F ( - , x . ) is not a 
non-increasing function. Then there exists a and in any right-hand side 
neighbourhood of tY there exists a t such that V(t, x, ) = V{tx, x(f !))>(). 
Let e be chosen such that 0 < £ < r ( ( 1 , x ( / J ) < 2 £ and choose rj=i](e), <̂  = £(e) 
according to assumptions of the lemma. Obviously there exist t2, t3 such that 

> i 2 S i I , t 3 - t 2 ^ j , V(t2, x ( i 2 ) )=F( i 1 ; x ( i 1 ) )<F( / 3 , x ( i 3 ) )g2£ , K ( f 3 , x ( f 3 ) ) -

-V(t2,x(t2))^ri and if te[t2,ts\, then V(t2j x(r2))== V(t, x(t)) and F(t, *,)== 
s V(t3, x(t3)). For such t2, t3 we have (t, x,)€S(V, tj, e) provided f£[/2, f3]. Also 

(3.3) V(t,xt)-V(t,x(t))^V(t3,x(t3))-V(t2,x(t2)) mt2,t3]). 

It follows from (3.1), (3.2) and (3.3) that 
> 

V(t3,x(t3))-V(t2,x(toJ)^ f W(t, x,)dt == 
h 

fz[V(t,x,)-V(t,x(t)y]dt^ f Z[V(t3,x(t3))-V(t2,x(t,))-] dt = 
>i h 

= ( h { t 3 , x(t3j) - V(t2, X ( A ) ) ] . 

Hence r3 —¿2=4-- This is a contradiction. The lemma is proved. 

P r o o f of Theorem 3.1. Suppose that (2.1) has a solution x ( - ) such that the 
limit \imV(t, x(i)) does not exist. Then Hm V(t, x , ) = a > 0 (this limit exists 
by Lemma). Let £ be chosen so that 0 < £ < a < 2 £ and choose r]=ri(e) and £ = ( e ) 
according to the assumptions of the theorem. Then we can find a constant ft 



48 T. Krisztin 

^0</?<min j-|-, numbers f l s f2 such that 

(3.4) < , > i i S i „ U - t ^ r , 

(3.5) V{t2,x(tJ)-V(tl,x(tj) = 

(3.6) V(h, xtl)-a < \z-V(tt, ^ J-, 

0 S V(U, x(Q) - V(t, x(t)) ^ p ф, 

(3.7) V ( / l f 3 V ( t 1 , x , l ) ^ 2e, 

(3.8) V i t ^ x J - V ^ x i t ^ ^ y , 
where y > 0 and 

, iil , 

From (3.8) and the monotonicity of F( •, x.) it follows that 

(3.10) F(f, x,)-V(t2, xiQ) ^ у (tati, /J)-

Since by (3.6) we have 

(3.11) V(t,x,)-V{t,x(tj) Ш V(t, х,)-а + \а-У(12,х(и))\ + У(1,,х(12))-У(1, x(t)) < 

From (3.5), (3.6), (3.7) and (3.11) we obtain (/, x,)€S(K, t], e) for t£[tlttj. Thus, 
(3.1) and (3.2) hold for (t, xt) as f€[f l 5 i j - Let f2] be the greatest number 
for which 

(3.12) V(t%, x(i2))-V(rk, x(zk)) = ky (fc = 1, 2, .. . , 

From (3.10) and the choice of тк it follows that 

(3.13) V(t, xt)-V(t, x(t)) ^ ( fc+l)y ( I € [ T T , / J ; к = 1, 2 , . . . , [ A ] ) . 

By (3.1), (3.2), (3.12) and (3.13) we have 

у = V(xk_1, xix^-Vix,, x(rk)) =s / V(i, x,) dt ^ 

S J"<i[V(t, x,)-V(t, x(t))-]dt ^ J'\(k+l)ydt = 
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Hence T t . i - T t ë y ^ j - , Thus , by (3.9) 

1 ft 1 

which contradicts (3.4). This completes the proof. 

R e m a r k 3.1. If the Ljapunov function F i n Theorem 3.1 is locally Lipschitzian 
and W=D^1)V, then for each solution x ( •) of (2.1) the assumption (3.2) is 
satisfied and even 

I? 
V{k, x i t ^ - V ^ x i t J ) = J D(2.i)V(t, x,) dt (t0 ^ ix s Q. 

h 

This can be shown as follows. If x(t) = F(t, xt), then x(t+h)=x(t)+hF(t, x t ) + 
-t-o(A) (h— 0 + ) . From the Lipschitz condition for F we obtain 

V(t+h, x(t+h))-V(t, x(0) S V(t+h, x(t) + hF(t, x,j)+L|o(/i)| — V(t, x(t)) 

( f t - 0+), 
where L is the Lipschitz constant for F on a neighbourhood of (t, x(f))- Hence 
D+ V(t, x W j s ^ . , ) ^ / , xt), where D+V(t,x(t)) is the upper right-hand deriva-
tive of F along the solution x(t) of (2.1), that is 

D+V(t, x(0) = ^Bm j[V(t+h, x(t+h))-V(t, x(t))l 

Likewise we can prove D+V(t, x(t))^D^21)V(t, x^ and we obtain 

(3.14) D+V{t,x(t))=D&1)V(t,xl). 

(3.14) was proved by T. YOSHIZAWA [11] for ordinary differential equations in the 
case X—Rm. Since F is locally Lipschitzian, F ( • , * ( • ) ) is absolutely continuous 
on every bounded interval of [i„, =») and thus 

(3.15) V(ti,x(Q)-V{t1,x(t^)= ¡D+V(t,x(t))dt (t0 s ^ S t j . 
h 

From (3.14) and (3.15) it follows that our statement holds. 

C o r o l l a r y 3.1. If for every e=»0 there exists an Tf=t](e)>-0 such that 
(t, ç>)ÇS(|<j!)(0)|, tj, e) implies .D^ J ^ I ^ O , then for each solution x ( •) of (2.1) 
l im |x(f)| exists. t-~ oo 

P r o o f . We apply Theorem 3.1. Let V(t,x)=\x\ and W(t, (p)=Df21)\<p\. Since 
the condition of Corollary .3.1 is stronger than condition (i) of Theorem 3.1 and thé 
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function V is locally Lipschitzian, from Remark 3.1 it is obvious that the limit 
exists. 

Corol lary 3.1 is due t o J. R . HADDOCK [4]. 
In the next corollary of Theorem 3.1 we do not assume that the Ljapunov func-

tion is nonnegative. 

C o r o l l a r y 3.2. Suppose that for a Ljapunov function V there exist functionals 
Wit W2: i i + X C F — R with the following property: for every e > 0 there exist 
f /=r/(e)>0 and such that 

(i) (t>(pXS(V,t,,e) implies W^t, q>) s £ [F(i, cp) - V(t, <p(0))], 

(ii) (t,<pXS(V,t],e) implies JV2(t, <p) =s <p(0))- V(t, 9)], 

(iii) if (t, x,)£ S(V, rj, e) (/<E , i j , to - h = t j , then 

V(t»x(tJ)-V(tltx(tJ)*- f'w^t.x.) dt, 
'1 

. (iv). if (t,x,)£S(V,Tl,£) f j . '0 — '1 — '2), then 

V{h, x(tj)-V(t2, x{tj) s f'w2(t, x,) dt, 
h 

where *(•) is a solution of (2.1). 
Then for each solution x(-) of (2.1) lim V(t, x(t)) exists. t-+ CO 

P r o o f . Let F 1 ( i , x )=max {F(i,x),0}, V2(t, x)= - m i n {V(t, x), 0}. From 
conditions (i), (ii), (iii), (iv) of Corollary 3.2 it follows that Vx, W1 and V2, W2 sat-
isfy conditions (i), (ii) of Theorem 3.1. This implies that for every solution x(>) 
of (2.1) the limits Hm x(/)) and \imV2(t, x(/)) exist. Thus the corollary 
is proved. 

4. Applications and examples 

I. Consider the equation 

(4.1) x(t)=f{t,x(t))+g(t,x,), 

where / : R+XXf-~X, XfczX, g: R+xCg-X, Cg<zC. (4.1) is the special case of 
the equation (2.1), when 

F(t,(p)=.f(t,(p(p))+g(t,(p). 

T h e o r e m 4.1. Suppose that for a nonnegative, locally Lipschitzian Ljapunov 
function V there exist functions a,p: R+—R+ with the following properties: . 
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(i) a(f)i is bounded for " 
(ii) the function p is locally Lipschitzian on (0, <=>), 

(iii) V(t, x+y)^ V(t, x)+ V(t, y) for all (t, x), (/, y)eR + XX, 

(iv) Em j [F ( i + h,x + hf(t, x)) - F(i , x)] S - a(t)p(V(t, x)) 

for all (t,x)£R+XXf, 

(v) for every e > 0 there exists an rj— j /(e)>0 such that (t, (p)dS(V, r\, e) 

implies ïïm \ V(t+h, hg(t, <p))^a(t)p(V(t, <pj). h—0+ H 
Then for each solution x ( - ) of (4.1) Iim V(t, x(t)) exists. 

P r o o f . We apply Theorem 3.1. Let W=D^UjV. By Remark 3.1 it is sufficient 
to prove that condition (i) of Theorem 3.1 is satisfied. Let £ > 0 be given and choose 
Ti=ri(e) according to assumption (v). If (t, q>)£S(V, r\, e), then from conditions 
(i)—(v) we obtain 

: A l l ) - K < f , » - Hm J [r(t+h, <p(0) + hf(t, <p(0))+hg(t, cp))-v(t, <p(0))]' 3= 

S Em 1 [V(t+h, <p(0) + hf(t, <p(0)))—V(t, ç(0))]+ M±V(t+h, hg(t, cp)) 

«-»•0+ rl ft 

3= a(t)[p{V(t, <p))-p(V(t, <p(0)))] ë KL[V(t, q>)-V(t, ç>(0))] -

— V(U <P) — V(t, q>(0))], 
where L is the Lipschitz constant of p on [£, 2e] and K is an upper bound for a on 
[/0, oo). This completes the proof. 

II. We now apply Theorem 4.1 to obtain a result for equation (4.1) in the 
case X=R. 

T h e o r e m 4.2. LetX=R.Iff(t, 0 )=0 , xf(t, x ) s -a(t)x2forall(t, x)£R+ X X f , 
ç>)|ëà(0IM for all (t, <p)£R+XCg and a(t) is bounded for tst0, then for each 

solution x ( - ) of (4.1) lim x(t) exists. 

P r o o f . In Theorem 4.1 let F(f, x )= |x | , a ( t ) = a ( t ) , p(u)=1, »j(e)=e. Thus, 
F i s a Lipschitzian function and conditions (i), (ii), (iii) and in the case x = 0 con-
dition (iv) in Theorem 4.1 are obviously satisfied. We have 

S . V f c *)l - M) ^ Em { | x | ( l + h 1] * - a ( f ) |x|, 

if x=^0 and 

9»)l = lg(', <P)I S a ( f ) M l , : 

4» 
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that assures also conditions (iv), (v) in Theorem 4.1 to be satisfied. This completes 
the proof. 

E x a m p l e 4.1. Let us consider the scalar equation 

(4.2) *(/) = -ax(t) + b{t)x{t-x(t)), 

where a > 0 , 6(f) and x(t) are continuous for t^t0, \b(t)\^a, 0^x(t)^r. 
For equation (4.2) in this case N. N. K R A S O V S K I I [9] proved that the zero solu-

tion is uniformly stable. Applying Theorem 4.2 we obtain that x(t) tends to a con-
stant as t—"=>, where * ( • ) is a solution of (4.2). 

III. Let us consider the following special form of equation (4.1): 

(4.3) ¿ ( 0 = -a(t)x(t)+ 2 bk(t)x(t-xk(t)), 
*=i 

where a, bk,xk: R+-*R are continuous functions and 0^xk(t)'^r (k—l, 2, . . . ,«) . 

T h e o r e m 4.3. Let k: [—r, °°)->-(0, be a continuous and locally Lipschitzian 
function. If there exists a K£R+ such that 

then for each solution x(-) of (4.3) Um |/c(i)x(0[ exists. 

P r o o f . Apply Theorem 4.1 setting V(t, x) = \k(t)x\, a(t)=a(t)-D+^\ 
k(0 

p(u) = 1, »/(e)=6. It is clear that conditions (i), (ii), (iii) in Theorem 4.1 are satisfied. 
Using (4.4) we can check conditions (iv), (v) in Theorem 4.1 as follows 

m \ ( m + h ) i x - h a m \ - m H = i*(O*i e e I M l i M l ^ M z M i ) = 

= \k(t)x\ ( ^ p - ^ o ) = -*(t)V{t, X), 

Em i k(t + h)h 2bk(t)x(t~xk(t))\ = k(t)\j;bk(t)x(t-xk(t)) s 

^ fc(0 I J ^ y n t , *> S ( « ( 0 - ^ ) V ( t , * , ) = A ( 0 F ( * , X,). 

This completes the proof. 
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R e m a r k 4.1. If for equation (4.3) the inequality j? \bk(t)\^a{t)^K holds, 
*=i 

then k(t)= 1 satisfies (4.4) and by Theorem 4.3 lim |x(f)l exists. But Theorem 4.3 t—+ oo 

can be used even if this inequality does not hold, as the following example shows. 

E x a m p l e 4.2. Let us consider the equation 

(4.5) x ( 0 = -a(t)x(t) + b(t)x(t-x(t)), 
where a(t), b(t) and r ( f ) are continuous for t^t0, O g z ( 0 = r and there exists a 

K£R+ such that a(t)^\b(t)\^K for t^t0. Let * ( / ) = e x p ( / (a ( i ) - |6 ( s ) | ) i fe ) . 
o 

We have 

cxp(f{a(s)-\b(s)\)ds) , - J H t ) l ^ IMOI ^ K. 
exp ( / (a(s)-\b(s)\)ds) 

o 

Thus, from Theorem 4.3 it follows that for each solution x( • ) of (4.5) 

\im\x(t)cxp{f{a(s)-\b(s)\)ds)\ 
o 

exists. 
IV. Let us consider the equation 

(4.6) S(f) = -h(x(t)) + h(x(t-x(t))), 

where z(t) is continuous for t^t0, O ^ T ( t ) = r and h(s) is continuous for s£R. 

T h e o r e m 4.4. Jf the function h is increasing and locally Lipschitzian on ( — 0 ) 
and (0, oo), then for each solution x(<) of (4.6) lim x(t) exists. 

t - . <X> 

P r o o f . Apply Corollary 3.2 setting V(t,x)=x, fV^t, <p)= - W2(t, <p) = 
= D(+6)F(i, <p). Let £=-0 be given, tj(s)=e and £(e)=max {Lj, L2}, where Z^, 
L2 are the Lipschitz constants of h on [e, 2s], [—2e, — e], respectively. Since 
Wi(t, x,)= — W2(t, x,)=x(t) it is obvious that conditions (iii), (iv) in Corollary 3.2 
are satisfied. If (t, x,)£S(x(t), t], e) then 

m = -h{x(t))+h(x(t-x(t))) ^-h{x(t))+h(x,) s £(*,-*(/)). 

If (t, xt)£S(x(t), ti, e), then 

-HO = h ( x ( t ) ) - h ( x ( t - z ( t ) ) ) == h (x ( t ) ) -h (x , ) s 

Thus conditions (i), (ii) in Corollary 3.2 are satisfied and the theorem is proved. 



54 T. Krisztin :. On the convergence of solutions of functional differential equations 

. R e m a r k 4.2. Applying T h e o r e m 4.4 to case h(u)=ul1*, t(t)=r We get a new 
proof fo r the following conjecture of S. R . BERNFELD a n d J. R . HADDOCK [1], which 
was solved by C.'JEHU [5]: each solution of the scalar équát ibh x(t)= — Зс 1 ' 3^)-^ 
+xll*(t—r) tends to a constant as /— . : •••••..•'•.., .•• 

Acknowledgement. The author*'wishes to thank Professors L; Hatvani, ; L; P in -
tér a n d D r . J. Terjéki fo r many discussions. 
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Imbedding theorems and strong approximation 
L. LEINDLER 

1. Several recent papers, e.g. [2], [3], [4], [8], investigate problems of thé follow-
ing type: Under what conditions can a certain class of functions be imbedded in 
another class, where at least one of these classes is determined by certain properties 
of the strong approximation of Fourier series. 

Our aim is also to prove two theorems of this type. 
Before formulating them we give the definitions and notations used in the paper 

and draw some background. 
L e t / ( x ) be a continuous and 27t-periodic function and let 

(1) f i x ) ~ ^ + % (a„ cos nx+b„ sin nx) 

be its Fourier series. Denote by sn=sn(x)=sn(f, x) the w-th partial sum of (1) and 
by / ( r ) the r-th derivative of / . 

Let co(<5) be a non-decreasing continuous function on the interval [0, 2n] having 
the properties: co(0)=0, COOSI+da^CO^-f CO(<52) for any 
Such a function will be called a modulus of continuity. 

Let £ „ ( / ) denote the best approximation of / b y trigonometric polynomials of 
order at most n. 

We define the following class of functions : 

WH" := {/:a>(/W; ô)} = O(o>(0)), 

where co(f,ô) is the modulus of continuity of f . In the case a>(ô)=ô* we write 
W'H' instead of W'H'"-, and if r = 0 Hm stands for W°Ha, and in many cases 
Lip 1 will denote the class H1. 

Generalizing a theorem of SZABADOS [ 7 ] we proved in ( [ 6 ] ) the following result: 

Received December 17, 1979. 
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If 0 < o t g 1, p>0 and r is a nonnegative integer, then 

(r + « ) p - l | S j ] - / | P | | (2) 

implies that 

where 

2 » ( 

n=l 

a>(/(,); S) = 
o(Mog-i) if a = 1, 

0(0°) if 0 < a < 1, 

denotes the usual maximum norm. These estimations are best possible. 

On account of this result it is clear that condition (2) with a = l does not 
imply that / ^ L i p 1. But the following condition 

(3) 2 «!= 0 {2 m + 1 

2 „ c + i ) p - i | S ) i _ / | p n=2m+l J II 

which claims just a little bit more than (2) with oc=l does, is already sufficient 
for f* r ) to belong to the class Lip 1 (see [5], Theorem 5). Thus it is natural to ask 
whether condition (3) is also necessary for Lip 1. We shall prove that the 
answer to this question is negative, but condition (3) cannot be weakened in general. 
Indeed, the following more general theorem also holds. 

T h e o r e m 1. Let e={en} be a given monotone sequence. Then for any positive 
p the condition 

(4) £ „ l c > 0 (« = 1 ,2 , . . . ) 

is necessary and sufficient that 

llf 2 m + 1 l1 / p l l 1 

m = 0 II «•n=2m+l J II J 

Furthermore, for any sequence e satisfying condition (4), there exists a function 
/0 such that /„€ W'H1 but f0$.Sp(e, r). Thus the imbedding (5) is proper. 

As a special case of Lemma 6 of [6], it is also proved that (3) is equivalent to 

2 n>En{f) < 
• n=l 

Moreover, in [6] we verified that for any p > 0 and for any positive monotone 
sequence fi={n„} with the property 0 t h e conditions 

2 
bi = 0 

¿m+ 1 

2 k k - / l p 
n=2m+l 
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and 

(6) 

(7) 

in other words, (6) is a sufficient condition for (7), but presumably not a necessary 
one. We shall prove that this is the case, indeed, but we shall also verify that (6) 
cannot be weakened generally. 

We define two further classes of functions: 

where n={p„} and £={£„} are given positive monotone sequences and p> 0. 
Using these notations we can formulate our statement as follows: 

T h e o r e m 2. Let />>0 and let £={£„} and n={fi„} be given positive monotone 
sequences such that 0 In order that 

If pn=ny, — 1, then inclusion (8) is proper for any £={£„} satisfying (9), 
that is, there exists a function F such that F£ Sp (p.) but E(e). 

From Theorem 2, using a result of KROTOV and LEINDLER [3] (see our Lemma 1), 
we immediately obtain 

C o r o l l a r y . If there exists a positive monotone sequence fi= {/¿„} such that 

£(e) C Sp(p) 

2 ^ n < 

(10) 
then £ ( e ) c i y ° \ 

2. We require some lemmas to prove our theorems. 
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L e m m a 1 ([3, Theorem]). If 0</)<«> and X = {X„} is a monotone sequence 
such that {ne).„} with a certain O < 0 < 1 increases, then condition 

(2.1) J ( v ; . v ) - ^ = 0 ( n c ( i ) ) 

is necessary and sufficient for 
(2.2) . SP(A) c //"•. 

(We mention that the assumption ne).„t is not needed to the proof of the implica-
tion (2.1)=>(2.2).) 

L e m m a 2 ([1, see the proof of Theorem 1]). The function 

- J(~1)fc z fsip(5,2'~°x sin(5 •2*+0*) ' 
° *=1 2* I = 2 » - i + i l / I ) 

belongs, to the class Lip 1. 

L e m m a 3 ([6, Theorem 3 with r=0]). Let 0. Suppose that {At} is a mono-

tonesequence. satisfying the following conditions. Setting An= Z An} is mono-

/owe, {n',-1yln} is non-decreasing for a certain f/<l, and n).„^KAn. Then the function 
' F f r V - ^ sin ' 

//as i/je following properties: 

ZK\s„(F)-F 
n=l 

= and CO [ f ; - ) s C - 2 K V p , 
\ n) n yti 

where C is a positive constant. 

L e m m a 4. If o „ s 0 and Z an=CX3 then for any sequence {e„} tending to zero 

there exists a monotone sequence {6.} such that ¿„—0, 

(2.3) 2 " A = ~ 
n = 1 

tffli/ ' 

(2.4) 
B = 1 

P r o o f . Since Z a n = ° ° w e 04111 define a sequence {vm} such that v 1=2, v 2 =4 
and if w = 3 then 

vm *m -1 
.. Z,. a„>m+ 2' 

• -"m-r+l «= '»-1 + 1 
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and for any fc = vm : i: v 
1 

m 2 

From this sequence {vm} we deduce the required sequence {¿̂ j} as follows: 

Let 6j=ifi2i=l and if v m _ 1 <n^v m ' (wS2) then let b„'= j j?.., a,I . 

Hence an elementary calculation shows that (2.3) and (2.4) hold, and this ends 
the proof. 

. 3. P r o o f of T h e o r e m 1. First we prove the implication (4)=>(5). If fdSp(e, r) 
and (4) holds then condition (3) is also fulfilled whence / ( r ) £Lip T follows (see Theo-
rem 5 of [5]), i.e. imbedding (5) holds. ,. i ; . 

To prove the necessity of (4) we give functions showing that (5) does not hold 
if En—0. ; •• ' •••"• 

First we define a new sequence {e*} as follows: Let e*=em if 2 m < « ^ 2 m + 1 

(mgO) and e*=l . By Lemma 4 for the sequence {e*} there exists a monotone 
sequence {A„} such that /„ — a n d 

(3-1).:,... . ¿ 4 - = ~ and : 

" T 1 " . N - ' I 'n. . 

Using thjs sequence we define the following function , 

F(x) := 2X~1n-'-2cvs nx 

where cvs x means cos x or sin x according as r is an odd or even integer, resp. 
It is clear that | 

F « ( x ) Z K ' i ' -s innx, 

and by (3.1) F ( r ) does not belong to the class Lip 1. 
On the other hand 

whence we get that , , • r . 
II f 2'" + 1 ')1/''|| ( 2™ + » I1'" fr 

2 n ( ' + 1 > ' - 1 | s . ( F ) - F | ' ¡ S K o l 2 V « - 1 \ II ̂ n=2m+l J II *-n=2m + l ' 

Hence, on account of (3.1), we already obtain immediately that FdSp(e, r). 
As we have seen WrH1, thus (5) cannot be valid, and this proves the necessity 
Of (4). v . ; < 

In order to prove that imbedding ,(5) is proper we consider the following func-
tions: ' ; i 



60 L. Leindler 

If r is even then let 
c o s n x 

Jo\x) — ZJ „ r + 2 > 
n=l " 

and if r is odd then let 

f ( \ = y ( ~ 1 ) m y f c o s ( 5 - 2 m - Q x c o s ( 5 - 2 " + l ) x \ 
J l W m=i 2m

 l=iA+1{ (5 •2m — l)rI (5-2m+i)rI )• 

It is well known that /0
(r)£ Lip 1, and on the other hand, by Lemma 2, /x

( r )£Lip 1 
is also proved. 

Thus it remains to prove that / 0 and fx do not belong to the class Sp(e, r) for 
any e satisfying (4). 

A standard calculation shows that 

\ M 0 ) - s M \ ^ c n - ' - \ ( c > 0), 
whence 

,1 /PII 

follows, consequently f0$.Sp(e, r). 
The proof of the statement A^S^e, r) needs a longer calculation. First we 

give a lower estimation for the difference | / i (0)—Jn( / i , 0)| if n satisfies the inequalities 
22• 2 m _ 2 < n ^ 2 3 • 2m~2 ( m s 4 ) . Such an n can be written in the form: 

n = 5-2m+l with 2m~1 < / ^ 3 •2 m - 3 . 

Therefore, by the definition of fx it is easy to see that 

(3.2) \sn(A;0)-Am 

where 

_L S - ( - i r , ^ ( - i )% 
2m,=n_^+1(5-2"+0ri V . + i 2" 

( 1 1 1 
R " = 1(5-2" — j y / ~ (5'2"+l)rl J • 

If we show that ^ ^ „ ( s O ) then by (3.2) we obtain that | ^ ( 0 ) - / t ( 0 ) | 
is not less than the absolute value of the first sum in (3.2), namely the sums in (3.2) 
have the same sign. Since r £ 1 

1 1 1 
rr + • (5-2"+1 — 2i)r2i (5-2"+1 + 2i)r2i 1 ( 5 - 2 " + 1 - 2 i + l ) ' ( 2 i - l ) 

( 5 • 2 " + 1 + 2 i — l)'(2i — 1) ~ ( l 7 + 2 i ^ r ) ( ( 5 2 i ) ' _ ( 5 - 2 " + 1 + 2 0 r ) ~ 

^ 2 f ! ! ) . i f I _ J 1 
~ 2 r ( 2 i - l ) 1 ( 5 - 2 " - i f (5-2"-H) rJ — i 1(5-2' ' —/)r (5-2" + i ) r ^ ' 
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whence 
2"+1 1 f 1 1 'I 

+ 1 =
 l = ^ + 1 T [ ( 5 •2"+1 — l)r _ (5 • 2"+ 1 —/)r J ~ 

s S i f ! L _ ) = R ~ i - t f r + i I 1(5-2" - / ) ' (5 • 2" + l ) r) " 
follows obviously. 

Continuing the estimate of (3.2) we have 

k ( / i , 0 ) - . / i ( 0 ) | s - ^ j - z 

^ issn —5«2m + l 

2™ 

I=/l-5-2m + l Using this we obtain that ( m s 4 ) 

2m + 3 2 3 - 2 m - s 

2 n ( , + 1 ) ' - 1 | s , ( 0 ) - / 1 ( 0 ) | ' s 2 n ( r + 1 , p - 1 k„(0) - / 1 (0) |p^ 

n = 2 m + a + 1 B = 2 2 - 2 m - 2 + l 

23-2™-» / 2 m 

& 2 n ( r + 1 ) p - 1 6 ~ r p 2 _ ' n ( , , + 1 > p | ^ i - 1 0, 
n = 2 2 - 2 m - 2 + l V / = 3 ' 2 n , _ 2 + l / 

where Cr>p is independent of «. 
Hence, as before, the statement f ^ Sp(e, r) follows clearly, and this completes 

the proof of Theorem 1. 

P r o o f of T h e o r e m 2. Sufficiency of condition (9). It is clear that if f£E(E) 
then (9) implies 

2^EnP(f) <«>, 
n=1 

and this is equivalent to 
CO 2 m + l 

2 2 
m = 0 n = 2 m + l 

(see Theorem 4 of [6], where the restriction on the rate of m„ln„ is required), whence 
f£Sp(ji) follows obviously. Thus (8) holds if (9) is fulfilled. 

Necessity of condition (9) will be proved indirectly. If we assume that (8) holds and 

(3-3) j ? №,<*=<», 
n=I 

then the function 
oo 

fo (x) = 2 ( E a - e n + i ) c o s ( n - h l ) x 
1 1 = 2 
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leads to a contradiction. Namely, 

. • En<Ja) \\sn{fa,x)-f0(x)\\ ^ £„, 
i.e. / 0 € £•(£), but 

l« .( /o, 0 ) - / 0 ( 0 ) | = ¿ ( £ 4 - £ t + 1 ) = £„, k=n 
whence 

2 MnlSnC/o)~/o|P s 2f„epn; 
n = 2 

by (3.3) this shows that /„does not belong to the class Sp(ji), and this contradicts (8). 
Hereby the necessity of (9) is proved. 

In order to prove that inclusion (8) is strict let us consider the function 

/ • ( * ) = i - s i n w * 
, ni+WPl+lir/P) " n--- 1 « 

An elementary calculation shows that if ¿„=n 7 ( ? > — 1) then all conditions 
of Lemma 3 are satisfied and thus : 

¿ « ' k o o - F i ' l U c » , 
n=l' II 

i.e. F£Sp(ny), moreover, 
(3.4) :: - : £ v - i m - l r / » s A » Î F , — 1 . 

N V = I V N ) 

We show that E (e) for any e satisfying (9). Namely, if we assume that 
E(s) and 

2 nye% <°o with 
n = l 

hold then (3.4) leads us to a contradiction. Indeed, these assumptions imply 

n-1 

whence, considering the block (n, 2n) in this sériés we infer that 

(3.5) • . n7+1E%(F) - 0. 

Consequently, the well-known inequality 

V n) n y=o 

and (3.5) contradict (3.4) if y s p — l. 
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If y>p-l, we can only give a somewhat longer proof of the statement 
F$E(e). 

First we show that if 2 and 2 m s v s 2 m + 1 then 

(3.6) 
1 

\sv(F, hJ-FihJ| S 4l+(1/f)+(Wp) V ^ ) - ( W P ) 

holds, where hm = 2">+4 ' 

1 , 7 Let Nm=2m+i and a = l + — f —. Then 
P P 

~ sin nh ( 4 2 N » ~ ( * + 1 ) J M s i n nh 
F(hj-sAF,hm)= 2 ^ L = \ 2 + 2 + 2 + 2 2 = 

»=—TL+1 . 

It is clear that for any / ^ 1 

(2i+i)Arm s i n n h n 

A 

and thus the sum 
n=21N„+l n 

(2!̂ )JVm s i n flh„ 

n=(2l+l)JVm+X 1 

j ; sin nh„ 
4=2n=*iVm-H n 

is positive. Furthermore we show that 

J ? sin nft„ 

It is clear that 

Nm ——+» 

y* Sinn h„ 
M« 

— 

sin nh„ 
n=N+l n 

J „ sin nh„ 

and an easy calculation verifies that on account of a s l 

B = 2m + 2 + 1 
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Col lec t ing the resu l t s we o b t a i n t h a t 

c.,, . . x ^ 4 , s i n n h „ 
n=v+l n 

2m+* sin nh 2 2m+a 

S 2 2 
n=2m + 1 + l « » n=2m+ l+a 

which p roves (3.6). 
By (3.6) we obvious ly o b t a i n 

2»n + l 

2" ny\s„(F)-F\" 
n=2m+l 

2 m + 1 

u = 2 m + l 

C > 0, whence 2 
m — 0 

a n d , by the m e n t i o n e d equ iva lence t heo rem (see T h e o r e m 4 o f [6]), 

Fl = l 

fol low, i.e. F£E(e) d o e s n o t ho ld . 
T h u s T h e o r e m 2 is p r o v e d . 
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A Rees matrix semigroup over a semigroup 
and its maximal right quotient semigroup 

ANTONIO M. LOPEZ, JR. 

As with the Rees matrix semigroup over a group with zero, one can construct 
a semigroup M°(I, W, A; P) where W is a semigroup with zero [3]. Under certain 
conditions, we show that the maximal right quotient semigroup Q(S) of a Rees 
matrix semigroup S=M°(W, n; P) is isomorphic to the endomorphism monoid of 
S=M°(Q(fV),n; P) as a right S-system. 

1. Preliminaries. Although much of the basic notations and definitions are given 
in this section, we assume the reader is familiar with the basic terminology and 
results on algebraic semigroups as presented in CLIFFORD and PRESTON [2]. Those 
wishing a more indepth view of ^-systems and semigroups of quotients should read 
the survey article by WEINERT [6]. 

A right S-system with zero Ms is a semigroup S with zero, a set M, and a func-
tion MxS—M with (m,s)->-ms for which the following properties hold: 

(i) ( m s ) t = m ( s t ) for m£M and s,t£S; 
(ii) M contains an element 9 (necessarily unique) such that 9s=9 for all 

s£S; 
(iii) for all m£ M, m0=9 where 0 is the zero of S. 

An S-subsystem N of Ms is a subset N of M such that NSQN; this will be denoted 
by NSQMS. Let Ms and Ns be ^-systems with / : MS-*NS a mapping such 
that f(ms)=f(m)s for all m(iM and s£S, then / is called an S-homomorphism. 
The set of all ^-homomorphisms from Ms to Ns is denoted by Hom s (M, N). Let 
NSQMS, then Ns is intersection large ( H -large) in Ms if for {3}^ XHN^ 
^ {9}. We denote this by NSQ'MS. Note that this is equivalent to saying that for 
all there exists s^S1 such that The singular congruence i]/M 

on Ms is a right congruence such that aijjMb if and only if ax=bx for all x in an 
fl-large right ideal of S. If every nonzero S-subsystem of M is fl-large, then Ms 
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is said to be intersection uniform ({^-uniform). An S-subsystem N of Ms is dense 
in Ms if for each m1,m2,m3^M where m19imt there exists an S1 such that 
m^^m^s and mss£N. It is easy to see that when Ns is dense in Ms then NSQ'MS. 

The construction of the maximal right quotient semigroup is due to MCMOR-
RJS [4] and will not be repeated here. You will recall that every fl -large right ideal 
of S is dense if and only if <l/s= is the identity congruence. In view of this result, 
we define S as being right nonsingular if every fl-large right ideal of S is dense. 

2. The Maximal Right Quotient Semigroup. Let S=M"(I, G, A; P) be a Rees 
matrix semigroup over a group G. In studying these structures, BOTERO DE MEZA [1] 
showed that if each row of P has a nonzero entry and S is nonsingular then the 
maximal right quotient semigroup of S, denoted Q(S), is isomorphic to Hom s (5, S). 
In general, this is not the case for M°(J, W, A; P) where W is a semigroup. What 
restrictions must we place on M°(I, W, A; P) to obtain similar results? 

First let us consider the fact that the only fl-large right ideal of S is S itself. 
This is not true for M°(I, W, A ; P) as the next theorem and example will illustrate. 

T h e o r e m 1. Let S=M°(I, W, A; P) where W is a semigroup with 0 and 1, 
T is a unitary subgroup of W, and P has an entry from Tin each row. If L is an C\-large 
right ideal of W then {(«', /, X)\l£L, i£l, X£A) is an C\-large right ideal of S. 

P r o o f . Let CM(/, a, S. Since P has an entry from T in each row then 
there exists p ^ T for some For 0¿¿a£W, there exists W such that 
Or*ax£L since LwQ'Ww. Hence we let b=pjfx and choose p£A then 
(i,a,X)*U,b,n)=(i,apxjb,n)=(i,apXjpJJ

1x,p)=(i,ax,n)££e. It is easy to see 
that i f is a right ideal of S and hence an fl -large right ideal of 5. 

E x a m p l e 2. Let W={0, e, 1}, the semilattice 0 < e < l and consider 

M°(I, W, /; P) where P=(ptJ) and Av={o i f ' v y " T l i e r i S h t i d e a l {0. e ) is 

fl-large in W and so by Theorem 1, i f={( / , a,j)\a£ {0, e) i,jdl} is an fl-large 
right ideal of M°(7, W, /; P); however, it is clear that £e^M°(I, W, I; P). 

If JS? is an fl-large right ideal of M°(I, W, A; P) what is its relation to the 
fl-large right ideals of W, if any? If we let I=A, we are able to obtain some results 
to this question. 

T h e o r e m 3. Let S=M°(I, W, T, P) where W is a semigroup with 0 and 1, 
T is a unitary subgroup of W, and P has an entry from T in each row. If if is an C\-large 
right ideal of S, then for each k£l, Mk = {s£W\(k, s,k)£&} is an C\-large right 
ideal of W. 

P r o o f . Let m(iMk where k£l arbitrary but fixed, and let W. Since 
each row of P has an entry from T there exists pkJi[ T for some jdl. Since i f is 
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a right ideal of S, then (k, m, k) *(j, pk/s, k)£ But then (k, ms, k)^£C and 
so ms£Mk. Thus Mk is a right ideal of W. To see that Mk is fl -large, we let O^z^fV 
and consider ( k , z , k ) £ S . Since J?sQ'Ss then either (k,z,k)d3? or there exists 
(«, s,m)(zS such that 0 ̂  (k, z, k) * («, s, In the former case, z£Mk and 
there is nothing to prove. In the latter case, we have zpkns, w)£JSf. Hence 
there exist pmj£ T and zpk„s, m)*(j, 1, and so 07±zpk„spmJ£Mk. 
Thus Mk is fl-large in W. 

If we restrict our Rees matrix semigroup over a semigroup further to | / | = « < ° ° , 
then H Mk is also an D-large right ideal of Wand we develop the following results 

*€J 
for M°(fV, n; P). 

T h e o r e m 4. Let S=M°(fV,«; P) where W is a semigroup with 0 and 1, 
T is a unitary subgroup of W, and P has an entry from Tin each row. If 3? is an 0-large 
right ideal of S then {(/', t,j)\t£ p | Mk, i, j£ F\ is an fl -large right ideal of S 

1 k i l ' 
contained in 

P r o o f . Since p | is fl-large in W then by Theorem 1, Si is an fl-large 
*e/ 

right ideal of S. Let (/, t,j)£3t. Since Z€ f | M
k

 t b e n a right ideal of S 

and so tprh
1£Mi for some h£l with pih£T. Consequently, (j, tp^1, and 

since JS? is a right ideal of S1 then (z, tp^\ i)*(h, But this says that 
(i, t,j)(L& since (i, tp'1, i)*(h, 1 ,j)=(i, t p r ^ p ^ l j ) ^ , t,j). 

T h e o r e m 5. Let S=M0(W,n, P) where W is a semigroup with 0 and 1, 
T is a unitary subgroup of W, and P has an entry from T in each row. If S is right 
nonsingular then W is right nonsingular. 

P r o o f . Let k,j£I such that pkjd T and suppose a \pwb. Then since i¡/w is a 
right congruence (apkh)^w(bpkh) for all h£l. Hence there exists an D-large right 
ideal L of W such that for x£L, h£l we have apkh=bpkhx. By Theorem 1, L 
induces an D-large right ideal {(/, x,j)\x£L and i, jd/} on S. Hence for 
( j , a, k), ( j , b, k)£S and (z, x, i ? we have ( j , a, k) * (i, x, m)=(j, apkix, m) and 
( j , b, k)*(i, x, m)=(j, bpkix, m). Thus ( j , a, k)\(/s(j, b, k) and since S is right 
nonsingular then ( j , a, k)=(j, b, k) and so a=b. 

The converse to this result is in general false since if G is a group with zero 
adjoined and S=M°(I, G, A; P) is regular then S is right reductive if and only 
if no two rows of P are left proportional; that is, for any two rows n and X 
of P there does not exist c£G such that pllt=cpXi for all z£7 [5, p. 156]. Hence if 
S is not right reductive then S is not right nonsingular. 

McMoRRis [4] showed that a semigroup W with 0 and 1 can be embedded in 
Q(W) by W-Q(W) defined by x—[AJ where Xx£Homw(W, W) defined 

5* 
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by tf+xt. The zero and identity of W are the zero and identity of Q(W). If P is a 
sandwich matrix defined on W, we can define a new sandwich matrix on Q(fV) 
by allowing the entries of P to be operated on by £; that is, pud P would become 
[pPij]ij. For convenience, we simply write pu and let P=£(P). It is not difficult 
to see that M°(W,n;P) can be embedded into M°(Q(W), n; P). 

We are interested in obtaining a characterization of Q(S), the maximal right 
quotient semigroup of S=M°(W,n; P), where W is a semigroup with 0 and 1, 
T is a unitary subgroup of W and P has an entry from T in each row. 

T h e o r e m 6. Let S=M°(W,n; P) where W is an f l-uniform semigroup with 
0 and 1, T is a unitary subgroup of W and P has an entry from T in each row. 
If f : is an S-homomorphism where ££ is an f]-large right ideal of S then 
there exists an indexing function i: 7—I, and for each h£l a W-homomorphism 
fh'• D A*» — w such that /la((m> *> t))=(i(m),fm{x), t) where 01 is defined in Theo-

ktl 
rem 4. 

P r o o f . Let f : be an S-homomorphism and £C an fl-large right ideal 
of S. By Theorem 3, for each k£l, Mk = {.sg W\(k, s, &)€ i f } is an fl-large right 
ideal of W and so is (~) Mk. By Theorem 4, we can construct M=i(d, z, g)|z€ f l Mk 

kil k£l 
and d, g(Ll] an fl-large right ideal of S contained in ££. Let b be a fixed element 
of I. For m£7 and x£ f | Mk we have /((m, x, d))=f((m, x, d)*(j, pZ1, d)) = 

k£l 
=f((m,x,d))*(j,PaJ

1,d) for some jil with paj£ T, s ince/ is an S-homomorphism. 
Thus f({m, x, #))=(/, y, d) for some /'€7 and W. Now let s£I and a, b£ f | Mk 

ktl 
and suppose f((s, a, dj)=(i, y, d) and f((s, b, d))=(h, z, d). Since W is fl-uniform 
then afVDbW^O and so there exists O^xeaWClbW such that x=aw and 
x—bu for some w,u£W. Since (s,aw,d), (s, bu, 3/1 then f((s,aw,d)) = 
=(/, y, d)*(j,P»/w, d) and similarly f((s, bu, d))=(h, z, d)*( j, p^/u, d) for some 
y'6 7. But f((s, aw, d))=f((s, bu, t))) and so (/', yw, d)=(h, zu, d). Hence i=h and 
we can consider the first index as a function of s, denoted i(s). Now for each h£l, 
we define f„: f ) Mk-*W by x^-y where f((h, x, d))=(i(h), y, d). Each fh is a 

1-F-homomorphism since for W and xd P| Mk we have 

f{(h, XS, d)) = f((h, xptJptfs, d)) = f((h, x, d)) * U, PJ>S, d) = 

= (m, y, d) * ( j , p-^s, d) = {m, ypdjp^s, B) = (i(h), ys, B) 

and so fh(x)s—ys=fh(xs). The remainder of the theorem now follows from the fact 
that for (m, x, « , / ( ( « , x, t))=f((m, x, d)*(j,p^\ t))=f((m, x, d))*(j,p^, t) = 
=(i(m), fm(x), &)*{j,p£, t)=(i(m), /m(x), t). 
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We now prove the main result of this paper. 

T h e o r e m 7. Let S=M°(W,n; P) where Wis an fl-uniform semigroup with 
0 and 1, T is a unitary subgroup of W and P has an entry from T in each row. If S is 
right nonsingular then Q ( S ) ^ H o m g ( S , §) where §-M°(Q(W),n\P). 

P r o o f . Let [ / ]€{?(S) and define ¡i[fy § - * § by (s,q,t)^(i(s),qsq,t) where 
qs=[/j and i(s) are defined in Theorem 6. We should note that by Theorem 5, 
S being right nonsingular implies that W is right nonsingular and so [f^Q(W). 
To see that nin is an S-homomorphism we consider ixin((s, q, tj)*(r, g, u) = 
=(»(«)> <1*9, *)* (r, g, u)=(i(s), qsqp,rg, u) and 

/*[/]((•*> q, t)*(r, g, u)) = liui(s, qptrg, «)) = (i(s), qsqp,rg, u). 

Thus is an S-homomorphism. We now define <p: 2 (5 )—Hom s (S, S) by 
[f]-^H[Sy To see that <p is well defined suppose [ f ] = [g]- Then / a n d g agree on 
some dense right ideal JS? of S. We must show that [ / j ]=[g,] for all j£J. Since 

is a dense right ideal of S then it is also D-large. By Theorem 3, for each kdh 
Mk={sd W\(k, s, k)dS?) is an fl-large right ideal of Wand so is f | Mk. By Theo-

kil 
rem 4, £%=Ud, z, h)\zd f"| Mk and d, h£l\ is an fl-large right ideal of S1 contained 

in so f\s,=g\a agree. Thus for jd h f j : f | Mk~W and g,: f | Mk-W agree k(I kil 
on their domains and by Theorem 5 f ) Mk is a dense right ideal of W so 

km 
[_/}], [gj]dQ(W) and [f]=[gj]. We now show that <p is one-to-one by supposing 
that Hift—^igj- Since for each kdj (k, 1, d)f_£, nif]((k, \,d))=(i(k), [fk], 8) and 
M[g]((k,l,d))=(f(k),[gk],d) then [ / j = [&] and i(k)=j(k) for all kdj. Thus 

for each kdj, fk and gk agree on some fl-large right ideal of W call it Lk. Let 
L= n Lk. Since L is an fl-large right ideal of W then by Theorem 1 

<£={{d,z,h)\zdL and d,h£l} is an fl-large right ideal of S. We claim that / 
and g agree on Let (d,z,h)d^ then there exists nidi such that p3mdT in P 
and so f((d, z, tij)—f({d, z, dj)*(m,p^, h) and g((d, z, h))=g((d, z, d))* {m,ph). 
But f((d, z, dj)=g((d, z, d)) since fd and gd agree on Ld Q L. Consequently, the 
claim is established and [ / ] = [ § ] in Q(S); furthermore (p is one-to-one. To show 
that cp is onto let c€Hom s (§, S) and consider o~1S= {x£S|<x(;t)(: S}. Since 
S^'S then o^SQ'S and S f l f f - ^ g ' S . Next define x: SHa^S^S by 
X>->-(T(X). Clearly, x is an S-homomorphism so by Theorem 6, there exists 2 an 
fl-large right ideal of 5, an indexing function i: I—/, and for each hd I a W-homo-
morphism t : f\ Dk^W such that x\3((m, x, t))={i(m), xm(x), t). Note that Qi 

k(.I 
is a dense right ideal of S since S is right nonsingular and that x&QS. Let x=x\a 

and consider [rJggiS). Since Ss is dense in § s then and so <p is onto. 
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W h a t remains t o be shown is tha t <p is a semigroup h o m o m o r p h i s m ; tha t is, = 
where the opera t ion on the right is composi t ion of func t ions . Le t 

O , q, then q, q, 0 ) ) = / y ] ( 0 ' 0 ) , [ ¿ J ? . 0 ) = 

=0'O'(*)), [/J(s)][gj?, t) = {i(jXs)), [ f j ^ q , t)=fi[fg]((s, q, / ) ) since fg((s, x, t)) = 
=/(*((*,*, t)))=f(U^),gs(x), t)) = ( i ( j ( s ) ) , f j ^ ( g s ( x ) ) , OK'C/M),//«&(*), ')• 
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Models for operators with bounded characteristic function 
B R I A N W. M c E N N I S 

1. I n t r o d u c t i o n . I n t h e t h e o r y o f B. SZ.-NAGY a n d C . FOIA§ [15], t h e c h a r a c t e r -

istic function 0T of a completely non-unitary contraction T is used to generate a 
functional model for T. In addition, if 0 is an arbitrary purely contractive analytic 
function, then 0 can be used to generate a contraction that has 0 as its characteristic 
function. The SZ.-NAGY and FOIA§ theory provides in fact a model of the minimal 
unitary dilation U of the contraction: U is represented as a shift acting on a sub-
space of the direct sum of two vector valued L? spaces, and the characteristic func-
tion is identified as a projection on the dilation space. (See [15, Chapter VI].) 

Now suppose that T is any bounded operator on a Hilbert space The char-
acteristic function 0T of T is the operator valued analytic function 

© r(A) = [ - r / r + ^ y r . e T . ( / - A 7 ' * ) - 1 / 1 . 0 r ] | © r , . 

where JT=sgi (/— T*T), / r * = s g n (/—2T*), Qt=\I-T*T\ 1 / 2, Qt*=\I-TT*\ 

and 1)r=JT9). 0T(X) is defined for those complex numbers X for which I—XT* 

is boundedly invertible, and takes values which are continuous operators from %>T 

to the space (See [11]; cf. [1], [3], [4], [5], [6], [8], [10], [13], [15].) 
It was shown in [11] that if 0(A) is an operator valued analytic function (defined 

for X the open unit disk in the complex plane), then 0(A) coincides with the 
characteristic function of some operator if and only if it is purely contractive and 
fundamentally reducible (see Sec. 2 below). This result was obtained by using a 
model of BALL [1], which is much less geometric than the type constructed by 
SZ.-NAGY and FOIA§. In particular, the model in [1] does not provide the interpreta-
tion of the characteristic function as a projection. 

In this paper, we restrict our attention to bounded operator valued analytic 
functions 0(A), i.e., for which sup ||@(A)||<°°. We are then able to obtain a func-

tional model of the SZ.-NAGY and FOIA§ type, which provides the extension of 

Received April 12, 1980. 
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their theory that was promised in the concluding section of [11]. In Sec. 14 we describe 
the relationship between this model and the model of BALL [1]. 

R e m a r k . Other authors [3], [4], [5], [6] have also considered the problem of 
representing an arbitrary 0(A) (satisfying certain conditions) as a characteristic 
function, but have not used a SZ.-NAGY and FOIA§ type model. In [9], however, 
a model of this type is used to represent dissipative operators, with the unit disk 
in the SZ.-NAGY and FOIA§ theory replaced by the upper half plane. 

2. Krein spaces. Purely contractive analytic functions. A Krein space is a space ft 
with an indefinite inner product [ . , . ] (i.e., [x, x] can be negative for some x6 f t ) 
on which is defined & fundamental symmetry J: J2=I, [Jx, y] = [x, Jy\, and the 
/-inner product [ / . , . ] makes i l a Hilbert space. The topology on ft is that defined 
by the /-norm | |x | | j=[/x, x] l /2. For an operator A on ft, we denote by A* the adjoint 
of A with respect to the indefinite inner product [ . , . ] . (See [2], [11].) 

If 21 and S are subsets of ft, then we write 21 _L© if [a, ¿>]=0 for all afjll 
and ¿ 6 W e define 2lJ- = {x6ft: [a, x ] = 0 for all «621} and 2 I©® = 2in»-L. 
A projection on ft is a continuous operator P such that P=P* = P2. A regular 
subspace of ft is a subspace £ such that £ © £ x = f t . The regular subspaces are 
precisely those that are the ranges of projections (cf. [12]). 

An operator valued analytic function is a function 0 which is defined and analytic 
in D, the open unit disk in the complex plane, and which takes values that are con-
tinuous operators from a Krein space 35 to a Krein space 0 is said to be purely 
contractive if, for each A6 D, 

[0(A)a, 0(A)a] < [a, a] ( a 6 $ , a ^ 0) 
and 

[ 0 ( A ) X , ©(A)* A J < (0*6®*, A* ^ 0). 
Let 0 o = 0 ( O ) . We call 0 fundamentally reducible if there are fundamental 

symmetries on 35 and that commute with 0„0O and 0 O 0 J , respectively [11, 
Sec. 3]. 

The spaces 35r and T>Tt, defined in Sec. 1, are Krein spaces with the indefinite 
inner products 

jO = (JTx, y) (x, ye £>T) and [x, y] = (JT*x, J>) (x, ye 35T.). 
The characteristic function 0 T is an operator valued analytic function that is purely 
contractive and fundamentally reducible [11, Sec. 4]. 

3. Coincidence of characteristic functions. If D and 35' are two Krein spaces, 
then an operator T: 35—£)' is said to be unitary if it is continuous and invertible, 
and if [TX, TX] = [x, x] for all x61). Two operator valued analytic functions 
0(A): £ > — a n d 0'(A): D'—I)* are said to coincide if there are unitary operators 
1: D - 3 5 ' and t*: D * - * ^ such that 0 ' ( ^ ) = ^ 0 ( A ) t - 1 for all XeD. 
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As in [15, Sec. VI. 1.2], we have the following result. 

P r o p o s i t i o n 3.1. The characteristic functions of unitarily equivalent operators 
coincide. 

P r o o f . Let Тг and Г2 be bounded operators on Hilbert spaces and § 2 , 
respectively, and suppose that for some unitary operator a : , v e have 
Тг=аТ1о~1. Then, if we define т—а\ЪТг and х^ = (т\Т>т*, it is clear that 

(3.1) ФГа = тФГ1, and JTt = zJT%-\ JT* = x^J^x*1, 

в г . (А) = т+(9Т1(А)г-1: 

It follows from (3.1) that x and x^ are unitary operators, and thus Q T and Q T 

coincide. • 
For any bounded operator Г on a Hilbert space § there is a unique maximal 

subspace $j0 in § reducing T to a unitary operator (see, for example, [7, Sec. 4]). 
If =S3G £>o> then Г|§), is completely non-unitary, i.e. there is no non-zero 
subspace of which reduces T to a unitary operator. 

P r o p o s i t i o n 3.2. The characteristic functions of a bounded operator and its 
completely non-unitary part coincide. 

P r o o f . Formally the same as [15, Sec. VI. 1.2]. • 
In Sec. 6 we will deduce (Theorem 6.1) that, for completely non-unitary operators 

with bounded characteristic functions, coincidence of the characteristic functions 
implies unitary equivalence of the operators. 

4. Dilations. Fourier representations. Let Г be a completely non-unitary operator 
on a separable Hilbert space it, and suppose that T has bounded characteristic 
function @r(A), i.e. sup ||®r(A)||«*>. 

лев 
We can construct (see [7]) a Krein space Я containing § as a subspace (with 

the indefinite inner product [ . , . ] of Я restricting to the Hilbert space inner product 
(., .) on § ) and an operator U on Я which is a minimal unitary dilation of T, i.e. 
U is unitary and satisfies 

[U"It, k] = (Tnh, k) (h,k£§>,n= 1 ,2 , . . . ) and V и"Ь= Я. 
n — -M 

(The symbol V denotes closed linear span.) 
The following subspaces of Я are important in the study of the geometry of 

the dilation space (see [13]; cf. [15]): 

& = (U-T)b, 2* = {I-UT*)b, M(fi)= V U»&, M(£*)= V U«2„ 
П——оо П— — о© 

M+(2)= V и-2, МЛК)= V и = Afcej-L, я+ = у и'Ь. 
п = 0 я = 0 и = 0 
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We are assuming that T is completely non-unitary and has bounded character-
istic function. Therefore, by [13, Sec. 6], A/(£+) is regular and, by [13, Corollary 3.2], 

A / ( £ ) V M ( £ J = ft. 

Hence, if P denotes the projection of ft onto M ( £ J (i.e., the projection with range 
M(2t) and null space SR), then we have 

(4.1) (I— P)M(2) — 9? 
(cf. [15, Sec. VI.2.1]). 

It follows from the construction of the dilation in [7] that there are unitary 
operators q>\ £—X)T and (pt: D r , and a fundamental symmetry / on ft 
such that 

(p(U-T)h = QTh, <p+(I—UT*)h = JT*QT*h (*€©; 

cpJ\2 = JT<p, JT*<p^, 
M \ = m , \\<P*1*\\ = \ \ h \ \ (/££,/*€£*). 

(See [13, Sec. 3].) 
Let Ps denote the projection of ft onto £ . If h£M(2), then the Fourier coeffi-

cients of h in M(fi) are 

ln = PeU*"h ( - < * > < „ < o o ) . 

When &T is bounded, we have 2 l l / J 2 < 0 0 (see [13, Sec. 6]; cf. [8, Sec. III.l]), 
B= — oo and thus we can define <PQ, the Fourier representation of M(£), by 

( < M ) ( f ) = Z 
R — oo 

is a unitary operator from M(2) to Z,2(DT), the Krein space of square integrable 
D r-valued functions with inner product 

2)1 
[«,»] = 1 / 2 * / [u(t),v(f)]dt (u,v£L*(ZTj). 

0 

Similarly, if h£M(2J and ln—PStU*nh are the Fourier coefficients of ft 
in M(2^), then we define the Fourier representation of M(£+) , by 

(**.&)(/)= 2 n — OO 

4>St is a unitary operator from M t o L2(T>Tt). (See [13, Sec. 6]; cf. [15, Chap-
ter V]:) 

5. Functional models for a given operator. If I) is a Krein space with funda-
mental symmetry J, then we also denote by J the fundamental symmetry induced 
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on L2(D) by (Jv)(t)=J-v(t). Thus we have on L2(T>T) and L 2 (D r . ) the funda-
mental symmetries JT and JT,, respectively. As in [15, Sec. V.2] we have the operator 
6> r :Z . 2 (® r ) -L 2 (D r t ) defined by 

(©r®)(0 = © r f c X O a.e. (u6L2(D r)), 
where 0T(eu)— lim 0T(re"). Since 0T is a purely contractive analytic function, 
it satisfies [(/— 6>r®r)t;, for all v£L2(T>T), or in terms of the Hilbert space 
inner product on L2(T>T), (JT(I— 0 i0T ) t> , We can therefore define AT= 
=(jT(r-0}0T)Y>2, an operator on Z.2(Dr) that satisfies the relation M r r | | 2 = 
= [(I-0$0T)v,v], for all vdL2(T>T). 

For / £ M ( £ ) we have, using the fact that the Fourier representations are 
unitary and the relation 0T<Pi, = <P2mP\M(2) [13, equation (6.4)], 

[(l-P)f,(I-P)f) = [f,f]~[Pf,Pf\ = [*«/, *tf\-[**Pf, <t>2*Pf] = 

= [*sf,*BF\-IET*sf, ®T**N = [(I-&*T&T)*Sf, *sf\ = Ur**fV 

(cf. [15, Sec. VI.2.1]). Hence, by (4.1), there is a unitary operator <*>„: K-ZTZ^fXV) 
such that 

4>x(I-P)f=AT*ef (f€M(2)). 

Here we are considering 9? as a Hilbert space with the inner product [ . , . ] [13, Theo-
rem 7.1], and ATL2(X>T) as a Hilbert space with the usual inner product on L2(DT). 
(In the sequel, AtL2(T)t) will always be considered as a Hilbert space.) 

Since M(fl+) is regular [13, Sec. 6] we can write 

ft = M ( £ * ) © 9 t . 
If we make the definition 

K = L2(T>rt)®ATL2(T>r), 

then we can deduce that the operator <I> = (Piit®<P% is a unitary operator from ft 
to K. <i> is known as the Fourier representation of ft. 

If we let e" also denote multiplication by the function e" then e"0T=0Te" 
and e''JT = JTeu, and hence e"AT=ATe". We also have UP=PU and <PaU= 
= eu , and so (cf. [15, Sec. VI.2.1]) 

$*V(!-P)f=t?**(!-P)f (.f£M(2)). 

By continuity, it follows that <P%Uh=e"cl»^1 for all /¡£9?. 
Let U denote multiplication by e" on K, i.e. 

U(u ©v) = e" u ©e"v (u£L2(Dr,), v£ AtL2(T>t)). 

Then, since and U— e"4>St, we have 
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The subspace M+{2.+) is regular [8, Sec. III. 2], and thus, by [13, Sec. 4]:, 
we have 

= M + ( £ + ) © 9 t 

(recall the definitions of these subspaces in Sec. 4). Consequently, <P maps onto 
the space 

K + = H2(S>T,)@ATL2(2)T), 

where H2(T>Tt) (the space of D r t-valued analytic functions with square summable 
Taylor coefficients) is identified with a subspace of L2(£T*) in the usual manner 

cf. [15, Sec. V. 1.1]). Then if U+ = U\&+ and U + = U | K + , we have <*>{/+ = U+<Z>. 
For U£H2(T>t*) and. V£AtL2(T)t) we have then 

U + ( u © y ) = ¿'u^^'v and U* (uffiy) = e~''(u — u0)@e~"v. 

R e m a r k on n o t a t i o n . Here (and in the sequel) it is assumed that, for each 
n, u„ denotes the nth coefficient in the Fourier series of the function it. Thus, for 
u£H2(T>Tt), uo=u(0). Also, we will not be distinguishing between a vector and 
the constant function whose range is that vector. 

Let us make the definition H = Since § is a Hilbert space with the inner 
product [., .], and since 0 is unitary, H is also a Hilbert space. We know by [13, 
equation (3.3)] that ft+=§©M+(£), and therefore we deduce § = 5 \ + 0 M + ( £ ) . 
Hence, 

H = K+e<i>M+(f l ) . 

We can obtain an explicit description of $A/+(fl) by making the observation 
that, for g€M + (£ ) , 

= <P[Pg + (I-P)g] = 0etPg®^(I-P)g = © r ^ g f f i J r ^ g 

(using [13,equation (6.4)]). Hence $ M + ( £ ) - { 0 T u @ A T u : M€#2(® t)}. Consequently 
we obtain 

H = K + Q{0Tu@ATu: u6i/2(X>T)}. 

If we denote by T the operator 0T<P_1 on H, then we have T*=U* |H, and 
thus we obtain the following functional model. 

T h e o r e m 5.1. (cf. [15, Theorem VI.2.3]) Let T be a completely non-unitary 
operator on a separable Hilbert space with bounded characteristic function 0T. 
Then the Krein space 

n = [H2(T>T*)@ATL2CZ>T)]Q{0Tu®ATu: u£H2(T>T)} 

is a Hilbert space and T is unitarily equivalent to the operator T on H defined by 

T*(u@v) = e-i'(it-u0)®e-i'v (uffiu€ H). 
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The unitary dilation U of T constructed in [7] is unitarily equivalent to the operator 
U defined on the Krein space 

K = U-Ç&Tt)®ATL?(?>T) by U(u©y) = euu®e"v (w©t>€K). • 

6. Unitary equivalence of completely non-unitary operators. 

T h e o r e m 6.1. Let Tt and T2 be completely non-unitary operators with bounded 
characteristic functions. Then Tx and T2 are unitarily equivalent if and only if their 
characteristic functions coincide. 

P r o o f . By Proposition 3.1, if Tx and T2 are unitarily equivalent, then their 
characteristic functions coincide. Conversely, suppose that x: X > r i — a n d 
V Xiy* —Tit* are unitary operators such that ©TJ<X)=x*©Ti(X)x~1 (X£D). Then 
we obtain (since 0 r ( O ) = — TJT) 

I-T:T, = /-0T2(O)*0T2(O) = T(/-0T i(O)*0T i(O))t-I = T ( / - r* r i )T" 1 , 

and h e n c e / r ^ T / ^ r - 1 . We similarly deduce that JtI~x^Jt*and thus x 
and are unitary with respect to the Hilbert space inner products as well as 
the indefinite inner products. 

We can regard x as mapping L2ÇÙTJ to L2(T>T) (and similarly for T+), and 
then we have AT =xAT T_1. 1 2 11 

Let Tj and T2 be the operators (on H! and H2) defined in Theorem 5.1, unitarily 
equivalent to Tx and T2, respectively. Then, as in [15, Sec. VI. 2.3], we can de-
duce that the operator f , taking u®v to x^u®xv («©DÇHj), is a unitary operator 
from Hx to H2 such that T2 = t T 1 f - 1 . It then follows that 7\ and T2 are unitarily 
equivalent. • 

7. Notes on functional models. When 0 r is bounded and lim T*"=0, then we Tl-*-oo 
have $R = {0} [13, Theorem 5.5] and the model of Theorem 5.1 can also be de-
scribed as follows: 

Let K+ be the space of sequences {/;„}„£0 with /¡„€X>rt («=0, 1,2, ...) and 

2 l|AJ2<°=. The inner product on K+ is defined by 
•=o 

KUBo, (UnSol = 2lh, K] = 2 (Jt*K, K)-
n = 0 n=0 

Clearly, K + is a Krein space, with the fundamental symmetry 7 {/¡„}„ g 0 = {JTt hn}n s 0. 
We consider § as a subspace of K + by identifying the vector h£§> and the 

sequence 
h = {JT*QT*T**h}nS0. 
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By [13, Corollary 8.3], h is in K + , and we have (since lim T*"=0) 

[h, h] = Z(QT*T*"h, Jt*Qt*T*"K) = 
( 1 = 0 

= 2(Tn(I-TT*)T*nh,h) = ( h - l i m T"T*"h, h) = \\h\\2. 
/1=0 

Thus the identification of § as a subspace of K + is valid. 
If V is the unilateral shift on K + , mapping (h0, hlt h2, ...) to (0, h0, hlt ...), 

then we have T*— K*|§. If we identify K+ with the space H2(T>T,), in the obvious 
manner, then V is identified with multiplication by e" (thinking of H2 as a subspace 
of L2). The above model then coincides with the model of Theorem 5.1, which in 
the case lim T*"=0 identifies § with the space 

/1-» ©O 

H2(1>t*)Q0tH2CT)t) 

(since <R={0}). (Cf. [15, p. 277].) 
In [14], ROTA obtains a model for operators with spectrum in the open unit 

disk, and this case is obviously included in the case considered above (namely, 0 T 

bounded and lim T*"=0). Rota's model, however, differs somewhat from the 
JI -»co 

model described above, and gives only a similarity model for T. 
In the remaining sections of this paper we will be considering an arbitrary 

purely contractive analytic function 0(A). We will prove, by constructing a suitable 
functional model (based on that of SZ.-NAGY and FOIA§ [15, Chapter VI]), that if 
0 is bounded and fundamentally reducible then it is the characteristic function of 
some completely non-unitary operator (cf. [11]). 

8. The functional model for a bounded purely contractive analytic function. Let 
0(A): be a bounded purely contractive analytic function. We will assume 
that 0 is fundamentally reducible, so that there are fundamental symmetries on Q 
and commuting with 0%0q and 0 O 0 J , respectively. As in [11, Sec. 5] we define 
the fundamental symmetries 7=sgn (7— 0 j 0 O ) on D and / + = s g n (7— 0O0$) on 

The Hilbert space inner products and norms that we will use on D and 35 ̂  
(and on L2(T>) and L 2 (DJ) will be the J- and -inner products and norms obtained 
from these fundamental symmetries. 

We also define the operators Q=\I-0^0o\l12 and | 7 - 0 O 0 J | 1 / 2 . They 
satisfy the relations (see [7, Sec. 2]) 

j q 2 = I - 0 * 0 o , j * e i = 7 - 0 o 0 o * , 0 o J = J + 0 o , © o e = e * 0 o , 

00 % = J0O*, &o*Q* = Q® o*. 

Since 0 is bounded and purely contractive, it can be considered as an operator 
from L 2 (£) to L2(I>J, and we can define the operator A =(/(/- 0* 0))1'2 on 
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L2(t>). The space AL2(T>) will always be considered as a Hilbert space (with the 
/-inner product), and we have \\Av\\2=^[(I-0* 0)v, u] for y<EZ.2(£>) (cf. Sec. 5). 

Consider the Krein spaces 

K = L2(ZJQAL2(T>) and K + = H2(T>j®AL2(T>) c K, 
and let 

G = {0w©/lw: w£H2(T>)} c K + . 

For v and w in H2(D) we have 

[0v, 0w] + (Av,Aw) = [0*0v,w] + [(I-0*0)v, w] = [t>, w]. 

Hence, since 0 and A are continuous, the operator 0®A, mapping v to 0v®Av, 
is an isometry from H2(T>) to K. Therefore G, which is the range of 0 © A, is a 
regular subspace, of both K and K + [12, Theorem 5.2]. 

If we define H = K + © G , then H is a regular subspace of both K and K + . 
Let U be multiplication by e" on K. Then U is a unitary operator and K + is 

invariant for U; we define U + = U | K + . Since e"0=0eu and euA=Ae", G is 
invariant for U + , and thus H is invariant for U*. We can therefore define an operator 
T on H by T*=U* |H. If we denote by P the projection of K onto H then we have, 
as in [15, Sec. VI.3.1], 
(8.1) T" = PUn |H (n is 0). 
We also have 
(8.2) T*(uffii>) = e~"(u—u0)®e~i'v (u©i;€ H). 

It should be noted that, since the spectrum of U is in the unit circle, T has 
spectrum in the closed unit disk. 

9. Basic properties of the model. A vector u@v (u£H2(Ti^), ¡)£JL2(D)) is in 
H if and only if u®v}_0w®Aw for all w£H2(35). Since we have the equations 

[u®v,0w@Aw\ = [w, 0w]+(v,Aw) = [0*u, w\ + (Av,w) = [0*u + JAv,w], 

we conclude that wffit;£H if and only if 0*u+JAv±H2(D). In this case 

(9.1) 0*u + JAv= 2e-intfn, 
n = l 

with /„ given by 
271 

(9.2) fn — 1 /2n f einl(0*u + JAv)(t)dt. 
o 

From (8.1) we deduce that, for «©ugH, 

(9.3) T(u©p) = (e"w—^0/1)ffi(e"t)—4/i) (cf. [15, Sec. VI. 3.5]). 
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P r o p o s i t i o n 9.1. For MffiuCH we have 

(I-T*T)(u®v) = e - " ( 6 > - 0 o ) / i © < r " 4 / i 
and 

(I-TI*)(u®v) = (I-00t)uo®-A6tuo. 

P r o o f . The first formula follows immediately from (9.3) and (8.2). For the 
second formula, we need to obtain the vector / x corresponding to T*(u®v) , which 
(by (8.2)) is done by considering 

0*[e-"(u-uo)] + JA[e-"v] = e-"(0*u + JAv)-e-"0*uo. 

Since 0*u+JAv±H2(T>), we deduce that the required vector is — ©Jw0 and 
hence, applying (9.3), we obtain 

TT*(w©i;) = ( ( u - u o ) + 00Zuo)®(v + A0%uo) = u®v-[(I-00H)uo®-A0tuo]. • 

L e m m a 9.2. If u®v is given by 

U®v = e-"{0-0o)f®e-"Af, 

where / £ D , then H © I > € H , and the vector ft defined by ( 9 . 2 ) is /=(/-©*©„)/. 

P r o o f . (Cf. [15, Sec. VI.3.5].) Since JA-=I-0*0, we have 

0*u+JAv = e-"0*(0-0o)f+e-i'(I-0*0)f= e-"(I-0*0o)f. 

Therefore, 0*u+JAv± H2(T>), and so w©r6H. We also have 
2 71 

f i = 1/271 / ( 7 - 0 (e"r®0)fdt = ( 7 - 0* 0 o ) f . • 
o 

Let us define the subset in ® by 
2 n 

= { / , = 1/2ti f e"(0*u + JAv)(t)dt: u © u 6 H } . 
0 

P r o p o s i t i o n 9.3. Dj is dense in £>. 

P r o o f . Since 0 is purely contractive, the set {(7— 0Q0(,)g: g€X>} is dense in X). 
But Lemma 9.2 shows that ( l — 0 % 0 ^ g is the vector fx for u®v=e~u(0 — 0O)&® 
®e~"Ag, and therefore (I-0%0o)g€D1 for all g€T>. • 

P r o p o s i t i o n 9.4. The set {«„: wffiugH} is dense in 35^. 

P r o o f . Since 0 is purely contractive, the set {(7—0 o 0j)g : g£X^} is dense 
in If u®v=(I—00*)g®—A0*g, where then we have 

0*u + JAv = 0 * ( 7 - 0 0 £ ) g - ( 7 - 0 * 0 ) 0 * g = (<9*-0%)g. 
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Hence, ©*u+JAv±H2{£), and so u®vdH. The proof is completed by noting 
that u0=(r-©0G*)g. • 

10. The spaces S r andDr». Since © is a purely contractive analytic function, the 
operators Q and (defined in Sec. 8) are injective. Thus, for /€X>i and «©p(|H, 
we can define 

<p{JQf) = e~"(& — &0)f®e~"Af and = (I-©&S)u0®-A©*u0. 
JQ and 2* have dense range, and hence (by Propositions 9.3 and 9.4) <p and q>¥ 

are densely defined on 35 and , respectively. If we define 

35T = (/—T*T)H and 35T. = (/—TT*)H, 

then Proposition 9.1 shows that the range of <p is dense in ®T and the range of <¡0* 
is dense in T>Tf. 

Using the fact that [0/, ©of]=[0of, &0f ] for /€X>i, we have 

(10.1) [<pJQf, q>JQf] = [ ( 0 - 0 „ ) / , ( 0 - 0 o ) / ] + | !4/T = 

= [0/, ©f]~[0of, &of] + [(I-0*®)f,f] = l(r-0o&o)f,f] = m m 

Also, since [0*wo, ©o wo]=[0o«o, 0*m0], we have 

(10.2) [<pM*"o, <P*Q*U0] = [ ( /—00i )« o , ( / - 0 0 o > „ ] + |M0o*uo||2 = 
= [ u o , u o ] - 2 [ 0 i u o , 0 i u o ] + [ 0 0 5 u o , 0 0 S u o ] + [ ( / - 0 * 0 ) 0 S u o , © i w « ] = 

= [ ( / - 0 o 6 > j ) M o , M o ] = ne* w0ip. 

If we put on K the norm obtained from the fundamental symmetry J*® I, 
then we have, using the Cauchy—Schwarz inequality [2, Lemma II. 11.4], 

№ f f = [<pJQf; <pJQf\S ll<p/Q/ll2 ( / £ » , ) 
and 

lie*"oll2 = [<P*Q*Uo, P*Q*uo] ^ ll<P*e*"oll2 (u©t;€H). 

Therefore cp^1, defined on a dense subset of X)r, is continuous and has a unique 
continuous extension to all of 35r. Similarly, q>~x has a unique continuous extension 
to all of D r*. By (10.1) and (10.2), these extensions are unitary, with 35 and 35 ̂  
being considered as Hilbert spaces with the J- and J^-inner products. The adjoints 
of these unitary maps are then unitary extensions of q> and cp^, and these extensions 
will also be denoted by <p and (pt . 

We can now assert that 

(10.3) <p(JQf) = e~"(0~0Q)f®e~"Af for all /€3), 
and 
(10.4) <P*(Q*g) = V-eeS)g®-Aetg for ail 
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Note that <p and are unitary with the inner product [. , .] on S T and 7>Tt, 
and with the Hilbert space J- and J*-inner products on 35 and 3)+, respectively. 
We conclude from this that T>T and 35r, are Hilbert spaces. Since they are the ranges 
of isometries, 35T and T>r, are regular subspaces of K [12, Theorem 5.2], and hence, 
by [2, Theorem V.5.2], the intrinsic topologies on 35T and 35 r , (i.e., the topologies 
obtained from the norms [h, h]1'2 on T>T and 35rt) coincide with the strong topologies 
inherited from K. 

T h e o r e m 10.1. (I-T*T)(p=(p(I-0t&o) and ( / — T T * ) = ( J — 0O0J). 

P roof . If / i s in 3), then the vector fx corresponding to u@v=<pJQf (given 
by (9.2)) is / ! = ( / - 0 o 0 o ) / (This follows immediately from (10.3) and Lemma 9.2.) 
Hence by Proposition 9.1, 

(I-T*T)q>JQf= eLi'(0-0o)f1®e-"Af1 = tpJQf = (pJQ(I-0*o0o)f = 

= <P(I-0t0o)JQf. 

The first assertion of the theorem then follows. 
If g is in 35+, and if u®v=(p^Q^g, then (10.4) shows that uo=(I-0o0*)g. 

Hence, by Proposition 9.1, 

( / - T T > * 0 * g = (I-00t)uo®~ A0tuo = <p*Q±Uo = 

= <P*QM-0o®t)g = <P*(I-0o&t)Q*g, 

and the second assertion follows. • 

Since D T and 35T* are Hilbert spaces, we can define 7 r = s g n (/— T*T) and 
Q r = | / - T * T | l / 2 as operators on £ r , and / r *=sgn ( / -TT*) and QTt= | / - T T * | l / 2 

as operators on 35 T*. 

C o r o l l a r y 10.2. JT<p = <pJ, QT(p = <pQ, = and QT*<P* = <P*Q*- • 

We have shown that the inner product [. , .] is positive definite on 35r and T)T*. 
With the inner products [JT.,.] and [JT*.,.], 35r and T>T* are Krein spaces having 
fundamental symmetries JT and JTt, respectively. Corollary 10.2 shows that tp and 
<p^ are Krein space isomorphisms intertwining the fundamental symmetries J and 
JT, and and JTt. 

11. The characteristic function. 35T is regular, and so we can extend JT and 
QT to operators on H by defining them to be zero on H©35T . We similarly extend 
JTt and QTt to operators defined on H. It is clear that these extensions are self-
adjoint, and that JtQ2=I-T*T and J r * g 2 , = / - T T * . We define 

0 r ( A ) = - T / T + A / r » e r » ( / - A T + ) - V r e r | 3 5 r 

for those complex numbers X.for which (/—AT*)-1 exists. It will be shown in 
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the next section that H is a Hilbert space, so that 0 r is in fact the characteristic 
function of T. 

T h e o r e m 11.1. For k£D, 0r(Â)<p = <p+0(A). 

P r o o f . It suffices to show that —TJTq>=(p^0o and, for « = 1 , 2 , 3 , . . . , 
JT*QT*T*"~1JrQr<Pzz::<P*®n- By (10.3) and Corollary 10.2, we have for all 

- T J M Q f ) =-Tq>(JQf) =-T{e~i'(0-0o)f@e-itAf}. 

Lemma 9.2 and (9.3) then give us 

-UTcp{Qf) - - { [ ( 0 - € > , ) / - 0 ( / - 0 „ * 0 o ) / ] © [ J / - J ( / - 0 O * 0 O ) / ] } = 

= (/—00j)0o/ffi -A0%0of = <P*(Q*&of) = <P*@o(Qf)-
Since vectors of the form Qf, with /€35, are dense in we conclude that —TJT<p = 

Now let us assume that for all / € T> and for some n ̂  1 we have 

(11.1) . T *n-1JTQT(pf= e~"" 10 - "Z eik,0Af®e-in,Af. 
v k = 0 t 

By (10.3) and Corollary 10.2, (11.1) is true for n= 1. If we let 

u = e-i*(0-nZeikt0k)f, 
*=o 

then w o =0» / , and we obtain from (8.2) (assuming (11.1)) 

T * n J T Q T < p f = e-" [ e - ' " ( 0 - 2 e""©*)/- 0 , , / ] © e " ' > ' A f = 

= «-'(«+!)» [0 - Zeikt 0J f®e-«"+1)'Af. 
V k=0 / 

Hence, by induction, (11.1) is true for all n s l . 
It follows from (11.1) and Proposition 9.1 that, for n = l , 2, 3, ... and / € 3 5 , 

QT.(JT*QT*1*n-*JTQT<pf) = ( /—IT*) je~"" ( 0 ~'Zo eik'0^.f®e-in'Af\ = 

. = (/— 0 0 j ) 0 „ / © —A0Q0„f= <P*(Q*&„f) = QT*<P*0nf-

(The last two steps used (10.4) and Corollary 10.2.) Since QT» is injective on 35T*, 
we conclude that ./•/* 6r»T*" JTQT<P = <P*@n f o r " = 1,2, 3, ... and the theorem 
is proved. • 

12. Positivity of H. In this section we prove that, with the inner product [ . , . ] , 
H is a Hilbert space. We will need the following results. 

6* 
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L e m m a 12.1. (cf. [15, Sec. VI.3.2]) Suppose that the vector h£H satisfies 

( 1 2 . 1 ) . ( / - T * T ) T " H = 0 = ( / — T T * ) T * " F T 

for all /7=0, 1, 2 , . . . . Then h=0. 

P r o o f . We can write h in the form h=u®v. Take n S 0 , and assume that 
uk—0 for all &</»; when n=0, this is assuming nothing about u. Then (8.2) 
shows that 

T*"h =e-in'u®e-Ua v. 

By (12.1) and Proposition 9.1, we deduce 

0 = ( / -TT*)T* n / i = (l-00t)u„®-A0tu„. 

In particular, (l—0o0^)un=0, and since 0 is purely contractive, we have u n =0 . 
Therefore, by induction, u=0 and h=0®v. 

OO 
Since h£H, v must satisfy JAv— e~ik'fk for some vectors fk£ £ {k—l, 2 , . . . ) . 

4 = 1 

Take and assume that fk—0 for all k^n; again, this is a null assumption 
when 77=0. Then clearly we have, using (9.3), Tnh=Q®e'"'v, and also 

JA(e»v) = Ze~ik'fn+k. 
k=l 

By (12.1) and Proposition 9.1, we deduce 

0 = (/—T*T)T"/i = e-"(0-0o)fn+1®e-"Afn+1. 

Therefore we have (0 — 0o)fn+1=O=Afn+1 and hence 

o = 0*(0—0o)fn+1+jA2fn+1 = (/-e*6>0)/B+1. 
In particular, (/—6>J0O)/B+1=O, and since 0 is purely contractive, we have 
/ B + 1 = 0 . We conclude (by induction) that JAv=0, and thus v=0 (v£AL2

yTi)). 
Therefore h=Q. • 

T h e o r e m 12.2. Let U be a neighborhood of zero contained in the unit disk D. 
Then H is the closed linear span of vectors of the form {I—nT*)~lJTQTq>f and 
(T-nTy^Q^cp^g, where /igU./E®, and 

P r o o f . Since T has spectrum in the closed unit disk (Sec. 8), both (/— / /T*) - 1 

and (I—juT)-1 are defined for /¿^U. 
Suppose that the vector /J£H is orthogonal to (I—nY*)~1JTQT<pf and 

( / - / i T ) - 1 ^ « ^ , for all /££>. and g^t)* . The theorem will be proved 
once we show that h=0. 

We have, for all f£T> and 

0 = [h, (I-nT*)-UTQrq>f\ = [JTQrU-m^h, <pf], 
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and thus, since T>T is a Hilbert space, JTQT(I—pT)~ lh=Q for all This is 
true only if J T Q r T ' , / i = 0 for « = 0 , 1, 2 , . . . , and hence 

(12.2) ( Z - T * 1 ) T n h = 0 for n= 0 , 1 , 2 , . . . . 

Also, for g d ® , and n^U, we have 

0 = [hAI-liTj-iQ^cp+g] = lQT*(I-im~1h,<p*gl 

and so it follows, as above, that 

(12.3) (7—TT*)T*nJj = 0 for n = 0, 1, 2, ... . 

(12.2) and (12.3), together with Lemma 12.1, imply that h=0. • 

H is known to be regular, and thus (by [2, Theorem V.3.4]) H is a Krein space. 
Therefore, in order to prove H is a Hilbert space it suffices to show that it is posi-
tive. Obviously we need only show that [h, H\ SO for a set of vectors h dense in H, 
and in particular (by Theorem 12.2) for vectors of the form 

(12.4) h = 2 { ( / - ^ T * ) - V r e T q > f t H I - M i T ) - ^ ^ } , 
¡=1 

where n ^ l and, for i '= l , 2, . . . ,« , and /¿¡€tf, some neighborhood 
of zero in the unit disk. 

For the vector h defined by (12.4) we have 

[h, h] = 2 2 { [ ( ' - f t T * ) - l J T Q r < P f i , (i-iijTl-'JrQTvfjn 
i=l i=l 

+[(/- rtT*) ~ 1jt QTVfiAi-HjTt-iQT'V* gj]+ 

+l(i-mT)-1QT*<P*gi, (i-HjV^Qr^gj]} = 

+ [<p;Vr.QT>(I-JijT*)-1 (1-^*)-'JrQTVfi, gj] + 

+[<p~1QT(i-fijT)~1{i-HiT)~1QT*<p*gi,fj]+ 

+ [<PZ1JTQT*{I-fiJ?*)-1(.I-HiT)-1QT*<P*gi, gy]}-

In the above calculation it should be recalled that q> is unitary f rom the Krein space 
D to the Krein space 2 ) r , with the inner product [JT.,.]. A similar observation 
applies to <p#. 
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It can be shown ([10, Sec. IV.5]; cf. [11, Sec. 4] and [15, Sec.VI.1.1]) that, for 

I-0T(Mr&T(X) = (1 - Xfi)QT(I- pT)-1^- AT*) -1 JT QT, 

I-0T(ji)0T(Xr = (1 -A/i)/r.0I.»(/-/rr*)-i(/-AT)-ieT', 
0 T ( A ) - 0 T < £ ) = ( A - ^ ) / r , e r * ( / - / r r * ) - 1 ( / - A T * ) - i / r e r , 

and 
eT{X)*-eTQi)* = (?.—fi)QT(i—frT)~1(i—xT)~iQTt.. 

Hence, using Theorem 11.1, we have 

(12.5) [h, h)= 2 2 {[(1 + 
1=1 j=1 

+[(nt-PJ)-1{eoid-e(MJ))f„ sj]+ 

+ [(Int - ¡¡j) - 1 ( 0 (fid* - © 0ij)*) g,, f j ] + 

+ [(1 -tiifiJ)-1(l-0(jij)&(ji,r)gi, gy]}. 

Equation (12.5) can be rewritten in the form 

(12.6) [h, h]= 2 2[fcO'y Mi)(Ji@gi),Xfj®gj)l 
; = l j = l 

where k(ji, A) is the operator matrix given by [11, Equation (6.1)]. By [11, Theorem 3], 
k(ji, A) is positive definite when 0 is purely contractive and fundamentally reducible, 
and it therefore follows that [/?, /¡]s0. Thus H is a Hilbert space. 

13. The functional model for a bounded purely contractive analytic function: the 
main theorem. 

T h e o r e m 13.1. Let 0(A): 35 — b e a bounded purely contractive funda-
mentally reducible analytic function. Then the Krein space ' 

H = [ / / 2 ( D J © J Z , 2 ( D ) ] e { 0 > v © J w : H><Ei72(35)} 

isfa Hilbert space and the operator T on H defined by 

T*(uffit>) = e-u(u-u0)®e-"v (u©u£H) 

is completely non-unitary. The function 0 coincides with the characteristic function 
of T. The operator U on the Krein space K=L2(£>J®AL2(T>) defined by U (u®v) = 
—euu®e"v (u®v£K) is unitarily equivalent to the unitary dilation of T given by the 
construction in [7]. 

P r o o f . It was shown in Sec. 12 that H is a Hilbert space, and Lemma 12.1 
shows that T is completely non-unitary. 0 coincides with 0T by virtue of 
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Theorem 11.1. Finally, Theorem 5.1 shows that U is unitarily equivalent to the 
dilation of T given in [7]. • 

The construction of the dilation in [7] defines, in a natural way, a fundamental 
symmetry on the dilation space (referred to in Sec. 4 of this paper). For the space 
К above, this fundamental symmetry is not the obvious one ( / * © / ) , but the one 
defined as follows: 

Let M = { i / ® 0 : M_L#2(35+)}. Then we have 

K = M ® K + = M ® H © G 

(see Sec. 8). We can therefore define a fundamental symmetry J on К by 

J ( u ® 0 ) = J*u®0 (ифО^М), J(u©i;) = мфг; (u©i>6H), 

J (0w®Aw) = 0Jw®AJw (0w®Aw£ G). 

J is a fundamental symmetry since H is a Hilbert space and, for w d H 2 ( b ) , we have 

[0Jw®AJw, 0w®Aw] = [0*0Jw+(I-0*0)Jw, w] = [Jw, w] S 0. 

14. Comparison with the model of Ball. In this section we determine the relation-
ship between the model of BALL [1] and the model described in Theorem 13.1. 

Assume that 0 satisfies the conditions of Theorem 13.1 and let k(ji, A) be the 
operator matrix given by [11, Equation (6.1)]. Then the matrix 

(14.1) fc'Gi, A) = ( / © / , ) / с (I, Д)(У©/) 

coincides with the kernel matrix defined in [1, Theorem 2] (cf. [11, Sec. 6]). Also, as 
in [11], we will define 0 (A)=0(1 )* . 

Let us now consider an element u®v in H, so that и £ # 2 ( Ф + ) and и£АЬг(Ъ), 
with 0*u+JAv±H2(T>). Therefore, if w is defined by 

w (e") = e~il[0*u + JAv](-t), 

then w€B2(X>). Thus we can define a map Г f rom H to Л2(Ъ)®Н2(Ъ^ by 

r ( u ® v ) = w ® / » « . 

We will prove that Г Н , normed so that Г is unitary, is the Hilbert space T>(B) 
considered by BALL [1, Sec. 3.1]. 

Let us take /££> and We denote by f and / „ the functions / " ( A ) = 
=(1 -А/*)"1 /(Л61>) (cf. [15, Sec.V.8]) and / Д г ) = ( е " - ^ ) " 1 / (/<E[0, 2TI]). It is 
clear that / " € Я 2 ( D ) and f ^ L 2 ( 3 5 ) . From the boundedness of 0 , and the fact 
that (A—/¿)-1(0(A) — 0(j*))f is analytic for AgZ), we conclude that the function 

(14.2) u = ( 0 - 0 (/!))/„ 
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s i n / / 2 ( D J , and the function 

(14.3) w = (I-09(H))/" 

is in H*(T>). It is immediate from the definitions of k, B, f , and /,,, that w(A)© 
®u(X)=k(X,fi)(f®0), for all A€i>. 

Let us also consider the function 

(14.4) o = Af„ 

in AL2(t>). Then we have, using (14.2) and (14.4), 

&*u+JAv = 6*{©-9(ji))fltHl-®*®)f„ = (I-e*Q(ii))ft, 
and hence 

e~*[0*u+JAvH-O = e~"(l—0(e~'')*0 (jx)) (e~"—n)~1f= 

= (/—0(e")0(/*))(l —e i ' / i )~ 1 /= vv(e"), 

where H> is given by (14.3). Therefore u©t>€H and r(u@v)=w®J+u, i.e., 

r(u@v)(Z) = (I@J*)k(X,n)(f® 0). 

By using (8.2), (14.2), and (14.4), we obtain 

(/—/iT*)'(u©») = [u-ne-u(u-u0)]®[v-ne-"v] = 

= e-,t[(.e"-n)u + fiu0]®e-i,(e"-fi)v = e - " [ ( 0 - 0 0 ) ) / - (0o-0 Qi))/] ®e~"Af = 

= e-*(0-0o)fee-"Af. 

It therefore follows, using (10.3) and Corollary 10.2, that 

(I—/J.T*)(u®v) = q>JQf= JTQT<pf, 
and thus we obtain 

(14.5) r{(I-nl*)-^JTQT(pf) (A) = (I®J,)k(X, n)(f® 0). 

Let us take g€35 t and n£D, and consider the functions u =(l—00(p)*)g'1, 
p ' = — J©(/Z)*g", and w'=(0 — 0(fi))gll. Then we obtain, in a manner similar to 
that used in deriving (14.5), the formula 

(14.6) r ( ( / - ^ - 1 g 7 . . ^ g ) ( A ) = (/®J*)k(X,/i)(0®g). 

By Theorem 12.2, H is the closed linear span of vectors of the form 
(I-liT^JrQryf and (/—/¿T)-1<2r*<?'*&> where /££>, g€X>+, and fi(LD. The 
space 35(5) in [1] is defined so that a dense subset is that spanned by vectors which 
are pairs of functions (in A) of the form (I®J+)k(X, n)(f ©0) and 
(!@JJk(X, n)(0®g), where / 6 ® , and /itD. (Recall that the kernel 
matrix in [1] is given by (14.1).) Thus we will have rtl=T)(B), with r unitary, 
once we have checked that the norm induced by r, on the dense subset of T>(B) 
described above, is the same as that defined in [1]. 
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Consider the vector A£H defined by (12.4). Then, by (14.5) and (14.6), 

(r*)(A) = (/©/«) ¿/c(I, nd(fi®gi)= Zk'fcaWfi®gd 
¡=1 ¡=1 

(using (14.1)), and it follows from the definition of the inner product in [1] that 

i\m*= 2 2 mjfi®gi)> (Jfj®gj)) = 
¡ = i i = i 

= 2 2 ((KBJjkinj, riu® gi), (Jfj®gj)) = 
i=i j=i 

= 2 2 ( U © J*) k (jij, nd (f © g(), ( f j e g;)). 
i = l J = 1 

But the inner product (., .) on £>©1)^ is the /©/^ - inne r product, and hence 

II rhr = 2 2 IkQij, ^ ( / ¡ © g , ) , (fj®gj)]. 
¡=iy=i 

Consequently, we have (by (12.6)) \\Th\\2=[h, h], and so r H = D ( 5 ) with F 
unitary. 

In [1] the characteristic function B of an operator T is taken to be B—0T 

(cf. [11, Sec. 6]), and so in comparing the two models we should take B=0. In 
Ball's model, B is shown to be the characteristic function of the operator R on 
£>(.8) defined by 

R(w®u) = e~"(w> —w0)ffi (e"u—BJw0). 

We show now that RT=TT. 
For Mffir£H, we have defined T{u@v)=w®JJfu, where w(eir) = 

=e~u[0*u+JAv](—t). Thus w0 is the vector fx given by (9.2) and, using (9.3), 
we have 

T(u©t?) = (e'' u — 0wo)(B(e" v — Aw0). 
Note that 

0*(e"u-0wo) + JA(ei'v-Awo) = eu(0*u + JAv)-wo, 
and hence 

rT(u®i>) = e~" (w — w0) © J* (eu u — 0wo). 

Since B=0, we have B=J^0J, and thus we conclude that 

RT(u®v) = RiwQJ+u) = e-u(w-w0)@(ei'J*u-J*0wo) = /T(uffiy). 

T h e o r e m 14.1. Suppose 0 satisfies the conditions of Theorem 13.1, and let T 
be the operator, defined in that theorem, having 0 as its characteristic function. Then 
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T is unitarily equivalent to the operator R defined in [1], with B= 0. The equivalence 
is implemented by the unitary operator T: H — T>(B) given by T (u ®v) = wQ)J^u 
(w©u€H), where 

w(e") = e-"[0*u + JAv](-t). • 
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Derivations on /-semigroups and formal languages 
H. MITSCH 

Introduction 

Transformations of lattices resp. lattice-ordered semigroups satisfying formal 
properties which correspond to the differentiation rules of the sum, product and 
composite of real functions have been studied in [8], [9]. However it was shown 
in [8] that for the most important /-semigroups only the identity mapping resp. 
the zero mapping (if defined) satisfy all these formal rules. Thus the abstraction 
in this sense turned out to be "not very" useful; besides the motivation for the 
investigation of such transformations was still missing. In this paper we give a 
motivation studying the derivations of formal languages (see [2], [3]). 

Since the set P(X*) of all formal languages on an alphabet X forms a lattice 
ordered semigroup (briefly: l-semigroup) with respect to set theoretical intersec-
tion, union and complex product, in general we consider such /-semigroups (see 
[5], [6]). By this we mean a set S with three binary operations A, V, •, such that 

1) (5, A, V) is a lattice, 

2) (S, •) is a semigroup, 

3) a(bVc) ={ab)\J{ac), (a\Jb)c = (ac)V(fcc) (Va,b,c£S). 

We note that every such /-semigroup is a partially ordered semigroup with respect 
to its lattice order, i.e. a^b=>ac^bc and ca^cb (Vc£ S). A dual l-semigroup 
satisfies 1), 2), 3) and 

4) a(bAc) =(ab)A(ac), (aAb)c = (ac)A(bc) (Va,b,c£S). 

A rig/it lattice ordered semigroup (briefly: rl-semigroup, see [7]) is defined by 1) and 
2) and 

3') (a\Jb)c = (ac)M(bc), (aAb)c = (ac)A(bc) <ya,b,c£S). 

ReceivedJDecember 21, 1979. 
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The aim of this paper is to investigate transformations of (r)/-semigroups S 
which satisfy the most important properties of the derivations of formal languages 
(see [2], [3]). Essentially they are lattice homomorphisms which are at the same 
time semigroup translations. First we prove some general properties of such "deriva-
tions" and state their explicit form on special (r)/-semigroups. Next we suppose 
S to have right quotients, a condition which corresponds to an important property 
of the /-semigroup (P(X*) , f l , U, •)• This motivates the study of mappings of 
the form cp(x)=x:a (Vx£S , a£S fixed) which reflect the definition of derivation 
in P(X*). We investigate such transformations on general /-semigroups and show 
that they satisfy all the properties of a "derivation". Conversely it turns out that 
every "derivation" on certain /-semigroups has the form <p(x)=x:a for a certain 
a£ S. These results become more apparent by the theorem that under certain con-
ditions every such /-semigroup is isomorphic to the /-semigroup P(X*) of all formal 
languages on an alphabet X. In particular we obtain that it is impossible to define 
transformations on P(X*) satisfying the three essential properties of a derivation, 
but different from the mappings of the form <p(A)—A:a (VA£P(X*)). 

1. Derivations with dual chain-rule 

LetX^0 be an alphabet and (A1*, •) the free semigroup of all words w=a± ... a„ 
with letters at in X with respect to concatenation " •" , the empty word X being 
the identity element of (X*, •). Then every subset A of X* is called a formal lan-
guage on X. The set theoretical union, intersection and the complex product of two 
formal languages A, B on X (A • B= {ab\a£A, b£B), A - @ = 0 • A= <Z>) are again 
formal languages on X. With respect to the operations f l , U and • the power set 
P(X*) forms a lattice ordered semigroup with identity {A}. 

The derivative of a formal language A£P(X*) with respect to a letter a£X 
({a}£P(X*)) is defined as the subset Da{A)^{xdX*\axdA} of X* (see [3]). Thus 
for a fixed a£X to every A£P(X*) there corresponds a B£P(X*) defined by 
B=Da(A); consequently Da can be interpreted as a mapping Da: P(X*)—P(X*) 
satisfying the following three properties which are of most importance for the applica-
tion to regular expressions and the construction of finite automatas, i.e. acceptors 
(see [3]): 

1) Da(AUB)=Ba{A)\JD.(B) (VA,B€P(X*)) 
2) Z>a(Ai)B) = Da(A)i]£>a(B) (Va€X) 
3) DM-B) =Da(A)-BU5(A)-Da(B), 

where 5(A)=X if ?.£A and <504)= 0 if X$A. Furthermore we have Da(0)— 0 , 
Da(X*)=X* and Da(M) = {X) for at least one M£P(X*). Since (P(X*), f l , U ) 
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is also uniquely complemented, we have also A , 0 0 = ( A , 0 0 ) ' {i AdP(X*)). Thus 
every mapping Da is a (0, l)-lattice homomorphism satisfying a certain "dual chain 
rule" (for 8(A)=X) resp. the property of a semigroup translation (for S(A)=0). 
This motivates the definition of the concept of derivation on general (r)/-semigroups 
and the study of such transformations. 

D e f i n i t i o n . Let S be an (r)/-semigroup with identity e. A transformation 
<p: S—S is called a derivation of S, if for all x, ydS 

R e m a r k s . 1. Let (p: S-~S be a mapping satisfying (1) or (2); then for 
x^e we get xy^y (VydS), thus (p(xy)^<p(y) (since <p is order preserving by (1) 
or (2)). Consequently, if we can show the equation <p(xy)=cp(x)y for all x,ydSf 

then (p(xj>)=(p(xy)V(p(>')=<p(x)y\/(p(_»') for x^e and for all ydS. 
2. Let (S, A, V) be uniquely complemented and let <p: S-+S satisfy (1) and 

(2); then <p(x') = [q>(x)]' (VxdS) iff <p(o)=o and q>(i)=i (o is the least, i is the 
greatest element of 5), because <p(x) Vq>(x')=<p(x\/x')=<p(i), <p(x)A(p(x') = 
=<p(xAx')=(p(o) (Vx€S). 

3. Let (S, A, V) be a Boolean lattice and let cp: S-S satisfy (1) [resp. (2)] 
and <p(x')=:[<p(x)Y (Vx£S); then <p satisfies (2) [resp. (1)], for xAy=(x'S/y')' 
(Vx, j /eS) implies <p(xAy)=[<p(x'V/)]' = ([cp(*)]'V[y(y)]')'=<p(x)/\(p(y) (Vx,v£S). 

E x a m p l e s . Let S be an (r)/-semigroup with identity e. 
1. The identity mapping i d ( x ) = x (\/xd S) is a derivation on S. 
2. If S has a least element o with o=ox(\/xdS), then cp(x)=o (Vx€S) is a 

derivation of S. 
3. If S is ah /-semigroup, then <p(x) — a (Vx£S, adS fixed) is a derivation of 

5 iff a is a left zero of (5, •)• (if <P is a derivation and there is an xdS with x^e, 
then a = cp(xy) = <p(x)y=ay for every y£S; if x ^ e (Vx£S), then a — (p(xy) = 
= (p(x)y\/ <p(y)=ay\/ a=ay for all ydS; in both cases a is a left zero of S. Con-
versely, if a=ay (VydS) and (p(x) = a (Vx£S), then <p(xy)=a=ay = <p(x)y 
(Vx, y£ S) and we can apply Remark 1.) 

4. The transformation cp(x)=ax (Vx£S, adS fixed) is a derivation of S iff 
ad S is left distributive with respect to A (and V). (Since <p (xy) = a (xy) = (ax) y = 
=<p(x)y (Vx, ydS), we can apply Remark 1; the properties (1) and (2) are clear 
iff a(xA.v) = (ax)A(a/) resp. a(xV.i') = («x)V(fl>') for all x, v€S.) 

(1) 

(2) 

<p(xVy) = <p(x)V q>(y), 

<p(xAy) = <p(x)A(p(y), 

(3) (p(xy) = 
f (p(x)y\J(p(y) if x^e, 
\<p(x)y if x^e. 
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R e m a r k . In S=P(X*) the only left zero is 0 ; but <p(A)=0 (VA£P(X*)) 
is not a derivation D„ in the sense of formal languages, since Da{X*)r*f& for 
every a£X. 

P r o p e r t i e s . Let S be an (r)/-semigroup with identity e and <p a derivation 
of 5. 

1.1. If S has a least element o with o=xo (Vx£S), then (p(o)=o. (If there 
exists x^e, then (p(o) = q>(xo) = <p(x)o=o; if x g e (VxgS), then e=o and 
o=xo=xe=x (Vx€S) ; but for 5={o}, trivially (p{o) — o.) 

1.2. If S is an /-semigroup, then (p(x")=(p(x)x"~1 for all x £ S and for all 
integers n ^ 2 . (Case n = 2: for x g e we have (p(x2) = <p(xx) = q>(x)x V <p(x) = 
=<p(x)x, and for x^e we have <p(x2)=<p(x)x; induction: for x g e we have 
<p(xn)=<p(xxn-1)=<p(x)x"-1\/xn-t)=<p(x)xn~1 and for x^e 
we have q>(x") = (p(x)x"~1.) 

1.3. If S has o with e ^ o , then (p(c) = c for all right zeros c£S. (Since e^o, 
there exists x«=e and <p(c)—(p(xc) = <p(x) c = c.) 

1.4. <p(c)^(p(x) (Vxg S) for every left zero c ^ f . (<p(c)=cp(cx)—(p(c)xV <p(x) & 
&</>(x) for all x65.) 

1.5. If 5 has a greatest element /, then c^<p(x) ( V x £ S ) and c=<p(i) for a 
two-sided zero c S e . (c=<p(c) = <p(x) for all x£S by 1.3 and 1.4; since e g / 
implies e = <p(c)^<p(i), we get c = <p(i).) 

1.6. If (S , A, V) is uniquely complemented with e—i and <p(e) — e, then 
<p=id. (By Theorem 1.2, Ch. II of [5] we have xy — xAy (Vx, y£S); thus for 
x < e , (p(x)Ay = (p(x)y = <p(xy) = (p(xAy) = q>(x)/\<p(y) (\/y£S); for x —v we get 
<p(x)Ax = <p(x), thus (p(x)^x; but q>(e)~e implies <p(x) = (p(ex) = cp(e)x\J (p(x) = 
=xV<p(v) = x, and <p (.v) = x for all x£S. If i=e=o, then S={o} and <p ( x ) = x 
holds trivially.) 

1.7. If (£, A, V) is Boolean and <p(e) = e, cp(o) = o, then (p = id. (Since 
cp(e)=e, we have again cp(x) S x (Vx6 5); x=i implies <p(i) = i, so that [cp(x)]' = 
=<p(x') (Vx£ S) by Remark 2; since S is Boolean, <p(x) ^ x implies <p(x') = 
= [<^(x) ] ' s x ' (Vx€S) , hence (p(x) = x (\/x(ES).) 

S 

R e m a r k . By Property 1.3 every right zero is a fixed point of S with e^o. 
In S=P(X*) the only right zero is 0 , which is indeed a fixed point for every deriva-
tion Da. By a Theorem in [4], every order preserving transformation (in particular 
every derivation) has at least one fixed point iff (S, A, V) is complete; for example 
Da(M) = M for M={A, a"; n=l, 2, 3, ...}. 

In the following we prove three lemmas on the explicit form of derivations on 
special /-semigroups S. Although the conditions imposed on S are not satisfied for 
P(X*), these results seem to have some interest on their own. We note, that in 



95 H. Mitsch : Derivations on /-semigroups and formal languages 

every (r)/-semigroup S with identity e: <p(x)=cp(ex)=<p(e)x\/ (p(x)^cp(e)x for all 
x£ S and for every derivation (p. 

L e m m a 1.1. Let S be an (r)l-semigroup with identity e. If there is a right 
invertible element a^e in S, then every derivation <p of S has the form (p(x) — cp(e)x 
( V * € 5 ) . 

P r o o f . We have ab = e for some Z>£S. If a > e , then ¿ < e (since a x ? 
implies e—ab ~b, but b—e implies a=e); consequently we get <p(x)=<p(ex)= 
=<p(abx)=(p(a)bx\J<p(b)x=[<p(a)b\J<p(b)]x=(p(ab)x=cp(e)x for all x£S. If a^e, 
then we conclude for every S that 

cp(x) = <p(abx) = cp(a)(bx) = [<p(a)b]x = <p(ab)x = cp(e)x. 

C o r o l l a r y . Let S be a dual ¡-semigroup with identity e and right invertible 
element a^e. Then the derivations on S are exactly the inner left translations <p (x) = cx 
(\/x£S, c£S arbitrary). 

R e m a r k . If we suppose that for every derivation cp^id there exists at least 
one b^e in S with cp(b)=e, then also the converse of Lemma 1.1 is true: if (p^id, 
then <p(e) ^ e , since <p(e)=e implies <p(x) = <p(ex) = (p(e)x=ex=x, thus <p = i d ; 
but (p(b) = e for some b?±e, hence e — q>(b) = (p(e)b and a=cp(e)^e is a right 
invertible element. 

E x a m p l e . Let (L, A , V) be an arbitrary lattice and S=F(L) the set of all 
transformations of L. With pointwise intersection, union and with the composi-
tion of functions (fog)(x)= /[#(*)] (Vx£L), (S, A, V , o) forms an /-/-semigroup 
with identity id (see [7]). Since every permutation of L is (right)invertible with respect 
to "o", every derivation <p of 5 has the form <p(/) = <p(id)o/(V /£S). Choosing 
^(id) as a constant function fa defined by fa(x)=a (\/x£L), q>(id) is left distribu-
tive with respect to " A " and " V " , so that ( p ( f ) = f a (V/CES) (see Example 4). 

L e m m a 1.2. Let S be a uniquely complemented rl-semigroup with identity e. 
If ox—o, ix = i (\/x£S), then every derivation (p of S with <p(o) = o, <p(i) = i has 
the form q>(x) — q>(e)x (\f x£S). 

P r o o f . If e=o, then x = ex=e for all x£S and S={e}; thus <p(e) = e 
and ip(x) = (p(e)x (Vx^S). Let e^o; then e'=£e. Furthermore (xyY = x'y 
(Vx, y£S), since (xy)y(*'>') = iy = i, (xy)A(x'y) — oy=o. Consequently, for all 
x€ S, (p (x) = (p (ex) = cp \(e' .v)'] = [<p (e' x)]' = [<p (e') x]' = [tp (e')\ x = <p(e)x (see Re-
mark 2). 
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L e m m a 1.3. Let S be a Boolean rl-semigroup with e^o and ab=o i f f a—o 
or b=o. Then every derivation of S with q>(i)—i has the form 

P r o o f . Since <p(o)=o by Property 1.1 and <p(i) = i, by Remark 2 we have 
(x')=[Q>(JC)]' (V*€S) . Let first x g e ; then x ' ^ e (otherwise o = x A x ' ^ x A e = e ) ; 

consequently, o=<p(o)=q> (oy)=<p [(x A x')y]=<p (xy) A <p (x'y)=[(p(x)y\J<p(y)]A<f>(x')y= 
= oM[(p{y)h(p{x')y] (\iy€.S). For y=i we get o = cp(x')i; since /Vo, we conclude 
<p(x')=o, thus <p(x)=/' ( V x £ S with x&e). In particular we have cp(e)=i, hence 
<p(x) = (p(ex) = cp(e)xV<p(x)six^x, i.e. <p(x)^x (Vx€5) . 

Next let x\\e; if x ' s e , then x^e and similarly to the case x^e, x ' ^ e , we 
get <p(x)—o; but then <p(x)^x (Vx£S) implies x=o, a contradiction. If x'^e 
then o = (p(xy)A(p(x'y) = <p(x)yA<p(x')y = <p(x)yA[<p(x')y\jx'y] = oV[<p(x)yAx ,y] = 
= [<p(x)Ax'\y (\jy£S). For y=i we get o = [<p(x)Ax']/ and thus <p(x)Ax'=o; 
that means cp (x) ^ x. Together with cp (x) s x ( V x £ S ) we conclude cp(x)=x 
( V X € 5 , X ||e). 

Finally let x < e ; if x = o , then <p(o)=o; if x ^ o , then x ' ^ e (otherwise / g e S x , 
which implies x = o ) . Similarly to the case x||e, x'^e, we obtain cp(x)=x for all 
x<e in S and the proof is complete. 

C o r o l l a r y . Let S be a Boolean rl-semigroup with e^o and ab = o i f f a = o 
or b = o. Then every derivation <p on S with <p(i) — i is the identity mapping. 

P r o o f . Since by Example 1 the identity transformation i d ( x ) = x is always 
a derivation with <p(i)=i, by Lemma 1.3 we have x = i d ( x ) = / for all x=re. In 
particular e=i\ thus every derivation <p of S with <p(i) = i satisfies cp(e)—e, too. 
But then <p=\<L by Property 1.7. 

Returning to the concept of derivation of a formal language A£P(X*) with 
respect to a letter a£X, defined by 

we may interprete L>a(A) as the greatest set BQX* with respect to set inclusion 
such that aBQA. More generally, the derivation of a formal language A£P(X*) 
with respect to a set TQX* is defined by 

i for each x e 
x for each x ^ e. 

2. Quotient mappings 

Da(A) = {xtX*\ax£A}, 

DT(A) = {x£X*\ Tx c A}, 

i.e. as the greatest set CQX* such that T- CQA (see [3]). 
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The /-semigroup (P(X*), f l , U, •) has the property that for each ordered pair 
A, B£P(X*) in the set of all Y£P{X*) with A • YQB there is a greatest element 
with respect to set inclusion, denoted by B:A and called the right quotient of B 
with respect to A. Therefore a derivation DT with respect to TQX* can be viewed 
as a mapping DT: P(X*)-»P(X*) which associates to every A£P(X*) the right 
quotient A:T=DT(A), the greatest element CeP(X*) such that T-CQA. If T 
consists of a single letter a£X, then Da(A)=A:a, the greatest element B£P(X*) 
with aBQA. 

Consequently, for this section we suppose S to be an ¡-semigroup with right 
quotients (see [5], [6]); by this we mean an /-semigroup S such that for every ordered 
pair a, b£S, in the set of all x£S with ax^b there exists a greatest element with 
respect to " S " , denoted by b:a and called the right quotient of b with respect to a. 
We recall [5] that a complete l-semigroup is defined as an /-semigroup S which is a 
complete lattice satisfying the identity: a(V/>,)=V(a/>f) for all a, b£S, where 
the join is taken for an arbitrary set of indices. In particular it is easy to see, that in 
a complete /-semigroup S with xo — o (\f x£ S) the right quotients b.a exists for 
all pairs a,b£S. 

Motivated by the (complete) /-semigroup (P(X*), f l , U, •) with right quo-
tients and its derivations DT(A)=A:T {y A£P(X*)) we give the following 

D e f i n i t i o n . Let S be an /-semigroup with right quotients; then every trans-
formation (pa(x)=x:a ((VxfE S), af_ S fixed) is called a quotient mapping of S with 
respect to a£S. 

First we show that every quotient mapping can be reduced to quotient mappings 
with respect to atoms of S: 

L e m m a 2.1. Let S be a complete, atomic, Boolean l-semigroup with xo = o, 
(\/x(: X); then every (px, a?±o, is an intersection of quotient mappings q>a on S with 
respect to atoms a£S. 

P r o o f . Since (S1, A, V) is an atomic Boolean lattice, every element a£S , 
a^o, is a join of atoms a£ S, that is a = \Jai (Theorem III. 1.5 in [1]). But 
(S, A, V, •) is also complete, so that right quotients exist and by [5], p. 156, x:a= 
=x:(Vai)=/\(x:ai). Consequently, <pa(x)=x:a= A(^:af) = A^<i,(*) (Vx£S), i.e. 
</>a=A<*V 

R e m a r k s . 1. For formal languages the same result is valid: for arbitrary 
TQX* we have DT={x£X*\Tx^A}={x£X*\tx^A (ytZT)}= f ) {x£X*\tx£A}= 

t£T 
= Q D,(.A), where t£ T is a word over X, that is an atom in the power set 

(P(X*), n , u ) . 

7 
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2. By the definition of the derivation of a formal language A£P(X*) with 
respect to a word a=a1...a„ of length n> 1 (see [3]), Da is decomposed into deriva-
tions with respect to words of length 1, i.e. with respect to single letters a£X, by 
the.following rule: 

DaiaM) = D01[Dai(A)], Dai...0n(A) = Dan[Dai...an_l(A)] {V A£P(X% 
where a,, ..., a„ are single letters in X. Therefore Da is the composite of the Da¡ 

(/'=1, ..., ri), that is 
. Da = Dai:„ttn = D0ttoDttn_o...oDai. 

We prove the same result for derivations on certain /-semigroups S with iden-
tity e. We use the concept of irreducible elements (see [5]): we call an element S 
irreducible if a=bc (b, c£S) implies b = a, c=e or b = e, c—a. In (P(X*), f l , U, • ) 
the irreducible elements are exactly the letters of X, i.e. the words of length 1, and 
every word w€X* is a product of (irreducible) letters of X. 

L e m m a 2.2. Let S be an l-semigroup with identity e and with right quotients, 
such that every atom (¿¿e) is a finite product of irreducible atoms. Then every cpa 

(aZ S is an atom) can be splitted up into derivations with respect to irreducible atoms 
of S. 

P r o o f . If a = a1...a„, and a£S are irreducible atoms, then we have by 
[5], p. 155 

x:a = x:(a1...an) = (x:a1):(a2...an) = (((x:a1):a2):...:an), 
so that 

q>a(x) = x: (ax... an) = [(<pB1(x): a2):...: a„] = 

= (PaSVan-ÁVa^Á- <P01(*)))), i.e. 
<Pa(x)=(<PanO<pan_10...0(pai)(x) (Vx£S). 

Thus every mapping <px ( a £ S ) on a complete, atomic, Boolean /-semigroup 
with identity and xo=o (Vx£S) can be decomposed into a product and (or) an 
intersection of quotient mappings with respect to irreducible atoms. Therefore we 
can restrict our investigations to mappings <pa with respect to irreducible atoms 
a € S . 

P r o p e r t i e s . Let 5 be an /-semigroup with identity e ( ^ o if o exists) and 
with right quotients and let cp„ be an arbitrary quotient mapping on 5 with a ah 
(irreducible) atom of S. 

2.1. If S has i and o with ox=o (Vx€S), then (pQ(x)=i (\/x£S). (<p0(x)~ 
=x:o=i by definition.) 

2.2. If a w i t h a g e , then <pa(x)^x (Vx£ S). (In fact, <p3(x)=x:a and 
a ( x : a ) « x ; but <x^e implies a(x:a)^x:ix, thus x:a^x for all x£S.) 
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2.3. If 5 has i and ab = o implies b = o, then <pa(o) = o, (pa(i) = i. (By defini-
tion <pa(o)=o:a and a(o:a)^o implies a{o\a)=o\ since a is an atom (t^o) 
it follows o:a=o; moreover <pa(i)=i:a=i since axSi for all x€S . ) 

2.4. If e£ S is an irreducible atom and if ab—o implies b=o, then (pa(e)=o 
ore. (q>a(e)=e:a and a(e:a)^e; if a(e:a)=o, then e : o = o ; if a(e:a)=e, then 
a=e,e:a=e.) 

2.5. (pe(x)=x for all x£ S, i.e. (pe is the identity mapping. 
2.6. If ab=a implies that b is an atom, then <pa(a)=e. ((pa(a) =a:a and 

a(a:a)^a; since a e = a , by definition e^a:a; but e<a:a would imply 
a^a(a:a)^a and a(a:a) = a, so that a:a would be an atom of S, which is impos-
sible for e-=a:o.) 

L e m m a 2.3. Let S be an ¡-semigroup with identity e and with right quotients, 
such that ax —a is ah atom only if x is an atom. Then (pa — cpb i f f a—b (i.e. quotient 
mappings with respect to different atoms are distinct). 

P r o o f . Let <pa=(pt,, i.e. x:a=x:b for all x£S. For x—a we obtain e~a:a = 
=a:b by Property 2.6; consequently, b = be — b(a:b)^a. Similarly, for x=b we 
get a^b, so that a=b. 

L e m m a 2.4. Let S be an l-semigroup with right quotients such that 1) ax—o 
implies x=o, 2) ab — r is an atom only if b is one. Then for all atoms a, c of S with 
c^a we have: 

if c = ab 

t 
1 - otherwise. 

P r o o f . If S is an arbitrary atom of S which can be written in the form 
c=ab, then b£S is uniquely determined: let c = ab = ad, then c = a{b\Jd) which 
implies that bMd is an atom with b\Jd^b, d\ consequently bMd=b=d. From 
c=ab we conclude b = c:a, since if there is an m£S with am^c but m>b, 
then am^ab=c, so that am=c=ab and thus m=b, a contradiction. Consequently; 
<pa(c)=b. If c£S is not a product with a£S as a left factor, then also a(c\a)ric 
since a(c:a)^c and c£S is an atom, we have a(c:a) = o, thus c.a = o, i.e. 
(,Pa(c) = o. 

C o r o l l a r y . Let S be a complete, atomic, Boolean l-semigroup such that xo = o 
(Vx£ S) and ab^o for arbitrary atoms a,b£S. Then for every atom c£ S with 
c^a we have 

- I 
{o otherwise. 

P r o o f . We have to consider only the second case when a(c:a) = o. If c:a?±o, 
then by Theorem III. 1.5 of [1] we have c : a = \ f a i with a £ S atoms. Hence 
o=a(\/a)=\/(aal)^aah thus aa=o, a contradiction. 

T 

b if c = ab 
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3. Quotient mappings are derivations 

In this section we shall show, that every quotient mapping <pa with respect to 
an irreducible atom a£S satisfies the properties of a general derivation. Though 
its proof will be easy by Theorem 4.2, we give a direct proof by a series of lemmas, 
since the conditions imposed on the /-semigroup under consideration are often very 
much weaker than those of Theorem 4.2. 

T h e o r e m 3.1. Let S be a complete, atomic, Boolean l-semigroup with identity 
e such that 1) ox = xo = o (VxGS), 2) ab is an atom i f f a, b are atoms, 3) every atom 
can be uniquely represented as a product of irreducible atoms. Then every quotient 
mapping <pa with respect to an irreducible atom a£S is a derivation. 

L e m m a 3.2. Let S be a complete, atomic, Boolean l-semigroup in which xo~o 
(VA€5) and the product of any two atoms is again an atom. Then every <pa (a£S 
is an atom) satisfies 

<Pa (V xi) ~ V Va(xi) (Vx,€S and any set I of indices), 
i i 

P r o o f . We have to show that (V xt):a=V (.Xi'.a). Let x , : a = a i and let 

S be such that m > V « i but a m ^ \ J x,. Since m ^ o , by Theorem III. 1.5 
i i 

of [1], m = \J b: and am=\J (ab:) V But a, b, are atoms, hence ab, are atoms, 
j J i 

too; therefore abj^am^\J x; implies abj^x, for at least one index i£l (see 
[1]). Denote by /,• the set of all indices j f j with ab^x-^ then V ( f lb j )=a( \ / bj)^ 

J I J ( 

^ x h e n c e V b,^xi:a=<xi. Thus m = V b. = V (V ¿>;) — V <*;. a contradiction. 
ji J i Ji i 

Since a(V a,) = a(V (*/:<*))= V ( « ( * . • • ' V x h the proof is complete. 

L e m m a 3.3. Let S be an l-semigroup with right quotients; then for every q>a 

(a£S is an arbitrary atom) we have (pa(xAy)=(pa(x)A(p0(y) for all x,y£S. 

P r o o f . By [5], p. 155, we have (xAy):a=(x:a)A(y:a) Cia,x,y£S). 

L e m m a 3.4. Let S be a complete, atomic, Boolean l-semigroup, in which xo=o 
for all xd S and the product of any two atoms is again an atom. Then every <pa 

(a£S is an atom) satisfies cpa(o)=o, (pa(i) = i and thus [(pa(x)]' = (p„(x') (Vx£S) . 

P r o o f . We show, that ab=o implies b—o. Suppose b^o\ then by Theorem 
III. 1.5 of [1], b=\J bt with atoms b£S; thus o=ab=\J (ab,), hence 

/ i 
but o£S is not an atom, a contradiction. By Property 2.3 we obtain <pa(o)=o, 
<pa(i)=i and by Lemmas 3.2 and 3.3 we get (pa(x)V<pa(x')=<pa(x\/x')=q>a(i)~i 
and <pa(x)A<pa(x') = q>a(o)=o. Therefore (pa(x')=[(pa(x)]' (Vx€S). 
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L e m m a 3.5. Let S be a complete, atomic, Boolean I-semigroup such that xo = 
= ox=o (\fxd S) and ab is an atom i f f a, b are atoms of S; then every atom of S is 
left and right cancellable. 

P r o o f . Let ax=ay for some atom a 6 S, x, yd S arbitrary. If x=o, then 
ax=o=ay and by the proof of Lemma 3.4 we get y=o. Let x^o and y^o; 
then again x=V xt, y=V y,- with x^y&S atoms; thus V (axd = V (ay,) = ay, 

i J i J 
(V j€J). Hence we conclude again ay^axt for at least one id I (since ays is an 
atom); but aXi is an atom, too, so that ayj=axi. This implies a (x i Vj ; j )=ax i 

where ax{ is an atom; hence x ^ y 3 has to be an atom, which implies x ^ 
= x i—yj - Consequently, every xt (id I ) is equal to at least one yj (jdJ); analogously 
we obtain that every yj ( j d J ) is equal to at least one xt (id/). Hence the sets 
{x,|z£/} and {yj\jdJ} are equal and so x=y. 

L e m m a 3.6. Let S be a complete, atomic, Boolean l-semigroup with identity e, 
which is an atom of S. If S satisfies the properties 1) a, b are atoms i f f ab is an atom, 
2) ox=xo=o (\/x£S), 3) every atom ¿¿e is a unique finite product of irreducible 
atoms, then every <pa (a£S is an irreducible atom) satisfies 

P r o o f . Let first x^e; then we have to show q=(xy):a=(x:a)y = r (VydS). 
By definition ar=a(x:a)y^xy, thus r^(xy):a=q. For the converse we prove 
first that ab=cd with a an irreducible atom and b, c, d arbitrary atoms such that 
c^e implies ab—awd for an appropriate atom w£S. By Condition 3), ab = cd 
implies ab1...bm=c1...ckd1...d„, from which it follows that a=c1 and ab=awd 
for an atom S (Condition 1), which may be equal to edS. More generally, the 
equation az—xy with an irreducible atom a£S, and with x,y,z£S satisfying 
x^e, x^o, y^o, Zy^o, implies az=awy for some wdS. Since x=\J xh _v = \/yjt 

i j 
z = V zk, we obtain from az=xy that V (az*)=(V *i)(V y / )= V (V x i y ) = K K I J I J " 
= V ( x i y j ) = x i y j for all (i, j)dIXJ. Since x t y j is an atom, we conclude again 

IxJ 
that XtyjS.azk for at least one kdK, so that xiyJ=azk=awiyj for some atoms 
w.GS (since x= V x^e implies x^e, V /£ / ) . In particular we get by Lemma 
3.5 that Xi=aWi (V/£/). Thus az= \J (xtyj)= V (aw,yj)=a(\/ iv,)(V j-;)=awy. 

IxJ IxJ I J 
In order to show q=r, we proceed as follows. By definition we have aq= 

=a[(xy):a\^xy] then there exist x ^ x , y ^ y such that aq=x1y1. Indeed, if 
aq=o, then xx—o^x, y-y=o^y satisfy the equation; if aq^o, then by Condi-
tion 2), X9*o, y^o and again aq=\f a,^ V (xiyi) implies a^x-. y, for at least 

L IxJ ' J • 
one (i,j)£lXJ and every IdL; hence a /=x, j J - and aq=\J a,= V x^ — 

<P„(x)yV<pa(y) if x^e 
<Pa(x)y otherwise. 

L 
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=(y Xi)(y yJ)=x1y1 with x ^ x , y ^ y , in particular x^o, y^o, since other-
wise aq=o and therefore by the proof of Lemma 3.4, q=o^r holds trivially. 
Consequently aq = x1y1 implies aq=awy1 (since x ^ e for x^e and x ^ x j ) ; 
by Lemma 3.5 we get q=wyt and aw=a (V w,)=(V aw,)=V x~x, thus by 

definition w^x:a. Hence we conclude that q = wyl^wy^(x:a)y=r, i.e. q^r. 
Finally let x^e; then x^o because e is an atom. We have to show <pa(xy)= 

=(pa(x)yV(Pa(y) for all y€S. We have x=x\/e with x^e, since x^o implies 
x = V Xi with some atoms xfcS, hence xt and e^xh i.e. e=xt for at 

i i 
least one /£ / ; if J denotes the set of all / £ / such that x^e, then x — V x^e 

j 
(otherwise x.=e for at least one j£J) and x = ( V * i ) V ( V x)=xVe. Applying j 1 — 3 
Lemma 3.2 we get 

<Pa(xy) = Va[(xVe)y] = <pa(xy)V<Pa(y) = <Pa(x)yV<pa(y) (Vy€S) , 
(pa(x) = <paQcVe) = (pa(x)V <Pa(e). 

We have to distinguish two cases: (i) e is not a product with a as a left factor: 
(ii) e=ab with some S. 

In case (i), <pa(e)=o for a^e, since — applying the first part of the proof of 
Lemma 3.4 — Condition 1 of Lemma 2.4 is satisfied, and a—e gives <p„=id (Prop-
erty 2.5), which is a derivation; consequently q>a(x)=(pa(x). In case (ii), by Lemma 
2.4, q>a(e)—b (if a—e, then (pa =id); but <pa(e)y=<pa(y) (\/y£S), since e~ab 
implies y—aby for all y£S; if y=o, then <pa(e)o—q>a{p)=o by Property 2.3 
and Lemma 3.4 (for y=a we get by Property 2.6 that <pa(a)=e and q>a(e)a= 
=ba=e, since a=aba implies e—ba by Lemma 3.5); if y^o, then y=\J y} with 

certain atoms y&S and thus by Lemma 3.2 (pa(y)=V <Pa(yj)=V [<Po(e)yjl = 
j j 

=<Pa(e) (V yj)=9a(e)y (Vy£S). Consequently, in this case (pa{x)=(pa(x)\J q>a(e) 

implies 

<Pa(.x)yV<pa(y) = (p„(x)yV <pa(e)y\/ <pa(y) = <ptt(x)yV<pa(y) = <pa(xy) 

for every S and the proof is complete. 

4. The converse 

The next theorem establishes the converse of Theorem 3.1, that is that every 
derivation on S is a quotient mapping of S. We note that any quotient mapping 
<pa of S with respect to an a torn a£S such that ab=a implies that b is an atom 
has a further property: there exists b£S with cpa(b)=e, for example (pa(a)—e 
by Property 2.6. Supposing this as a supplementary property of a derivation we get 

T h e o r e m 4.1. Let S be a complete, atomic, Boolean ¡-semigroup with identity e, 
in which following conditions are satisfied: e is an atom; ox—xo=o for all x£S; 
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a and b are atoms i f f ab is an atom. Then every transformation <p:S—S satisfying 
the following four properties is a quotient mapping with respect to a uniquely determined 
atom: 

1) ? ( V * | ) = V ? ( * / ) ( V * f e s y 
j i 

2) <p(xf\y) = (p(x)/\cp(y) ( V x , y € S ) ; 

3 ) 9 i x y ) = U x ) y (Vx 
4) <p(x) — e for at least one x£S. 

P r o o f . By 4) there is an x£S with <p(x)=e; x^o, since q>(o)=o^e by 
Property 1.1. If x=e, then ip(e) = e implies by Property 1.7 that (p(x)=x for all 
x£ S; but by Property 2.5, (pe(x)-=x (Vx£ S), hence <p—(pe (<pe is uniquely deter-
mined by Lemma 2.3). 

Now, if x^o, x^e, then x=\J x,, where x ; are atoms of S (by Theorem III. 1.5 
i 

of [1]); hence by 1), <p(x)=\J <p(x,) = e and rp(x ;)^e (/£/). If q>(xt)=o (Vz'€/), 
/ 

then (p(x) = o=e, a contradiction;'consequently (p(x,) = e for at least one /£ / ; 
let a=Xi be that atom (it is determined uniquely, since (p(b)—e for an other 
atom b£S implies c = cp(aAb) = <p(o)=o, a contradiction). Thus we have <p(a)=e, 
<p(ax) = cp(a)x = ex=x (Vx^S) . 

Next we show for every atom c£S that <p{c)=ci iff c=ac1 (cx is an atom) 
and <p(c)=o in the other cases. If <p(c)^o, then (p{c)=\f c} for some atoms 

Cj£S; thus <p(c)Acj=Cj ( V j £ J ) - Since cp(acj)=Cj ( V j d J ) , too, we get by 2) 
that <p(cAaCj)=Cj (V_/€/). If c^acj, then cAacj=o and o=(p(o)=Cj, a con-
trandiction; hence c=acj and (p(c)=<p(acJ)=cj. Conversely let (p(c)=c1 with 
an atom cx of S; then (p(ac1) = c1 implies (p(cAac1)=c1; but c^ac{ would imply 
o—(p(o)=c1, which is impossible; hence c=ac1. 

Thus we can conclude by Lemma 2.4, that <p(c)=(pa(c) for all atoms c£S 
(if c=a, then cp(a)=e and also <pa(a)=e by Property 2.6). Consequently, for 
x=o we get q>(p)=o and also (pa(o)—o by Property 1.1 and Property 2.3; for 
x^o we have with some atoms x^S, and by Lemma 3.2, cp(x) = 

i 
= V <?(*;)=V <pJxi)=(pa(\/ xl)=(pa(x) (Vx€ S), i.e. (p=cpa. 

i i i 
Theorems 3.1 and 4.1 state that on certain /-semigroups the derivations are 

exactly the quotient mappings, like in (P(X*), f l , U, •). Thus the three (four) 
defining properties of a derivation are characteristic for the concept of the derivative 
of formal languages. Consequently, it is impossible to find other mappings on the 
/-semigroup ( P ( X * ) , f l , U, •) having the essential properties of derivations, that 
the quotient mappings. The equivalence of these two concepts becomes still more 
apparent by the following 
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T h e o r e m 4.2. An l-semigroup S is isomorphic to the ¡-semigroup P(X*) of 
all formal languages on an alphabet X i f f l) S is a complete, atomic, Boolean l-semi-
group; 2) ab is an atom i f f a, b are atoms; 3) every atom is a unique finite product of 
irreducible atoms; 4) ox=xo = o for all xdS. 

P r o o f . By [10] the complete, atomic, Boolean lattice («S, A, V) is isomorphic 
to the power set P(M) of the set M of all atoms of S. A lattice isomorphism is given 
by (p(x)=Mx (VxÇS) with Mx={a(iS\a is an atom with a ^ x } . It is easy to see 
that <p is also a semigroup homomorphism from (S, •) to (P(M), •). Indeed, if 
z£MxMy= {<x/}\u, f$ are atoms with a S ï , P^y} then z—a^xy and z is an atom 
(by 2)), so that z£Mxy. Conversely, if z£Mxy then z^xy and z is an atom, 
which implies that z~x1y1 with x1^x,y1^y (similarly to the proof of Lemma 3.6); 
therefore x1, y1 are atoms (by 2)), so that z£MxMy. The cases x=o resp. y=o 
imply Mx= 0 resp. My—Çd, thus MxMy= 0 , and xy=o (by 4)), thus 
Mxy= 0 , too. Consequently, q>{xy)=Mxy=MxMy—(p(x)cp(y) for all x, y£ S. 

Finally let X be the set of all irreducible atoms of S (see 3)). Then M=X*, 
the free semigroup generated by X. In fact aÇ_X* implies a = a1...an, « ¡ Ç J , so 
that a is an atom of S (by 2)) and a£M. Conversely b^M implies b = b1...bk 

where the bj are irreducible atoms of S (by 3)), i.e. bj£X and therefore b£X*. 
Thus S is isomorphic to P(M)=P(X*). The converse is trivial. 

Acknowledgement. I would like to thank my colleague G. Kowol for several 
useful comments and valuable conversations about this paper, especially concerning 
Theorem 4.1. 
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Korrektor und Ergänzung zu meiner Arbeit „Über Schreiersche 
Gruppenerweiterungen und ihre Kommutatorgruppen" 

R. QUINKERT 

Wir zeigen, daß entgegen einem fehlerhaften Beispiel in § 4 von [1] die im Zusam-
menhang mit Satz 4.2 in [1] auftretenden Bedingungen IV* und IV** (bei Gültigkeit 
einer ohnehin benötigten Bedingung I*) äquivalent sind. D a IV* eine Abschwächung 
von IV** ist. ergibt sich daraus eine Verschärfung des Satzes 4.2. 

Es sei M eine beliebige Gruppe und 'S— X ^ (A€vl) ein (diskretes) direktes 
Produkt zyklischer Gruppen der Charakteristik nx. Dann hat nach [1], 
§ 4 jede Schreiersche Erweiterung G von M mit 'S ein Parametersystem mit folgen-
den Bestimmungsstücken: 

a) Die Automorphismen sä-, und, für nx?±0, die Faktoren I J ^ ^ v ^ M 
der in G enthaltenen Schreierschen Erweiterungen von M mit Sie erfüllen 

( * ) v ? * = v x und = mit a - </ (Va) = v l ' a v ^ 

b) Bezüglich einer willkürlich gewählten linearen Ordnung < von A für jedes 
Paar /-=/' aus AxA ein Element [Xj, X^y^^M. 

Diese Elemente genügen für alle a, T, {1, —1} mit cr*= — 1 für a= — 1, 
sonst a*=0 (T*, q* entsprechend) den Gleichungen 

I** = i < j, 
weiteren Gleichungen II** und III** für alle z< / und, falls noch 

IV** ykJ
 1 yki

 Jyji 1 =yn
 J ykj

 J 

j < j < k. 

Dabei tritt z. B. a = — 1 und damit <r*= — 1 nur auf, wenn (Si unendliche Ordnung 
hat. Für eine Erweiterung von M mit einem direkten Produkt <S = X'Sx endlicher 
zyklischer Gruppen vereinfachen sich also I**—IV** erheblich, nämlich zu den aus 
ihnen für a = x = g = \ entstehenden Gleichungen I*—IV*. 

Für den allgemeinen Fall zeigten wir im Beweis von Satz 4.2, daß auch umgekehrt 
zu jedem System von Automorphismen $4X von M, von Elementen vx£M für n^O 
und von Elementen y^M (A, i,j(LA, i<j), welche den Bedingungen (*) und I**—IV** 
genügen, eine Schreiersche Erweiterung von M mit <&=xeSx gehört. Andererseits 

Eingegangen am 30. Juli 1979, in umgearbeiter Form am 28. Juli 1980. 
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zeigten wir die Äquivalenzen I*<=>I**, II*<=>II** und III*<=>III** (die letzten beiden 
falls auch I* bzw. I** erfüllt ist) und gaben ein Beispiel, für welches ( * ) und I*—IV*, 
aber nicht IV** erfüllt sein sollte. Daraus ergab sich unsere Formulierung der Kenn-
zeichnung der Erweiterungen von M mit in Satz 4.2 mit den Bedingungen 
(*) , I*—III* und IV**. 

Dieses Beispiel verletzt jedoch, wie wir übersehen haben, auch die Bedingung I*, 
und in der Tat gilt nach der folgenden Proposition, daß bereits I* und IV* stets 
auch IV** implizieren. Damit läßt sich Satz 4.2 von [1] einfacher mit (* ) , I*—IV* 
formulieren. In dieser Form entspricht er nach den in [1] durchgeführten Ver-
gleichen (Seite 344 einschließlich i)) dem von O. Schreier in [2] angegebenen, jedoch 
nur für endliche bewiesenen Satz III. Die in [1] folgende Behauptung ii), daß im 
allgemeinen Fall eine Verschärfung der Bedingungen gemäß (* ) , I*—III* und IV** 
erforderlich wäre, ist also falsch. 

P r o p o s i t i o n . Automorphismen und Elemente y,-, von M (X,i,jÇ_A, / </), 
welche den Gleichungen I* und IV* genügen, erfüllen auch die Gleichungen IV**. 

Beweis . Die Anwendung von 1 auf IV* ergibt 
i - i 

't 

7kj" ykiJ~k yji" =VßyZik yZ/~k , ' < j < k. 
Unter Verwendung der mit I* gleichwertigen Formel 1** können wir hier 

rfjsfk1 = rf^stfiJiitj'*) und ¿ ä ^ / T 1 = ^ • r f i ^ i y u " ' ) 

einsetzen und erhalten 

¿j^kj > *k "k ^i'oki > 

ykj yki yji = yjiyki ykj 
Dasergibt ^ - i y^ ykj i n = ynyki yki , 
woraus schließlich folgt 

ykj yki Yji = Iii yki ykj 
also IV** für E = - l , <T=T=1. Auf die damit für F?€{l, —1}, <T=T=1 gezeigte 
Formel IV** wendet man nun s / f 1 an und erhält nach ähnlicher Umformung IV** 
für e£{l , - 1 } , x = — 1, <7=1. Damit gilt IV** für Q, T€{1, - 1 } , <7=1, worauf 
man in einem dritten Schritt anzuwenden hat. 
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A characterization of compactness 
Z. M. RAKOWSKI 

The aim of this paper is to prove that if X is a compact Hausdorff space and 
/: X-*f(X) is a continuous function, then /(Lim sup /l„)=Lim sup f(An) for each 
net A„ of subsets of X (recall that for a net A„ (n£D) of subsets of a Hausdorff 
topological space X, Lim sup A„ is the set of all points x£X, for which the set 
{/J, A„nu^ 0} is cofinal in D for every neighbourhood U of A'). This condition 
is used to obtain a characterization of compact spaces. 

From now on, a space always means a Hausdorff topological space. The reader 
is referred to [2] for general results concerning nets of subsets of a space. 

DUDA [1], p. 23, has proved the following fact: if X is a compact metric space 
and a function / : X-»f(X) is continuous, then / (Lim sup ^„) = Lim sup f(An) for 
each sequence Ax, As> ... of subsets of X. We prove much stronger results. 

T h e o r e m 1. A function f : X ^ f ( X ) is continuous if and only ¡//(Lim sup An)c: 
c L i m sup f(An) for each net {A„, n£D} of subsets of X. 

P r o o f . Putting A„—A we obtain /(cl /4)=/(Lim sup /4„)c:Lim sup/(v4„)= 
cl f(A), i.e., the continuity of / (because A„=A implies Lim sup ^4n=cl A). Con-
versely, take a net {An, n£D} and a point >>6/(Lim sup An). There is a point 
xCLim sup A„ such that f{pc)—y. By [2], Proposition 2.2, p. 170, there exist a 
net {xi, i£E) of points of A'and a function p: E—D such that the following con-
ditions hold: 

( * ) for each element n£D there is an element i0£E such that for each element 
idE satisfying ¡'0Si we have p(i)^n, and 

Xi€A p ( i ) und x = lim x , . 

The function / i s continuous, hence ^ = / ( x ) = / ( l i m x 1)=l im/(x ;) , and therefore 
yeUm sup f(A„) ([2], ib.). 
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T h e o r e m 2. If a space X is compact and a function f : X-*f(X) is continuous, 
then f (Lim sup A J = Lim sup/ (A„) for each net {An, n£D} of subsets of X. 

P r o o f . It is sufficient to prove that Lim sup/( /4„)c/(Lim sup An). For, take 
a point Lim sup f(A„). By [2], ib., there exist a net {j>f, i£E} of points of f ( X ) 
and a function p: E—D satisfying ( * ) and the following condition: 

y^f(Ap0)) and y — limy,-. 

There are points such that f i x ^ y , . Since the space is compact, the net 
{xi; i£E} has a convergent subnet, say {x^, k£F). With x = l imx t we obtain 
x £ Lim sup y4„. Since the function is continuous we infer that the net { / (x t ) , k£F) 
converges to f(x)—y. This implies that y € / ( L i m sup An). 

Te following theorem gives a characterization of compact spaces. 

T h e o r e m 3. A space X is compact if and only if there is a continuous function 
f . X— Y onto a compact space Y such that / (Lim sup ,4„) = Lim sup f(A„) for each 
net {A„, n£D} of subsets of X. 

P r o o f . Consider a net {x„, n£D} of points of X. Since the space Y is compact, 
the set Lim sup/({x„}) is non-void. It follows that the set Lim sup {xn} is non-
void, and consequently, the net {x„, n£Z>} has a convergent subnet [2], ib. The 
converse implication follows from Theorem 2. 
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Cp-minimal positive approximants 

DONALD D. ROGERS and JOSEPH D. WARD 

§ 1. Introduction 

In [8], P. R. HALMOS initiated the study of positive operator approximation. 
Among other things he established the proximinality of the convex set of positive 
operators on Hilbert space by producing a canonical best positive approximant. 
This approximant, hereafter referred to as the Halmos approximant was later shown 
by R. H. BOULDIN [2] to be maximal, in the sense of order, among all positive approxi-
mants to a given operator. 

This paper originated in the attempt to find a canonical minimal approximant 
since canonical approximants shed much light on the structure of the set of best 
approximants [3], [4], [5]. As will be shown in 4, there need not be a positive approxi-
mant minimal in the sense of order. Nevertheless, we construct a positive approxi-
mant Pm that is minimal in a sense given by the following theorem, in which || • ||p 

denotes the usual Cp norm on finite matrices. 

. . T h e o r e m 1.1. Each operator A=£+iC on a finite dimensional complex Hil-
bert space § has a positive approximant Pm such that A~Pm is a normal operator and 
such that for each positive operator Q^Pm it follows that \\A — Q\\P>\\A —Pm\\p 

for all finite p sufficiently large. This operator Pm will be referred to as the C p-minimal 
positive approximant of A. 

In section 2, relevant background information is given along with needed nota-
tion. Section 3 contains the proof of the main theorem, the heart of which involves 
an inductive construction. There are many open questions related to our result, and 
these questions along with some examples comprise section 4, 
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§ 2. Preliminaries 

The term operator shall mean a bounded linear operator on a complex Hilbert 
space, and the operator norm of an operator X i s denoted by H^H =sup {[|A/||: 
| | / | | = 1}. If 2K is a set of operators, then an operator y0€2)t is an 9Ji-approximant 
of X if \\X— 7 J =inf {||X— Y||: y^iDl}; approximants using other norms are defined 
similarly. We shall follow Halmos's convention of using "positive operator" as 
synonymous with "nonnegative operator" and "approximant" in place of "best 
approximant". For the reader's convenience we restate the following results proved 
by Halmos in [8]. 

T h e o r e m 2.1. If B+iC is the usual Cartesian representation for the operator 
A, then 

\nS{A-P: P ^ 0 } = inf{r: r ^ | | C | | , 5 + ( r 2 - C 2 ) 1 / 2 S 0}. 

The first infimum shall henceforth be denoted 5(A). 

T h e o r e m 2.2. If B+iC is the usual Cartesian representation for the operator 
A and if PH = B+((5(A)Y-C*y\ then PH is a positive approximant of A. 

The operator Pu is the Halmos approximant referred to in the introduction. 

T h e o r e m 2.3. Any operator A has a representation of the form P+U5(A) 
where PS0 and U is unitary with negative real part. If A is not a positive operator, 
then the above representation is unique. 

In another direction, the notion of a strict approximant was introduced by 
J. R . R I C E [10] in the course of his investigations into /„ approximation as a method 
of selecting one approximant among many. A full discussion of strict approximants 
would lead us too far astray but, roughly speaking, to find a strict approximant 
onfi minimizes as much as one can. The following example will serve to illustrate. 

E x a m p l e . Consider the vector v=(2i, i, 0) viewed as an element of /„(3). 
The distance of v to the set of positive functions is 2, and there are clearly an infinite 
number of positive approximants. The vector (0, 0, 0), however, is the unique strict 
approximant since 0 is the nearest nonnegative number to 2i, i and 0. 

It was later shown by B . M I T I A G I N [9] and J . D E S C L O U X [6] that the strict approxi-
mants have an additional approximation property. 

T h e o r e m 2.4. Let lp(n) denote n-dimensional complex Cartesian space endowed 
with the lp norm and M a subspace of lp(n). If x£lp(n)\M, let yp denote an approxi-
mant from M. Then v = lim yp exists, and y is the strict approximant of x in /„ (n). 

The construction in the next section is modelled after the construction of the 
strict approximant, although the fact that the space of nXn matrices is not a com-
mutative algebra introduces some new twists into the construction. 
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§ 3. The Main Result 

In this section the proof of Theorem 1.1 is given. The first lemma is stated in 
more generality than is needed, but it seems of interest in its own right. 

L e m m a 3.1. Let £ be a norm-closed convex set of compact operators on a 
uniformly convex Banach space ©=¡¿0. Define d=\nf {||A'||: A^G} and 

D = {X£d: 11*11 = d}. 

If D is separable, then there exist unit vectors y, z£ © such that for every X£ I) it 
follows that Xy = dz. In particular, if D is in D, then 

D ker(X-D)^ {0}. 
x'mTt 

P r o o f . Let {X±, X2, ...} be dense in D; define operators r„£X) to be the 
corresponding Cesaro means, i.e. Y„=(A\ + . . . -f X„)ln. Because each Y„ is a com-
pact operator, there exists a unit vector yn£S such that §Yny„\\=d; define the 
unit vector z„=Y„y„/d. Since S is reflexive, the sequences {j„} and {z„} have weak 
cluster points in the unit ball of ©. Thus it is possible to find vectors y, z and sub-
sequences {^„ j} and {znj} that converge weakly to y and to z. Fix k^ 1. Because 
Xk is compact it follows that Xk(ynJ) converges to Xk(y) in norm, as j - » . But 
Xk(y„j)=dz„ j for all j sufficiently large, by the definition of Yn j and the fact 
that © is uniformly convex. Thus dzn J converges to Xk(y) in norm. Hence 
[¡Xk(v)|| =d, which implies ||j| | = l since =d. Also, Xky = dz since dzn j con-
verges weakly to dz; thus ||z|| = 1. Since {Xk} is dense in T>, it follows that Xy — dz 
for each A^X). 

The next lemma is crucial in what follows. It is a slight generalization of a 
lemma appearing in [2]. 

L e m m a 3.2. If X = X*, Y=Y\ P=P*, and d=\\X+iY-P\\, then P^X+ 
+ |ld2I-Y2. 

P r o o f . As in [1], [8] it follows that (P-X)2+Y2^d2I. Because the square 
root function is order-preserving, it follows that P—A"S j/(P— X ) 2 ^ ] /d ' l — Y2. 

P r o o f of T h e o r e m 1.1. We proceed with constructing the operator Pm by 
defining numbers {<5t} and subspaces [Mk\ that reduce C. If C(k) denotes the part 
of C on Mk and I(k) denotes the orthogonal projection from H onto Mk, then 
Pm=B+ X V5ll(k) — C2(k). The construction of the sequences {<3k} and {Mk\ is by 
induction. 

Define (recall the definition immediately following Theorem 2.1) 
and Mx—f] ker (B+ |/<5f — C2—Q) where this intersection is taken over all positive 

Q 
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approximants Q. Lemma 3.1 can be applied to the convex sets (i1={A—P: P s O } 
and = {A — Q: Q is a positive approximant of A} using d=51 and D=A — 
- ( B + y d i - C 2 ) to show 0}. 

The fact that M1 reduces C is shown in [1, proof of Lemma 4.1]; a different 
proof is given here. Let / be a unit vector in My and let Q be a positive approximant 
of A. Then (B-Q)f— -id\-C2f by the definition of My, thus both A-Q and 
(A-Q)* attain their norm at / . Hence \A-Q\2f =\(A-Q)*\2f, and this implies 
that (B—Q)Cf—C(B—Q)f. Thus (B - Q) Cf= C(B- Q)f= C ( - ^ ¿ f - C 2 ) / = 
= - Ul-C2(Cf). Hence ( 5 + ( / < 5 2 - C 2 - Q ) ( C / ) = 0 , so that Cf£My. 

Thus My reduces C, and it also reduces A — Q for each approximant Q. Clearly 
A has a unique approximant if and only if My = H. Define the subspace H1=H 
and the projection Ey=I. 

Let H1, Ey, by, D, , My be as defined above. Define H2—HQM1 with 
orthogonal projection E2: H—H2. Put (i2={(A-Q)E2: Q^O and (A-0E1£2>J; 
this set (S2 is convex because is convex. Define <52 = min {|| A'H: X£(E2} and 
T),= || =¿2}; this set T>2 is convex because G2 is convex. 

The construction of M 2 is as follows. For an arbitrary operator X on H let 
X.2=EoXE2; clearly M ^ k e r X2 and My reduces X2. Choose Q=0 such that 
(A-Q)E2eT>2. Then 0 S Q 2 mB 2 + V - C | because My reduces A-Q; this 
inequality follows from Lemma 3.2 with X=B2, Y—C2, P—Q2 and d=b2. Notice 
that for each such Q it follows that Q|My= (B+ / < 5 2 / ( l ) - C ( l ) 2 ) | M x by the defini-
tion of My. Hence the operator Z = £ + / < 5 ? / ( l j - C ( l ) 2 + i b \ E 2 - C \ satisfies 
Z ^ Q ^ O for each such Q. Thus the operator D2 = iC2~ib\E2—C\ is £.£>2 because 
the operator Z=B+ /(1) — C 2 i l j + ~ib\E2 — Cf is a positive operator such that 
(A-Z)E2€<i2. Define M2 = (\ ker (X— D , )HH 2 where the intersection is over all 

x 
From Lemma 3.1 with <£=(£2, d-d2, £> = £)2 and D= D2, considered as 

operators from H2 to itself, it follows that M2^{0} if H,^{0}. If / / 2 = {0}, then 
M2={ 0}. 

The fact that M2 reduces the operator C2=C\H2 is shown by a proof similar 
to that used for My. Let / be a unit vector in M 2 and let Q ^ O be such that 
(A-Q)E2^2. Then H2 reduces (A-Q)E2 and (B-Q)f= - YblE.-Clf by the 
definition of M2; thus both (A —Q)E2 and (A — Q)* E2 attain their norm at / . 
Hence \A2-Q2\2f=\(A2-Q2f\2f=5lf-, this implies {B2+ ib\E2-C\-Q)(C2f)=0 
as before. In other words, C2fdM2, and thus M2 reduces C2 . 

In general, once Hk, Ek, Sk, T>k, Mk have been defined, put Hk+1=HQ 
Q (My ©... ffi Mk) with orthogonal projection Ek+1: H-»Hk+1. Let G fc+1 = 
— {(A — Q)Ek+1\ Q^O and (A — Q)Ek£T)k}; this set (£k+1 is convex because T>k is 
convex. Define <5fc+1=min {¡Al : and X>k+1 = \\X\\ =bk+1}; this 
set T)k+1 is convex because (Et+1 is convex. 
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To define Mk+1, write Xk+1=Ek+1XEk+1 for each X; clearly MjCksr Xt+l 

for l ^ j ^ k . The operator Dk+1=iCk+1 — ]fdk+1Ek+1 — Cl+1 is in £>k+1 because 
the operator Z=B+ V<5?/(1)-C(l)2+... + \5ll(k) - C(kf+V5l+iEk+1-C%+1 is a 
positive operator such that (A—Z)Ek+1 is in &k + 1 . Define the subspace Mk+1 by 
Mk+1=0 ker (X—Dk+1)(~)Hk+1; this intersection is taken over all 

x 
Lemma 3.1 shows that {0} if Hk+1?±{Q}, and the operator D k + 1 can be 
used to show Mk+1 reduces Ck+1. This completes the inductive definition. 

Thus for each integer k it is possible to define Mk and dk. Because H is finite-
dimensional, the subspaces Hk+1 will be {0} for all k sufficiently large. Thus it is 
possible to define the positive operator Pm by 

Pm = B+I]/5lI(k)-C(kf. 

Clearly A —Pm is a normal operator. 
It remains to establish the minimality of Pm. If Q is a positive operator dif-

ferent from Pm, then there exists a least integer k^l such that (A — Q)Ek$Tik. 
If k = 1, then \\A — Q\\^81. Hence if h denotes the dimension of H, then for all p 
sufficiently large it follows that \\A-Q\\l^\\A-Q\\p>h5{s:\\A-PmYp. If Jfc>l, then 
let Ak-\\(A-Q)Ek\\. Then Ak>8k because (A-Q)Ej is in T>j for each j^k-1. 
For each j^k—l the subspace Mj reduces A — Q, and the part of A — Q on My is 
equal to the part of A—Pm on Ms, which is iC(j) — V$)I(j)—C(j)2 and is dj 
times a unitary operator. Thus for all p sufficiently large and m-j=dimension of MJt 

it follows that 

This proves Theorem 1.1. j 

§ 4. Examples and Open Questions 

E x a m p l e 4.1. There does not always exist a positive approximant that is 
minimal in the sense of order. 

r - 1 0 0} 
Let A be the self-adjoint 3 x 3 matrix given by A = \ 0 0 01. It is easily 

1 0 0 2) 
seen that 5(A) = 1, and that no positive approximant is smaller than P0= 

0 0 0 ] 
0 0 0 . For if there were such an approximant Px, then P^—P^d and Pt 

10 0 1) 

8 
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a < l . But then P1 would no longer be 
(0 0 0 

necessarily would have the form 0 0 0 
• lO 0 a) 

an approximant of A, so P0 is the only candidate to be minimal. On the other hand, 
(0 0 0 

it is easily checked that P 2 = 0 1/8 1/2 
10 1/2 5/2) 

is an approximant of A and clearly 

Pt-P0$0. 
For a given matrix A=B+iC let denote the Cp norm of A. It is well 

known (and follows easily from [7, p. 94]) that B is a self-adjoint approximant of A 
in the C p norm for all p, and it is unique in case Thus if Sp denotes the 
self-adjoint Cp approximant to A, then SP=B so Jim HS^—2?|| =0 . Let Rp denote 
a positive approximant to A in the Cp norm which again is unique if 

Ql. For a given matrix A and corresponding Cp minimal positive approximant 
Pm, does Jim | | i ? p - P J | = 0 ? 

A weaker question is: 
Q2. For a given A, does the corresponding net {Rp} have a limit in the uniform 

norm as ? 
Note that the Cp-minimal positive approximant Pm seems to be the operator 

analogue of the strict approximant mentioned in section 2. Since the strict approxi-
mant of Rice is a limit of lp approximants by Theorem 2.4, the answer to Ql could 
likewise be yes. Moreover Ql and Q2 both have affirmative answers in the case A 
is a 2X2 matrix. This follows from the fact that for a given 2 x 2 matrix A and any 
positive approximant P, A—P is normal; each convergent subnet of {i?p} must 
converge to a uniform positive approximant, which can in this case be shown to be 
Pm by using;the minimality condition defining Pm. To establish that A—P is nor-
mal, note that one of two cases occurs: 

i) Pg is the unique approximant so that A—PH is a multiple of a unitary by 
Theorem 2.3. 

ii) The subspace Mx mentioned in the proof of Theorem 1.1 is 1-dimensional. 
In this case for any approximant P the errors A—P and A-Pg can differ 
only in the (2, 2) entry (when viewed as matrices with respect to the sub-
spaces M j and Mj). Thus A—P is normal. 

Questions analogous to Q l and Q2 may be asked fo r p~—1-: 
Q3. Does lim Rp exist? 
If the. answer to Q3 is yes, then. 
Q4. Can the limit in Q3 be identified by any characteristics? 
An affirmative answer to Q4 would yield a canonical approximant for positive 

approximation in the trace norm. 
/ Finally it seems ,as if Theorem 1.1 must have some extension at least to the 
compact operator case. Relevant to this problem is the following 
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E x a m p l e 4.2. There exists a compac t ope ra to r with no compac t positive 
ope ra to r approx imant . 

Indeed, let {ely e2, . . .} denote an o r thonorma l basis a n d let / be the vector 
f=Zek/k. Define Q to be the r a n k one or thogona l projection on to sp { /} , C the 
compac t opera tor given by C(ek)=ejk, B=(\ — Q)—— C2 , and finally set 
A=B+iC. Then A is a compac t opera to r and has a unique positive app rox iman t 
PB [1, p . 282]. N o w PB is n o t compac t since A—PH is a multiple of a uni tary . 

Q5. Which compac t opera tors a d m i t compac t positive app rox iman t s ; is there 
a " m i n i m a l " approximant in this case? 
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Compact and Hilbert—Schmidt composition operators 
on weighted sequence spaces 

R. K. SINGH, D. K. GUPTA and A. KUMAR 

1. Preliminaries. If (X, A) is a or-finite measure space, then every non-singular 
measurable transformation T from X into itself induces the composition transforma-
tion CT f rom LP(X) into the linear space of all complex valued functions on X defined 
by CTf=foT for every f£Lp(l). If CT turns out to be a continuous linear trans-
formation from L"(X) into itself, then we designate it as a composition operator 
on LP(X). 

If w={w„} is a sequence of strictly positive real numbers, then we define the 
measure X on the measurable space (N, £?(N)) as 

X(E) = Z for every 
n(.E 

the power set of the set N of positive integers. Thus (N, ¿P(N), A) becomes a a-finite 
measure space. The Lp-space of this measure space is known as a weighted sequence 
space and w is called the sequence of weights. We denote this weighted sequence 
Space by l p . It is a well established fact that lp (more generally LP(A)) is a Banach 
space. If p—1, then lp is a Hilbert space under pointwise addition and scalar multi-
plication with the inner product defined as 

< / , £ > = Jfgd>-= ¿ w „ / ( n ) g ( / 0 
N n = l 

for every / and g in l*. It is also interesting to note that the space ¡1 is a functional 
Hi|bert space. By B(l^) we denote the Banach algebra of all bounded operators 
on l l . 

The main purpose of this note is to characterise compact, finite rank and Hil-
bert—Schmidt composition operators on I*. 
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2. Compact composition operators. If (X, SP, A) is a non-atomic measure space, 
then it has been shown in [6] that no composition operator on L2(A) is compact., 
If the sequence tv of weights is a constant sequence, then it can be easily established 
that /* does not admit any compact composition operator. Thus in particular no 
composition operator on I'1 is compact, though it is an L2-space of an atomic measure 
space. But if the sequence if is a non-constant suitably chosen sequence, then there 
are compact composition operators on I2 . This fact makes this study a little inter-
esting. Before the characterisation of compact composition operators on I 2 we shall 
need the following easy lemma. 

L e m m a 2.1. Every weakly convergent sequence in I2 is pointwise convergent. 

P r o o f . Let {/„} be a sequence in ¡1 converging to zero weakly. Then, since 
{wj fn(j)} = {(/„, <?j)} converges to zero, where eJ(i)—dij (the Kronecker delta), 
it follows that {/„} is pointwise convergent. 

R e m a r k . The above lemma is true in any functional Hilbert space. 
Let T\ N-*-N be a mapping and let e > 0 . Then the set Me is defined as 

Mc = {«: n£N and A r " 1 ^ } ) > fiA({n})}. 

The following theorem characterises compact composition operators on I 2 in terms 
of the cardinality of MF . 

T h e o r e m 2.2. Let CT£B(l2). Then CT is compact if and only if Me, for every 
£>0, contains finitely many elements. 

P r o o f . Let e > 0 be given and let {/„} be a sequence in I2 converging weakly 
to zero. Suppose Mc contains k elements. Then, since A!T_1({«})^eA({/j}) for 
every n£N\Me and AT"-1 ({«}) = M'/.({«}) for every n£N and for some finite 
A f > 0 [7], 

[ | C r / J 2 = J\f„\2dXT-i= J\fn\2dXT-1+ f I fH \*dXT-i = 

N Me ,v/Mc 

^M-k\fn(mrWH{ms})+e\\f„\\2, 
where | / , (m r) | = max {|/„(w()|: m,eM t} and A({ms}) = max {A({mt}): mf€Me}. Since 
by the above lemma {/„} converges to zero pointwise, we can find m £ N such that 
for every 

\\CTfn\\2 ^ SyMkMM+eWfJ2. 

Since every weakly convergent sequence is norm bounded [1, p. 145] and ex and e 
are arbitrary, we conclude that the sequence {||C r/„| |} converges to zero. Hence 
CT is compact. 
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Conversely, suppose Mc contains infinitely many elements for some e>0 . Let 
M' be the closure of span {en: n£Me}. Then for 

\\CTf\\*= f\f\2dlT-L> f\f\*dl = e\\f\\*. 
N Mc 

Thus' CT is bounded away from zero on M\. This shows that the range of CT\M', 
the restriction of CT to the subspace M\, is a closed infinite dimensional subspace 
contained in the range of CT. Hence by problem 141 of [3] CT is not compact. 

C o r o l l a r y 1, Let CT£B(l*). Then CT is compact if and only / / A ^ - 1 ({n}))/A({n}) 
tends to zero as n tends to 

C o r o l l a r y 2. No composition operator on /2 is compact. 

P r o o f . If CTd B(P), then the range of T contains infinitely many elements 
[8]. Hence Me=T(N) whenever £<1. Thus CT is not compact. 

Let a be a strictly positive real number and let w= {w„} be the sequence defined 
as w„=a" for n£N. Then the corresponding / 2 is denoted by /2. In the light of 
the following two theorems it is comparatively easier to locate compact composi-
tion operators on /2. 

T h e o r e m 2.3. Let CT£B(l%), where 0 < a < 1. Then CT is compact if and only if 
the sequence {n — T(n)} tends to as n tends to <=<=>. 

P r o o f . Suppose the sequence {n — T(n)} tends to » as n tends to <». Let m 
be in the range of T and let r - 1 ( { m } ) = {mx, m2, m3, ...} be the arrangement of 
T_1({w}) in the ascending order. Then 

/ l i r - ^ m } ) ) x , ~ ami~m ami-r<m 0 
V , „ V = 2 am<-m < 2 = - . = —: r . 

>*({™}) i ¡=o 1 -a 1 -a 

Since 1, we can conclude from the hypothesis that lim = 0 . 

Hence by the Corollary 1 of Theorem 2.2 CT is compact. 
Conversely, suppose the sequence {n — T(n)} does not tend to °° as n tends 

to oo. By Theorem 1 of [7] the sequence is bounded from below. Hence the sequence 
{/i — T(ti)} has bounded subsequences. Let {nt —r(n t)} be a bounded subsequence 
with a bound M. Then 

Hence again by the Corollary 1 of Theorem 2.2 CT is not compact. This completes 
the proof of the theorem. 
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Example . Let T: N-~N be defined as T(m)=n/3 if where 
n is a multiple of 3. Then CT is a composition operator on /2, 0 < a < 1. Since 
Ar_1({n})/A({n}) ( = a 2 n ( l + a _ 1 - l - a _ 2 ) ) tends to zero as n tends to we can con-
clude that CT is compact. 

T h e o r e m 2.4. Let where 1. Then CT is compact if and only if 
{T(n)—n} tends to °° as n tends to 

P r o o f . The proof is dual to the proof of Theorem 2.3. 

Example . Let T: N-+N be the mapping defined by T(m)—n2 if n — 2 s 
=Sm=sw, where n is a multiple of 3. Then, since A - 1 ({«})/A({«»=0 for n£N\T(N) 
and ( a - 2 + a _ 1 + f o r n£T(N), CT is a compact composition operator. 

We now give several sufficient conditions for non-compactness of composition 
operators on /2. 

T h e o r e m 2.5. Let T: N-+N be an injection and CT£B(l2), where 1. 
Then CT is not compact. 

P r o o f . Suppose CT is compact. We infer from Theorem 2.3 that {n — r(n)}— °°. 
Therefore there exists a number n0£N such that for every n>n0, we have T(n)<n. 
Let « i=max { r ( i ) | l s / ^ n 0 } , « 1 =max {n'y, n0}, Nt = {1, 2, ..., n j and N2=Af, U 
U{/ii+l}. Since T{n)<n for n>/;0 and T is injective, T(N1) = Nl=T(Ni) which 
contradicts the injectivity of T. 

The following is an example of a function T which is not an injection, but it 
induces a compact composition operator. 

Example . Let En={2"-1(2k-\)\k^N}. Then | J En = N. Let T: N-+N be 
n 

defined as T(m)—n for every m£E„. Then CT is a composition operator on /a2, 
0 < a < l . Since 

A r - H W ) M ( W ) = - « H , 
CT is compact. 

T h e o r e m 2.6. Let T: N-*N be a surjection and Cr£B(lH), where 1. 
Then CT is not a compact composition operator. 

P r o o f . Suppose CT is compact. We infer from Theorem 2.4 that {r(«)—«} 
tends to <=°. Therefore there exists a number n 0 dN such that for every w>w0 we 
have r ( n ) > « . Let wi=max{r(7)|l =i=«0}> «1 = max{«i+1, w0+1} and My — 
= { 1 , 2 , . . . , « ! } . T h e n T ( N \ N y ) c N \ N y a n d so T ( N ) r \ N 1 = T ( N i ) n N y . S ince 
T(n1)>n1 , we get Card ( r ( A 0 0 7 ^ ) = C a r d (3p(A'1)nA'i)<Card Ny. This means T 
is not surjective. This proves the Theorem. 

The following is an example of a compact composition operator induced by a 
non-suijective mapping. 
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E x a m p l e . Let T: N-*N be defined as T(n)=2n. Then CT is a composition 
operator on /2, a > 1. Since 

{0, if n is odd 

1 / n/2 T 1/a ' , if n is even, 
CT is compact. 

The following Theorem characterises finite rank composition operators on I2 , 
where 

T h e o r e m 2.7. Let CT£B(l%), where XWi«=°. Then CT is a finite rank 
operator if and only if the range of T contains finitely many elements. 

P r o o f . Since the range of CT is dense in ll(N, T~i(0>(N)), ?.), /.(E) = 2 % 
N£E 

[10, Lemma 2.4], the proof follows trivially. 

3. Hilbert—Schmidt composition operators 
D e f i n i t i o n . A bounded linear operator A on an infinite dimensional separable 

Hilbert space H is said to be a Hilbert—Schmidt operator if there exists an ortho-
normal basis {e„: ndN] i n s u c h that I \\AeJ|2«=°. It is well known that the 
definition is independent of the choice of the orthonormal basis. 

Let T: N-»N be a mapping and let j = {j'(m)} be the sequence defined by 
j(w)=| |A' r ( n i ) | | for every m£N, where Km is the kernel function for /2 defined by 
Km = ejwm. Then we prove the following Theorem. 

T h e o r e m 3.1. Let CT€5(/ 2) . Then CT is a Hilbert—Schmidt operator if and 
only if yd I*. 

P r o o f . Since the family {/„} defined by /„ = <?„/iw„ forms an orthonormal 
basis for /2 , CT is a Hilbert—Schmidt operator if and only if 

2\\cTM\2 = 2 2»„, 
en{T(m)\ y I _ 

2 2 wm-~!r=2 2 Wn-,Vm"i - H'„ . mer-Villi 1 w. n míT-H{n}) 

= 2 2 w»- wn 
e r ( m ) ( n ) 

VT(m) 
- 2 Wm 2 Wn 

"T(m. 
W T (m) 

This finishes the proof of the Theorem. 

E x a m p l e . Let the sequence {w„} of weights be the sequence {«} and let 
T: N-~N be defined as T(n)=n3. Then CT is a composition operator on / 2 . Since 

M 2 = 2 w > r ( . ) = 2 «/«' = 2 I/"2 «= 

CT is Hilbert—Schmidt. 
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T h e fol lowing exampale shows tha t the set of Hi lber t—Schmidt c o m p o s i t i o n 
opera tors is proper ly con ta ined in the set of all compac t compos i t ion o p e r a t o r s 
on /*. 

E x a m p l e . Let {w„}={n} a n d let CT be the composi t ion opera to r o n / 2 i nduced 
by the mapp ing T(ri)=n2. Then CT is compac t b u t is no t Hi lber t—Schmidt . 

Acknowledgements. The au thor s are t hank fu l t o Dr . L. Kerchy f o r several 
suggestions improving the results of the paper . They also wish to thank S. D . S h a r m a 
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On the converse of the Fuglede— Putnam theorem 

KATSUTOSHI TAKAHASHI 

1. Let ft and $ be Hilbert spaces, and let i f (ft, Sj) denote the space of all 
bounded linear operators from ft to (We also write i f ( § ) = i f ( § , §).) The well-
known Fuglede—Putnam theorem [2] asserts that if A£ £?(?>) and 2?£if(ft) are 
normal, then the pair (A, B) of operators has the following property: 

(FP) If AX=XB where Xi i f (ft, §), then A*X=XB*. 
In this note we shall show that the normality of A and B in the above theorem 

is essential. 

2. We say that an ordered pair (A, B) of operators (>4€if(ft) and jS6if (§)) 
is disjoint if the only operator X€ i f ( f t , £>) satisfying AX=XB is Z = 0 . Let 
A=AX®A2 and B=B1®B2. Then it is easy to see that (A, B) is disjoint if and 
only if (A t , Bj) (/, / = 1, 2) is disjoint. Also, if (A, B) is disjoint, then it trivially sat-
isfies the property (FP). We recall the fact that each operator A can be written 
uniquely A = A(n)®A(cn) where A(a) is normal and A(c n ) is completely nonnormal, 
that is, no nontrivial direct summand of A(c n ) is normal (see e.g. [1]). 

T h e o r e m . Let A£J/?($j) and Bd i f (ST). The following statements are equiv-
alent: 

(i) The pair (A, B) has the property (FP). 
(ii) If AY= YB where Y£ i f (ft, S3), then (ran 7 ) - reduces A, (ker Y)L 

reduces B, and the restrictions ^ |(ran Y)~ and B |(ker F)-1 are normal operators, 
where ran and ker denote the range and the kernel, respectively. 

(iii) The pairs (A, B(c n )) and (A(cn:), B) are disjoint. 
(iv) A and B can be decomposed as follows: 
A=A1Q)A2 and B=:B1®B2, where At and By are normal, and the pairs (A, B2) 

and (A2, B) are disjoint. 

Received March 28,1980. 
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P r o o f . (i)=Kii): Since AY= YB and (A, B) satisfies (FP), A* Y= YB* and. 
so (ran Y)~ and (ker y ) x are reducing subspaces for A and B, respectively. Since 
A(AY)=(AY)B, we obtain A*(AY)=(AY)B* by (FP), and the identity A*Y= 
= YB* implies A*AY=AA*Y. Thus we see that ^ | (ran Y)~ is normal. Clearly 
(B*, A*) satisfies (FP), and B*Y*=Y*A*. Therefore it follows from the above 
argument that 5*|(ran y*)~=(.B|(ker y) 1 )* is normal. 

(ii)=>(iii): Let us write A=A(n)®A(c n) on §=§ ( n ) ©S» ( c . n ) . Suppose that 
AU n)X=XB where %„.)) . We define §) by setting Xx=Xx 
for x£St. Then %B, and by the condition (ii) (ran A*) ~ reduces A and 
A ¡(ran X)~ is normal, that is, (ran X)~ reduces A(c n ) and A(c n )\(ran X)~ is nor-
mal. But since A[cn) has no normal direct summand, (ran X)~ = {0}, that is, X—0. 
Thus (Aic „-,, B) is disjoint. Similarly, we see that (A, B(c n )) is disjoint. 

(iii)=>(iv) is trivial. 
(iv) =>(i): Let § = $ i © § 2 and ^ = ^ © 5 ^ 2 be the decompositions correspond-

ing to A=A1QA2 and B=B1®B2, respectively. Suppose AX=XB. Then by 

the condition (iv) X has the form X= with respect to the decompositions 

= and § = § i © § 2 . Therefore for the proof of the equation A* X=XB* 
it suffices to show A*X1=X1B*, but this follows from the Fuglede—Putnam theo-
rem since Ax and Bx are normal. 

3. The following fact is known as a corollary of the Fuglede—Putnam theorem 
(see [2, Theorem 1.6.4] and its proof). Let and Bd£?(S\) be normal. 
If there exists a quasi-affinity <F>) (i.e., X is one-to-one and has dense range) 
such that AX = XB, then A and B are unitarily equivalent. 

An immediate corollary of our theorem is the following. 

C o r o l l a r y 1. Suppose that (A, B) has the property (FP). If there exists a 
quasi-affinity X such that AX=XB, then A and B are unitarily equivalent normal 
operators. 

An operator A is called hyponormal or cohyponormal according as A* A — A A* SO 
or S O . R A D J A B A L I P O U R [3] , STAMPFLI and W A D H W A [ 4 ] proved the following theo-
rem (indeed, they obtained more general results there); if A is hyponormal and B 
is cohyponormal, and if there exists a quasi-affinity X such that AX=XB, then A 
and B are normal operators. 

We can rephrase their theorem as follows; 

C o r o l l a r y 2. If A is hyponormal and B is cohyponormal then the pair (A, B) 
has the property (FP). 
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P r o o f . It is easy to see that every invariant subspace for a hyponormal operator 
T on which T is normal is reducing. From this fact and the theorem of Radjabalipour, 
Stampfli and Wadhwa, we see that (A, B) satisfies the condition (ii) in Theorem. 
Therefore (A, B) has the property (FP). 

The author wishes to thank Professors T. Ando and T. Nakazi for many help-
ful conversations. 
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Beitrag zur Konvergenz der Orthogonalreihen 
KÁROLY TANDORI 

1. Es sei r={ r t ( i ) } " ( ^ ( 0 = s i g n sin 2knt) das Rademachersche Funktionen-
system. Der folgende Satz ist bekannt (vgl. [4], S. 47). 

Es sei <P = {<Pk(T)}T e i n orthonormiertes System im Intervall (0,1). Für 
fl={at}"€/2 konvergiert die Reihe 

2rk(j)akcpk(x) 

bei fast jedem festen Punkt x£(0, 1) für fast jede /€(0,1); m. a. W. bei fast jedem 
Punkt x konvergiert die Reihe 

2±ak<Pk(x) 
t = i 

mit der Wahrscheinlichkeit 1. 
In dieser Note werden wir zeigen, daß unter einer stärkeren Voraussetzung 

über die Koeffizientenfolge a, ähnliche Behauptungen auch im Falle gelten, wenn 
die Vorzeichenverteilung durch ein beliebiges vorzeichenartiges Funktionensystem 
xl/={il/k(t)}T gegeben ist, d . h . durch meßbare Funktionen \j/k(t), mit |i/^(i)| = l 
f. ü. für i€(0,1), k=l,2, 

2. Es sei Q die Klasse aller örthonormierten Systeme <p = {%(*)}" im Inter-
vall (0, 1). Weiterhin sei M die Klasse der Koeffizientenfolgen a={ak}~, für die 
die Reihe 

0 ) 2 a k < P k ( x ) 
*=i • 

bei jedem System (p£Q im Intervall (0,1) fast überall konvergiert. Es ist bekannt 
(vgl. [2], [5]), daß , 

CO 

2 <*li log 2 k < <*> =>• a £ A f . 
i=2 • • ' " . . 

Weitere hinreichende Bedingungen für a£M sind z. B. in der Arbeit [6] gegeben. 

Received August 6, 1980. 
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Für eine Folge a setzen wir 

N1 = sup { / sup ( 2 öjk <P* (*)) dx\ . 
«>eß lo > ) 

In [7] haben wir gezeigt, daß a£M mit | | a | j < o o äquivalent ist. 
Es seien a£M, <p€_Q, und sei tp ein System von vorzeichenartigen Funktionen 

in (0, 1). Dann ist {il/k(t)<pk}?€Q für jedes /£(0, 1), und so folgt, daß die Reihe 

(2) 2 i M O 
k = 1 

bei jedem /€(0, 1) in (0, 1) fast überall konvergiert. Durch Anwendung des Fubini-
schen Satzes erhalten wir: 

S a t z I. Es sei a£M, (p£Q und ijt ein beliebiges vorzeichenartiges System. 
Dann konvergiert die Reihe (2) bei fast jedem JC£(0, 1) für fast jedes t£(0, 1). 

3. Es sei A={At}~ eine nichtabnehmende Folge von positiven Zahlen. Mit 
ß(A) bezeichnen wir die Klasse der orthonormierten Systeme q> = {(pk(x)}™ im 
Intervall (0, 1), für die die Lebesgueschen Funktionen 

i 

2 <Pk(x)<Pk(t) k=1 
dt Ln(v; x) = f 

0 

f. ü. mit A„ beschränkt sind; d. h. für die 

/•Tk o„„ L^(P> (3) SUp : < co 
" K 

f. ü. in (0, 1) besteht. 
Mit M(X) bezeichnen wir die Klasse der Folgen a, für die die Reihe (1) bei 

jedem System <p6ß(A) in (0,1) fast überall konvergiert. Es ist bekannt, daß die 
Folgen a mit 

oo 

2 alK -= °° k = l 

zu Af(A) gehören [1]. Für jede Folge a setzen wir 

1 
||a; A|| = sup / sup 

9 0 i s i s j 
2 <tkq>>t(x) dx, 
k=i 

wobei das Supremum über alle in (0, 1) orthonormierte Systeme cp mit 

Ln((p; x) 
J rt 
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gebildet wird. In [8] haben wir gezeigt, daß die Bedingungen a£M(X) und ||a;A||<oo 
äquivalent sind. 

Es sei <p(iQ(X) und 4/ sei ein beliebiges vorzeichenartiges System. Dann gilt 
{Mt)<Pk}?€ßW für jedes /€(0, 1). Ist a£M(X), dann folgt, daß die Reihe (2) bei 
jedem i£(0,1) in (0, 1) fast überall konvergiert. Durch Anwendung des Fubinischen 
Satzes ergibt sich: 

Sa tz II. Es sei a£M(?.), ß(A) und \j/ein beliebiges vorzeichenartiges System. 
Dann konvergiert die Reihe (2) bei fast jedem x£(0, 1) für fast alle t£(0, 1). 

Im Falle A„=0(1) gilt also die folgende Behauptung. 
Gilt a£/2 , und für das orthonormierte System cp besteht sup Ln(cp; 

f. ü. in (0, 1), dann konvergiert die Reihe (2) bei fast jedem x£(0, 1) fast überall 
in (0,1). 

4. B e m e r k u n g e n . 1) Ohne die Bedingung a£M, bzw. a£M(X) gelten die 
Sätzen nicht. Ist nämlich bzw. a$M(X), dann gibt es ein System <p€Q, 
bzw. (p£ü(X), derart, daß die Reihe (1) in (0, 1) fast überall divergiert, also für das 
System i//k(t)=l (i£(0, 1); k - l , 2, ...) divergiert die Reihe (2) bei fast jedem x € ( 0 , l ) 
für jedes 0, 1). 

2) In unseren Sätzen läßt sich Orthonormalität des Systems cp durch die 
schwächere Voraussetzung ersetzen, daß das System ein Konvergenzsystem für /2 

dem Maß nach ist. Nach einem Satz von N I K I S C H I N [3] ist nämlich das System q> 
in diesem Falle fast orthonormiert, d. h. für jede positive Zahl e gibt es eine meß-
bare Menge ^ ( ^ ( 0 , 1)), eine positive Zahl Me, und ein orthonormiertes System 
$ 0 0 = * ) } r (0> 0 mit m e s F . s 1 - e , <pk(x)=Me$k(e; x) (x€F e ; k=1, 2, ...). 

So ist die folgende Behauptung klar: 

Sa tz I. a. Es seien a£M, <p ein Konvergenzsystem für l2 dem Maß nach in (0, 1), 
und x¡/ ein beliebiges vorzeichenartiges System. Dann konvergiert die Reihe (2) bei fast 
jedem x€(0, 1) für fast alle t£(0, 1). 

Es gilt auch: 

Sa tz II. a. Es seien M(l), <p ein Konvergenzsystem für l2 dem Maß nach in 
(0, 1) mit (3), und iff ein beliebiges vorzeichenartiges System. Dann konvergiert die 
Reihe (2) bei fast jedem x£(0, 1) für fast alle f€(0,1). 

Beweis des Sa tzes II. a. Mit Q*(X) bezeichnen wir die Klasse der Konver-
genzsysteme (p für /2 dem Maß nach in (0,1), für die (3) f. ü. in (0,1) besteht. Weiter-
hin sei M*(l) die Klasse der Koeffizientenfolgen a, für die Reihe (1) bei jedem 
<p£Q*(X) fast überall konvergiert. Nach einem Satz in [9] ist M*(A)=M(A), woher 
Behauptung folgt. 

9 



130 К. Tandon : Beitrag zur Konvergenz der Orthogonalreihen 

Schriftenverzeichnis 

[1] S. KACZMARZ, Sur la convergence et la sommabilité des développements orthogonaux, Studio 
Math., 1 (1929), 87—121. 

[2] D. E. MENCHOFF, Sur les séries "de fonctions orthogonales (Première partie), Fundamenta Math., 4 
(1923), 82—105. 

[3] M. E Н и к и ш и н , О системах сходимости по мере дця 4 , Матем. заметки, 13 (1973), 
337—340. 

[4] А . М . OLEVSKII, Fourier sériés with respect to generál orthogonal systems, Springer-Verlag' (Ber-
lin—Heidelberg—New York, 1975). 

[5] H. RADEMACHER, Einige Sätze über Reihen von allgemeinen Orthogonalfunktionen, Math. An-
nalen, 87 (1922), 121—138. 

[6] К. TANDORI, Abschätzungen vom Menchoff—Rademacherschen Typ für die Summen von ortho-
gonalen Funktionen, Studio Sei. Math. Hung., 3 (1968), 325—336. 

[7] K. TANDORI, Über die Konvergenz der Orthogonalreihen. II, Acta Sei. Math., 25 (1964), 219—232. 
[8] K . TANDORI, Über die Lebesgueschen Funktionen, Acta Math. Acad. Sei. Hung., 2 8 (1976 ) , 1 0 3 — 

118. 
[9] K . TANDORI, Über die Lebesgueschen Funktionen. I I I , Acta Math. Acad. Sei. Hung., 36 ( 1980 ) , 

183—187. 

BOLYAI INSTITUT 
UNIVERSITÄT SZEGED 
ARADI VÉRTANOK TERE 1 
6720 SZEGED, UNGARN 



Ada Sti. Math., 43 (1981), 131—139 

On the radical classes determined by regularities 

TRAN TRONG HUE and FERENC SZASZ 

1. Introduction 

All rings considered in this paper are associative. For a given class of rings 
each ring is called a <£-ring, and an ideal B of a ring A is called ideal if B 
(as ring) is a ^-ring. 

It is well known that a non-empty subclass # of rings is a radical class or briefly 
a radical (relative to the class of all associative rings) in the sense of K U R O S [ 1 3 ] 

and AMITSUR [1] if it satisfies the following conditions: 
(i) (<H is homomorphically closed, that is, every homomorphic image of a 

'Sf-ring is a #-ring. 
(ii) The sum of all "ii-ideas of a ring A is a #-ideal. 
(iii) is closed under extensions, that is, if both B and A/B are br ings , then 

A is also a #-ring. 
In ring theory many so-called regularities determine radical classes, for instance 

the von Neumann regularity [17], quasi-regularity [18], (/-regularity [6], strong reg-
ularity [3], and so on. 

The aim of this paper is to give the definition of regularity of associative rings 
in the common terminology of polynomials and formal power serieses, and to show 
the radical characteristic of regularities in this sense. At the same time we shall 
get a diagram to define radicals by regularities. In view of our results it become 
clear that well known regularities and ring properties considered in [14], [17], [22] 
and [25], are radicals. 

9« 

Received Manih:6,; 1979. 
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2. Regularities determined by polynomials 

Z[x0, x\, ..., x„] denotes the set of polynomials in non-commutative indeter-
minates x0, x1, x2, ..., xn with integer coefficients. 

D e f i n i t i o n 1. Suppose / ( x 0 , x1 ; ..., x„) is in Z[x0, xlt ..., x j . An element 
a0 of a ring A is said to be/regular if there exist elements at, a2„..., an in A such 
that the equality 

/ ( a 0 , a i , . - , a n ) = 0 
is valid in A. 

A ring A is said to be /-regular if every element of A is /-regular. An ideal B 
of a ring A is an /-regular ideal if B is an /-regular ring. 

The following theorem characterizes the radical property for /-regularities. 

T h e o r e m 1. Suppose f{x0,xi, ..., xn)£Z[x0, xx , ..., xn], then the class of all 
f-regular rings is a radical class if and only if the following conditions are satisfied: 

1) / (x 0 , xlt ..., x„) has no constant term. 
2) I f B is an f-regular ideal of a ring A, and for every aa£A there exist elements 

tfi,iz2, ..., an in A such that f(a0, a1, ..., a„)£B, then A is an f-regular ring. 

P r o o f . Assume that the class % of all /-regular rings is a Tadical class. Since 
the zero ideal is a ^-ideal in every ring, the first condition is always satisfied. 

Now suppose that B is an/-regular ideal of a ring and for every a0£A there 
exist elements ai,ai, ...,a„ such that / ( a 0 , a1, ...,a„)£B. We have to show that 
the ring A is /-regular. Let us consider the factor ring A/B. Take any element 
a^AjB. Let an element a0 be in the coset a. By hypothesis there exist elements 
alt a2, ..., a„ such that / (o 0 , alt ..., an)£B. So in the factor ring A/B the equality 

f(a,a1,...,an)= 0 .. 

holds. Hence the element a is /-regular. This implies the /•regularity of A/B. Since 
radicals are closed under extensions, A is /-regular. Thus the second condition te 
valid. • - ' 

Conversely, assume that / (x 0 , x1 ; ..., xn) satisfies the conditions of the theo-
rem. Clearly, 'if is homomorphically closed. Now, suppose that for an ideal J of 
a ring A, both / and A/J are br ings . Since A/J is /-regular, therefore for every 
element a0£A there exist elements ai,ai,...,an in A such that the cosets 
a 0 , a1} ..., a„ satisfy the equality 

/(ao,«!,^, ...,an) = 0 

in the factor ring A/J. This implies f{a0, a1, ..., a„)£J. By the second condition 
of the theorem, the ring A is /-regular. Hence the class is closed; under extensions. 
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Suppose both Bx and B2 be ^-ideals of a ring A. By the second isomorphism 
theorem we have 

B i + B 2 ^ B± 

B2 B1C\B2 

Since the class is homomorphically closed and closed under extensions the above 
isomorphism implies that B1+B2 is a "^-ring. By a simple induction we can prove 
that the sum of any finite number of ^-ideals of a ring A is again a ^-ideal. 

Finally, it is easy to see that the sum @(A) of all ^-ideals of a ring A is a 'g'-ideal. 
This completes the proof of the theorem. 

As a radical criterion of /-regularities we have the following 

. C o r o l l a r y 1. For a polynomial f(x0, xx, ..., x„) in Z[xQ, xl, ..., xn] without 
constant term, the class of all f-regular rings is a radical class if one of the following 
two conditions is satisfied. 

(A) For arbitrary elements a0, a1, ..., a„ in a ring A, if the element f(a0, a1, ..., a„) 
is f-regular then the element a0 is also f-regular. 

(B) Let B be an f-regular ideal of a ring A; if the coset a0 containing a0£ A is 
f-regular in the factor ring A/B, then the element a0 is f-regular in the ring A. 

P r o o f . The assertion is an immediate consequence of Theorem 1. It is easy 
to check that the conditions of Theorem 1 are satisfied. 

R e m a r k . By Corollary 1, the conditions (A) and (B) are sufficient for an 
/-regularity to be a radical. It is not known whether the converse is true. 

3: Regularities determined by formal power serieses 

We shall use the following notations: Xi=(xil, xi2, ..., xik, ...) for /=1 , 2, . . . , « ; 
Z{X1,X2, ..., Xn} denotes the set of all formal power series in infinite number 
of non-commutative indeterminates xa, xi2, ...; z '=l ,2 , . . . ,«, and with integer 
coefficients; that is, every f [ X x , X2, ..., Xn\£Z{X1, X2, ...,X„} may be written in 
the form -

fiX1,Xt,...,XJ = 2m.nx'fyt>* 
a k=l kk 

where m a6Z, and x^x^x^x^ if (i, k)^(j,l). 
For arbitrary natural numbers ah /'= 1, 2 , . . . , n, f\^i<CL denotes the 

expression which is obtained from / [Xx, X2,...,Xn] by putting xik=0 for 
/=1,2,..., n. - •.-..,<•. . j 
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D e f i n i t i o n 2. The formal power series f [ X l , X2, X„]iZ{Xl,X2, ..., Xn} 
is said to be admissible if for arbitrary natural numbers a.h i=1 , 2, ..., n, we 
always have 

•••>xl<iI' •••>xnl> 

E x a m p l e s . Let us consider the simple case n = 2 . Let 

= X = {x0, xlt ...), X2 = Y = (y0,yi,yz, ...). 

a) Consider 

f1(X,Y)= ¿ ( a ^ + b^xd. 
f = 0 

For arbitrary natural numbers a,, /=1 , 2, we have 

(Z 

ZikaW = 2 QiXiyi + biyiXi 
i=0 

where a = m i n {a1; a2}. Therefore, is in Z[x0, ..., xai, y0, . . . , y j and 
MX, Y] is admissible. 

b) Let 

M*,Y]= 24+yko+xkyk. k = 0 

For any natural numbers a, , /=1 , 2, we have 

OO A 

/2l<«1.«1>= 2 ' 4 + > ' o + 2 x i y i 
fc=0 i=0 

where a = m i n {a^ a2}. Clearly, /2|<c,i>cis> is not in Z[x0, ..., xXi, y0, ..., y^]. There-
fore, / 2 [X, Y] is not admissible. 

D e f i n i t i o n 3. Suppose that the formal power series 

f[X1,X2,...,Xn]£Z{X1,X2,...,Xtt\ 

is admissible. An element a0 of a ring A is called f-regular in A if there exist natural 
numbers a i , a 2 , •••,«„ such that the polynomial f\(a i ,a i *n) has at least one 
solution in A with x a = a 0 . 

A ring A is said to be /-regular if every element of A is /-regular. An ideal B 
of a ring A is /-regular if B is an /-regular ring. 

The following assertions are analogous to the corresponding assertions in sec-
t ion?. The proof of the following theorem is a minor modification of the above 
proof of Theorem 1 therefore, we omit it. 
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T h e o r e m 1'. Suppose that the formal power series 

f [ X l , •••> -^nli^ {-^1) Xg, • ••, X„} 

is admissible. Then the class of all f-regular rings is a radical class if and only if the 
following conditions are satisfied. 

1)' f[Xx, X2, ..., Xn] has no constant term. 
2)' I f B is an f-regular ideal of A, and for every element an£A there exist natural 

numbers a1; a2, ..., a„ and elements aa, ..., aiX{, ¡ = 1 , 2 , . . . ,«, in A such that 
fko1,at,...,a„)(all> •••>anX)£B> then the rinS A is f-regular. 

C o r o l l a r y V. Suppose that the formal power series 

f [ X t , X2, ..., X„]£Z{X1, X2, ..., Xn} 

without constant terms is admissible. Then the class of all f-regular rings is a radical 
class if one of the following two conditions is satisfied. 

(A)' For arbitrary elements aa, ai2, ..., aix, i = l , 2, ..., n, in a ring A, if the 
element f an>(aii> an*) ,s f-regular, then the element au is also f-regular. 

(B)' Let J be an f-regular ideal of a ring A; if the coset a0 containing a0£A 
is f-regular in the factor ring A/J, then the element a0 is f-regular in A. 

4. Applications 

For the sake of brevity we shall call a polynomial or an admissible formal 
power series / a radical expression if the class of all /-regular rings is a radical class. 
Next we shall give some radical expressions. 

P r o p o s i t i o n 2. The following formal power series are radical expressions. 
CO 

a) G(m1, m2, ms, m4) = x0+m1x1+m2x0x1+ 2 ^y^Z^m^y^Zi 
¡=i 

where mt, i= 1, . . . , 4, are integers satisfying the condition ffj1Tw3=/n2/n4. 
eo b) F{ml, m2, m3) = x0+m1x1x0+m2x0x2+ 2 m^^Zi 

•=i 
where mh i= 1 ,2 ,3 , are integers satisfying the condition m1m2=0 or m1m2=m3. 

oo 
c) H(n, 1c) = x0+ 2 kyux0y2i...x0yni 

¡=0 
OO . . . 

d) Pn[Pi(x0),p2(x0)] = x0+2pi(x0)yiipi(x^..:ynip2(x0) i=l 
where i = l , 2. 
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P r o o f . In order to prove that G(mu m2,m3, twJ, 

Fim^ m2,m3), P^ÎXo), p2(x0)] and H(n,k) 

are radical expressions, we shall show that each of them satisfies one of the condi-
tions of Corollary 1'. 

First we prove that Git»!, m2 , m3 , m4) satisfies condition (A)' of Corollary 1'. 
Suppose a Q , a , b0, ... ,b , c0, ...,ca> are elements of a ring A such that the 
element * 

a 
G(ml5 m2, m3, m^.«»,«,)^ — ,caJ = a0+m1a1+m2a0a1+ 2 WaMoC. + wAci, 

where a = m i n {al5 a2}, is G(m1, m2,ms, w4)-regular. By Definition 3, there exist 
V' Jai> ~0> ~1> '••> "aa elements a[, b'0, b[, ..., b'^, c'Q, c\, ..., in A such that the following equality is 

satisfied: 

+ 2 j= i 
m. 

|a0+m1a1+m2a0a1+ 2i
m3bia0ci+mibic^ + m1a,

1+ 

+ m2^a0 + m1a1 + m2a0a1+ jg m 3 b i a 0 c i + w4fe Ic ij + 

¡fc^do + m i f l i + 7712 00 0 ! + ^msbiaoCi+mibiC^ Cj + mibjC'^ = 0 

where a.'=min {cc2, a'3}. 
A straightforward calculation shows that 

where 

K={ 

ck 

a0 + m1aî + m2a0a'i+ 2  m3bkaock+™iKck =0 
• - *=i 

a" = 2(a + a')+aa', 

a"' = a1+a'1+mza1a'1, 

bk if 0 < fc a, 
bt if a < fe = a + i ^ 2a, 
i>i if. 2a < fc = 2a + i S 2 a + a ' , 

m2bi if 2 a + a ' < = 2 a + a ' + i ë 2 ( a + a 0 , 
if 2 ( a + a ' ) + 0 ' - l ) a < fc = 2 ( a + a ' ) + 0 - l ) a + i s 

S 2 ( a + a ' ) + j a for j = 1, 2 , . . . , a' , 
c t if 0 -<= k ^ a, 
c£ai if a < f c = a + i s 2 a , 
ci if 2a < A: = 2 a + i s 2 a + a ' , 
aj^c'i if 2 a + a ' < k = 2 a + a ' + i s 2 ( a + a 0 , 
ctc'j if 2 ( a + a O + 0 ' - l ) a < f e = T 2 ( a + a 0 + 0 ' - l ) a + i ^ 2 ( a + a 0 + j ' a 

for 7 = 1 , 2 , . . . , a ' . 
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Hence the element aQ is G(m1, m2,m3, /M4)-regular, and condition (A)' is satisfied. 
Thus G(m1, m2,m3, m4) is a radical expression. The remaining assertions are proved 
similarly. 

Now let us survey some well-known regularities and ring properties which have 
already been shown to be radicals. 

.,1) An element a0 of a ring A is said to be regular in the sense of VON NEU-
MANN [ 1 7 ] , if a0da0Aa0. If in a) in Proposition 2 we take « = 1 , pi(xQ)=x0, i= 1, 2, 
then, clearly, Pi(x0 , x0)-regularity coincides with the regularity in the sense of 
von Neumann. Therefore, the class of all von Neumann regular rings is a radical class. 

2) An element a0 of a ring A is said to be right quasi-regular, as defined by 
PERLIS [ 1 8 ] and later studied by B A E R [4] and JACOBSON [ 1 1 ] , if A 0 + A 1 + A 0 A I = 0 , 

for some element ax of A. By a) and d) in Proposition 2 we havs 

G(l, 1,0,0) = Xo+Xj+Xo*!. 

Hence right quasi-regularity is nothing else than G(l, 1, 0, 0)-regularity. Thus, right 
quasi-regularity is a radical property, namely, the Jacobson radical. 

3 ) B R O W N and M C C O Y [6] have introduced the notion of G-regularity. An 
element a0 of a ring A is said to be G-regular if the element a0 is in G(a0), where 

G(a0) = A(l+a0)+A(l+a0)A. 

By a) in Proposition 2 it is clear that G( 1, 1, 1, Irregularity coincides with G-reg-
ularity. Thus the Brown—McCoy radical may be determined by the radical expres-
sion G(l, 1, 1, 1). 

4 ) The notion of strongly regular rings had been introduced by A R E N S and 
K A P L A N S K Y [3] and was later studied by K A N D Ó [12] , LAJOS and SzÁsz [ 1 4 ] and 
others. A ring A is strongly regular if ad a2 A for every ad A. If in d) in Proposi-
tion 2 we take n—1, p1(x^=x2

0i p2(x0)=1,. then it is clear that /^ (x 2 , l)-regularity 
is the same as strong regularity. Thus, strong regularity is a radical property. 

5) D E LA R O S E [19] has introduced the notion of ¿-regularity. An element a0 

of a ring A is A-regular if a0dAa0A. By a) and d) in Proposition 2 we have 

G(0, 0,1, 0) = F(0, 0,1) = x 0 + ZyiXiZi-
•=i 

Clearly, A-regularity can be defined by the radical expression G(0, 0, 1, 0). Thus the 
class of A-regular rings is a radical class. 

6) D I V I N S K Y [8] has introduced left pseudo-regularity. An element a0 of a ring 
A is left pseudo-regular if aQ+a^+a^l^Q for some element axdA. If in d) in 
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Proposition 2 we take n= 1, px(x0) = 1, />2(*o)=*o+*o> t h e n it is easy to see that 
^ i ( l ) x 0 +^- r egu l a r i t y coincides with left pseudo-regularity. Therefore left pseudo-
regularity is a radical property. 

7) Following SzAsz [22] a ring A is called an £5-ring if every homomorphic 
image of A has no non-zero left annihilators. As is proved in [22], a ring A is an 
£--ring if and only if a£Aa+AaA holds for every ad A. By b) in Proposition 2, 
the class of £6-rings is the class of all F( l , 0, l)-regular rings, so it is a radical class. 

8) Following SzAsz [25] a ring A is called an £"6-ring if every homomorphic 
image of A has no non-zero two-sided annihilators. A ring A is an .E^-ring if and 
only if adaA + Aa+AaA holds for every ad A. By b) in Proposition 2 the class of 
£ 6 -rings coincides with the class of £(1, 1, l)-regular rings. Thus, it is a radical class. 

9) B L A I R [5] introduced the notion of /-regularity, which was later studied by 
A N D R U N A K I E V I C [2]. An element a of a ring A is said to be /-regular (in the sense 
of Blair) if ad (a)2, where (a) denotes the principal ideal of A generated by a. Blah-
has shown that an element a in a ring A is /-regular if and only if there exist elements 

71 
tii, Vi and w, in A such that a — £ «1iJ0

t'iaHV Hence, by c) in Proposition 2, f-reg-
i = l 

ularity in the sense of Blair is the same as H(3, l)-regularity. Thus it is a radical 
property. 

10) By b) in Proposition 2 we have 

F(1,0 ,0) = Xq+XJXO. 

Therefore F ( l , 0, 0)-regularity is D-regularity of D I V I N S K Y [9] . 

11) If in d) in Proposition 2 we take n=1, p1(xQ)=q(x0), p2(x0)=q(x0), then 
we see that P1(p(x0), #(;c0))-regularity is nothing else than (p, ^-regularity, intro-
duced by M C K N I G H T [ 1 5 ] and also studied by others [ 1 0 ] , [ 1 6 ] . 

R e m a r k . By means of Proposition 2, we can get a great variety of radical 
classes. In order to show that consider for instance the radical expressions 
G(p, —p,k, —k), where p is a prime number. Denote by S^^ the class of 
G(p, —p,k, —/c)-regular rings. Take a fixed set of symbols M= {a, ft, ...}. Let 
Ap be the (associative and noncommutative) ring on the set M over the field Zp of 
integers modulo p with the relation: af}=a, rt, fidM. 

One can prove easily that Ap is not in S^ k) but it belongs to S^>(t) for every 
prime p'^-p. Hence S^ ^ S ^ if p^p . 
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The hyperbolic M. Riesz theorem 
SHINJI YAMASHITA , 

1. Introduction. We shall prove the non-Euclidean hyperbolic versions of the 
theorems of M . R I E S Z [7] and of L . F E J E R and F . R I E S Z [4] (see [ 8 , Theorem VIII.45, 
p. 339 and Theorem VIII.46, p. 340], [3, p. 46]) and show a property of conformal 
mappings in terms of the non-Euclidean geometry in the unit disk. 

Let D = {|z|<l}, T=\0,2n), and K= {eu\t£T}. Let 

, ; <T(Z, W) = tanh _ 1 ( |z — w|/|l —zw|) 

be the non-Euclidean hyperbolic distance between z and w in D, and let 

a(z) = ff(z,0) = ( l /2)log[(l + |z | ) / ( l - |z | )] , z£D. 

Let B be the family of functions / , holomorphic and bounded, | / | < 1 , in D. Then 
<x(/) for f<zB, like | / | , hais the property that log o ( f ) is subharmonic in D, so 
that ( r ( / ) p =exp [p log a(f)] is subharmonic in D for all />>0; see [10]. Let 
be the family of f £ B such that 

fo(f)>>(re")dt 
T 

is bounded for 1 (0</?<°=). The class Hp
a is the hyperbolic counterpart 

of the (parabolic) Hardy class HF in D [3, p. 2], and is called the hyperbolic Hardy 
class. (Recently, it is observed that an "elliptic" analogue of Hp (0<p<°o) , namely, 
a meromorphic Hardy class yields no new family [11, Theorem 1].) Each f £ B has 
the radial limit f*(t)= l im o f ( re ' ' ) at e" for a.e. t^T, and as will be seen, CT(/*) 
is of class LP(T) for all f£Hp

a The hyperbolic M. Riesz theorem is 

: T h e o r e m . 1. Let C be a rectifiable, curve with the initial point a and the terminal 
point b.(possibly, a = b) in the complex plane. Suppose that. 

/ ' CCI D JK 'and CPl/Cc {a, &}. '-

Received October 23, 1980. 
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Set for tíT, with eu$CC\K, 

V(t)= J arg (e* — w)| (w£C). 
c 

Then, for each feHr
a (0</><°°), 

fo(f)p(z)\dz\ S /o(f*)'(t)V(t)dt. 
C T 

If C is the diameter {jce i s |-1 1} {s£T), then V(t)=n/2, so that the 
hyperbolic Fejér and F. Riesz theorem is 

T h e o r e m 2. For each f£Hp (0<^<«>) and each s£T, 

/ *(/)> (*«*) dx ^ (1/2) / a ( f * Y ( t ) dt. 
-1 T 

The Fejér and F. Riesz theorem has the obvious application to conformal 
mappings from D onto a Jordan domain with the rectifiable boundary [4, Satz IV]; 
see [8, Corollary, p. 341] and [3, Corollary, p. 47]. The hyperbolic version is not so 
apparent as in the cited case; namely, the following theorem does not appear to 
be a direct consequence of Theorem 2. There is no relation between o( f ) and 
i / ' l / o - l / l 2 ) like that between \f \ and \f'\. 

T h e o r e m 3. Let y be a Jordan curve in D with finite non-Euclidean length L. 
Let fbe a one-to-one conformal mapping from D onto the interior of y. Then the non-
Euclidean length of the image of each diameter by f is not greater than L/2. The 
constant 2 in L/2 cannot be replaced by any larger constant. 

For the proofs of Theorems 1 and 3, the principal idea is to obtain the M. Riesz 
theorem for subharmonic functions of class PL in the sense of E. F. B E C K E N B A C H 

and T. R A D Ó [2] (see also [6, p. 9]); see Theorem 4 in Section 2. 

2. Subharmonic functions of class PL. A function u defined in D is called of. class 
PL in D if h § 0 (possibly, u=0) and log« is subharmonic in Ö; we regard — °° 
as a subharmonic function. The family of all functions of class PL in D is denoted 
by PL again. All members of PL are subharmonic in D, and if u^PL, then up£PL 
for each />>0. I f / i s holomorphic in D, then \f\£PL, and further, if f£B, then 
o(f)dPL. Let PLP be the family of all u£PL such that up has a harmonic majorant 
in D (0<p<«>). Here, a function v subharmonic in D is said to have a harmonic 
majorant h in D if h is harmonic and vsh in D. The class H" is the family of / 
holomorphic in D such that \f\£PL", while is the family of fdB such that 
a(f)ePLp (0</><oo). ..I 
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T h e o r e m 4. Let C and V be as in Theorem I. Then, each u£PLp (0<p<«=) 
has the radial limit u*{t) at e" for a.e. t£T, and 

f up(z) \dz\ S n'1 f (u*)'(t)V(i) dt. 
C T 

Earlier, a special case of Theorem 4, where p=1, C is an arbitrary diameter, 
u is continuous on DUK, and u£PL, was established by BECKENBACH [1, Theo-
rem 2]. It is now an easy exercise to extend a geometric theorem of BECKENBACH 

[1, Theorem 3] with the aid of Theorem 4. 
Theorem 1 (and consequently, Theorem 2) now follows from Theorem 4, 

applied to a(f)£PLp; note that CT(/)*=CT(/*). The theory of subharmonic func-
tions of class PL thus serves for the differential geometry, as originated by Becken-
bach and Rado, as well as for the hyperbolic Hardy classes. 

For the proof of Theorem 4 we shall make use of 

L e m m a 1 [5, Theorem]. Let 0 be a function convex and increasing on 
( — a n d suppose that 

q>(t)/t-* + oo as r— + °=>. 

Set ( p ( ~ l i m (pit), and let v be a subharmonic function in D such that <p(v), t—-co 
again subharmonic, has a harmonic majorant in D. Then the radial limit v* (i) exists 
at e" for a.e. t£T, and is of L1(T), such that 

Furthermore, tp(v*)€V-(T). 

In effect, v admits a positive harmonic majorant in D (see [9, p. 65]), so that 
v=vA —q, where # £ 0 is a Green's potential and is the least harmonic majorant 
of v in D, expressed by the Poisson integral of a signed measure 

dn(f) = v*(t)dt + dMs(t) on T, 

where dps is singular with respect to dt. Now, [5, Theorem] asserts that i//is(i) = 0 
on T a n d -<p(v*)£V-(T). 

P r o o f of T h e o r e m 4. Since u*ePLx with (up)* = (u*)p, it suffices to prove 
the theorem in the case p= 1. Set <p(t) = e' and v = \og u and consider Lemma 1. 
Since <p(v) has a harmonic majorant, v has the harmonic majorant 

h ( z ) = ( 2 K ) - I / ¿ ¿ ^ v*(t) dt ( Z € D ) . 
T I I 

Furthermore, h*=v*—log u*. Since u*=(p(v*)£L1(T) by Lemma 1, it follows 
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from Jensen's inequality that eh^g, where g is the Poisson integral of <p(v*)=u*. 
Thus, ff1, 
where A: is a harmonic conjugate of h in D. Therefore \f*\ — \f\tr=eh* = u* and 

u = e" ^ eh = | / | in D. 

We now apply M. Riesz's cited theorem to / o f Hardy class H1 to obtain the follow-
ing chain of estimates: 

/u(z) \dz\ ^ f | /(z)| \dz\ *n~vf |/*(/)| m dt = 
C C T 

= 71-! Ju*(t)V(t) dt, 
T 

whence follows Theorem 4. 

3. Conformal mappings. We remember that if / is holomorphic in D and if 
f'^H1, then / is continuous on DO K and /(e") is absolutely continuous as a 
function of /€ T with 

(3-1) = i e " ( f W • for a.e. tCT, 

where (/ ')*(*) is again the radial limit o f f at e"; see [3, Theorem 3.11, p. 42]. For 
f £ B we denote 

/#00 = |/'00|/(l-|/(z)|2), ziD, 

and for the proof of Theorem 3 we shall make use of 

L e m m a 2. Let f£B and f'^H1, and assume that | / ( e " ) | < l for all t£T. 
Then f* f PL1 and 

d z m C/*)*(>) = 

for a.e. t£ T. 
df / ( l - . l / ( ^ ' ) l 2 ) 

P r o o f . A calculation yields that A l o g / * = 4 ( / # ) 2 = - 0 except for the zeros 
o f / ' , so that f*£PL. Since | / | is bounded by a constant c < l in D, it follows 
f r o m / # = i | / ' | / ( 1 - c 2 ) in D with f'ZH1 that f*ePL\ Since ( / * ) + = [ ( / ' f |/(1 - | / | 2 ) 
a.e. on T, the second assertion follows from (3.1). 

P r o o f of T h e o r e m 3. Since y is rectifiable (in the Euclidean sense), it fol-
lows from [3, Theorem 3.12, p. 44] that f'€H\ By Lemma 2, f*£PD. Since 

•• J 1 — |/(e")l2 4 l-\f(euW\ 
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it further follows f rom Lemma 2 that 

L= f (/*)*<!) dt. 
T 

The first assertion in Theorem 3 now follows from Theorem 4 applied to each 
diameter C and f*£PL\ 

It remains to prove the sharpness of 2 in L/2. For simplicity we consider the 
half-plane /?={w|Re w=-0} with the non-Euclidean metric \dw\j\2 Re w] in the 
differential form. The non-Euclidean length of a curve f in R is denoted by X(r). 
Let £ > 0 and let 0 C o n s i d e r the Euclidean rectangle Q with the vertices 
z 1 = a + 6 / , z2=a—ei, zs=b—ei, and zt=b+Bi. Let fc be a one-to-one conformai 
mapping f rom D onto Q such that fc maps the diameter [ — 1,1] onto the segment 
ab on the real axis. If we show that 

(3.2) l{ft{K))IX(ab) - 2 as e 0, 

then the function ( / e —1)/( / £ +1) serves as an example for the sharpness. Let 
ZiZj, zaz3 , z3z4, and z4zx be the four sides o f f E (K) . A calculation yields that 

X(zizi) = ;.(z2z3) = (1/2) log (b /a ) = A(ab), 
and as e—0, 

A(z1z2) = e/a — 0 and J.(z3z4) — e/b — 0. 

Therefore (3.2) holds. 

Appendix. Tsuji's proof of M. Riesz's theorem contains an obscure point. 
There is a gap between (5) and (6) in [8, p. 341] ; the meanings of d/dx in (5) and 
(6) are different. Since M. Riesz did not raise his result explicitly as in [8, Theorem 
VIII.46, p. 340], we must avoid this difficulty. The principal point is to prove that, 
for / ho lomorph ic on D U AT, 

(A) / |/(vv)| \dw\ - i f | /(e")| V(t) dt, 
C T 

where C and F a r e the same as in Theorem 1. Choose points w0=a, wlt ...,w„_1, 
w„=fc on C in this order. Then 

V(t) = lim 2 l a r g ( e " - w , ) - a r g ( e " - w i t _ 1 ) | 
k= 1 

as max \wk—M^-J— 0, where arg (eu—w) is a fixed branch in D; V(t) is Lebesgue 
measurable on T. Now it follows from [7, (3), p. 54] (a careful reading shows that 
the cited point is true even if A or B lies on K) that the following estimate of the integral 

10 
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on the rectilinear segment w k_ 1w k holds : 

/ l / M I \dw\ s TI—1 / | / ( e " ) | | a r g ( e ' ' - w 4 ) - a r g ( e " - w i _ 1 ) | d t , 

lSJfcSH. S u m m i n g u p b o t h sides f r o m & = 1 t o n, a n d lett ing ^ a x ^ — 

we obta in (A). 

R e m a r k . I t migh t be m o r e appropr ia te to call [8, T h e o r e m VIII.46] the F . Car l -
son a n d M . Riesz theorem. 
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A maximum principle for interpolation in H°° 

N. J. YOUNG 

There are several contexts in which it is desirable to calculate norms in quotient 
algebras of H°°, the algebra of all bounded analytic functions in the open unit disc U, 
with supremum norm. For example, one version of the Nevanlinna—Pick problem 
(see [3] or [7]) is to find a function which takes prescribed values at given 
points of U and minimises | | / | | H - : the minimum value of | | / | | H - can be expressed 
as the quotient norm H g + ^ i ? " II where g is some function and cp is a Blaschke 
product, and, once this quotient norm is known, an algorithm due to Schur and 
Nevanlinna enables the construction of the desired minimising function / [7]. It is 
less immediate that quotient norms oi are also important in an extremal problem 
for matrices raised by V . P T A K [ 4 ] : to find the maximum value of \\Am\\ over all 
contractions A on «-dimensional Hilbert space, « S m , subject to \A\a^r< 1 (\A\a 

is the spectral radius of A). An account of this problem is given in [5]. 
The second example motivates the study of the quantity + 

as a function of the zeros of the Blaschke product q>, for fixed ift. It is a plausible 
guess that some sort of maximum principle should hold for this quantity: the closer 
the zeros of <p are. allowed to approach the unit circle, the larger should be \\\l/+q>H°°\\. 
This is in fact true in the case i/^(z)=z", where n is the degree of cp, as was established 
by P T A K [4] in 1968. The purpose of this paper is to prove a generalization of Ptak's 
result: a maximum principle is true whenever ¡¡/ is a Blaschke product of the same 
degree as q>. The method is quite different from Ptak's, and offers some hope of 
further generalization. 

We shall say that the maximum principle holds for f : £2gC-*-R if, for any 
compact set K^Q, the supremum o f f on K is attained at some point of the bound-
ary of K relative to Q. And, if Q is a subset of a complex vector space V, we say 
that the maximum principle holds for / : R if, for any plane it in V, the maximum 
principle holds for the restriction of / to n(~\Q; or, to put it more precisely, if, 
for all a£Q and b£V, then maximum principle holds for the function 

g: {AgC; a + Xb^Q) - R defined by g(X) = f(a + Xb). 

Received September 8, 1980. 
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T h e o r e m : Let n be a natural number and let 

F{at,P) = U + q>H~\\H~,9H~ 

where « = («!, ...,«„)€£/", /* = (&, ...,pn)iUn, 

,=i 1 — ¡ = 1 1— p,z 

Then F(a, ft) = F(f3, a) and, for any a, fi£ U", the maximum principle holds for the 
functions F{OL, •), F(>,P) on U". 

We shall show that F is the composition of a strictly increasing and a separately 
plurisubharmonic function. This will follow from an interesting formula which 
expresses F in terms of the norm of an analytic operator-valued function. This for-
mula also makes it easy to see the surprising symmetry property of F, which was 
earlier established by a different method in [5, Sec. 7]. 

The whole is based the well known theorem of S A R A S O N [6] which interprets 
\\il/ + (pH°°\\ operator-theoretically. Let T denote the unilateral backward shift on 
I2: that is, 

F(x0, Xi, x2, •••) = (Xi, x2, ...). 

Sarason's theorem asserts (among other things) that, for any and inner 
function q>, 
(1) |№(r ) |Kerp(Df l , 

the symbol || • || denoting the operator norm on I2 and the vertical bar denoting 
restriction. 

Let P.*: Kei cp(T)-*l2, Q*: Kcnj/(T)-^l2 be the natural injection mappings. 
Note that PP*, QQ* are the identity operators on Ker <p(T), Ker t^(T) respectively, 
while P*P, Q*Q are the Hermitian projections with ranges Ker <p(T), Ker ^/(T). 

L e m m a 1. QP*: Ker (p(T)^Kei \j/(T) is invertible. 

P r o o f . Since both kernels have dimension n it suffices to show that QP* is 
injective, or equivalently, that Ker <p (T) D Ker <ft (T)1- = {0}.] For this purpose it is 
convenient to identify /2 with the Hardy space H2 of analytic functions in U in the 
usual way [2]. T acts on H2 by 

Th(z) = ^{h(z)-h(0)} 

while T* acts as multiplication by z. Thus 

Ker^(T)-L = Range ^ ( J ) * = 1p*H2, 

where i/i*(z) = ^ ( z ) - . Thus every element of Ker ^(T)1- has at least n zeros in U. 
It is not hard to show that Ker cp(T) consists of all functions of the form g/k where 
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g is a polynomial of degree less than n and k(z) — {l—a1z)...(\—anz) (this can be 
done by induction on n). It follows that any element of Ker <p(T) which does not 
vanish identically has at most n — 1 zeros in U, and therefore does not belong to 
KeT^/(T)x. 

L e m m a 2. Let 

p(z) = (z—ce1)...(z — ocn), p0(z) = (1 — a2z). . . (1 —a„z), 

q{z) = (z-K)...(z-PJ, q0(z) = (1 - f t z ) . . . ( 1 - f t z ) . 
Then 

F( a,/?)2 = \-\\I-q,(TT^p(TTq{T)p,{Trx\\-\ 

P r o o f . ¡¡/(T)* is the operation of multiplication by the Blaschke product ip* 
and is therefore an isometry, so that \j/(T)tl/(T)* = 1, Hence I-\l/(T)*ij/(T) is a 
Hermitian projection, and its range is easily seen to be Ker t¡ f (T) , Thus 

I-<j,(Tr*l>(T) = Q*Q. 
Equation (1) how gives 

F(ol,№ = M(T)\Ker<p(TW = №(T)P*\\2 = m(TT^{T)P*\\ = 

= I\PV-Q*Q)P*\\ = \i*L^(T)-PQ*QPX-

Since 0^PQ*QP*^I, this implies 

F(a, — l—mia(PQ*QP*), 

and since PQ*, QP* are invertible (by Lemma 1) this can be written 

(2) F(a, №=1-1(QP^-UPQft-X1. 

We can make further progress through the use of non-orthogonal projections. 
Recall that if i2 is the direct sum of subspaces E and F then the projection of 12 on 
Ealong Fis defined to be the operator R: /2 —I2 given by R(x+y)=x (x£E, y£F). 
If is easy to see that R is characterized by the three properties (a) R2=R 
(b) Range RQE (c) Range R*QFX. Thus, in particular, the projection on Ker *I/(T) 
along Ker <p{T)x is characterized by the three properties 

o 

(3) (a) R* = R, (b) \J/(T)R = 0, (c) cp(T)R* = 0. 

L e m m a 3. The following are equivalent for an operator R on I2: 
(i) R is the projection on Ker i¡>{T) along Ker (piT)1-; 

(ii) R—Q*{PQ*)~1P\ 
(iii) R=l-q0(T)*-ip(Tyq(T)p0(T)-\ 

P r o o f . It is clear that R=Q*(PQ*)~1P satisfies conditions (a)—(c) of (3). 
These conditions may also be verified for R in (iii) with the aid of the identities 

(4) q(T)p(T)* = Po(T)q0(T)*, p(T)q(T)* = q0{T)p0{T)*. 
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To prove the former, note that, since TT*=I, 

(T-ßjI)(T-xJiy = ( I - « j T ) ( I - ß j T y . 

Induction on n now establishes (4). 
We return to the proof of Lemma 2. Let R be the projection on Ker \p(T) 

along Ker (p{T)L. By Lemma 3, 

(PQ*)~1 = QQ*(PQ*)~1PP* = QRP* 

and hence (2) becomes 
(5) F(a,ß)2 = \-\PR*Q* QRF*\~\ 

From the definition of R and the fact that Q*Q, P*P are the orthogonal projec-
tions onto Ker i j / (T ) , Ker cp(T) respectively, it follows that Q*QR=R=RP*P. 
In view of the fact that \AB\a = \BA\a whenever AB and BA are both defined, (5) 
yields 

F(a, ft2 = l - ^ R P X 1 = l - l Ä ^ P Ä ' U 1 = 1 - | R R X 1 = 

= 1 - | | Ä | | - 2 = l-\\I-qo(.Ty-1p(TyqCr)p0(T)-i\\-\ . 

Lemma 2 is proved. 

L e m m a 4. Let 

G( a,ß) = \\I-q0{Ty-ip(Tyq(T)p0(T)-i\\. 
For any a, ßdU" the functions G(a, •), G(-,ß) are plurisubharmonic on U", and 
G(a,ß) = G(ß,a). 

P r o o f , if R has the same meaning as above then G(a, /0=||J?| | and 

G{ß, a) = ||I-to<r)*-1q(T)*p(X)q0(T)-^ = ||Ä*|| = ||i?|| = G(cc, ß). 

A function on Un is plurisubharmonic provided it is upper semi-continuous 
and its restriction to the intersection with U" of any plane is subharmonic. Now 

q (T\= T«-(ft + . . . + ß n ) T"-1+...+(-1)" ft ...ß„ I, 

qa{Ty=I-(ß1 + ...+ß„)T*+...+(-iyß1...ßnT*". 

Hence q(T) and q0(Tj* are analytic operator-valued functions of ß in £/",.and the 
same is therefore true of R (for fixed a). Certainly G(a, •) is continuous on V . 
Furthermore, for any analytic function / d e f i n e d on an open set i 2 g C and taking 
values in any Banach space, the real-valued function z-«-||/(z)|| is subharmonic 
on Q [1, Thm. 3.12.1]. It follows that, for a fixed a, G(a, •) is plurisubharmonic 
on U", and so, by symmetry, is G(-, ß) for fixed ß. 

We can now conclude the proof of the theorem. Since the maximum principle 
holds for any subharmonic function defined in an open subset of the plane [1], 
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the maximum principle also holds for any plurisubharmonic function on U", hence 
for G(oc, •)• By L e m m a 2 F(a, -)=hoG(a, •) where A ( f ) = ( l - t ~ 2 ) 1 / a . Since h 
is a strictly increasing function on [1,°°), the maximum principle holds for F(a, • ). 
And since G is symmetric in a and /?, so is F. 

Let us consider the implications of the theorem for Pt&k's problem. Suppose 
we wish to find an operator A on «-dimensional Hilbert space which maximises 
| | i A s u b j e c t to the constraints | | ^ | | S i , \A\aSr. The search can be split into 
two steps: 

I. For each polynomial p having all its zeros in the disc {z: | z | S r } find an 
nXn matrix which maximises ||iAC4)|| subject to p(A)=0. 

II. Among all such polynomials p find the one for which the corresponding 
maximum of \\*p(A)\\ is the largest. 

Problem I has been completely solved — see [5, Sec. 3]. The solution is made 
simpler than might be expected by the fact that an extremal matrix can be given 
which is independent of t^. 

Problem II, called in [5, Sec. 2] the "problem of the worst polynomial", is 
difficult. It has been solved only in the case that i/^(z)=z", when a worst polynomial 
is p(z)=(z—er)", for any e, |e| = l . One can hardly doubt that the same polynomial 
will be extremal for higher powers of z also, and it is even conceivable that (z—sr)n 

is the worst polynomial for all \I/ZH°°. However, twelve years have elapsed since 
Ptak solved the case ^ ( z ) = z " by a very special method, and attempts by several 
mathematicians to extend Ptak's conclusion to other functions have had no success. 
It is not even known whether the worst polynomial has its zeros on the circle | z | = r 
in general. The present paper shows that, if ijj is a Blaschke product of degree n, 
then there is a worst polynomial with all its zeros on | z |= r . The question remains 
as to whether these zeros can all be taken to coincide, as in the known case. It would 
also be desirable to extend the theorem to higher powers of z or, more generally, 
to Blaschke products \jj of arbitrary degree. 

I will indicate the difficulties involved in extending the above method to the 
case that ^ is a Blaschke product of degree m, m > n . Exactly as before we have 

H + <pH°°\\2 = 1 - i n f a ( P Q * Q P * ) , 

but it is no longer true that QP* is invertible (it acts between spaces of different 
dimension). To get round this we can introduce the space E= Range Q*QP*, the 
orthogonal projection of Ker cp(T) on Ker <p(T), and let Q* be the natural injection 
of E into I2. Then QXP* is invertible and 

№ + q>H-V = l-ialaiPQtQ^*), 

and if we denote by the projection on E along Ker <p{T)L then we have as before 

M+cpH~\\2 = i - l l * i i r 2 -
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It is not hard to show that 

E = Ker ./r (7) D (Ker (p (T) + H2) 

and that Rx can be expressed by the formula 

R*=I-X[q>(T)X}-i<p(T), where X = pq^(T)*F+q(TyT"-", 

ij/=qlq0 and F is the Hermitian projection with range Ker Tm~". The problem is 
that R t is no longer an analytic function of a. It is of course still possible that H-KJ 
is plurisubharmonic, but I have not been able to prove it. 

Note that the formula in Lemma 2 can be used to give an upper bound for 
\\\j/ + (pH°°\\ which is strictly less than one. 

I conclude with an observation about the intriguing fact that \\\j/+<pH°°^ = 
= \\(p+\l/H°°\\ when q>, ij/ are Blaschke products of the same degree. In fact a stronger 
statement is known to folklore: if u is a continuous unimodular function on the 
circle having winding number zero then u and 1/m are equally distant from H°°. 
Paul Koosis has provided a neat and simple proof of this fact in a personal commu-
nication. His proof is based on the observation that, if |1 — vvgC, then 

1 -d2 

1 s d . If g€H°° and | | w — t h e n an application of Rouche's 
w 

theorem establishes that 1 /g£H°°, and 

1 1 -d2 

u e 
S i 

The symmetry of F(a, fi) is deduced by putting u=\j/l(p. 
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The ideal lattice of a distributive lattice with 0 
is the congruence lattice of a lattice 

E. THOMAS SCHMIDT 

The congruence lattice of an arbitrary lattice is a distributive algebraic lattice, 
i.e. the ideal lattice of a distributive semilattice with 0. The converse of this state-
ment is a long-standing conjecture of lattice theory. We prove the following: 

T h e o r e m . Let L be the lattice of all ideals of a distributive lattice with 0. Then 
there exists a lattice K such that L is isomorphic to the congruence lattice of K. 

The conjecture was first established for finite distributive lattices by R. P. Dil-
worth. Later, it was solved for the ideal lattice of relatively pseudo-complemented 
join-semilattices (E. T. S C H M I D T [4], [5]). 

The first section of this paper reviews the definitions and gives the outline of 
the proof. The basic notion is the so-called distributive homomorphism of a semi-
lattice (see [4]). The second section proves that for every distributive lattice F with 
0 there exists a generalized Boolean algebra B — considered as a semilattice — and 
a distributive homomorphism of B onto F. In the third section we prove the main 
result and in the last section we give some generalizations. 

1. Preliminaries 

Semilattice always means a join-semilattice in this paper. The compact elements 
of an algebraic lattice L form a semilattice Lc with 0, and L is isomorphic to the 
ideal lattice of Lc. We denote by Con (K) the congruence lattice of the lattice K. 
The compact elements of Con (K) are called compact congruence relations, these 
form the semilattice Conc (AO-

Let B be a sublattice of a lattice K. The connection between Conc {B) and 
Conc (K ) is of course very loose. Let 6 be a congruence relation of B. 

Received October 23, 1979, in revised form May 12, 1980. 
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Then there exists a smallest congruence relation 0 ° £ C o n ( £ ) such that 0 ° | B s 0 . 
It is easy to see that d°V0°=(01V02)°, i.e. the correspondence 0—0° is a homo-
morphism of Conc (B) into the semilattice Conc (A"). If this homomorphism is onto 
we call K a strong extension of B [1]; or we say that B is a strongly large sublattice. 
It is an important case if 0° |B=0 holds, then we write B instead of 0°. B is called the 
extension of 6. 

It is well known that in generalized Boolean lattices (i.e. relatively complemented 
distributive lattices with zero) there is a one-to-one correspondence between con-
gruence relations and ideals and therefore if B denotes a generalized Boolean lattice 
then Conc (B)^B. Let F be a distributive semilattice with 0. We would like to get 
a lattice K such that C o n C ( K ) = F holds. Therefore we start with a generalized 
Boolean lattice B which has a join-homomorphism onto F and we construct a strong 
extension K of B such that 0-»0° is the given join-homomorphism. The construc-
tion of a strong extension of this kind was developed in [4]. 

We will make a further assumption that B is a convex sublattice of K. In this 
case the homomorphism 0—0° has an additional property, formulated in the next 
proposition. 

P r o p o s i t i o n 1. Let B be a convex sublattice of K and let 0°=&°\/ where 
0, <P, f £ C o n c (B). Then there exist <P1; f ^ C o n ' (5 ) such that $ 1 V f 1 = 0 and 

P r o o f . 0 is a compact congruence relation of B, hence 0— V 0(at, b^, where 

a ^ b ; , Uib£B. From we get a ^ b ^ V ¥">), / = 1 , 2, ..., n. We have 
therefore for every i a finite chain a ; = c 0 , , < c l i c n i=bj such that cjti= 
= cJ+1 ¡(0°) or Cj ¡=cJ+l i(f°). By the assumption, B is a convex sublattice, i.e 
cjt¡€B. Let <PX be the join of all principal congruences 9(cj ¡, c J + l i ) ç C o n c (B) 
with Cj ¡=Cj+l i(<P0). In a similar way we get XF1. Then ai = bi{'P1\J <//

1) for every 
i, i.e. 0=4>1V¥ /I, and f ^ 

This Proposition suggests the following 

D e f i n i t i o n 1. Let S, T be two distributive semilattices. A homomorphism 
q> of S into T i s called weak-distributive if (p(u)=<p(x\/ y) implies the existence of 
x1,y1£S such that XiVj-'i = w, <p00=<?(*)> <p(y)i^<p(y) (see Figure 1). 

n 

i = l 

<t(Y) 

Figure 1. 
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The congruence relation induced by a weak-distributive homomorphism is 
called a weak-distributive congruence. 

Let cp be a homomorphism of the semilattice S into the semilattice T. The 
congruence relation of S induced by cp is denoted by . 

P r o p o s i t i o n 2. Let S be a distributive semilattice. <p: S-+T is a weak-
distributive homomorphism if and only if a=b\/c (9^), a=sb\/c imply the existence 
of elements b^b, c1^c such that b=b1 (6^), c = cL (9rp) and b^V cl = a (Figure 2). 

P r o o f . Let us assume that cp is a weak-distributive homomorphism and let 
a s è V c , q>{a)~(p(b\lc)=(p{b)yq>{c), i.e. a=b\/c (0V). <p is weak-distributive, hence 
we have elements b0,c0£S such that b0Vc0=a, <p(b0)^cp(b), (p(cQ)^(p(c). Let 
b^bVbo, Cj — c\JCq then ¿1Vc1 = ftVcVè0Vc0=6\/cVa=a and (p{b^)=<p(b\Jb^ = 
= <p(b)V<p(b0) = (p(b), i.e. bi = b (9V). Similarly we get q = c (0p) which proves 
that satisfies the given property. 

Let 0V be a congruence relation with the property formulated in the Proposi-
tion. Let i-e. a=x\Jy (0„). Then ayx\jy=x\Jy (0„) and 
there exist x1; S satisfying x1\/y1=x\/y\/a, x=x1 (9 J , y=yl (9^). Therefore 
* i V j i = « , hence by the distributivity of S we get elements x2, y2 for which = x L , 
y 2 =yi and x2\J y 2=a. These elements satisfy q>(x2)^<p(x,)<p(.v), i.e. <p is weak-
distributive. 

a 

Figure 2. 

It is easy to give an example for a semilattice S and a, b£S such that there is 
no smallest weak-distributive" congruence satisfying a=b (0), i.e. the principal 
weak-distributive congruence does not exist. We follow another way to define a 
special weak-distributive congruence which plays the role of the principal congruence. 
The principal congruences of a semilattice have the property that every congruence 
class contains a maximal element. 

D e f i n i t i o n 2. [4] A congruence relation 0 of a semilattice is called monomial 
if every 0-class has a maximal element. 
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The monomial congruence are special meet-representable congruences. Every 
congruence relation of a semilattice is the join of principal congruence relations 
therefore it is natural to introduce the following notion. 

D e f i n i t i o n 3. [4] A congruence relation 9 of a semilattice is called distributive 
if 9 is the join of weak-distributive monomial congruences. A homomorphism 
(p: S— T is distributive iff the congruence relation 9 induced by (p is distributive. 

R e m a r k . It is easy to prove that the join of weak-distributive congruences 
is weak-distributive. The basic properties of distributive congruences are listed 
in [6]. 

If (B; V, A) is a generalized Boolean lattice, then the semilattice (B; V) will 
be called a generalized Boolean semilattice. 

For the solution of the characterization problem of congruence lattices of 
attices it is enough to solve the following two problems. 

P r o b l e m 1. Let B be a generalized Boolean semilattice and let 6 be a distribu-
tive congruence of B. Does there exist a lattice K satisfying Conc (K)=B/01 Does 
there exist a strong extension of B satisfying the same property? 

This problem was solved positively in [4]. In section 3 we give the sketch of 
the proof. 

P r o b l e m 2. Let .Fbe a distributive semilattice with 0. Does there exist a gen-
eralized Boolean semilattice B and a distributive congruence 9 of B such that F is 
isomorphic to BjOl 

This problem is open. We solve this problem if F is a lattice, i.e. we prove the 
following. 

T h e o r e m 1. Let Fbe a distributive lattice with 0. Then there exist a generalized 
Boolean semilattice B and a distributive congruence 6 of B such that F=B\9. 

The proof of this theorem will be given in the next sections. We present here 
the basic idea of the proof. 

Let F b e a semilattice, a, b£F. The pseudocomplement a*b of a relative to b 
is an element a*b£F satisfying aVx^b iff xsa*b. If a*b exists for all a, ¿>€F 
then F i s a relatively pseudocomplemented semilattice. (In the literature the pseudo-
complement is usually defined in meet-semilattices.) 

Let F be a relatively pseudocomplemented lattice (i.e. the join-semilattice F v 

is relatively pseudocomplemented). The proof of Theorem 1 in this case is quite easy. 
Let B be the Boolean lattice ^-generated by F. (See [2], p. 87.) Then for every x£B 
there exists a smallest x£F satisfying x^x. The mapping x—x is a distributive 
homomorphism of B onto F. The congruence relation induced by this mapping is 
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monomial. The converse of this statement is true: if 6 is a monomial distributive 
congruence of B then B/G is a relatively pseudocomplemented lattice. 

If F is a relatively pseudocomplemented semilattice then this construction does 
not work. In this case we consider for every a£F, a^Q the skeleton of (a], i.e. 
S(a) = {x*a; x ^ a } ([2], p. 112). S(a) is a Boolean lattice. Consider the lower 
discrete direct product 77 (S(a); a£F, a^O), i.e. the sublattice of the direct product 

d 
77 S(a) of those sequences t for which t(a)=0 for all but finitely many a£F. 
This is a generalized Boolean lattice B, and it is easy to show that B has a distribu-
tive congruence 0 satisfying B/O^F (see [4]). 

To prove Theorem 1 we generalize the notion of the skeleton. Let <p be the 
identity (p: S(l)->-F. If B denotes 5(1) and 0, l£B then this <p obviously has 
the following properties: 

(1) (p is a {0, l}-homomorphism of the Boolean semilattice B into the semi-
lattice F, 

(2) if <p(J) = x\]y in Fthen there exist xx , >',65 such that x^\Jy\= I, (p(x,)^x, 
viyd^y-

(1) follows from the property that S(a) is a subsemilattice of F, and (2) is obvi-
ous if we take X ^ J * 1, = 1. rwmt 

D e f i n i t i o n 4. Let F be a distributive semilattice with 0, 1 £F and let B 
be a Boolean semilattice with unit element I and zero element 0. B is called a pre-
skeleton of F if there exists a mapping cp of B into /"such that conditions (1) and (2) 
are satisfied. 

Condition (2) is related to the distributivity of (p; if (2) is satisfied for every 
a£B (instead of I) and <p is onto then we get that cp is distributive. 

2. The pre-skeleton 

To prove Theorem I we shall show that every bounded distributive lattice has 
a pre-skeleton. First we verify some simple well-known properties of free Boolean 
algebras. The free Boolean algebra B generated by the set G is denoted by F(G). If 
\G\=m we shall write F(m) for F(G). 1 denotes the unit element of F(G). Let G'= 
= {x'|x£G} (x' denotes the complement of x) and G1=GUG'. For g£G, ge is 
either g or g'. Let A: be a natural number. We consider the subset Gk of B defined 
by G0={1} and Gk={x\x£B, x^O, x=glf\.../\ge

k, where gx, ...,gk are different 
oo 

elements of G}. From these sets Gk we get G ;. If \G\~n is a natural 
>=o 

number then G„ is the set of atoms of F(n) and each a£F(n), a^Q has a unique 
representation as a join of elements of G„. If G is infinite we have no atoms, there-
fore we must take the whole set which is of course a relative sublattice of B. 
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The most important properties of are collected in the following definition. 

D e f i n i t i o n 5. A relative sublattice / of a Boolean algebra B is called a 
join-base iff the following conditions are satisfied: 

(i) and 
(ii) Each a£B, a^O has a representation as a join of elements of JC. 

(iii) There is a dimension function 5 from onto an ideal of the chain of 
non-negative integers such that <5(1)=0 and x<y in J f if and only if 
x^y and d(,v)=5(y) +I. The set of all with S(x)=i is denoted 
by 

(iv) For every finite subset U= {ult ..., wn} of B there exists an ¡'€N such that 
each (&&/) has a finite subset Ak(U) with the property that each 
a£U has a unique join representation as a join of elements of Ak(U). 

(v) If aAb^O in B,a,b€3i? then aKbitf-, if a\Jb exists in Jf and a, b 
are incomparable then a, a \ ! b f o r some N. Assume, 
that there exists an a ^ a S / b , a 0 > a , then there is a 
such that a0Vb0 exists and a0A(aVb)=a, b0A(a\/b)=b. 

Let j e be a join-base of a Boolean semilattice B and let / : ¿C-+L be a homo-
morphism into a distributive lattice (i.e. f(a[\b)=f(a)f\f(b) whenever af\b exists, 
and the same for V). We want to extend / to a homomorphism <p\ B-+L (i.e., 
<p will be a join-homomorphism of the Boolean algebra B). Let a=h1\/ hn 

where hfcJF. The only way to define cp is the following: (p(a)=f(h^V...Vf(h„). 
Condition (iv) yields that this definition is unique and (ii) implies that q> maps B 
into L. 

D e f i n i t i o n 6. The homomorphism <p of the Boolean semilattice into L is 
called an L-valued homomorphism of B induced by f . 

To prove Theorem 1 we need the definition of free {0, l}-distributive product 
( s e e G . G R A T Z E R [2] , p . 1 0 6 ) . 

D e f i n i t i o n 7. Let D be the class of all bounded distributive lattices and let 
Lh be lattices in D. A lattice L in D is called a free {0, 1 }-distributive product 
of the Lh id I, iff every Lt has an embedding et into L such that 

(i) L is generated by U(e tL; /£/). 
(ii) If K is any lattice in D and is a {0, l}-homomorphism of Lt into K for 

i'€/, then there exists a {0, l}-homomorphism q> of L into K satisfying <p;=<pa, 
for all i. 

The free {0, l}-distributive product is denoted by II*(A¡; i(Ll) or by A*B. 
The lower discrete direct product is denoted by IId(At; /£ / ) and finally if At 

are lattices with unit element then Hd{Ai, /£ / ) is the upper discrete direct product, 
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i.e. the sublattice of the direct product IIAt of those sequences / for which i(a) = 1 
for all but finitely many a. 

L e m m a 1. Let L be a bounded distributive lattice and let At (»€/) be Boolean 
semilattices. If At-*-L (i€/) are L-valued {0,1 }-homomorphisms generated by 
f : Jff'—L then the free {0, 1}-distributive product II* At has a join-base and a 
homomorphism f : such that 3%T\Ai=J#'i for each There exists an 
L-valued homomorphism (p of II*A i generated by f satisfying (p—cpei-

P r o o f . Let je be the set of all those elements hj±0 of II*At which have a 
finite meet-representation as a meet of elements from V (Then is isomorphic 
to the upper direct product n d J^ 1 . ) Obviously tf'Qtf, Let M=AxA 
Ah2/\...Ahn where the hfij^' belong to different components, then this represen-
tation is unique. We have by (iii) the functions 5t: a f '—N. Now let 8: & N 
be defined by ¿(m)=51(/i1)-|-...+5„(An). It is easy to verify (iv) and (v). Assume 
that / ¡ : are homomorphisms, then we can extend them as follows: / ( « ) = 
= / i (^ i )A-" Afn(h„). Hence x^y (x, y£II*A^ implies f ( x ) ^ f ( y ) . Let us assume 
that for incomparable b, c^Jt?, bVc exists, i.e. b\! c^JF. Then by (v) there exist 
an i and b0, such that b—b0t\(b\lc) and c=c0f\{b\Jc). Thus we get by the 
dis t r ibut ive of L t h a t / ( 6 ) V / ( c ) = [ f - X h W W c ) ] V [/f(c0)A/(6Vc)] = ( m ) V / ; ( c 0 ) ) A 
A f ( bWc) . But /¡ : jf'^-L is a homomorphism, hence /¡(¿>0Vc0) /¡(c0). Obvi-
ously ¿ 0 Vc 0 s6Vc , i.e. / ( 6 0 V c 0 ) s / ( i V c ) . This yields f(b)\Jf(c)=f(b\Jc), i.e. / 
is a homomorphism of J f into L. 

The free Boolean algebra on m generators is the free {0, l}-distributive product 
of m copies of the free Boolean algebra on one generator, i.e. if B^F{\), i£l then 
F(m)=n* B;. 

C o r o l l a r y . If each fif=F( 1) has a {0, l}-homomorphism cp; into the distribu-
tive lattice L, then there exists an L-valued homomorphism cp of F(m) into L such 
that (p—cpBi. 

L e m m a 2. Let L be a bounded distributive lattice. Then there exists a pre-
skeleton B of L. 

P r o o f . First assume that B is a pre-skeleton and Bx-—B is a lattice homo-
morphism of the Boolean lattice Bx onto B. Then it is easy to see that B1 is again 
a pre-skeleton and the corresponding join-homomorphism is <pij/(x). Therefore to 
prove our Lemma it is enough to take a free Boolean algebra generated by a 
"big" set. 

We start with the set G± of all pairs (a, b) satisfying a, b£L, a\Jb—\, a, b^l. 
Let G be a subset of G1 which is maximal with respect to the property: (a, b)£G 
iff (b,a)$G. 
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In the free Boolean algebra F(G) we define (a, b)'=(b, a), i.e. the complement 
of (a, b) is (b, a). The mapping <p: F(G)—L is defined as follows. For (a, b)£Gl 

we set q>{{a, b))=a and let <p(0)=0. Then (p((a, b))V<p((b, a))=a\Jb = \, i.e. cp 
is a {0, l}-homomorphism of the semilattice F((a, b)) into L. Then by the Corollary 
to Lemma 1 there exists an extension (p of these homomorphisms. Let xVy= 1 = 
=cp (/), x, y^l, where / denotes the unit element of F(G). Take x j = ( x , y), 
= ( j . x)£F(G). By the definition of <p we have (p^x^—x, <p(y1)=y, i.e. F(G) is 
a pre-skeleton of L. 

E x a m p l e 1. As an illustration consider the lattice L represented by Figure 3. 

1 

0 

Figure 3. 

The set Gt contains the pairs (a, c), (b, c), (c, a), (c, b) and for a generating 
set we can choose G= {{a, c), (b, c)}; then B is the free Boolean algebra generated 
by two elements, i.e. B=2i. Figure 4 gives the join-homomorphism (p, in which 
the wavy line indicates congruence modulo 0 = K e r (p. 
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R e m a r k . The set can be made into a poset as follows: (x, y)=(u, v) iff 
x u and y^v. We adjoin 0 and / and we take the Boolean algebra B1 freely gen-
erated by this poset. B1 is of course the homomorphic image of B defined above. 
Sometimes it is easier to work with this "smaller" Boolean algebra (see Figure 5). 

E x a m p l e 2. Let L be the lattice shown in Figure 6. 

Let N = { 0 , 1 , 2, „.} be the set of all natural numbers. B is the Boolean-algebra 
containing all finite and cofinite subsets of N. We define (at, b ) = x ^ i } , (b, a,) = 
= {0, 1, ..., i—1}. Then G = {(a;, b), (b,a¡); i=0 , 1, ...} is a generating set. The 
corresponding join homomorphism is the following. Let A be a subset of N with 
the smallest element f(A). If A is finite then cp(A) is b if f(A)—0 and (p (A)=cf(A) 

if f(A)^~0. For an infinite A we have (p (A)=1 if f(A)=0 and <p(A)=af^ if 
f(A)>0. It is easy to see that q> is a distributive homomorphism of B onto L, which 
proves that I ( L ) ^ L is the congruence lattice of a lattice. This is the simplest 
example to show that Conc (K) need not to be relatively pseudocomplemented. 

L e m m a 3. Let A1, A% be Boolean semilattices and let (pt: A(—L be L-valued 
{0}-homomorphisms generated by the homomorphisms /¡: L of the join-bases 
¿e^Ai (¿=1,2). Then J f = J f 1 U ^ f 2 U { l } is a jo¿n-base of AyXA2 and \if <p is 
the homomorphism generated by f : JtiC^-L then 

P r o o f . The proof is obvious. 

R e m a r k . Lemma 3 is true for lower discrete direct product. In the infinite 
case this is a generalized Boolean algebra. 

The basic idea of the proof of Theorem 1 can be illustrated by the following 
lattice (Figure 7). 
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Let a be an element of L. Then (a] is a bounded distributive lattice. If B is a 
pre-skeleton of (a] then we write B=B(a); B(l) is a pre-skeleton of L. 

By Lemma 2 we have a homomorphism <px of the pre-skeleton 5(1) onto the 
semilattice containing the elements {1, a, b, c, d, 0}. Applying again Lemma 2 for 
the principal ideal (a] we get the mapping <pa of the pre-skeleton B(a) of (a] onto 
{a, d, e, b,f, 0}. Let x be an element of 5(1) for which cp1{x)=a. 5(1) is the direct 
product (x]X(x'] where x' denotes the complement of x. Take the free {0, 1}-
distributive product C of (*] and B{a). Let B be the Boolean semilattice CX(x ' ] 
then by Lemmas 1 and 3 <p1 and <pa can be extended to a homomorphism q>: B-^L 
which is a distributive homomorphism onto L. 

We need the following 

D e f i n i t i o n 8. Let B be a Boolean semilattice and let L be a distributive 
lattice with 0. Let q>: B—L be a 0-preserving distributive homomorphism. (B, <p, L) 
is called a saturated triple if q>(u)=xVy implies the existence of y^B such 
that X j V j ^ « , <p(*i)=*, <p(yi)=y-

L e m m a 4. If (C, / , L), (D, g, L) are saturated triples then there exists a dis-
tributive homomorphism h: CxD-*L such that h\c=f, h\D—g and ( C x D , h , L ) 
is saturated. 

P r o o f . For ( c , d ) £ C x D we define h((c, d))=f(c)Vg(d). Then h((c,0))= 
=/ (c )V0=/ (c ) , h\c=f Similarly h\D=g. Now 

h((a,b)W(c,d)) = h(j[ayc,byd))=f(aWc)Wg(byd)=(f(a)yf(c))V 

• V(g(6)Vg(d) ) .^ ( / i« )Vg( i ) )V( / (c )VgW) = fc((fl,i))VK<c,:'0) 

which means that h is a homomorphism. We prove that h is distributive. 
Let h(c, d)=f(c)Vg(d)=xVy in L. By the distributivity of L we get elements 

xlt x2,y1,y^L such that xxVji=/(c), x2\Jy2~g(d), x1,x2^x, yx,y2^y. Since 
(C, f L) is saturated, therefore we have ci,c2^C such that cx\/c2=c and 
/ ( c ^ S j j . Similarly we get elements d1,d2£D with d1yd2=d, g(d1)^x2, £(¿4)—JV 
Set x=(c 1 , i / i ) , y=(c2,d2). Then x\y={Cly c2, dxVd£=(c, d), h((cx, dJ)=f{c^\J 

h(c2, d2)^y. This proves that h is weak-distributive. Let 6=Ker f , 
<P=KeF£oThen 6 = V 9 j , 6}, 4>j are monomial distributive congruences. 
0i resp. can be extended to CxD, which are again monomial. It is easy 
to see that Ker A=V(0 ; V^) . 

C o r o l l a r y . Let C, D be two Boolean semilattices and f resp. g distributive 
homomorphisms of these Boolean semilattices into the distributive lattice L. If / ( C ) 
resp. g(D) are ideals of L then there exists a distributive homomorphism h: CxD-*L 
such that h\c=f, h\D=g. 
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R e m a r k . In Lemma 4 / and g are not necessarily /.-valuations induced by 
some join-bas6s. 

Let L be an arbitrary distributive lattice with 0. If a£L, a 0 the principal 
ideal (a] is a bounded distributive lattice. Assume that for every (a] we have a Boolean 
semilattice Ba and a distributive homomorphism (pa of Ba onto (a]. Consider the 
lower discrete direct product B=IId(Ba\a£L, a?±0). B is a generalized Boolean 
semilattice. By Lemma 4 we have a distributive homomorphism <p: B—L which 
is onto. Consequently to prove Theorem 1 we can assume that L is a bounded dis-
tributive lattice. By Lemma 2 we have a pre-skeleton 5(1) with a homomorphism 
(Pi- B(l)—L which satisfies (2). Let u be an arbitrary non-zero element of the 
join-basis H ^ B ( l ) , a—cpjiu). The principal ideal (a] of £ is a bounded distributive 
lattice, therefore we can apply again Lemma 2 to get a pre-skeleton B(a) and a 
homomorphism <pa: B(a)-^(a] into (a]. If u' denotes the complement of u in 5(1) 
,then B=B(l) is the direct product (w']x(w]. Take the free {0, l}-distributive 
product (u]*B(a) and finally the Boolean semilattice 

B[I,u] = ((u]*B(a))x(u']. 

By Lemmas ! and 3 we have a homomorphism (p: B[I, u]-*L, satisfying the fol-
lowing condition: 

(* ) if r^T—{I, u}, (p(r)=x\/y then there exist x1,y1£B[I,u] with x^X/y^r, 
9(.x-j)sx, (piyj-^y. ; 

, Using the same method for an element v£Bc.B[f, u] we get from B[T,u] 
a Boolean algebra B[I, u,v] satisfying ( * ) for the set T= {/, u,v). 

L e m m a 5. Let u,v£B, then B[I, u, v\~B[I, v, u]. 

P r o o f . If H denotes a join-base of B and x£H then we shall write H(x) 
for / / f l (x] . It is easy to show that H(x) U H(x') is again a join-base and L-valua-
tions generated by these join-bases coincide. If u,v£B then we have therefore a 
join-base H(uAv)WH(uAv')\IH(u'Av)VH(u'Ay')- Hence we get for B[I, u, v] resp. 
B[I, v, u] the following-Let Hu resp. Hv be a join base of B(cp1(u)) resp. B(q>i(v))-, 
then • (Hi XHl xHl(uA r)) U (Hi X H1 (uA v')) U (Hi X H1 (u A v)) U H1 (u'Av') which 
proves the. isomorphism. • ' -

Continuing this construction we get for arbitrary ur, u2, ..., un£B a Boolean 
semilattice i?[7,«i> ...,"„] and a homomorphism of this Boolean semilattice into 
L such that condition ( * ) is satisfied for T={I, wx, ..., «„}. 

All these Boolean semilattices form a direct family. Let Ci be the direct limit 
Then 2?(1)=C0 is a Boolean subalgebra of and we have cp: C1-*L which sat-
isfies ( * ) for all x£T=B( 1). Then we start with Cx and in the same way we get 
a Boolean semilattice C2. Then Cx is a Boolean subalgebra of C2. Similarly, we get 
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C¡ (/ = 3, 4, ...). These algebras Q form again a direct family. Let B be the direct 
limit. Let q>: B-*L be the corresponding homomorphism. Then (B, <p, L) is sat-
urated, hence cp is a weak-distributive homomorphism into L. 

Lemma 6. B has a join-base. 

P r o o f . This is a trivial consequence of Lemmas 1 and 3. 

L e m m a 7. Let cp: B^L be a weak-distributive homomorphism of a Boolean 
semilattice B generated by a homomorphism f : H—L of a join-base H. Then (p is 
distributive. 

P r o o f . Let 9 be the congruence relation induced by cp. Hk denotes the set of 
all x£H of dimension k. Take two elements a,b£B, a>b satisfying a=b (9). 
Then a and b have join-representations as joins of elements from some Hk, say 
a=ñ1V . . .y/ínV/i„+1 and b=hlV ...V hn. If c=h1V ...Vhk,k^nand d=h¡\/...\Jhn, 
i^k then c\Jd—b. By condition (iv) of Definition 5 we can assume that these 
representations of a, b, c, d are unique. By the weak distributivity of 9 we have 
elements c 5 c , such that c\jl=a and c=c(6), d=E (0). For c, 3 we have 
the following possibilities: (i) c — c\Jhn+1, cl=d; (ii) c = c, d=d\Jhn+1~, (iii) c = c\/h„. 
d=dyh„+1. 

We define a binary relation 9oi on B as follows: x=y (9ab), x>y iff x=y (0) 
and y=b, x\Jb=a. Then the assumption that 9 is induced by the join-base H 
we get that each -class contains a maximal element. Let 9^b be the smallest join 
congruence of B satisfying 9%b^9ab. Then u=v (9^b), u^v iff there exist x^y, 
X=y (0ab) such that ySv and xVv=u. Obviously 9^9, V9^b=9. The first 
part of the proof yields that 9^b is distributive. 

An element a£L is of finite order if there exists a sequence a=x0, xl7 x2, ..., x„ 
such that a^aM x^aM x^ x^aM x^ ...V-*„_i<aVxiV ...Vx„= 1 and aV*iV 
Vx2V is incomparable with x, (; = l , ..., n). By the construction of (p: B—L 
the image of each u£B, u¿¿ 0 is the meet of elements of finite order. Now we have 
for every a£L a Boolean semilattice B{a) and a distributive homomorphism 
(pa: 5(a)-»-(a] which maps B(a) onto the set of all elements having a meet representa-
tion of elements of finite order in the lattice (a]. Then the triple (B(a), (pa, (a]) is 
saturated. The lower discrete product of these Boolean semilattices B has by Lemma 4. 
a distributive homomorphism onto L which proves Theorem 1. 
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3. Construction of a strong extension 

In this section we give the outline of the proof of the following theorem, which 
was proved in [4]. Combining Theorems 1 and 2 we get our main theorem. 

T h e o r e m 2. Let в be a distributive congruence of a generalized Boolean semi-
lattice B. The lattice of all ideals of В/в is the congruence lattice of a lattice. 

We denote the. five element modular non-distributive lattice by M3\ M3 with 
an additional atom is called M 4 , etc. If a is an arbitrary cardinal number then Mx 

is the modular lattice of length 2 with a atoms. 
Let M= {0<a, b, c < 1} be a lattice isomorphic to M3 and let D be a bounded 

distributive lattice with zero element o, and unit element i. Identifying a with i 
and 0 with o, we get a partial lattice „ М з = д и м 3 (Fig. 8), DDM3={0, a} and 
D, M3 are sublattices; d\Jb resp. d\J с (ddD) is defined iff {0 , a} (see M I T S C H K E 

& W I L L E [3 ] ) . There exists a modular lattice M3[D] generated by DMS such that 
вМ3 is a relative sublattice of M3[D]. In [3] it was proved that there exists only 
one modular lattice with these properties, the modular lattice FM(BM3) freely gen-

An element (x, y, z)£DxDxD is called normal if x/\y = xf\z=yt\z. Let 
M3[D] be the poset of all normal elements, then M3[D] is a modular lattice. Let 
a=(i, 0,0), ¿=(0 , i, 0), c=(0, 0, i), 1=(/, i, i), 0=(0, 0, 0). Then these elements 
form a sublattice isomorphic to M3. The set of all elements (x, 0, 0), (x£D) form 
a sublattice isomorphic to D. D is a strongly large sublattice of M3[D], and every 
congruence relation Con (D) can be extended to M3[D], i.e. Con (D)^ Con (M3[£>]). 
We can use the same construction for distributive lattices without unit element. 

We prove Theorem 2 first for monomial congruences of Boolean semilattices 
i.e. for relatively pseudocomplemented lattices. 

L e m m a 8. Let 6 be a monomial distributive congruence of a generalized Boolean 
semilattice B Then there exists a lattice N such that Conc (N) saB/6. 



166 E. T. Schmidt 

S k e t c h of t h e p r o o f . Consider D=B and the corresponding lattice MS[B]. 
We define a subset N of Ma[B] as follows 

(* *) (x, y, z)€Af3[5] belongs to N iff x is a maximal element of a 0-class. 

Then N is a lattice and (x, 0, 0)£N iff x is a maximal element of 0-class, i.e., 
the ideal I generated by (/', 0, 0) is isomorphic to B/6. N is a strong extension of 
I, a congruence relation of I has an extension to N iff it has the form 6(1'), where 
1' is an ideal of N. Thus Conc (N)^B/6, i.e. Con (AO=/(5/0). 

The ideal J of N,. generated by (0,0, i) is isomorphic to B. By the definition of / 
and J we have / f l / = 0 (Fig. 9). 

Figure 9. Figure 10. 

Let 0 be an arbitrary distributive congruence relation of the generalized Boolean 
semilattice B. Then 0 is the join of monomial distributive congruence relations, say 
0=V(0Ja€i2). We take first for every a the lattice Nx defined before. This Nx has 
two ideals fx^B/Ox and Ja=B. Moreover Con c (Nx)^B/0x. 

On the other hand we consider the direct product /7 ( 5 j a € Q). M denotes 
the sublattice of the direct product of those normal sequences t for which {f(a)|a£ i2} 
is finite, i.e. the weak direct product is norriial if a, /i, y£Q, a^fi, a ^ y , / M y imply 
t(a)At(f}) = t(a)/\i(y) = t(P)At(y). Let J" be the ideal of M consisting of all t for 
which ?(J3)=0 if P^a. Then JX^B. Mis a strong extension of J" and C o n c ( M ) ~ 
^ C o n c ( / a ) = C o n c ( 5 ) . Let' M be the dual lattice of M. Then J" is a dual of M. 
3" is a Boolean algebra, therefore we have a natural isomorphism J"—J1 (x-~x'). 
We use the Hall—Dilworth gluing construction for M arid Na (a£i2), we identify 
for every a the dual ideal J" and theideal Ja. In this way we get a partial lattice P 
(see Figure 10). 

.¡M and Nx are sublattices of P, and P is a meet-semilattice. Let F(P) be the 
free lattice generated by P. Then C o n c ( F ( P ) ) ^ B / 0 . This pro,ves Theorem 2. 
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4. Some remarks on the characterization problem 

The key problem of the characterization of congruence lattices of lattices is 
to prove the existence of a pre-skeleton of a bounded distributive semilattice. We 
reformulate this problem. 

Let L be a bounded distributive semilattice. Let F(G) be denote the free Boolean 
algebra generated by the set G. If gfcG then the elements 0, gt, g\, / form a Boolean 
subalgebra which is the free Boolean algebra F(g () generated by g(. We have remarked 
that F(G) is the free {0, l}-distributive product of the Boolean algebras F(gj), 
g£G. Let us assume that every F(gt) has a {0, l}-homomorphism (pt into L. Does 
there exist a {0, 1 }-homomorphism <p: F(G)~*L such that <p\F(gi)=:(Pi'! For finite 
G the answer is yes, we have 

P r o p o s i t i o n 3. Let B be a finite Boolean algebra. If <Pi. B—L and (p2: F(g)—L 
are {0, \}-homomorphisms into L then there exists a {0, \}-homomorphism q> of the 
free {0,1 }-distributive product B* F(g) into L such that (p\B=q>1, (p\F(Jg)=<P2-

P r o o f . Let pi,p2, Pn denote the atoms of B. The atoms of the free product 
are p1Ag,...,p„Ag,p1hg',...,p„Ag'. Then g - ^ V ...V pr=I yields <p2(£)< 
<<Pi0>i)V...V<Pi(pI))=l£:F. But F is a distributive semilattice hence we have ele-
ments alt a2, ..., a„£F such that (p2(g)=a1\/ ...Wa„, a^cp^p,) ( i '=l , 2, ..., n). 
Similarly ¿»'<PiV ...V/>n therefore we have elements b1; ...,b„£L satisfying (p2(g')= 
=b1V...Vbn, bi^cp^pi). On the other hand p^gVg' hence (Pi(pd^q>2(g)V 
\/<p2(g'). Thus we get elements uit such that (p1(pi)=uiVvi, u^(p2(g), v^(p2(g'). 
Define <p(pi/\g)=ai\/ui, <p(pii\g')=bi\/vi. Every u of B*F(g) has a unique 
representation as a join of atoms, say w = Vg(. We define <p(u) = V cp (g,). This <p is 
obviously a homomorphism. From Pi—{.Pit\g)y(p^\g') we get 9>(/>,)=(/>;Ag) 

(/'iAg')=(«iVwi)V(6iVyi)=aiVfe>V<p1(/>i)=<P1(pi). Similarly g=V (PiAg)= 
i = 1 

= V(fl,Vw;)= V o,V V Ui = <P2(g)- (I-e. <pIb=<Pi> ( p I f ^ v J -i i=l ¡=1 
It is necessary to generalize Lemma 1 for distributive semilattice. Let B be the 

oo 

free Boolean algebra F(G). Then the join-base is H= | J {1}. 
i = 0 

We have for every gfcG a {0, l}-homomorphism F(g ;)={0, gh g'n I}—L, 
i.e. we have a mapping H^—L and we want to get a {0, l}-homomorphism <p: B—L 
which is a common extension of each q>;. To define such a <p it is natural to use 
induction on A:. If x£H1 then x=gi or x—g'i for some g^G and we have (p(x) = 
=<pi(x). Using the method of Proposition 3 it is easy to define <p(x) for all x£H... 
How can we define (p(x) for x£H3l 
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A parameter for subdirectly irreducible modular lattices 
with four generators 

CHRISTIAN HERRMANN 

BIRKHOFF [1; Problem 43] suggested to study modular lattices with four gen-
erators by imposing relations, first—e.g.—the relations expressing that the generators 
split into two complemented pairs. Basing on more special results of D A Y , H E R R -

MANN, and W I L L E [2] and SAUER, SEIBERT, and W I L L E [9] Birkhoff's problem has 
been solved in [6]. Remarkably enough, the subdirectly irreducible factors can be 
given by diagrams (including infinite ones) — these factors are the lattices Mi, 
S(n, 4), R^ and its dual defined in §1. In [7] there have been constructed lattice 
polynomials s„ (and their duals s* — see § 2) such that a subdirectly irreducible 
modular lattice M (with more than 5 elements) is one of the above if and only if 
s„= 1 and j * = 0 holds in M for all n. In the present note we want to provide a 
basis for the study of subdirectly irreducible four generated modular lattices not 
being one of the above. In particular, we show that an inductive approach is possible 
using the polynomials sn. 

T h e o r e m . Let M be a subdirectly irreducible modular lattice with four gen-
erators a, b, c, d not being isomorphic to any of the lattices M4 , S(n, 4) (««*=), 
R„ or its dual. Then there is an n such that either 

(i) s„(a, b, c, d) = 0 = ab = ac = ad = be = bd = cd 
or 

(ii) s*(a, b, c,d) = l=a + b = a + c = a+d= b + c = b + d = c + d. 

Examples of such lattices are the rational projective geometries of finite dimen-
sion ( G E L F A N D and PONOMAREV [ 4 ; § 8 ] ) and, more generally, all subdirectly irre-
ducible modular lattices generated by a frame ([5] and [7]). The use of the s„ in the 
analysis these examples has been pointed out in [7]. Clearly, such lattices can be 
visualized by diagrams in the most trivial cases, only. 

Received April 13, 1979. 
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C o r o l l a r y . The Mt, S(rt, 4) ( n < ~ ) , Rm and its dual are the only subdirectly 
irreducible modular lattices generated by a, b, c, d such that a+b=c+d= 1 and 
ab = cd=0 [6]. Mi and R^ are the only ones for which, in addition, ac=ad=bc=bd—0 
( S A U E R , SEIBERT, and W I L L E [9] ) . is the modular lattice freely generated by the 
partial lattice J* ( D A Y , H E R R M A N N , and W I L L E [2]). 

Also, it follows that the lattices listed in the Corollary are the only four generated 
subdirectly irreducible modular lattices of breadth S 2 (FREESE [3]) or, more gen-
erally, satisfying the 2-distributive law ([6]). 

The proofs do not depend on [2] nor [9]. From [6] we need only § 2 and 3 and 
from [7] § 1 and 5. The basic tool is the neutral element method from [6] — see § 3. 

Figure 1 

Replace at, bt, c,, dit nu, lit r,, 0, 1 respectively 

a) by ô,, f>,, ct, d], nit, Â, r,, Ô, Î , b) by à,, c{, bit <7,, «!,, /,, r,, 0 T, 

c) by à,, J,, b,, ct, rhi, li, r(, 0, 1. ' • 
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§1 . The breadth two models 

First, let us introduce the lattices referred to in the main theorem. M„ is the 
length two lattice with n atoms. Let A„ (cf. Fig. 1) consist of the elements x(i,j) 
O^i ' s / ^oo , x£E~ {a, b, c, d} with the equalities a(i, i)=b(i, i)—c(i, i)=d(i, i')=:mf 

(0=f=°° ) , a(i-1, i)=b(i-\, i)-. li and c[i-1, i)=d{i-\, i)=: r{ ( l=si<°°) and 
no others. The relation S on is defined in the following way (with x^y in E, 

and 

— x(k,l) if and only if k^i and l ^ j , 
\ l ^ i for {x, y) * {a, b), {c, d) 

x(i,j) 55 y(k, I) if and only if | / g . j + 1 ^ fc g . ^ 

This yields a modular lattice order on A„ such that 

x(i,j)+x(k, 1) = x(s, t) with s •= min (i, k), t = min ( j , I) 

x(i, j ) • x{k, T) ~ x(s, t) with 5 = max (i, k), t = max(y, /) 

x(i,j)+y(k,l) = x(i,s) for i si k and s = min (/, fc) 1 
x(i,j)-y(k,l) =x(s,j) for 7 and s = max(/, /) J 

x(i, j) + y(k, I) — x(i, s) for / s k and s = min (k + l,j, I) 
x(i, }) • y{k, 1) = x(s,j) for j ' I and s = max(i, /) 

Put x, — x(i, °o). Then every element of Am has a unique representation 
/¡, rs (1 Xi (0Si<«=), or xi+mn (Osi^n — 2) with a: in is gen-
erated by the x0 (x£E) as one derives from the relations m„=1, mm=0, ln+1 = 
=a„ + bn, rn + 1 = c„+dn, mn+1 = rn+1ln+1, and xH+1=x0mH+1. 

Observe that every proper quotient of A„ contains a prime quotient x(i,j)/x (k, I) 
with l—j and k = i+l or k — i and l—j+1. Moreover, x(i,j)lx(i+\,j) is 
transposed upward to y(k, l)/y(s, t) if and only if x—y, / ' +1=5 = ^ + 1 , and 
j^l—t or {x, y}^ {a, b}, {c, d), k = s, and / + 1 =t = l+1 or, finally, 
{x, >'}€{{«, b}, {c,d}} and l=s = t=i+l=k+l or k = s^i, t^i+2, and / = / + 1 . 
On the other hand x(i,j)/x(i,j+\) is transposed upward to y(k, l)/y(s, t) if and 
only if x=y, k — s^i, l=j, and t=j+l respectively {x, y}d{{a, b}, {c,d}} and 
i=j=l, k = i—]=s, t = i+1 or i=j, k=s^i—2, I = i=t — 1. Thus, every prime 
quotient is projective to one of l / / j and 1 jr1. Let Q consist of all quotients 
x ( f , n)/x(i+1, n) with i even and x = c,d or i odd and x = a,b as well as the 
quotients x(i, n)/x(i, n+1) with n even and x = a,b or n odd and x = c,d and, 
finally, the r,•//•,•+! with i odd and /,•//,-+1 with i even. Then 1 //, is in Q and Q 
describes a minimal congruence 6. Let R^ be; the homomorphic image AJO. Its 
operation table can be derived easily from that of Am. (Actually, R„ is the lattice 

else. 
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FM(J*) from [2] where its diagram is given.) Let cp be defined as 0 interchanging 
"odd" with "even". By symmetry, AJ<p is isomorphic to Rm. The intersection 
6C\(p is the identity and every proper congruence of Am contains B ox (p. Thus, Rm 

is subdirectly irreducible. Since Am/Q\/<p is the simple lattice Mi there are no•• other 
homomorphic images of A x . 

The section [mn, 1] of A^ is called A„. It is generated by the x(0, n) (x in E). 
The restrictions of the congruences 0 and (p to A„ yield a subdirect decomposition 
into two isomorphic simple factors called S(n, 4) — use the same arguments as 
above! Clearly, S(n, 4) is isomorphic to the section [[m„]9, 1] of Rm. 

§ 2. Some lattice polynomials 

We have to recall some definitions and results from [7]. Let F be the modular 
lattice with 0 and 1 freely generated by four elements a=e1, b—e2, c = e3, d—e4. 
Write E= {a, b, c, d} and n = { l , ...,«}. Put q^a+bXc+d), q2 = (a + c)(b + d), 
q3=(a+d)(b + c). Let x>-^xl=x(aqh bq„ cqt, dq^) denote the endomorphism of 
F with 1 >~*qh 0 ' — a n d e>-+eqi for e£E. Define by induction 

s 0 = l , s ^ a + b + c + d, s.+i = Z ( s i l ' € 3 ) 

/„ = 1, t1 = (a + b+c)(a + b+d)(a+c+d)(b + c + d), fn+1 = Z(ti\i£3). 

Let be the dual of x. Then 1.1, 1.3, 1.2, and 5.1 of [7] yield 

L e m m a 2.1. For n s O and ( V j in 3 one has 

(1) q,tjj = q) and (x')J' = (xJ)' for all x in F. 

(2) s„+1 = s^+si and tn+1 = ti, + tJ
n for n ^ l . 

(3) = SI and ?,/n+1 = C 

(4) s* =:; s n + 1 g /„ ^ s„ and ef ^ s„ for all m and e ^ f in E. 

(5) qi(et+ek) = qie, + qiek for k ^ / in 4 with |{t, i + 1 , k, /}| = 3. 

L e m m a 2.2. tx, s2, and t2 are neutral elements of F. For /Vj in 3 and e 
in E one has s2qi+s2qj=s2 and et2 = et2qi+et2qj. 

L e m m a 2.3. Let u be s„ or t„ 1), i in 3, and e,f g distinct elements of E. 
Then the sublattices generated by e,f+g,u and e, q{, u and e, f , u, respectively, 
are distributive. Moreover 

qf(a + u, b + u, c + u, d + u) = <¡>¡ + 1/ and u(a + u,b + u,c + u,d + u) = «, 

qt(au, bu, cu, du) = q^t and u(au, bu, cu, du) = u. 
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P r o o f . For anything follows by neutrality (Lemma 2,2). The distributivity 
of ( e , / + g , ¿i) and (e ,q , , u ) a n d - u = u ( a + u, b + u, c+u, d + u): have been shown 
in [7; 5.3]. Thus, e + h,f+g, u is distributive, too. Assuming 1 we have 
(e + h)u +(f + g)u =eu +(f + g)u = u. We prove the remaining claims by induction. 
For /1^2 we get by 2.1 and the inductive hypothesis asn+l + bs„+1^a2s2 + b2s% + 
+ a3s3+b3s3 = (a2 + b2)s2 + (a3+b3)sl = (a + b)q2sn+1 + (a3+b3)s3 = (a + b)sn+1(q2 + 
+ (a3 + fo3)s»). Now q2+(a3 + b3)ss

n^q2 + ^2 + q3
ls3„^q2 + s3

n^sn + 1 by 2.1 (2) whence 
asn+1 + bs„+1=(a + b)sn+1. By symmetry, es„+1+fs„ + l=(e+f)s„+1 for all e^f in 
E. Thus, (esn+1 + hs„+1)(fsn+1 + gsn + 1)=(e + h)(f+g)sn+1. 

By the inductive hypothesis we have (q2s„)1=(q2(as„, bs„, csn,dsn)y = ((as„ + 
+ cs„) (bs„ + dsn)Y = (a1 + c1 sj) (b1 s] + d1 si) = (qias„+1 + qlcsn+ L) (qt bs„+1 + qY dsn+1) = 
= cil(asn+1, bsn+1, csn+1,dsn+1)^qi(asn+1, bs„+1, csn+1, rfsn+1) using 2.1 (3) and (1). 
Similarly, (q 3 s j 1 ̂ qi(asn+1, bsn+l, csn + 1, dsn + 0 whence sn + x = sj = (q2s„ + q3sj1 = 
= ( l i S„Y+(<7a s„)' ^ (as„+1, bsn+1,cs„+1,dsn+1) by 2.1 (2) and (3). The converse inclu-
sion holds due to monotony. By symmetry we get qisn+1 = qi(asn+1, bsn+1,csn+1,dsn+1) 
for all ¿63. Finally, with the inductive hypothesis and 2.1 (3) it follows 

sn+i(asn+i5 bsn+1, cs„+1, dsn+i) = 2 sn(as/i+i> bs,I+1, cs„ + 1 , ds„+1) = 
= 2 s„(qiasn+1, <iibsn+1, qiCsn+1, qidsn+1) = 2 s„(a'si, b's),, c's'n,d's'n) = 

= 2 s „ ( a s n , bsn, csn,dsny = 2 s i = sn+1-

For t„ the proof is quite analogous. 

C o r o l l a r y 2.4. Let u and v be any of the s„, tn (« = 0) such that u^v. Then 
u(au + v, bu + v, cu+v, du + v) = u, v(au + v, bu+v, cu+v, du+v) = v, and qj(au+ 
+ v, bu+v, cu + v, du+v)=qju + v for j in 3. 

Define by induction q0i= 1 and q„ + lt=qi{aqni, bqni, cqni, dqj. Write = 
and g°ix=x. 

L e m m a 2.5. g"l=qni, and g"e = eqni for i in 3 and e in E. 

P r o o f . The first claim is 1.5 in [7]. The other follows by induction on n: Q"+1e= 
= Qlqiie = QlquQle = Ql+i^eqni = eq^iti. 

§ 3. The neutral element method revisited 

An element of a modular lattice M is neutral, if for all a and b in M the sub-
lattice generated by u, a, and b is distributive. Then the map x<—-(ux, u+x) yields 
a subdirect representation of M. In [6] we proved 

P r o p o s i t i o n 3.1. Let u be an element of a modular lattice M. Let S be a lattice 
and a. an order preserving map of S in M such that x>-+u+<x;t preserves meets and 
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x>—wxx preserves joins. Moreover, let M be generated by the union of all intervals 
[wax, ax] and [wax, u] with x in S. Then u is a neutral element of M. 

Here, we need a more sophisticated version. 

P r o p o s i t i o n 3.2. Let M be a finitely generated subdirectly irreducible modular 
lattice and u„ ( n S 0) a descending chain of elements of M. Let S be a lattice and y 
a meet homomorphism of S into M such that M is generated by the image of y. Assume 
that for all x and y in S and n S 0 there is an m^n with umyx+umyy = umy(x+y). 
Then either M is a homomorphic image of S or there is an n such that u„ is the smallest 
element of M. 

P r o o f . Let 3 d e n o t e the lattice of all filters on M with partial order 
dual to set inclusion. Then ¿F(M) is a dually algebraic lattice having M as a sub-
lattice. Write JJ for the meets in & (M). In particular, let u=J] un be the filter 
generated by the un (w^O). Let M' be the sublattice generated by M and u. By 
lower continuity and the hypothesis we have for any x, y in S: uyx+uyy=JJ u„yx+ 
+ nu*yy = n ("nyx+w„yy) = U u„y(x+y) = uy(x+y)^u(yx+yy). Thus, x^uyx 
is a join homomorphism of S into M' and the sublattice generated by u, yx, and 
yy is distributive for all x, y in S. Consequently, (u+yx)(u+yy) = u+yxyy=u+yxy 
and Prop. 3.1 applies to conclude that u is neutral in M'. 

Therefore, the map x>—(ux, u+x) yields a subdirect representation of M'. 
M being subdirectly irreducible the induced subdirect representation of M has to 
be trivial, i.e. one of the maps x>—ux (x£M) and x>—u+x (x£Af) has to be an 
embedding. In the first case we get x=ux i.e. x^u for all x in M. Then, x>-+uyx= 
=yx is a homomorphism of S onto M. 

In the second case we have x—u+x i.e. xfew for all x in M. Then, u^0M, 
the smallest element of M. Since 0M is the smallest element of !F(M), too, it follows 
w—0M. The filter u being generated by the descending chain un («SO) there has 
to be an n such that u„=0M. 

§ 4. Proof of the Theorem 

Let M be as in the Theorem. The Lemma in [6] states that either 

(i') ab — ac = ad = be = bd = cd = / Z f a n i ^ t f J " 

or the dual of (i') takes place. Thus, let us assume (i'). For any map e of {a0,b0,c0, d0} 
onto {a, b, c, d) we define a map y=y" of A„ into M recursively: 

ym0 = 1 

yln+i - sa0ymn+eb0ymn, yrn+1 = ec0yma+ed0ymn ' . 
y(»"«+i+*a) = ex0+yln+1 for x = a,b, y (m n + 1 +x 0 ) = ex 0 +yr n + 1 for x = c, d, 
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and for 1 S i ^ n — 1 

y(mn+1+Xi) = y(mn+1+x0)y(mn+xi); ym„+1 = yl„+1yr„+1; 

yxk = ex0ymn for x = a, b, c,d; ymm = 0. 

Claim 1. yl is a meet homomorphism of A„ into M. 

P r o o f . In section 2 of [6] it has been shown that ye restricted to A„ is a meet 
homomorphism for every n. Due to (i') and the definition of yE the claim follows, 
immediately. 

Proposition 3.2 will be applied with L being a subdirect product of three copies 
of Am. We use the notation x—x for elements in the first, a,=fl;, 
m—m, for elements in the second, and a ; = a , , ¿ i=c, , c~dh di=bx, mi=mi for 
elements in the third copy — see Fig. 1. In analogy, we write y=yc with se0=e, 
y=yc with ee0—e, and y=y' with se0=e for e£E. Observe (by induction) that 

Wn = qn2 = :«n> and ym„ = q„s=:qn. Define X={(0 ,0 ,0 )}UU 
U([K". mv mk), 0 , 1, 1)]U{(^, es, ek)\e£E))\i,j, k«*>). 

Claim 2. L is the sublattice of AmXAmXA„ generated by the elements 
e=(e0,e0, e0) with e£E. 

P r o o f . Component wise calculation yields the sublattice property, easily. We 
show by induction on i that the union of the intervals [(mh ], 1), (1, 1, 1)] and 
[e„ e0](e£E) belongs to the sublattice 5 generated by the e. Namely, with g = (mi, 1,1) 
we have (w,+i, 1, 1) = (ag+bg)(eg+dg) in S whence (ej + mi+1, 1, 1) for jsi 
and (e i + 1 , 1, l )=(e 0 , 1, l ) (m i + 1 , 1, 1) are in S, too. Using symmetry and forming 
meets we get that S contains L. Trivially one obtains 

Claim 3. y(x, y, z) = ^xyyyz defines a meet homomorphism of L into M with 
ye=e,y(mi,mi,mk) = qiqjqk, and y(e:, ej, e^) = eqiqjqk. 

For m^O define the map am: L-+M by amx=smyx. For n^O define 

S„ = [(m„,mn,m„), (1, 1, l)]U{(e (, ey, ek)\e£E, i,j, k < n}. 

Claim 4. Sn is a join subsemilattice of L and ffm|S„ a join homomorphism if 
m>-3«. 

P r o o f . Let us write 1=(1, 1, 1). Observe that for i=n — 1 and e^f in E 
(eh e„ ¿r

i) + (/i,/i,/i)s(/M„, m„, m„). Since {(ef, e,-, 4)1',7, A:<«}=t(e„_1, en_x,gn_p, 
(e0, e0, e„)] and [{m„, mn, m„), 1] are intervals this suffices to prove that S„ is closed 
under joins. 
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The second claim will be shown by induction on n. The modular lattice identities 
(a)—(f) we refer to shall be proved at the end of the section. The case n = 0 is trivial. 
Let be and assume that <rm|5'„_1 "is a join homomorphism. 

Step 1. am\[(ln, 1, 1), 1] and am\[(r„, 1, 1), 1] preserve joins. Since [(/„, 1, 1), 1] 
is the union of [(#&„_l5 1, 1), 1], {(/„, 1, 1)}, and the chains [(éa_2+mn, 1, 1), (é0 + 
+m„, 1,1)] (e = a,b) it suffices to show (Tm(d„_2,1, l )+ffm(£„_2 ,1 . l j ^ i m , - ! , 1,1)] 
i.e. 

(a) aq n—2 » bqn-2 ^ J f f l *7 O — 1 

and am(êi, 1, l) + am(mn_ly 1, l)=am(ei+m„^1, 1, 1), i.e. 

(b) smeqi + smq„„1 = sm(e+fq„-Jq, for {e,f}={a,b} and i S n - 2 . 

(We have 9(ê i+th„_1) = ^(ê0 + mn^1)fm i since y is a meet homomorphism.) The 
second claim follows by symmetry. 

Step 2. <rm\[(mn, 1, 1), 1] is a join homomorphism. Since [(w„, 1, 1), 1] is the -
union of [(/„, 1, 1), 1], [(fn, 1, 1), 1] and {(m„, 1, 1)} and because of (/„, 1, 1) + 
+(r„, l , l ) = ( w „ _ 1 , l , l ) i t suffices to show<Tm(/„,l, \)+crm(r„, l , \ )=o m {m„_ 1 , \ , 1), i.e. 

(c) sm(aqn^ + bq„--d + sm(cqn-x + dqn_d = sm9„_!. 

Step 3. <rm\[(mn,m„,mn), 1] is a join homomorphism. By symmetry, the restric-
tion of <jm to any of [(/«„, 1, 1), 1], [(1, mn, 1), 1], and [(1, 1, mn), 1] is a join homo-
morphism. In view of 

(0 smq„+smq„ = sm and smqn+smq„q„ = sm 

the am (m„, 1, 1), <7m(l ,m„, 1), and a m ( l , 1, mn) are dually independent in [0, s j . 
oJK'",,, mn, mn), 1] being the product of the above three restrictions it is a join 
homomorphism, too. 

Step 4. ffm|{(é,, ëj, ëk)\i, j, k<n} is a join homomosphism for e£E. This 
means for i,j, k, r, s, t~zn, u=min ( i , r), r=min( ; ' , s), w=min(fc, t) 

(d) smeqiqJqk+smeqrqsq, = smequqvqw. 

Step 5. <Tm|S„ is a join homomorphism. Since Sn is the union of the intervals 
[(m„, m„, mn), 1] and [(é,, êi5 è,), (ê0,ë0,ë0)] (i = n — 1, eÇ£) it suffices to check 

ë„ ëi) + a m ( / , f t , f d ^ a m [ m n , mn, mn), i.e. 

(e) s^qiqiqi + s^qiMi = smqnq„q„ for i = n-1, e ^ f in E 
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and <7m(ei,eJ,gk) + am(mn,mn,mn) = <jJei + mn,eJ + mn,ek+m„) for i,j, k<n and 
e in E. Due to symmetry and Step 3 the latter is satisfied if am(et, en, en)+ 
+ a j m „ , mn , m n )=a m {e i +rh n , m„, m„), i.e. 

(f) smeqiq„qn + smqnqnq„ = sm(eJrfqn_x)qiqnqn for i < n and {e,f} = {a,b}. 

Now, we are ready to prove the Theorem. Observe that Mt and R ^ are the 
only subdirectly irreducible homomorphic images of L. Namely, L is a subdirect 
product of six copies of R m having M4 as its only proper homomorphic image. 
Thus, the subdirectly irreducible lattice M cannot be a homomorphic image of L. 
Due to Claims 3 and 4 we may apply Proposition 3.2 and conclude that there is an 
n such that s„—a„l = 0 . 

To prove the Corollary observe that induction yields .?„ = 1 and J * = 0 for 
all n and all lattices listed there. Namely, <7i=1 whence by Lemma 2.1 

= For the additional results recall that according to A . H U H N [8] in 
a 2-distributive lattice frames may have order at most 2. In view of Corollary 1.4 
and 2.1, 3.2, and 3.3 f rom [7] this implies that i „=s B + 1 for and t„=sn for 
« S 3 . Thus, by Lemma 2.2 the only subdirectly irreducibles with s„=0 for an n 
may be Z>2 and Ms. 

Before we come to the proof of the formulas (a)—(f) we need a Lemma. 

L e m m a 4.1. For all m^n and 3 one has smqni=g"sm_„. Also, e, qni, 
and sm generate a distributive sublattice for all e in E. 

P r o o f . By induction on n. For n = 1 this is Lemma 2.1 (3) and 2.3. For n > 1 
one has by 2.5 smqn~smqiqn~Qism^1Qiqn_1A = QiQl-1sm.n= £?sm_„. Show 
eni(e+sk) = qni(e + sk+n) for all k. Indeed Qn

i
+1(.e+sk) = Q? Qi(e+sk) = Qn

i(qie + 

by the hypothesis, and 2.5. Thus, eqni+smqn( = Qle+Q^sm_n = e1(e+sm.„) = qni(e+sm) 
and the distributivity follows. 

P r o o f of (a). smaql-1+smbql„1 = Q[-1(asm_l+1 + bsm..l+1)==elr1(a + b)sm-l+^ 
^e li~1qism-i+i—%sm f ° r l = m + 1 by 2.5 and 4.1, 2.3 and 2.5, and 4.1 again. 

P r o o f of (c). By 2.3 one has sk(a + b)+sk(c+d)=sk for fc^l. (c) follows 
immediately applying the homomorphism Q"'1 in the case k=m — n +1 and 
appealing to 2.5 and 4.1. 

P r o o f of (b). By 4.1 one has ska+skqj—sk(a+qj) for k ^ j . Apply the 
homomorphism q[ in the case j=l — i and k=m — i (for to obtain 
smaqt+sm4i=smqi+qt) = smq{(a+qt). Now a+q^a + i a + b q , ^ ( c q , = 
=(a + bql-1)(a + cql_1+dql-1) by modularity and a + c+d^t1^sm_e+1 whence 
a + cql^1+dq,.1^sm (applying q'c1) and smaq( + smq1^smqi(a + q1_1). Due to 

12 
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smqnqiqi^smqnq„qn and the following Lemma (e) may be obtained f r o m the for-
mula proved under (a) (with / — l = / = n — 1 and m=»3n—2/=»/) by application 
of the homomorphism Q3. 

L e m m a 4.2. Q^qni=qm}qni for all i ^ j inland m,n^0. 

P r o o f . We show Qjqni = qjq„i by induction over n: Qjqn+i,i = QjQiq„i = 
=QiQjq»i=<?,•(qjqnd=e,qjQiqni=q>qjqn+i,i=ijqn+i,i by 2.1 ( i ) and 2.5. Now we 

induce over m : ef+1qni = 6j Qjqni = 6j (qjm q j = 6j qmjQjqni = +1, j qmj <7„; = +1, ¡q„i • 
Next, observe that (f) and (d) are consequences of the following formula 

(g) qjgkSme + q,sm^q}qksm(e + ^ l) for j + k + l^m and e in E. 

Namely, for (f) put j=k = l=n, multiply both sides with qiqnq„ and observe a + 
6^1-1) as proved under (b). 

For (d) assume w.l.o.g. j=s, k^t, and i^r = I and multiply both sides of (g) 
with eqtqsqt. 

In the proof of (g) assume w.l.o.g. e=a. Fisst, we show that qx, ash, and q3sh 

distribute for / i s 3 : By 2.1 and 2.3 we have q1sha + q1q3sh = (sh^1a + q3sh-d1 = 
=(sh_! (a + q3)Y = (sh _ 1 (a + b + c) (a + d))1 = (sh _ x (a + d))1 = sh (qx a + qx d) = sh qx (a (c + 
+d) + d)=shq1(a + d)^q1(sha + s„q3). 

Now, Qi(sh a-\-skq^) — + S ( , + j f o r h = 2 follows by induction: 
<?i+1 (sha+shq3)=Ql

1e1 (sha + shq3) = Ql
1(qlsh+1a + q1sh+1q3) = e[q1(sh+1a + sh+1q3) = 

= e[qiQli(sh+1a + sh+1q3)= ql+ltlqtl(sh+1+la + sh+1+lq3) = ql+1^(sh+l+1a + sh+l+1q3) 
using 2.1 and 2.5. Thus, for h — l^2 qn, sha, and shq3 distribute: qnsha + qnshq3 = 
=Gl

1sh_la + Ql
1sh-lq3=el

1(sh-1a + sh-1q3) = qll(sha + shq3) by 4.1 and 4.2. 
. Induction on j + k yields Q{(sha + shqll) = qj2qk3(ash+j+k + qllsh+J+k) 

for h>l: eiQl(sha + shqll) = QJ
2ek

s'1Q3(sha + shqll) = QJ
2Qk

3-1(aq3sh+1 + q:iqllsh+1) = 
= Qi63~ ̂ ("Sh+i+qiish+i) = eie3 '^QiQa ~ \ash+ 1+qnsh+1)=qj2 qk3(ash+j+k+ qnsh+j+k) 
assuming fc>0 w.l.o.g. (since e{e&=Q3Qi by 2.1 (1)), and using 2.3 and 4.2. 
Finally, we get q j q k s m a + q l s m ^ q J q k s m a + q j q k q l s m = Q i Q l s m _ j . k a + Q i e 3 q l s m _ j _ k = 
= QieUasm-j-k+qlsm_j_k)=qjqk(asm+qlsJ=qjqksm(a+ql) applying the above, 
4.2 and 4.1. 

Finally, to prove (i) we show by induction on m: 

( j) SmQj+SmMi = sm for j + k + l^m. 

The cases m s l , j—0, or k=l=0 being trivial, let 1, k^l. Then 

smqJ + smqkqi=smqj + smq1qkql+smqjq1 + smqkql = §(sm-1qJ-1+sm_1qkq,)+ 

+ e(sm-1qJ + sm-1qk.1q,) = QSm_1+Qsm^1 = sm. 
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Some propositions on analytic matrix functions related to 
the theory of operators in the space nx 

M. G. KREIN and H. LANGER 

It is well known that certain classes of analytic functions play a useful role in 
the theory of hermitian and selfadjoint operators in Hilbert space. On the other 
hand, sometimes, general propositions from the spectral theory of operators yield 
simple solutions of problems in complex function theory. This is especially true 
for the theory of selfadjoint and unitary operators in spaces with indefinite metric. 

In this note we prove some consequences of the theory of £?-functions and 
characteristic functions of hermitian and isometric operators in the space 17x, as 
developed in [1] and [2], for scalar and matrix valued analytic functions of a com-
plex variable. It seems rather unexpected to us that in this way we get new results 
also for the so-called Nevanlinna or /{-functions (mappings of the upper half-plane 
into itself) so well studied in different contexts during the last 50 years. 

There are now several papers (see, e.g., [5]) which generalize the well known 
theorem of Rouché to matrix or operator functions. In these papers, however, it 
is assumed that the boundary of the domain considered consists of regular points 
only. Here we show that our methods permit a generalization of Rouché's theorem 
to the case of matrix functions of the class S>nyn (see § 4 below) over the unit disc. 
Instead of the unit disc more general domains with sufficiently smooth Jordan bound-
aries may be considered. For the case of scalar functions this generalization was 
proved2) by V. M. A D A M J A N , D. Z. A R O V and M. G. K R E I N in [6] and has found 
essential applications in the theory of Hankel operators with scalar kernel. Theo-
rem 4.2 below can be used in the investigation of Hankel operators with matrix 
kernel. 

The authors express their thanks to ' J. Bognár for a careful reading of the 
manustcript and valuable suggestions. 

Received October 15, 1979. 
** Some of the results were proved by a different method in [3] (cf. also [4]). 

However in a less complete form, without counting the generalized poles of negative type 
(see the remark after Theorem 4.2). 
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§ 1. Basic propositions 

1. An (nXn)-matrix function K, defined on a nonempty set Z x Z , is said 
to have x negative squares (on Z ) if it has the following two properties: 
1) K(z,Q = m,z)* (z,cez), 
2) for any positive integer k, any zx, ..., zk£Z and w-vectors ..., *) the 
matrix : • ! : : ! . ' ! , : ; 

(^(ZV5 Z/i)£v> £fl)v, >1 = 1.2,..., k 1 

has at most x negative eigenvalues and for at least one choice of k, z±, ..., zk, 
and . . . , it has exactly x negative eigenvalues. 

In this note the following three classes of analytic (nx«)-matrix functions will 
play an important role. 

a) N"x" is the set of all («X«)-matrix functions Q which are meromorphic 
on •£+ and such that the kernel NQ: 

has x negative squares (X) e cG + denotes the domain of holomorphy of Q). 
b) C£Xn is the set of all (/?X«)_matr>x functions F which are meromorphic on 

D and such that the kernel CF: 

F(z) + F(Q* . rcT. . 

has x negative squares. : 
c) is the set of all (nXn)-matrix functions 9 which are meromorphic on 

I) and such that the kernel Sa: 

7-f l(Q*fl(z) 
1-zC* 

has x negative squares. 
In the special case /7 = 1 these classes (of scalar valued functions) were studied 

in [7]. In the more general case where the values of the functions Q and 6 are bounded 
linear operators on a Hilbert space, the corresponding classes were introduced iri 
[1] and [2]. 

(£ is the set of all complex numbers, the open upper (lower) half-plane, <E+ the 
closure of d + in Furthermore, X) (35) denotes the open (closed) unit disc and BX>. the boundary 
of X). The usual scalar product and norm in C" are denoted by (. , .) and IMI- I f / l i s an nXn matrix, 

denotes the norm of the operator induced by A on G". If then z*-.denotesthe complex con-
jugate of z. ... , , /; • ; ... • .... •••. • 
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We mention that these classes can be defined in a different way (cf. [1] and [2]). 
For instance, an (nX«)-matrix function Q0 which is defined and continuous on 
some open set X>'cO[+ and for which the kernel A ^ has x negative squares on $5' 
can be extrapolated in a unique way to a function {2€N£Xn. Further, a function 
QdNn

x
Xn can be extrapolated to a function Q locally meromorphic on UG_ 

by the formula 
- ifiC^), 

[Q(z*)*, Z * € ® Q . 

Then the kernel Nq has x negative squares on ®eUX>g. In a similar way, F£C"X" 
can be extrapolated to the complement of the closed unit disc by setting F(z_1):= 
— F(z*)* ( Z * € D F ) . 

The classes N"x" and C"x" are very closely related. Namely, if cp is a linear 
fractional mapping of D onto (£+, then the formula F=iQo<p (2€N"X") establishes 
a one-to-one correspondence between N"x" and C"Xn. Hence the statements about 
the class Cn

x
x" given below can easily be transferred to the class N"Xn. 

P r o p o s i t i o n 1.1. Let F£C"x" and a£(E, R e a > 0 . Then the function 0 
defined by 

(1.1) 9(z) := ( F ^ - a * / ) ^ ) - * - « / ) - 1 

belongs to the class S"x". 

P r o o f . First we show that for each a, Re a > 0 , we can find a z 0 € $ F such 
that ( F ( z 0 ) + a / ) - 1 exists. Otherwise for some fixed a, Re a=>0, and each z££>F 

there would exist an «-vector £ ( z )^0 such that F(z)£(z) = —a£(z). It follows 

(i2)\i-zcri№znm*)m,m)=-2Reoc(i-zo-i(az),m = 
in . ' 

= - R e «(2TT)-1 / (elS — z )~ 1 ( e~—£ * ) d S (£(z), £ (0) , . , 
o . ... 

If z1 ; z2, ..., z t 6 $ , then the kxk matrix 

( / (ei*-zy)-He-,'-zZridd{S(zv),!;(zM)))y,fl=lt2 
o 

has k positive eigenvalues. This follows from the fact that for arbitrary 
<*!, a2, ..., a t£(£, not all equal to zero, we have 

f J i i g ^ L ^ o . 
0 v=l c 

If we choose k^x, from (1.2) we get a contradiction to the assumption F£C"Xn4 
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Thus det ( F ( z ) + a l ) ^ 0 . Hence the meromorphic function det (F(z)+al) can 
vanish only on a set oa of isolated points of X>. For z, \ $ <rx it . follows that 
I-9(0*6(z)=2(Re a ) ( F ( 0 * + a * l ) ^ ( F ( z ) + F ( Q * ) ( F ( z ) + a l ) ~ \ Therefore the kerr 
nel Se has x negative squares on oa. 

2. Let IJX be a nx-space with indefinite scalar product [., J.1) A bounded linear 
operator T in II x is called contractive if t(T)=IIx and [Tx, Tx] ^ [x, x] ( x 6 / 7 J , 
isometric if [Tx,Tx] = [x,x] (x£ D(7)), and unitary if it is isometric and X)(T) = 
= 9{(T)=nx. An isometric operator T with D(T)=J7X or 9? ( r )=J7 x is called 
maximal isometric. 

P r o p o s i t i o n 1.2. A contractive operator T in a nx-space IIX has a x-dimen-
sional nonpositive invariant subspace <£ such that \o(T\S£)\^\. If is not uniquely 
determined, the points of o(T\SC) and their algebraic multiplicities do not depend 
on the choice of 

We shall write o0(T):=o(T\&) if T and <£ are as in Proposition 1.2. For 
A£cr0(r) the algebraic multiplicity of I with respect to 7"|if will be called the 
index of X with respect to T and denoted by xx(T). Evidently, it is the dimension 
of the intersection ^ f f l ^ ( r ) , where ¿f.(T):={x: (T—/.l)k x=0 f o r s o m e 
fc=l,2,...}. If U c {z: |z|&l}, the index xu(T) of U is defined by 

xu(T):= 2 *x(T). 
/.6<T0(Dnu 

The first statement of Proposition 1.2, and the second statement for points 
k£o(T\£C), |A|>1, follow from [9, Theorem 11.2]. For a unitary operator T the 
second statement was completely proved in [10]; this result is also an immediate 
consequence of the spectral theorem [11]. In the following only these conclusions 
of Proposition 1.2 will be used. 

However, for the sake of completeness, we prove the second statement for an 
abirtrary contractive operator T in IIx. To this end, observe first that T has a unitary 
dilation 0 in some larger wx-space HX^>IIX, that is 

(1.3) T"x = P0nx (x£llx, n = 0,1, 2, ...), 

where P denotes the ^-orthogonal projector of nx onto IIx (see [12]), A relation 
between certain invariant subspaces of T and 0 is established by the following lemma. 

L e m m a 1.3. If T and 0 are as above and :S?0 is a nonpositive subspace of I1X 

such that T3?0<z£t?0 and |<7(T|JSF0)| = 1, then Ox=Tx (x£^C0). 

') Here we use the notation of [8]. For the properties of 7r„-spaces and their bounded linear 
operators see [9]. " 
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P r o o f . The operator T has the property 

(1.4) [Tx,Ty] = lx,y] (x,y€%¡0. 

Indeed, consider F:=(r |J2P0) - 1 . Then |<r(F)| = l. On the other hand, if is 
equipped with the nonnegative scalar product — [x, y] (x, yd £C0), then V induces a 
contraction P in the factor space £?.= .S?0/:S?00, where i f 0 0 := : [x, x]=0}. 
Since < 7 ( ^ ) C C T ( F ) , we have \(t(V)\ — 1, and by a well known result on contractive 
operators in a unitary space, V is unitary. Therefore [Vx, Vy]—[x,y] (x, yd ¿f0) 
and (1.4) follows. Using (1.4) and (1.3), for x£:S?0

 w e find 

[x, x] = [Tx, Tx] = [POx, POX] [tfx, t7x] = [x, x]; 

hence Tx—POx=Ox. 
Now we continue the proof of Proposition 1.2. The Lemma 1.3 implies that 

every Xdo(T\&), \X\ — 1 belongs to o0{U). As the subspace i ? 0 of Lemma 1.3 can 
always be extended to a ^-dimensional nonpositive invariant subspace of U (see 
[16, Theorem VIII. 2.1]) we have for these X 

(1.5) xx(T\£?) ^ xx(U), 

where y.){T\S£) denotes the dimension of The same inequality (1.5) holds 
if ;.€<7(r|JSf), |A|>1. Indeed, (1.3) implies that 

{T—zI)~x = P(0— zT)*1 (\z\ > 1, z<to(T)f\a(Vj), 

and it follows that the dimension of the Riesz projector corresponding to X and T 
is not greater than the dimension of the Riesz projector corresponding to X and 0. 
Now (1.5) yields 

2 2 xx(0) = x, 
•L€<R(7"|IF) A6<R0(0) 

that is, in (1.5) the s ign=must hold. But the right hand side of (1.5) is independent 
of and the statement follows. 

The following proposition can be proved in the same way as Satz 1.2 in [1]. 

P r o p o s i t i o n 1.4. Let (T„) be a sequence of contractive operators in II „, 
\\Tn-T0\\ —0 (/!-<»), and A06<r0(r0). Then for each sufficiently small neighbourhood 
U of X0 there exists an n ( U ) > 0 such that for n^nQX) we have xu(T„) = xXo(T0). 

Because of the relation 

2 y-AT0) = 2 *x(TJ = x, 

under the conditions of Proposition 1.9 the points of er0(7"0) are the only "accumula-
tion points" of <r0(T„), / I=1, 2, ... . 

3. A close connection between functions F£C"X" and isometric operators in 
a nx -space IJX is given by the following proposition ([2, Satz 2.2]): 
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a) Let V be a maximal isometric (<R(V) = nx) operator in a nx-space IIx, S 
a hermitian nXn matrix and F a linear mapping from G" into II x. Then the func-
tion F: 

(.1.6) F(z) = iS + r*<y+zI)(V-zI)-lr ( z - ^ f f i F - 1 ) , |z| < 1) 

belongs to the class C f for some y.', Os/^x. If the operators V and T are closely 
¡-connected then x' = x. 

b) If F£C"x
Xn and 0€X>f, then there exist a nx-space IIx, a maximal isometric 

(9l(V) = nx) operator V in IIx and a linear mapping T from G" into IIX, closely i-con-
nected with V, so that the representation (1.6) holds with S = I m F(O). 

We remind the reader that an operator T from (£" into IIX is said to be closely 
i-connected with the maximal isometric (9i(K) = /7„) operator Kin II x if IJX is the 
closed linear span of all elements (V—zI^Tq, z£q(V), |z |<1. Here, of 
course, (V—z/)_1 is always to be understood as V~1(I—zV~1)~1 with the iso-
metric operator V~1=V+ defined on all of IIX, z~1ee(y~1)-

The function F£C"x
Xn, 0£T>F, admits also a representation (1.6) with a unitary 

operator V in IIX. Consider this operator V, and let i f be a x-dimensional non-
positive invariant subspace of V such that |< r (K | i f ) | s l . Denote the characteristic 
polynomial of V\<£, which does not depend on the choice of i f , by p and put 
g{z)=p*(z~l)p(z). Then we have [g(V)x, (x£llx) and it follows that 

R e r * g ( F ) ( K + z / ) ( F - z / ) - 1 r (zgD). 

Hence there exists a nondecreasing bounded («Xn)-matrix function I on [0, In), 
such that 

2rt 
(1.7) n g i V W + z l W - z I ) - ^ = f ( e " + z ) ( e ' a - z ) - 1 i / 2 : ( 3 ) . 

0 

Introducing the («Xn)-matrix function G: 

G(z) := r*(g(z)I-g(V))(V+zI)(V-zI)-ir 

we get from (1.6) and (1.7) 

1 2* 1 
(1.8) F(z) = i S + - ^ f (eis + z ) ( e

i 9 - z ) - i r f Z ( 3 ) + — G(z) (z€D). 

As a consequence of b) we prove the following 

P r o p o s i t i o n 1.5. The function OdSx
Xn, 0(El>6, admits the representation 

(1.9) 0(z) = U22 +zU21(I—zT)~l Ul2 (z£®e), 
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where T is a contractive operator in a space II x, which has no eigenvalues on the unit 
circle, and U12, U21, U22 are such mappings that the matrix 
: (T U12\ 

defines an isometric operator in the space The space Itx and the operator 
U can be chosen so that 

n x = c.l.s. {(/—zr) - 1C/1 2^: z - ^ Q ( T ) \ , 

then they are uniquely determined up to unitary equivalence. 

Here, if u,v£llx and t]£<£", the scalar product of {«, {v, rj}enx®(in 

is defined by 
[{«,«},>>/}] = [« ,» ]+« , i?). 

The operator U12 maps into IIx, U21 maps IIx into (£", and U22 maps (£" into 
itself. 

P roo f . We may suppose that det (/— 0(0))^0. Indeed, if this relation 
does not hold we consider 9y: 9y(z):=y0(z) instead of 6 for some y: |y| = 1, 
det ( /—9 y (0))^0. Having found the representation of 6y with some operator Uy, 
the representation of 9 follows with an operator U, which is obtained from Uy by 
multiplication of the second row by 

Consider for oc£(£, R e a > 0 , the function F: 

(1.11) f ( z ) : = ( a * / + a 0 ( z ) ) ( / - 0 ( z ) ) - 1 . 

Then 
F(z) + F(0* = 2 ( R e « ) ( / - f l ( O * ) - 1 ( / - 0 ( O , ' f l W ) ( / - 0 ( z ) ) - 1 , 

and it follows that F£(Zn
x
Xa. From the relations (1.11), F(0)=iS+r*T and (1.6) 

we find 

0(z) = 7—2 Rea(F(z) + a / ) _ 1 = / - 2 R e a ( F ( 0 ) + a / + 2 z F * F - 1 ( / - z r - 1 ) - 1 F ) - 1 = 

= 7 - 2 (Re a) (F (0 ) - t -a7)~ 1 +4(Rea)z(F(0)+a7) _ 1 r*J / _ 1 x 

• X ( / - z F - 1 + 2zr(F(0) + a / ) - 1 r + F - 1 ) " 1 r ( F ( 0 ) + a / ) - 1 = 

= ( F ^ - a / X F i O H a / ) - ^ 

+ 4fRea)z(F(0)+a7) _ 1 F* V~l(I— zWa F_1)F(F(0)+oc7) 

with Wa.= I—2r(F{fS) + cil)-xr*. Setting 

T:=WxV-\ U12:— 2 ] /RFa(F(0)+a / ) - 1 , 

U2l := 2}/Rea(F(0)+a7)~1r*K_ 1 , U22 :=-(F(0)-a*7)(F(0) + «/)~1, 
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and using the relation r*r=2~1(F(0)+F(0)*), it is not hard to verify that the 
matrix U satisfies U*U=I. 

The operator T is contractive in 77x. Indeed, we have for M£J7x, v:=V~1u: 

[Tu, Tu] = [v,v]-2[r(F(0) + al)-1r*v,v~]-2[r(F(0)* + a*l)-ir*v, »] + 

(1.12) +4(r*r(F(Q) + aI)-1r*v,(F(0)+oiI)-1r*v) = 

= [y ,u ] -4Rea | j ( J F(0 )+a7 ) - 1 r*y | | 2 [u,u]. 

Assume that Tu0=X0u0, |A0| = 1. Then, by (1.12), r * F _ 1 M 0 = 0 and 
tVaV~1u0=V~1u0 = /.0u0. Hence F*u0 = 0, (F _ 1 )* M o= and f ° r arbi-
trary £€C", z - ^ e i P - 1 ) . M<1> we get 

[ F - H Z - z F - 1 ) - 1 ^ , u0] = ^ ^ ( l o - z ) " 1 = 0. 

As r and F a r e closely /-connected, this implies w0 = 0. The proof of the uniqueness 
of U is left to the reader. 

R e m a r k . The function FtCn
x
x" in the proof of Proposition 1.5 admits also 

a representation (1.6). with a unitary operator V in a nx-space TIX. This implies a 
representation (1.9) of the function 9, where the operator (1.10) is unitary in the 
space IIx®<in. Then 9 is the characteristic function of the operator T*, see (1.10) 
(the case n = 1 was considered in [7]). 

We mention that Proposition 1.5 is an immediate generalization of [7, Satz 6.5]. 
It can be reversed and generalized to functions 6 with values in [§], the Banach 
algebra of all bounded linear operators mapping the Hilbert space $ into itself. 

4. In [2, Satz 3.2] it was shown that a function 96S"X" admits also the rep-
resentation 

(1.13) 9(z) = B0(z)-*e0(z) ( Z € D 8 ) 

with a Blaschke—Potapov product B0, 

O £ 

(1.14) B0(z) =U0 ]J Bj(z), Bj(z) = I ] [ J U S L P + Q k | , 
j=1 k = l \ i — Z<Xj J 

and a function 0o€SJJx". Here a ^ a , - . , for j ^ j ' ; PJk and Qjk are idempotent 
hermitian matrices with PJk + Qjk — I for k= 1, 2, ..., kj and j—\,2,...,l; U0 

is a unitary matrix and 0o€SJx". 
The Blaschke—Potapov product B0 is called regular if 

Pjl — Pj2 — •' — Pjkj , j = U 2, ..., 1. 

The representation (1.13) is called regular if B0 is regular and 

(1.15) « ( ' / m M ^ ' M W J — 1,2, ..., I 
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holds; here 
O 

(1.16) Y ^ ^ i j j B X z y A u ^ e ^ z ) , J = 1 , 2 , . . . , / , y I + 1 ( z ) := C/o-l0o(z). 
\v = j / 

The order of the Blaschke—Potapov product B0 in (1.14) is defined as 

2 2dimPjk'> j=lk=l 

according to [2, Satz 3.2] it is equal to x, if the representation (1.13) is regular. 

§ 2. Zeros and poles in ® 

= 1. The multiplicity of zeros and poles of a meromorphic matrix or operator 
function was defined e.g. in [5]. Here we use the following characterization of the 
pole multiplicity (see [1, Lemma 4.1]): If A(z) is a meromorphic function whose 
values are bounded linear operators in a Banach space 93 and which has a pole a 
with Laurent expansion 

(2.1) A(z) = (z — cc)~kA„k + ...+(z—a)~1A^1+A0 + ... 

for z near a, z ^ a, then the pole multiplicity of a with respect to A(z) is the dimension 
of the range of the operator 

A-k 0 . 0 0 

A-k+I A-k> . 0 0 

A-2 A-3 . ..A_k 0 

A —2 • A-ic+i A-J 

in the space The matrix A will be called associated to the singular part of the 
expansion (2.1). 

In the following we need two simple properties of the pole multiplicity, which 
are easy consequences of the characterization given above. 

a) If A(z) is as above, is a bounded linear mapping from a Banach space 
2?! into S , and T2 is a bounded linear mapping from © into 8 l 5 then the pole multi-
plicity of a with respect to T2 A(z)Tl is not greater than the pole multiplicity of a 
with respect to A(z). 

b) If a is an isolated eigenvalue of the operator Tin S and a pole of the resolvent 
of T, then its pole multiplicity with respect to this resolvent is equal to the algebraic 
multiplicity of the eigenvalue a. 

L e m m a 2.1. Let A(z) be a meromorphic (nXn)-matrix function with a pole a 
of multiplicity x and Laurent expansion (2.1), and let Y(z) be an (nXn)-matrix func-
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ti on, holomorphic at Z = OL. If there exists a subspace Jzf c$R(y(a)) such that 

(2.2) A.jXtzZ, A-jX± = {0}, j = l,2,...,k, 

then A (z) Y(z) has at z = a a pole of multiplicity x. 

P r o o f . The singular part of the Laurent expansion of A(z)Y(z) at z=ac has 

the associated matrix 319), where $ = = l j 2 k, Y i j - = J f Z J y Y ( i- J\oc) if 

i ^ j , Yu:= 0 if / < / , i,j= 1, 2, ..., k. Put 7=1,2 where P 0 is the 
orthogonal projector onto i f . According to (2.2), the range of 219) coincides with 
the range of 919)0, and the range of ?)0 is & k = £ e + ... +JSf. On the other 
hand, the full range of is obtained if 91 is applied to £fk . The lemma is proved. 

2. Consider now a function 0£S"X". If is a pole of 0, we denote its 
multiplicity by 7r(a). For some j, 1 =/=/, a coincides with ocj in a regular representa-
tion (1.13). We denote by x(a) the order of the corresponding factor Bj of the 
Blaschke—Potapov product in (1.13), that is 

«J 
x(a) = 2 dim PJk. 

k= 1 

According to [2, § 3.4], x(a) coincides with the number of negative squares of the 
kernel SB , and the number of negative squares of SYj is x(ci) plus the number of 
negative squares of where Yj is given by (1.16) and the representation (1.13) 
is again supposed to be regular. 

If 0£D f l , then we denote by v(a) the dimension of the algebraic eigenspace, 
corresponding to a - 1 , of a contractive operator T in IIx in a representation (1.9) 
of 9. This notation is correct because of [9, Theorem 11.2] and the following theorem. 

T h e o r e m 2.2. If 0€S£X" and o^X) is a pole of 0, then 7t(a) = x(a). I f , 
additionally, 0£X)9, then 7i(a) = x(a) = v(a). 

P r o o f . First we show that the multiplicity of the pole otj of BJ1 in (1.14) is equal 
"J 

to 2 dim Pjk • As the pole multiplicity is invariant under a fractional linear trans-
t=1 

formation of the independent variable, we may here suppose a ; = 0 . Instead of Pjk 

we shal 1 briefly write Pk, k = 1, 2, ..., k}. Then the matrix associated with the singular 
part of the expansion of Bj1 at z = 0 is 

Pk. 0 ... 0 . 0 
P k t - i - P k j P k j ... 0 0 

P2-P3 Ps-P, .- Pkj 0 
Pl~P"2, Pi~Pz ••• Pkj-l~Pkj Pkj 
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Evidently, its range is ft(/>
lij) + 9 i ( / ' k j _ 1 )4- . . .+ 5R(.Pi); therefore the dimension of "j 

this range is 2 dim Pk. Thus the pole multiplicity of <Xj coincides with the order 
*=i 

of Bj. 

Furthermore, we have 

9(z) = Bi (z)~1B2(z)~1... Bj-i (z) (z) Yj+j (z). 

From (1.15) it follows that Lemma 2.1 can be applied to A—By\ Y=YJ+1 and kj 
= (Pn), Hence Bj (z) Y}+x (z) has at z = a ; a pole of multiplicity 2" dim Pjk. 

k=l 
Finally 

B1(z)-iB2(z)-K..Bj_1(z)-i 

is holomorphic and boundedly invertible at z=a j . Therefore the pole multiplicity kj 
of 9(z) at z=cr.j is ^ dim Pjk, that is n(<xj)=x(ctj). 

(t=i 
To prove the second statement, consider a representation (1.9) of 9. According 

to the statements a) and b) in §2.1, we have x(a J)^v(a J) . On the other hand, the 
spectrum of T outside the unit disc consists of eigenvalues of total multiplicity x 
(Propositions 1.2 and 1.5). Hence 

i i 
x = 2 *(<*;) = 2 Ha,) = *> 

• f = l 7 = 1 

and x(a.j) = v(aij), j=l, 2, . . . , / , follows. The theorem is proved. 
z — B 

We mention that for a fractional linear transformation z—£(z):=- -=, 
1 — zp 

| j? |<l, P^o of ® onto D the function 91(C):=9(z) always has the property 
O6D0i. Also, it is easy to check that 0^Sn

x
Xn implies 91£Sn X n . 

C o r o l l a r y 1. 9aSn
x
Xn has poles in T) of total multiplicity x. 

Let now F£C"X n be given. Choose a, R e a > 0 . Then by Proposition 1.1 
the function 9: 

9(z) = / - 2 R e a ( F ( z ) + a / ) ~ 1 

belongs to S"x", and (see [5]) the poles of 6 coincide, including multiplicities, with 
the zeros of F(z)+txl. 

C o r o l l a r y 2. If C£Xn and R e a > 0 , then the function F(z)+al has in £> 
zeros of total multiplicity x. 

The corresponding conclusion for a function <2€N£X" reads as follows. 
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C o r o l l a r y 3. If g€N£ x " and Im £ > 0 , then the function Q(z) + pl has in 
G+ zeros of total multiplicity x. 

As an application, consider the function Q: 

Q(z) = Q0(z)+ Z 2((z-^)kBjk + (z-cc*)kB]k), j=lk=1 
where (20£N{|Xn, Bjk are arbitrary (nXn)-matrices and k = l,2, ..., kj; 

i 
j= 1, 2, . . . , / . It follows as in [1, Satz 4.5] that 0€N£X n , where x= 2 *j> 

'BjkJ 0 ... 0 • 

*; = dim ^ BJ3 0 • 
.Bji Bj2 • •• Bjkj, 

Hence Corollary 3 implies that for each j8, Im ^ > 0 , the function Q (z)+pi has 
zeros of total multiplicity x in 

§ 3. Generalized zeros and poles of negative type on the boundary 

1. D e f i n i t i o n . Let F^Cx
Xn. The point z0ddT) is called a generalized pole 

(or zero) of negative type and multiplicity n (z0) for F, if for each sufficiently small 
neighbourhood U of z0 there exists an n(U)>0 such that for oc>w(U) (or 0 < a < 
<«( l l ) , resp.) the function F ( z ) + a / has zeros of total multiplicity 7r(z0) in UHT). 

To explain this definition e.g. in the case of a generalized pole, let us take a 
scalar function F. Instead of F we consider its continuation F to {z: |z| ^ 1} (see 
§1.1) and assume that it has been continued analytically also to arcs of the unit 
circle |z| = 1 if possible, that is if the boundary values of F at the points of this 
arc exist and are purely imaginary. Suppose this continuation F h a s a pole at z0£dT>. 

If x=0, that is F^Co1), then R e F ( z ) s O for all z(£D f. What is more, 
for each 9, 0<9<7r/2, there exists a 9lt 0<31<Tr/2, such that the relations z„€l>, 
— 9 < a r g (z„—z0)<9 and z„-*z0 imply that F(z„) tends to infinity and 
<a rg F i z ^ ^ . 

On the other hand, if x > 0 , there may be poles z0 on dT) with the property 
that there exists a sequence (z„)c5>, zn—z0, such that F(z„) tends to infinity along 
the negative real half-axis. Moreover, it turns out that there may be a finite number 
of points z0 on c>T) which are no poles but which also do have the property F(z„) — 
for some sequence (z„) c D , zn-*z0. These two kinds of points z0 are the generalized poles 

We write Cx etc. instead of C* x 1 . 
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of negative type. We mention already here that, for each point z€ dl) which is not a gene-
ralized pole of negative type, there exists a neighbourhood U of i and a ? > 0 such that 
Re F ( z ) ^ — f for all zGUHD (see the Corollary subsequent to Theorem 3.5). 

We show that the poles in D of F£ C"x" have the same property as generalized 
poles on dD. 

P r o p o s i t i o n 3.1. Let FeC"x
xn. If z0£X> is a pole of multiplicity 7t(z0) of F, 

then for each sufficiently small neighbourhood U of z0 there exists an «(U)=-0 such 
that a>«(U) implies that the function F(z) + a/ has zeros of total multiplicity 
7t(z0) in 11. 

P r o o f . Forall a » 0 , the point z0 is also a pole of multiplicity 7t(z0) of F (z )+a / . 
We choose a disc (£0cX) with centre z0 such that z0 is the only pole of F in (£0. 
Then F is holomorphic on £ 0 \ { z 0 } and we consider, for sufficiently large a=»0, 
the logarithmic residuum (see [5]) 

—i-rtrace /*F ' (z)(F(z)+a/)~ 1 dz = trace f F'(z)(a~1F(z) + l)-1dz. 
2711 ac0

 2 7 t , a daQ 

If a is large, this value is zero; hence for these a the total multiplicity of the zeros 
of F(z) + a / in £ 0 is equal to n (z0). 

For the zeros of F€C"Xn another simple application of the logarithmic residuum 
theorem gives the following result, the proof of which is left to the reader. 

P r o p o s i t i o n 3.2. Let FeC"x
Xn, det F(z) ^ 0 . If z0 is a zero of multiplicity 

n(z0) of F, then for each sufficiently small neighbourhood U of z0 there exists an n(U) > 0 
such that 0<a< /7 (U) implies that the function F ( z ) + a / has zeros of total multi-
plicity ju(z0) in U. 

P r o p o s i t i o n 3.3. Let F£Cn
x
Xn, det F(z) ^0. Then the following statements 

are true: 
a) F - W / " (F- 1 (z ) :=F(z ) - 1 ) ; 
b) the zeros (poles) of F in X) coincide, multiplicities counted, with the poles (zeros) 

of F-1 in S>; 
c) the generalized zeros (poles) of F of negative type on dT) coincide, multiplicities 

counted, with the generalized poles (zeros) of F-1 of negative type. 

The proof of a) follows immediately from the definition of the class C^x", 
while b) is a general property of zeros and poles of matrix functions. To prove c), 
consider e.g. a generalized zero z0£dT> of F of negative type and choose a neigh-
bourhood U of z0 such that UPlD does not contain any zero or pole of F. Then 
the statement follows easily from the identity 

a F i z ^ F i z r i + a - " 1 / ) = F(z) + a / ( z g l i n » ) . 

13 
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2. Proposition 3.1 and Corollary 2 of Theorem 2.2 imply that the total multi-
plicity of poles in 2) and. generalized poles of negative type on dT> of a function 

C"x
Xn is at most x. We shall show that this multiplicity is exactly * (Theorem 3.5). 

To this end, we consider the operator V of (1.6) which is maximal isometric in i l x . 

P r o p o s i t i o n 3.4. Let F6C"X", 0£35 f. The point z0635 is a pole in D, or a 
generalized pole of negative type on 9X>, of F if and only if z^1 belongs to o0(V~l); 
in this case 7i(z0)=xz-i (V-1). 

P r o o f . Let z0 be, say, a generalized pole of negative type and multiplicity 
7i (z0) of F. Then for each sufficiently small neighbourhood U of z0 there exists ah 
n (U) =>0 such that for a=-«(U) the function F(z) + al has zeros of total multi-
plicity n(z0) in HDD. 

The function 6 given by (1.1) and its contractive operator T i n representation 
(1.9) will now be denoted by 6a and Ta, respectively. Then, by (1.1), 0X has poles 
of total multiplicity n(z0) in lif]£>. Theorem 2.2 implies that Tx\£Ca has eigen-
values of total multiplicity 7r(z0) in (XiflU) - 1 , where jS?a denotes a x-dimensional 
nonpositive invariant subspace of Tx with \o(Txl-S^Sl. If at<~ then | | T x - F_ 1[ | - 0 
(see the proof of Proposition 1.5) and Proposition 1.4 implies that z " 1 is an eigen-
value of algebraic multiplicity n(z0) of This reasoning can be reversed, 
and the statement follows. 

We can now state the main result of this section. 

T h e o r e m 3.5. Let F^C"*". Then F has poles in T) and generalized poles of 
negative type on dT> of total multiplicity x. I f , moreover, det F(z) ^ 0, then F has 
zeros in £) and generalized zeros of negative type on dT) of total multiplicity x. 

This follows immediately from Propositions 3.4 and 3.3 if we only observe 
that the condition 0€® F can always be fulfilled at the expense of a fractional linear 
transformation of 35 onto itself. 

By Proposition 3.4 and the definition of g appearing in the representation (1.8), 
the generalized poles of negative type of F are the zeros on 3D of the function g. 
Suppose the point z£dT> is not a generalized pole of negative type of F€Cx

Xn, 
and choose an open arc AcdT> which contains z and has a positive distance from 
all generalized poles of negative type of F. Consider the decomposition 

Ilx — n@Il'x, fl := E(A)n„, 

where IIX is the space that plays a role in the representation (1.6) of F by a unitary 
operator V, and E denotes the spectral function of V (see [11]). Let the corresponding 
decomposition of V be V= V® V'. Then 

F(z) = F(z) + F'(z), 
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where F(z):=T*E(A)(V+ zl)(V-ziyiE(A)r. As /7 is a Hilbert space (see [11]), 
we have CXn. Moreover, F' (see the beginning of § 3) is holomorphic on A. 
This implies the following 

C o r o l l a r y . Let Ff__C"x
x". Then for each point zfr)T> which is not a generalized 

pole of negative type of F, there exists a neighbourhood U of z and a number y such 
that Re F ( z ) i - yl for all, z ^ U n i ) . 

: § 4. A generalization of Rouche's theorem 

1. We denote by Qi"'n the set of all (n X w)-matrix functions F which are defined 
and holomorphic in and admit a representation F=y~1 Y with a bounded outer 
function y and a bounded holomorphic («X«)-matrix function Y in I) (equivalent 
definitions are given e.g. in [13]). Then the function 

det F(z) = y(z)~" det Y(z) 

belongs to the class 3 ' ( = 3 1 X 1 ) , hence it has, almost everywhere on finite 
nontangential limits which are, almost everywhere, different from zero. Therefore 
the nontangential boundary values F(Q of F, which exist almost everywhere on dT>, 
have an inverse F ( ( ) _ 1 almost everywhere. 

The function F()dS>nX" is called outer if det F0(z) is an outer function. In 
this case we have det F„(z)^0 (z£T>), hence F 0 (z) _ 1 exists for all zgD and the 
function Fq1 belongs again to $)nyn . 

The function is said to have an inner factor of order x if it admits a 
representation 

O 

(4-1) F(z) = C / 0 ( ^ 5 , ( z ) ) F 0 ( z ) , 

O 
i 

where Fad&"x" is an outer function and U0 JJ Bj(z) is a regular Blaschke— 
Potapov product of order x (see § 1). J = 1 

Le m m a 4.1. Let f be a complex function which is holomorphic in X) and has 
no zeros there, and denote by A r g / a continuous branch of the function a rg / . If 
y:=sup {|Arg/(z) | : zgD}<«>, then f is an outer function. 

2y P r o o f . Choose an integer n such that n>—. Then the function 
, • . n 

f i - - f i ( z ) H f ( z ) y i n = \ f ( z ) \ l l n ™ p [ ± A r g f ( z ) } has the property R e / 1 ( z ) > 0 (z€D). 

By [14, p. 51, Exercise 1 ] , / j is an outer function; t h u s / i s an outer function. 
13* 
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2. Now we prove the following generalization of Rouche's theorem. 

T h e o r e m 4.2 Suppose F,Gi®nXn, d e t ( F ( z ) - G ( z ) ) ^ 0 in 35 and 

(4.2) 11(71.0^(0_1II 35 1 a.e. on dT>. 

If F has an inner factor of order xF(<oo), then F—G has an inner factor of order 
xF_G^xF. If additionally, F(F-G)-1\a^L"1

xn(d'B),1) then xF_G = xF. 

R e m a r k . From the proof it will follow that the difference xP—xF_G is the 
total multiplicity of generalized poles of negative type on dT> of the function 
(F+G)(F-G)-1(=-I+2F(F-G)~1), which belongs to C^Xn for some x ' ^ x F . 

P r o o f of T h e o r e m 3. We write the representation (4.1) of F in the form 
F= BF0. Then F— G = (i? — GFQ-1) F0 , GF 0

- 1 6^ n X " , F(F-G)~1=B(B-GFo1)-1 

and 
IIGCOnO"1« = I I G i O F o © - 1 ^ - 1 » ^ 1 a.e. on dT>. 

As F0 is outer, the order of the inner factor of F—G coincides with the order of 
the inner factor of B—GF~l. Therefore, in the proof of the theorem we may sup-
pose that F—B. 

The matrix B(Q, |C| = 1, is unitary, hence (4.2) implies ||G(OI|s=l a.e. on a®. 
Applying [13, Lemma 1.1] it follows that | |G(z) | |^ l for all z£35. This is e q u i -
valent (see [2, Lemma 3.1]) to G6SJX" and G*€SJ*", where G* is the (nXn)-
matrix function G*(z):=G(z*)* (z€3>). 

Consider now the function B*~1G*. According to [2, Lemma 3.5] it belongs 
to some class S"x", where x' = xF. Then the same is true for GB [2, Folgerung 3.3], 
and both functions have poles in X) of total multiplicity x' (Corollary 1 of Theo-
rem 2.2). 

The condition det ( 5 ( z ) - G ( z ) ) ^ 0 implies that ( . T - G B - 1 ) - 1 exists. More-
over, it is easy to check that the function C: 

(4.3) C(z) = ' ( / + G ( z ) B ( z ) - 1 ) ( i r — G ( z ) 5 ( z ) - 1 ) - 1 = — 7+2(7—GCz)5(z ) - 1 ) - 1 

belongs to C",x". According to Theorem 3.5 it has poles of total multiplicity x"(=x') 
in 35, and the difference x' — x" is the total multiplicity of its generalized poles of 
negative type on dD. In view of (4.3), the function I—G(z)B(z)~i has zeros of 
total multiplicity x" in 35. By [5, (1.3)], for a meromorphic (/IX«)-matrix function 
the difference of the total zero and total pole multiplicities in 35 coincides with 

') denotes the class of (nXn)-matrix functions defined a.e. on dT> with entries in 
XjO©). 
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the corresponding difference for its determinant function. Therefore, using the 
relation 

d e t ( 5 ( z ) - G ( z ) ) = det ( / — G(z)£(z) - 1 ) det 5(z) 
we find that 

xm = xF + x"-x', 

where x'" denotes the total zero multiplicity of B — G in D. Observing that x"^x', 
the inequality x " ' ^ x F follows. 

Therefore, the difference B—G admits a regular representation B—G—B0H 
with a Blaschke—Potapov product B0 of order x"' and an («X«)-matrix function 
H which is holomorphic in X) and does not have any zeros there (cf. the proof of 
[2, Satz 3.2]). The first statement of the theorem follows if we show that H is an 
outer function. But this is true if and only if det i / ( z ) - 1 is an outer function. 

We have H=2B~1(I+Cr1B (see (4.3)). According to (1.8), C admits an 
integral representation 

1 271
 _I_ 1 

(4.4) C(z) = / S + — / - ¿ I d m + j ^ B i z ) , 

where S, I , D and g have the properties mentioned in § 1.3. It follows that 

H{z)~i = -y B(z) ((/+ iS)g (z) +X> (z) + C0(z)) B0 (z)g (z) 

where C0 denotes the integral in (4.4). As Re C„(z)sO (z£®) and g, D are poly-
nomials of z and z - 1 , for each entry of the matrix H(z)~1 the argument is bounded 
on 35. Then the same is true for det H(z)~1. Hence Lemma 4.1 implies that 
det H(z)~1 is an outer function. 

Let now i ( 0 ( - B ( 0 - G ( 0 ) _ 1 6 l i x " ( № ) . Then according to (4.3) C€LiXn(e>£), 
and it remains to show that C does not have generalized poles of negative type 
on dT>. ' ' 

The function C€C£,X" can be written as the sum of a rational function Q€C£*" 
with poles in X> and a function C2dCx*n, which is holomorphic in D, x'=x1+x2. 
The function C2(0> also belongs to L\xn(d'S), and it is sufficient to show 
that x2=0. This will be accomplished if we prove the following two statements1): 

a) C 2 € / / i x " ; 
b) If for some we have Hlxnf)C"xV0, then x=Q. 
To prove a) we first observe that EiCnxn implies EeH%xn for ¿ < ( l + 2 x ) _ 1 . 

Indeed, as 
\\E(z)\\> =§ (l/nrnax|e ; (z)|)5, 

*) For the definition of the Hardy classes H^X B see e.g. [13]. 
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it is sufficient to show that the entries eu of E belong to Hs. According to (1.8), 
every etJ is of the form g1(z)~1h(z), where h£Ht for all ¿ < 1 (see [15, II. 4.5]) 
and is a polynomial of degree ^ 2 x with zeros on dT>. If ¿<(1+2j<) _ 1 , we 
choose S ^ d x ) - 1 and <52<1 so that Setting 
and q = 8 i 1 (d l + Sz) we obtain 

Zn 2x 2n • 
f |g1(re i 3)-1 / i(re i 9) | i i /9 s ( / | g l ( r e i s ) | - * ' d S i f p ( f \h(rJ*)l«dB)v* = 
0 0 0 

2ti 2* 
= ( / \gi(re")\-sid9flp(f \h(rei3)\s*d9)llq^ ~ 

0 0 

for all 0 < r < l . Thus E£H^xn. In particular, C ^ H ™ " . As C 2 ( C ) € ^ x n 0 D ) , 
by a theorem of V. I. Smirnov (cf. [15, II. 6]) we have C 2 6 / / ; x " . 

To prove b), we use the representation 

1 271 

E(z) = i Im £(0) + — f (e'9 + z ) ( e i 9 - z ) - 1 Re £(e'9) d9 (z<EX>), 
2n 0 

which holds for arbitrary functions E£H"xn, and the representation (1.8): 

1 2* 1 
E(z) = i S + j ^ j f ( e i ' + z ) ( C

i ' - z ) - i i / I ( 9 ) + — C ( z ) , ; 

valid for E£C"Xn, 0£ I)£ . Making the right-hand sides equal, multiplying by g(z) 
and using Stieltjes—Livsic inversion formula it follows that ' 

f g(eia)ReE(ei9)d9 = f dZ (9) S 0 

whenever 0 s 9 ^ 8 2 ^ 2 1 1 . Therefore Re £ ( e i 9 ) s 0 almost everywhere on [0, 2n\. 
Hence R e £ ( z ) > 0 (z€D), and x=0. 

The theorem is proved. 

§ 5. Further examples 

1. In this section we consider two examples of functions of the class N x
x " . 

By the connection between the classes N" x " and C£x n mentioned in § 1.1, the notions 
of generalized zeros and poles of negative type carry over to functions <2€N"xn 

in the following way. Let (p be a linear fractional mapping f rom D onto (£+. The 
point U J, t0=(p(C0) (ICol = l), is said to be a generalized pole (zero) of 
negative type and multiplicity n(t0) of Q if Co is a generalized pole (or zero, resp.) 
of negative type and multiplicity 7t(i0) of F=iQo(p, or equivalently, if for each 
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sufficiently small neighbourhood U of ?0 (we admit .the case /0=<=•=>) in the closed 
complex plane there exists an w(U)>0 such that .for a>« ( l t ) ,(or 0<a< / i (U) , 
resp.) the function Q(z) + ial has zeros of total multiplicity 7t(/0) in UHCE+. 

Let g0£NgX". Then Q0 has a representation ; 

oo 

6o(z) = A0 + zB0+ f ( ( / - z ) " 1 - / ( l + z 2 ) - 1 ) i / I ( / ) 

with hermitian («X«)-matrices A0, B0; 2?0=0, and a nondecreasing («Xn)-matrix 

function I on Rx, f (1 +t2)~1d£(t)«>=. Now let Bx be a hermitian (/iXn)-matrix 

and let us consider the function Qx : 

(5.1) Qi(z):=Qo(z)~zBi. 
Then 

oo 

Nq(Z,Q= J (t-.z)-1^-^)'1 dZ(t)+B0-Bx, 
— oo 

and, considering NQ (z, z) for |z| sufficiently large, it follows that Q^N"*", where 
x dénotes the number of negative eigenvalues of the matrix B0—B1. It is easy to 
see that Qx has a generalized pole of negative type and multiplicity x a t » . More-
over, Theorem 3.5 implies: 

P r o p o s i t i o n 5.1. If det Qx(z)^0, then the function Qx in (5.1) has zeros 
in (£+ and generalized zeros of negative type in JRIU{°°} of total multiplicity x, 
where x denotes the number of negative eigenvalues of the matrix B0—Bx. 

In special cases this result can be given a more explicit formulation. Here we 
consider the case where n = 1 and 

(5.2) Qt(z)= f (t — z)-1do(t) + a — z 

with a a real number and a a nondecreasing function on Rx such that 

: . / ( l - H i D - i ^ o U « ; : 

— oo -

without loss of generality, the coefficient of z has been chosen — 1. . - 11 

P r o p o s i t i o n 5.2. The function Qx in (5.2) has either exactly one zero in or one generalized zero of negative type in: Rx(J {oo}. This (possibly, generalizedj 
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zero za is ~7-~ °° and of multiplicity 1. It can be characterized among the points of 
C + by the following two properties: 

CO 

a) / \t-zjT*da(t)*l, 
— 0 0 

b) / {t-zj~1da(t)+a-z, = 0. 

P r o o f . The first statement including the claim about the multiplicity follows 
from Proposition 5.1. 

Next we show that a zero or generalized zero z a £ £ + of (2i has the properties 
a) and b). If za is a zero (zaC(£+), this is obvious if we observe that 

Let now za6i?!- Then there exists a sequence ( z n ) c ( t + , z„—za, Im z„\0 (w— 00) 
00 

such that Qi(zn)—0, Im {2i(z„)<0. It follows that (Im z„) ( / \t-zn\~2do(t) - l ) < 0 , 
— 00 

or 
00 

f \t-zn\-*do(t)^i, n = 1,2,.... 
— 00 

00 

Applying Fatou's lemma we get j ( / — a n d Lebesgue's theo-
rem gives 

00 

0 = lim Qx(z„) = f (r-zJ-MaiO + a-z,. 
/|-*-oo v 

— 00 

It remains to show that a) and b) have at most one solution za in (£+. To this 
end we introduce the n1 -space n1:—(i@Li{&) of all pairs {£, x}, x^L^o) 
with indefinite scalar product 

00 

[{{, x}, {ri, y}] = -&*+ f x(t)y(t)* da(t) ({, I,€C; j?€L,(a)). 
— 00 

It is easy to check that the operator A: 

(5.3) A{£, x} := {«£- / x(t)da(t), *(/)+«}, 
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which is defined for every {£, x}£FI1 such that the function t—tx(t)+^ belongs 
to L2(<t), is selfadjoint in ni. In order to find its eigenvalues X we have to solve 
the equation 

(5.4) (A-XI){Z,x} = 0. 

From (5.3) and (5.4) it follows that x(t)= -{(t-A^Cir-a.e). In particular, 

f \t — X\~2 Moreover, the first component in (5.4) gives 

(5.5) a - A + / (t-X)~1da(t) = 0. 

Conversely, it is easy to see that any solution X of (5.5) with j \t—X\~2do(t)<°° 

is an eigenvalue of A with corresponding eigenelement {£, — £(/—A)-1} (£^0) . 
Since A is a selfadjoint operator in TIX, it has exactly one eigenvalue A0£(£+ 

such that the corresponding eigenvector is nonpositive: 

-1+ / \t — X0\~2do(t) S 0. 
— OO 

Therefore, zx=X0 is the only solution of the system a)—b) in £ + . The proposition 
is proved. 

R e m a r k 1. The zeros of the function Qx are the fixed points of the function 
oo 

Qo- Qo(z)'-= f ( t—z)~1do(t)+ai , and by a fractional linear transformation of (£+ 

onto X) the equation Q0(z)=z is transformed into G0(()=C, where G0 maps ® 
holomorphically into itself (G0€S0). However, the usual fixed point argument 
does not seem to be applicable in this case, as the boundary values of G0 on dX> are, 
in general, discontinuous. 

R e m a r k 2. Suppose that the function a in (5.2) satisfies the additional con-
dition 

/ (t-x)~2do(t)= - for all 

where denotes the set of all points of increase of a. Then for every real a the 
oo 

function Qx in (5.2) has one and only one zero z a 6£ + \ (E f f and f \t—za\~2do(t)^\. 
— oo 

R e m a r k 3. Besides the zero za, the function Qx can have an arbitrary number 
of real zeros which do not satisfy condition a). 
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To see this, we suppose tha t the funct ion a in (5.2) is cons tant on s o m e interval 
(a, b) which is special in the sense tha t 

a oo 
lim f ( t - x ^ d a i t ) - - ^ , lim f {t-x)-1 da(t) = ~. 

X \ a J x t b J 
— oo b 

Then Qx is ho lomorph ic in (a, b) a n d Q1(a-(-0)=—oo; Qx(b —0)=«>. The re fo r e 
it has a t least one zero in (a, b), more exactly, it has an o d d n u m b e r of ze ros in 
(a, b), counted with multiplicities. Deno te these zeros by I t is 
easy to see tha t Q i ( x 2 j ) s 0 , 1, 2, . . . , tha t is x2j=za, j= 1, 2, . . . , k. H e n c e 
the funct ion Qx has in (a, b) either one simple zero, either zeros of total mult ipl ici ty 
three ; in the second case the zero x2 coincides with za. 

Consequent ly , if a has special intervals (a,-, bj), 1, 2, . . . , N, then 
the corresponding func t ion Qx has in n o more t h a n one of these intervals ze ros 
of total multiplicity three, in each of the remaining intervals it ha s exactly one (s imple) 
zero. The case N=°° occurs, fo r example, if Q1 is a me romorph i c func t ion wi th a n 
infinite n u m b e r of poles. 

We mention that any simple selfadjoint operator A in a -space is unitarily equivalent 
to the operator A appearing in the proof of Proposition 5.2. Here A is called simple if there exists 
an ei T>(A), [e,e]*^0, such that 

tf^c.l.s.K/r-C/J-^iCeG.neOi)}. 

Indeed, suppose [e, e]= — 1 and consider the decomposition 

(5.6) n x = s e 0 + & l y £ e 0 = i.s. m , s e ^ l 

Then is a Hilbert space with scalar product [., .], and j£?0 can be identified with (£ by writing 
e={l ,0} with respect to the decomposition (5.6). 

If Ae={a, h), a€<£, then the matrix representation of A is 

with some selfadjoint operator An in the Hilbert space .2V Now an easy calculation gives 

(A-Cly^e = ({1, -(All-CI)-1h), Z=i<x-t+KAli-Urlh,h])-1. 

It follows that jSf,=c.l.s. {(/4n — ±C€C+}. Hence AIX is unitarily equivalent to the operator 
of multiplication by the independent variable 

in the space ¿¡(tr), (r(i);=[£' tA, h], where Et is the 
spectral function of An and h corresponds to the function / i ( / )=l belonging to L2(a). With this 
realization of and An, the matrix in (5.7) defines the operator A in (5.3). 

This model of an" arbitrary simple selfadjoint operator in a rc, -space (or, more generally, in 
a 7tm-space) and the characterization of its eigenvalues" by conditions a) and b) were first given in 
[4; i n , §6]. 1 
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2. In this section we consider an («Xn)-matrix function 0 o €NJ x " of the form 

&,(*) =" ¿ 7 ^ + fit-z)-*dZ(t), 
j=ltj + Z J 

where Bj are nonnegative hermitian matrices, 0~=zt 1 ct 2 ^. . . < / , , and I is a non-
decreasing (nX/t)-matrix function on [0,°°) with the properties £(0 + ) = I ( 0 ) = 0 , 

/ + Then the function Q: Q(z)=zQ0(z2) has the representation 
0 

2 ji 
l I ( s 2 ) s ^ 0, 
^ ( s 2 ) s si 0. 

f 2 - 1 J 

/ 
According to the example at the end of § 2.2 we have 0 € Nx

x where 2 dim Bj = x 
j=i 

Evidently, Q is antisymmetric with respect to the imaginary axis: Q(—z*) = 

P r o p o s i t i o n 5.3. The function Q(z) + il has zeros of total multiplicity x in 
(£+. These zeros Zj, j=l, 2, ..., m (=x), are on the imaginary axis and 0< |z J |< i 1

2 . 

P r o o f . The first statement follows immediately from Corollary 3 of Theorem 
2.2. To prove the second statement, we first consider the case n=1. To find the 
solutions of the equation Q0(z2)= —iz-1, l m z > 0 , we put z=is. Then it takes 
the form Q0(—s2) = — s - 1 , and a simple consideration of the graphs of Q0(—s2) 
and — s h o w s that this equation has x zeros in (0, and that these zeros are 
smaller than t1. By the first statement of the proposition, these x zeros give the 
only zeros of Q(z)+il in G + . 

Let now n be arbitrary and consider a zero z0£(£+ of Q(z) + il. If z0 is outside 
the interval (0, i'i2) of the imaginary axis, then Q is holomorphic at z0. Hence 
there exists a vector such that 

But we have shown (case « = 1) that this is impossible. 
As an application of Proposition 5.3 we consider the Schrodinger equation 

(5.8) ^ p - - V ( r ) i K r ) + k2t(r) = 0, <K0) = 0, 
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with a short range potential V: V(r)=0 if for some K^Z^. То 
find the nonreal resonances к of the problem (5.8) we observe that for r > a the solu-
tion ф of (5.8) is ф(г-, к2) = Ceikr and, considering r = a, we get ф'(а; к2)ф(a; k2)~1 = ik. 
This equation can be written as кф(а; к2)ф'(а\ k2)~1 + i=0. But ф(а; г)ф'(а: z ) - 1 

is a function of class N„. Indeed, ф(г\ z) satisfies the equation 

ф"(г;г)-У(г)ф(г;г) + гф(г;2) = 0, <A(0;z) = 0, 

and it follows that 
ф(г; 2)ф\г• 1)-х-ф'(г-2*Гхф(г-z*) = 

= (г-г*)ф'(г; z*)-1 J \ф(s; z*)\2ds^'(r-z)-\ 
о 

Evidently, the number of negative poles of ф(а\г)ф'(а;г)-1 is equal to the 
number of negative zeros of ф'(а; z), that is the number of negative eigenvalues X 
of the boundary problem 

(5.9) ф"(г)-У(г)ф(г)+Хф(г) = 0, ф( 0) = 0, ф'(а) = 0. 

Proposition 5.3 now implies the following statement: 

The number of nonreal resonances of (5.8) in is equal to the number of nega-
tive eigenvalues X of the boundary problem (5.9). 

Without going into details we mention that Proposition 5.3 can be used to 
prove a similar statement in the case of a vector equation (5.8). 

Note. We use this opportunity to mention that in our paper [7] the statement of Satz 3.4 is 
incorrect. To make it correct, in formula (3.10) one has to replace e0 (R0) by ûo (Л0, resp.) and to 
define 

е 0 :=ЁО-1.ЛО(г) :=Л 0 (г) -2(1-г 2 ) г о / д I L ± £ ^ ! I 
Uoj-Ht-CCj^J 
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Carleman and Korotkov operators on Banach spaces 

N. E. GRETSKY AND J. J. UHL, JR. 
t 

This paper is an attempt to use basic theory of vector measures as an approach 
to study certain types of classical integral operators and their generalizations. The 
first section begins with a look at the classical Carleman integral operators from 
L2 to L2. In the course a connection, which seems to us to be heretofore unnoticed, 
is established with operators whose truncates on large sets is compact into 
This is then generalized to the consideration of operators from any Banach space 
into the spaces Lp(p) 0S/)S«>. The second section is devoted to an application 
to a "folklore theorem" about weak compactness in Lm(p). Next specialization is 
made of the general results of section 1 to integral operators f rom one Lp space 
to another in section 3. A class of operators we call Korotkov operators are studied 
in section 4. The last section is devoted to extensions to general function spaces. 

1. Carleman operators 

We start with a description of the classical situation as motivation for the 
current work. The book of H A L M O S and S U N D E R [6] may be consulted for more 
details. Let (£2,1, n) be a finite separable measure space and let T h e a linear oper-
ator from L2(H) to L2(/J.). The operator T is called an integral operator if there is a 
H X ̂ -measurable function k such that 

(i) k(s, • ) / ( ' ) £ L i ( p ) for /¿-almost all s and all f£L2(n), 

(ii) f k ( - , 0 / 0 ) d f i ( t ) f L2(p) for a l l / i n L2(ji), and 
a 

(iii) Tf(s)= f k(s, t)f(t)dfi(t) almost everywhere for all / i n L2(p). 
a 

Received January 30, 1980. 
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It is an old theorem of BANACH [1] that such an operator is automatically con-
tinuous. An integral operator is called a Carleman integral operator if its kernel 
additionally satisfies 

(iv) k(s, •)£L2(JI) for /i-almost all s. 

Following Halmos—Sunder, Korotkov and probably many others, note that 
the last condition can be interpreted to mean that there exists a function g: Q—L2(p) 
such that g(s)(-)=k(s, •) for almost all s in Q. By the Riesz representation theo-
rem we may regard g as taking values in (L200)*(=i200) and read condition 
(ii) as saying (g( • ),f)£L2(/i) for a l l / i n L2(JI) and read (iii) as saying that Tf( •) = 
= (£ ( • )> / ) f ° r aH / i n L2{p). Moreover since (g(-),f)£L2(ji) for a l l / i n L2(p) 
and since L2(ji)*=L2(p) we see that g is a weakly measurable function into L2(n). 
Since L2(p.) is separable here, PETTIS'S measurability theorem [3 , I I . 2 . 2 ] shows that 
g is (strongly) measurable. 

Conversely if g: Q^L2(p.) is measurable and if (g(-),f)€L2(ji) for all / 
in L2(H), then a theorem of D U N F O R D and PETTIS [4 , I I I . 1 1 . 1 7 ] produces a /¿Xn-
measurable function k such that k(s, •)=g(s)(-) for almost all in Q with the 
property that 

<g( • ) . / > = / * ( • , 0 / 0 ) ^ 0 ) 
SI 

almost everywhere. Thus the operator on L 2 0 0 to L2(ji) defined by f—{g(-),f) 
is a Carleman integral operator. 

This proves the first theorem and sets the perspective of most of this paper. 

T h e o r e m 1. Let (Q, I , n) be a finite separable measure space. A linear oper-
ator T: L2(f.i) -*L2(p) is a Carleman integral operator if and only if there exists 
a measurable g: Q^L2(p) such that for each f in L2(ix) the equality (Tf)( •) = 
= <£(•)./> obtains almost everywhere. 

Throughout the remainder of the paper let (Q, I , ¡i) be an arbitrary finite 
measure space; let Lp(p), be the usual Lebesgue spaces and let L0(/i) be 
the space of all measurable (equivalence classes of) functions on Q under the topology 
of convergence in measure. 

D e f i n i t i o n 2. Let 0 a n d let A' be a Banach space. A linear operator 
T: X-*Lp(ji) is called a Carleman operator if there is a measurable function 
g: i2—X* such that (7x)(s) = (g(.y), x) almost everywhere for all x in X. In this 
case g is called the kernel of T. 

A quick application of the closed graph theorem shows that a Carleman oper-
ator is necessarily continuous. 



Carleman and Korotkov operators on Banach spaces 209 

Recall that [3, Chap. Ill] a Banach space X has the Radon—Nikodym property 
(RNP) if for any finite measure space ( i 2 , I , p) and for any bounded linear oper-
ator T: L1(p)-*X there is a bounded measurable function g: Q—X such that 

Tf= f f g d p , 
n 

as a Bochner integral, for a l l / i n 
The first theorem is a generalization of a theorem of KOROTKOV [ 1 0 , 11 ] and is 

closely related to a theorem of WONG [ 1 7 ] . 

T h e o r e m 3. Let and let X be a Banach space whose dual X* has 
RNP. A bounded linear operator T: X—Lp(p) is a Carleman operator if and only if 
there is a measurable function <P on Q such that 

|(7x)(S)| ||*|| <P(s) 

almost everywhere for each x in X. 

P r o o f . Suppose T is a Carleman operator with kernel g. Then, for s in Q, 
we have 

|(7*)(s)| = |g(s)x| ^ | | g ( s )M|x | | x . 

Since g is measurable, so is ||g(*)llx*- Taking = proves the necessity. 
Conversely, suppose there is a measurable function Q—R such that 

| ( 7 x ) ( j ) | ^ 0 ( s ) almost everywhere for all x£X. Without loss of generality, 
we may assume that <P(w) is everywhere finite. For n^ 1, define the sets 
E„ = [n — and note that <£ is bounded on each En. Define the operator 
E„ on every Lp by 

Enf=f/.E„-

By hypothesis, EnoT has its range in (p); moreover an application of the 
closed graph theorem shows that 

E„oT: X - L„(p) 

is continuous. Define Sn: L^(p)*—X* to be the adjoint of EnoT and consider 
its restriction to L^p). Since X* has RNP, there is a measurable g„: Q—X* 
such that 

S„f= f f g n d n for all f£LM-
n 

Next observe that ({EnoT)x)(-) = (g„(-), x) a.e. by computing for / in I ^ f j i ) 
and x in X the integral 

/{E„T)xfdp = ( S n ( f ) , x) = < f f g n d p , x ) = f f ( g n , x)dp 
n a n 

14 
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where the last equality follows from the "commuting" of the Bochner integral with 
bounded linear operators [3, II. 2.9]. 

In particular, (g„('), x) vanishes almost everywhere outside E„ for each x 
in X. Without loss of generality, we may take g„(a>)=0 for co$En. Then g„ is 
still measurable and ((E„oT)x)(') = (gn(-), x) for all x in X, 

Now define g: Q-*X* by g(s)=g„(s) for s in E„ (recall that the E„ are dis-
joint and exhaustive). Then g is measurable and it remains only to show that 
(Tx)(s) = (g(s), x) almost everywhere for x in X. 

To this end, note that if h£Lp(ti), then 
m 

h = limhxFm in measure, where Fm = (J En. m m n= 1 
Hence if x€X, then 

Tx = lim (Tx)x F m = lim J (EnoT)x = lim J <gn( •), *> = m m „ = 1 m n=1 
= LIM < g ( - ) > * > X F „ = <g( •).*>> ffi 

where all limits are taken in measure. This completes the proof. 

The first corollary is implicit in STEGALL [16]. Its converse is also true, but 
we shall not prove it here because it is the main theme of Stegall's paper. 

C o r o l l a r y 4. If X* has RNP, then every continuous linear operator from X 
into (n) is a Carleman operator. 

P r o o f . If T: X—L^ifi) is a continuous linear operator, then | 7 x | ( - ) s 
21 ||x|| a.e.; apply Theorem 3. 

C o r o l l a r y 5. A weakly compact operator from an arbitrary Banach space into 
L„ (ji) is a Carleman operator. 

P r o o f . Let A'be an arbitrary Banach space and let T: Z — b e a weakly 
compact operator. Then T*: is weakly compact as is its restriction to 
Liip), By a classical theorem of DUNFORD, PETTIS, and PHILLIPS [3, I I I . 2 .12 ] , there 
exists a measurable g: Q—X* such that 

T*f= J f g d p , ftl^in). 

Now, by the proof of Theorem 3, we see that 

( ?* ) ( ; ) = <«(•),*> 

for all x£X, so that T .̂is indeed a Carleman operator. 



Carleman and Korotkov operators on Banach spaces 211 

The next theorem characterizes Carleman operators from X to Lp(n) in terms 
of compactness of the operator into (p). No R N P assumptions need be made 
on A'or its dual. This theorem appears to be new even in the classical case of Carle-
man integral operators from L2(p) to L2(JI). Recall that to each set E in I there is 
the associated operator E: LP(P)—LP(P) defined by Ef=fxE. Call a linear oper-
ator T: X~*Lp(p) almost weakly (or norm) compact into Lm(p) if for each s > 0 
there is a set E£E with p(Q\E)<s such that EoT is a weakly (or norm) com-
pact operator Jf into Lm(p). 

T h e o r e m 6. Let and let X be a Banach space. If a continuous linear 
operator T: X—Lp(p) is almost weakly compact into Lm(p), then T is a Carleman 
operator. Conversely, if T is a Carleman operator, then T is almost norm compact 
into L^(p). 

P r o o f . Suppose T: X—Lp(p) is almost weakly compact into Lm(p). Then 

there is a disjoint sequence (En) in I with (J E„ = Q such that EnoT: X—L^(ji) 
n = 1 

is weakly compact. By Corollary 5 each EnoT is a Carleman operator and thus 
is given by (EnoT)x=g„(-)x where g„: Q—X* is a measurable function sup-
ported on E„. Define g ( j ) = g n ( j ) for sf_E„ and proceed as in the proof of Theorem 3 
to prove Tx=g(~)x. Thus 7"is a Carleman operator. 

On the other hand, suppose T: X—Lp(p) is a Carleman operator with ker-
nel g. Since g is measurable, there is a sequence (g„) of measurable simple functions 
from Q to X* such that lim | |gn(-)~g(Ollx—0 almost everywhere. Fix e > 0 and m 
use Egorov's theorem to obtain a set E£Z such that p(Q\E)<e and lim | | g n (0 — 

m 
— ' ) l l x = ® uniformly on E. Since g must be bounded on E, EoT maps X into 
£„(• ) • Define the finite rank operators Tn: X—L^ip) by Tnx=y_Eg„(-)x. Then 

lim sup \]EoT(x)-EoTn(x)\\„ = \im sup \\XEg( • ) * - * * ? . ( 0*11- ^ 
n llxll s i „ U| |S1 

S lim sup sup|g(s)x-g„(s)x| = lim sup ||g(s)-g„(s)||x* = 0. 
n 11x1131 s€£ 'n s£E 

Thus, EoT\ is the uniform limit of finite rank operators and is con-
sequently a compact operator. 

At this point, we are again getting close to the theme of STEGALL [16]. In his 
recent study of the RNP in dual spaces, Stegall effectively works with Carleman 
operators from X to Lm{p) and proves that X* has R N P if and only if all oper-
ators from X to Lm{p) are Carleman operators. The connection is as follows: 
An operator T: X—L^p) is a Carleman operator if and only if the restriction 
of the adjoint T* on Lx (ji) is representable in the sense of [3, Chap. II]. 

14» 
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2. Weakly compact sets in L^f j i ) 

This section is a bit of a digression to some well-established but not so well-
known facts about weakly compact sets in Lca(fi). Probably this section should 
have been included in [3, Chap. VIII]; it certainly could have been. The subject of 
this section is a folklore theorem which explains the interchange between norm and 
weak compactness in and thus explains the interchange in Theorem 6. Prob-
ably all of this section should be attributed to GROTHENDIECK [5], but unfortunately 
the theorem which we are about to prove does not seem to be generally known. 
In keeping with the terminology above, a subset W of Lm(ji) will be called (rela-
tively) almost norm compact if for each £>0 there exists E in E with p(Q\E)<e 
such that %EW is (relatively) norm compact in 

T h e o r e m 7. (Folklore) If W is a relatively weakly compact subset of Lm(p), 
then W is relatively almost norm compact in 

P r o o f . Let Wbe a relatively weakly compact subset of L„(ji). By the factoriza-
tion theorem of DAVIS, FIGIEL, JOHNSON, and PELCZYNSKI [ 2 ] there is a reflexive 
Banach space R and a bounded linear operator T: R-*Lm{pL) such that WQ T(BR), 
where BR is the closed unit ball of R. By Corollary 5, the weakly compact operator 
T is Carleman. By Theorem 6, given e<0 there is E£I with n(Q\E)<s such 
that E T: R-*Lm(ji) is a compact operator. Thus /E WQEoT(BR) is relatively 
norm compact. This completes the proof. 

Note that the converse of Theorem 7 is not true. Indeed, if X* has the RNP, 
then any operator T: X-~Lm(p) is a Carleman operator by Corollary 4. Thus by 
Theorem 6, the operator T i s almost norm compact into L^(/x); i.e. T(BX) is rela-
tively almost norm compact in Lm(p) as in the conclusion of Theorem 7. But, if 
X is not reflexive, then T need not be a weakly compact operator; so, T(BX) need 
not be weakly compact in (p). 

Theorem 7 has an easy corollary which seems to have been known to Grothen-
dieck. To our best knowledge it was first stated explicitly by PERESSINI [14, Prop. 5]. 
Weaker versions of it were proved by ZOLEZZI [ 1 8 ] and KHURANA [8]. (See K H U -

RANA [9] for an interesting generalization to the vector-valued case.) 

C o r o l l a r y 8. If (Q, I , p) is a finite measure space, then a weakly convergent 
sequence in Lm(p) converges almost everywhere. 
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3. Carleman operators as classical integral operators 

The definition of a Carleman operator was motivated by that of a Carleman 
integral operator [6] from L2(p) to L2(jt). The definition of Carleman integral oper-
ator has a natural extension to the other Lp(p) spaces and it will be shown here 
that the natural extension coincides with the definition of Carleman operators on 
Lp(jx). Throughout this section (S, !F, A) and (Í2,1, /t) will be finite measure 
spaces. In addition p and r will be numbers such that and 
The number s will be conjugate to r in the sense that r _ 1 + j _ 1 = l . 

T h e o r e m 9. A continuous linear operator T: Lr(X)^Lp(p) is a Carleman 
operator if and only if there exists a XXn-measurable function k: SXÍ2—R such 
that k( -, y) in Ls(/1) for p-almost all y in Q and such that 

(7T)(-) = Jf(x)k(x,-)dX(x) 
s 

for all f in Lr(X) fi-almost everywhere. 

P r o o f . Suppose T: Lr(X)->-Lp(n) is a Carleman operator with kernel 
g: Q-~(Lr(X))* = Ls(X) so that 7 J ( . ) = ( g ( . ) , / ) . In order to produce a AX/t-
measurable function k such that k(x, j>) —(g(.v))(*) a.e., consider g ( ' ) / l lg (OL-
This is a bounded X,(A)-valued measurable function and is therefore /t-Bochner 
integrable. An appeal to a theorem of DUNFORD and PETTIS [4 , I I I . 11 .17] produces 
a Ax/¿-measurable function kx such that 

M * , y ) = ((gOO)(*))/llg(y)l!s 

for //-almost all y in Í2. Now set k(x, = 11̂ (̂ )11 y\ note that k is 
measurable. Now observe that f o r / i n Lr(X) and //-almost all y in Q, we have 

T ( f ) ( y ) = (g(y)J) = f(g(y)](x)f(x)dX(x)= Jf(x)k{x,y)dX(x). 
s s 

Conversely, suppose there is a jointly measurable function k: Sx£2->-R such 
that k(', y)£Ls(X) for /i-almost all y in Q and such that, for / in Lr(A), we have 

(r/)(0= Jf(x)k(x, .)dX(x) 
s 

almost everywhere. Without loss of generality we assume that k(-, y)£Ls(X) for 
all y in Q. Define gt: Í2 —LS(X) by Since 

(gx(y)J) = ff(x)(gl(y))(x)dX(x) = f f ( x ) k ( x , y)dX(x) = (Tf)(y) 

for all /€L r(A) for /¿-almost all y, we see that gt is weakly measurable. But any 
weakly measurable function with values in a reflexive space (or WCG space, for 
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that matter) is equivalent to a (strongly) measurable function [3, p. 88]; viz. there 
is a measurable g: Q—Ls(/.) such that for all x*£Lr(X)* we have (x*, g) — (x*, gx) 
//-almost everywhere. Thus (g1(y),f)—{g(y),f) for almost all y£Q and all 
/€LS(/.). Consequently, for e a c h / i n Lr().), we have 

(Tf)(y) = f f ( x ) k ( x , y)d?.(x) = < g l(y) , /> = <g(y),/> 
s 

for //-almost all y. This proves that T is a Carleman operator. 

The sufficiency proof of Theorem 9 also shows how to replace kernels that 
are not jointly measurable by ones that are, since joint measurability of k is not 
used in that argument. The requirement of joint measurability in the definition of 
integral operator is not necessary for most of the work but is usually assumed so 
as to guarantee that each integral operator has a unique kernel. The question of 
whether every operator determined by a nonjointly measurable kernel can be induced 
from a jointly measurable kernel appears to be open (see [6, § 8] for a discussion), 
but is easily settled for the Carleman operators. 

C o r o l l a r y 10. Let T: Lr(;.)—Lp(p) be a continuous linear operator. If there 
exists a (possibly) nonjointly measurable function k: Sx —R such that k( •, y)dLs(X) 
for p-almost all y in Q and such that 

(77)00= Jf{x)k(x,y)d?.(x) 
s 

for all /€ Lr(/) and p-almost all y in Q, then T is a Carleman operator (and hence 
given also by a jointly measurable kernel). 

4. Compactness and Korotkov operators 

It follows directly that if T: X-Lm(p) is a Carleman operator, then T(BX) 
is compact in every Lp(p) for ; indeed Theorem 6 guarantees that for a 
set E of large measure EoT: X—Lm(p) is compact. Thus, if T: X—Lao(p) is 
Carleman and lim j \Tx\pdp=0 uniformly in | |x| |sil , then T maps bounded 

sets into relatively compact subsets of Lp(p). Moreover, since 0 < r < / x » implies 
that lim^ J\f\rdp=0 uniformly for any bounded set of L'p(p), it follows that 

if T: X-*Lp(p) is a Carleman operator, then T maps bounded subsets of X into 
L r (/^-relatively compact sets. This line of reasoning holds up for a class of operators 
which strictly includes the Carleman operators. 
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D e f i n i t i o n 11. A bounded linear operator T: X—Lp(p) is called a Korot-
kov operator if there is a measurable real function <P on Q such that \(Tx) (• )l ^ 
^11*11 &(•) for all x in X/¿-almost everywhere (cf. KOROTKOV [10 , 11]). 

Recall that Theorem 3 shows that every Carleman operator is a Korotkov 
operator while the converse evidently requires that X* have the RNP. It is, therefore, 
not surprising that a representation for the Korotkov operators can be found which 
diifers only in its measurability requirements. 

L e m m a 12. Let X be a separable Banach space and let 0 ^ / ? ^ ° ° . If 
T: X—Lp(fi) is a Korotkov operator then there exists a weak*-measurable function 
g: Q — X* such that (Tx)(-) = (g(-), x) for all x^X almost everywhere. 

P r o o f . We refer to the sufficiency part of the proof of Theorem 3, where we 
have the bounded linear operators (EmoT)*: Lx{p)—X*. Replace the hypothesis 
that X* has R N P by the hypothesis that X is separable. Standard arguments ([4, 
VI. 8.6], [3, p. 79]) for representing such operators yield g„: Q—X* vanishing off 
En such that 

((EmoT)*f)(x) = f gm(.-)xfdfi 

for all x£X and / € £ i ( ). Piece g together as in that proof to get that 
is measurable for each JC and that Tx={g, x) for all x£X. 

It is possible to drop the separability assumption in Lemma 12. This, however, 
depends on much deeper arguments than those used — viz. the existence of liftings. 
With this tool it is possible to prove [7] that if X is an arbitrary Banach space and 
S: L1(ii)-~X* is any continuous linear operator, then there exists a bounded weak*-
measurable function h: Q—X* such that ((Sf)x)(-)= f h(-)xfdfi for all x£X 

n 
and fdLxip). This would generalize Lemma 12 to non separable spaces; since, how-
ever, we can manage without this deep theorem we shall not use it. 

D e f i n i t i o n 13. Let 0</?«*=. A bounded subset K of Lp(p) is called equi-
integrable if 

uniformly in fdK. A subset of L0(ji) is called equi-integrable if it is relatively compact. 
Recall that a subset M of a Banach space it is called weakly conditionally com-

pact if every sequence in M has a weak Cauchy subsequence. 

T h e o r e m 14. Let and X be an arbitrary Banach space. A Korotkov 
operator T: X—Lp{p) with the property that T(BX) is equi-integrable in Lp(jx) maps 
weakly conditionally compact sets into norm compact sets. 
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P r o o f . Let W be a weakly conditionally compact subset of X and let (j>„) 
be a sequence in W. It must be shown that (T(y„)) has an Lp(^-convergent sub-
sequence. Let y be the (separable) closed subspace of X determined by O v } ^ . 
The restriction of T to y, still denoted by T, is a Korotkov operator from y to Lp(p). 
According to Lemma 12 there is a function g: Q-+y* such that Ty=(g,y) for 
all y in Y. Since W is weakly conditionally compact, the sequence (;'„) has a weak 
Cauchy subsequence (yn^. Since g has B values in y*, it follows that (T(y„})= 
= ((g, yn)) is a pointwise convergent sequence in an equi-integrable set. Vitali's 
convergence theorem guarantees that ( T ( y n i s Lp(p) convergent. This completes 
the proof. 

C o r o l l a r y 15. Let and X be an arbitrary Banach space. A Korot-
kov operator from X into Lp(n) maps weakly conditionally compact subsets of X 
into relatively compact subsets of Lr(p). A Korotkov operator from X into L0(p) 
maps weakly conditionally compact subsets of X into relatively compact subsets of 
Loifi). 

P r o o f . For p > 0 , the Holder inequality can be used to show that Lp(ji)-
bounded sets are equi-integrable in LT(ji) so that Theorem 14 applies. 

For p=0, glance at the proof of Theorem 14 and remember that pointwise 
convergence implies convergence in measure for sequences. 

ROSENTHAL'S characterization [15] of Banach spaces containing copies of lx 

and Corollary 15 give the next corollary. 

C o r o l l a r y 16. Let Let X be a Banach space containing no copy 
of lx. A Korotkov operator from X to Lp that maps bounded sets into equi-integrable 
sets maps bounded sets into relatively compact sets. Consequently, if 0^f</JS«>, 
then a Korotkov operator from X to L„(p) maps bounded sets into Lr(n)-relatively 
compact sets; and a Korotkov operator from X into L0(¡.i) maps bounded sets into 
relatively compact sets. 

5. Extensions to Banach function spaces and other function spaces 

Let (£2,1, n) be any finite measure space and Y(p) be any linear topological 
space (not necessarily locally convex) of (equivalence classes of /i-measurable func-
tions on £2. For a Banach space X, say that a continuous linear operator T: X— Y(p) 
is a Carleman operator if there is a measurable g: Q-*X* such that 

Tx = <g, x) 
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for all x in X. If F(/z) has the property that <p in Y(p) implies (pxEC_ Y(pi) for all E 
in I , then a check of the proofs of the theorems of Section 1 shows that they remain 
true if Lp(p) is replaced by Y(n). 

Theorem 9 generalizes readily to a wide class of Banach function spaces. (For 
the basic definitions and results used here see LUXEMBURG & Z A A N E N [ 1 3 ] and 
LUXEMBURG [12].) We give a brief summary. Start with a measure space (Q, I , //), 
which for simplicity we assume is a finite measure space. Let M be the set of all 
measurable scalar functions and M+ the nonnegative members of M. The order 
on M is pointwise and functions differing only on a null set are identified. A func-
tion norm is a function Q: M +—[0, <=°] that is positive homogeneous, subadditive, 
takes the value zero if and only if the function is zero almost everywhere, and pre-
serves order (viz. w^v; V£M+=>Q(U)^Q(V)). The function norm is extended to 
all of M by e ( / ) = e ( | / | ) . We denote by Le the set of all f£M satisfying e ( / ) < = o . 
The result is an ordered normed vector space. We assume that Le(p) is norm com-
plete. Without loss of generality we also assume that Q is saturated i.e. there are no 
^-unfriendly sets (a set Ea Q such that e{/F)=<=^ for every FczE with /¿(F)>0). 
The associate norm is defined by 

e'(s) — SUP { | / f s e ( f ) ^ l}; 

and, of course, Holder's inequality | J f g d f i \ ^ g ( f ) Q ' ( g ) obtains. 
This last step gives a function norm whose corresponding LQ,{p) is a Banach 

space. Finally a function in Le is of absolutely continuous norm whenever £>(/„) j 0 
for every ( f „ ) ^ L e such that 0. We call the collection of all such 
functions L*. At this point the extension of Theorem 9 to the context of Banach 
function spaces goes right through. Let i j f , f , K) and (Q, Z, fi) be finite measure 
spaces. Let Y(ji) be as above; let be a function norm such that LQi is reflexive 
(this is equivalent to Le=L"e, Le,=Lx

g, and Q(f„)\e(f) whenever Q=fn\f). A con-
tinuous linear operator T: Lg^{).) — Y{p) is a Carleman operator if and only if 
there exists a XX/¿-measurable function k : R such that 
for /¿-almost all y£(2 with 

(U')(y) = ff(x)k(x,y)dX(x) g.e. 

for all f t L<X). 
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On center-valued states of von Neumann algebras 

D É N E S P E T Z 

Center-valued states are projections of norm one onto the centre of the algebra. 
This concept is the natural extension of the notion of the (scalar-valued) state. 
The space of normal states is sequentially complete and the same can be said about 
the space of normal center-valued states with respect to the pointwise weak con-
vergence. 

We remark that center-valued states are central-linear maps. Central-linear 
maps (or module homomorphisms) onto the centre were studied extensively also in 
[4] and in [8]. 

On a von Neumann algebra si each normal state cp has the representation 
(p(A)= 2 (A*!, where 2 llxill2=l- section 2 we prove a similar formula 

¡=1 i=l 
for center-valued states: if J © sl(z)d[i(z) is the central decomposition of si in 
the Hilbert space then any central-valued state x has the form 

t(A) = f © J (A (z)x,(z), x,(z))/(z) dfi(z) ( A = f ( B A ( z ) dM(z)j 

where 0"€N). 
In the last section we use the above representation theorem to obtain an alter-

native proof of a result of H . H A L P E R N [5] and S . S T R A T I L Á — L . ZSIDÓ [8] concerning 
central ranges for elements of von Neumann algebras (here on separable spaces). 

0. Preliminaries. We only consider separable Hilbert spaces si will always 
denote a von Neumann algebra on and slx its closed unit ball. 

For the reduction theory of von Neumann algebras we refer to [3] and [7]. 
In this paper Z always means a separable metric space and fi a positive Borel 

measure on Z. If 
§ = / ©§(z)dn(z) 

z 
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(cf. [3], chap. II, § 1, def. 3) then { v,}~ t will be a dense sequence in for which 
we may assume that, for all z£Z, {xi(z)}?l 1 is dense in £>(z) and the map z^-»||x,(z)|| 
is bounded. 

If @<zsi is bounded and then 

V(n, m) = {r<i!2-. \{(T-B)xl,xJ)\ ^ - 1 , i,j «} (n, m€N) 

is a neighbourhood base of B in £%, endowed with the weak operator topology 
Consequently, endowed with the weak operator topology can be metrized with 
the metric g defined by 

q(A, B)= Z I<(A-B)xi3 X j ) \ • 2~'~J. 

>JtN 

1. Center-valued states. In this section we introduce the notion of center-valued 
state and establish some properties. (See also [4] and [5].) 

1.1. D e f i n i t i o n . Let si be a von Neumann algebra with center i?. By a center-
valued state we mean a linear mapping r from si into # such that 

(i) x(C-A)=Cx(A) (A^si, C^€) 
(ii) x(I) = 7 

(iii) if A & 0 then T(A) ^ 0 (At si). 

1.2. P r o p o s i t i o n . Let si be a von Neumann algebra with center <€. The linear 
mapping T: stf is a center-valued state if and only if the following conditions are 
fulfilled: 

(a) M = 1, (b) T ( C ) = C (Cen 

P r o o f . Let T be a center-valued state. If A ^ O then 0^x(A)^x(\\A\\ •/) = 
= | |Y4||«/ so | | T ( ^ ) | | ^ | M | | . For an arbitrary A£si the Schwarz-inequality gives 
that | |T(^) | | 2=| |T(^f = Hence \\x\}^\, 
and (a) and (b) follow. 

The converse is a special case of a well-known result of TOMIYAMA [10] on projec-
tions of norm one. 

1.3. D e f i n i t i o n . If si is a von Neumann algebra then the set of all center-
valued states on si will be denoted by I (si) and by E if si is fixed. We endow E 
with the topology of pointwise weak convergence. 

1.4. P r o p o s i t i o n . E(si) is compact. 

P r o o f . Let X—n{XA: A£s/} where XA is • % with the compact weak 
operator topology. So Xis compact. Define e: E-»X by the formula prAe(x) — x(A). 
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e is a topological embedding and we want to show that the range of e is closed. Set 

HX(A,B) = {x£X: prA+Bx = prAx+prBx}, 

H,(A,X) = {x£X: prlAx = XprAx), 

Ha(C) = {xdX: prcx = C}. 

These sets are closed for any A, B(Lsl, C^ and A (EC. Since ||/VXT|| =\\A\\ for 
any and x£X, according to point 1.2, 

e(Z)= H Pi H2(A,X)C] fl HS(C) 
A,B£J* CG« 

Age 
that is the range of e is closed. 

1.5. P r o p o s i t i o n . For a center-valued state x on the von Neumann algebra 
the following conditions are equivalent: 

(i) x is o-weakly continuous, 
(ii) x is weakly continuous on the unit ball, 

(iii) T is strongly continuous on the unit ball, 
(iv) T_ 1(0) is a-weakly closed, 
(v) x is normal. 

P r o o f . We obtain the assertion by applying a theorem of TOMIYAMA [10] for 
the case of projections of norm onto the center. 

1.6. E x a m p l e . Assume that the von Neumann algebra s4 in the Hilbert 
space § is expressed as a direct integral of factors, s£= f® st(z)dp{z), and let 

z 
S = /© §>(z)dp(z) be the corresponding decomposition of If x(E§ such that 

z 
||JC(Z)|| = 1 fo r ju-a.e. on Z , then 

x: A>— f ®(A(z)x(z), x(z))I(z)dp(z) [A = J®A(z)dp(z)) 
z z 

is a normal center-valued state. (Here /(z) stands for the identity operator on the 
space §(z) .) 

The center of si consists of the diagonal operators and the verifications of (a) 
and (b) in 1.2 is easy. By Prop. 1.5 it remains only to prove the strong operator 
continuity of x on the unit ball of stf. 

Assume that A„£s/, \\An\\^ \ and An-^-0. In order to prove that x ( A „ ) - ^ - 0 
it suffices to show that ||T(/QW|| — 0 for every w€§ such that ||w(z)|| is bounded 
on Z (cf. [3], chap. II, § 1, prop. 7). But, setting A"=sup {||M(Z)||: Z£Z} we have 
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by the Schwarz inequality 

«TOO«!!2 = (r(Anyi(A„)u, u> ̂  <z(AtAJu, U) = 

= f(An(z)*An(z), x(z), x(z))(u(z), u(z))dn(z) S 

S K2J(An(z)*An(z)x(z), x(z))dfj(z) = K2 \\Anxf- - 0. 

1.7. D e f i n i t i o n . Z"{si) denotes the set of all normal center-valued states on 
the von Neumann algebra si endowed with the topology of pointwise convergence 
in the weak operator topology. 

1.8. P r o p o s i t i o n . Z"(si) is sequentially complete. 

P r o o f . It is sufficient to see that I " is sequentially closed in I . Suppose that 
T„—T and T „ € 1 " , T £ Z . L e t / b e a normal linear functional on Then foxn is 
normal linear functional on si. foxn(A)-*fox(A) for every A^st and so fox 
is normal (see [1] Cor. III.3): Since fox is normal for every normal / on x is 
also normal. 

2. Decomposition of center-valued states. In this section we show that if the 
von Neumann algebra si is expressed as a direct integral of von Neumann algebras 
then any normal center-valued state of si is decomposable concerning the integral. 

2.1. Lemma . Assume that si= f © si(z) dfi(z). Then there exists a countable 
z 

-family ST in si1 such that 
(i) is strongly dense in six, 

(ii) ST{z)= {T(z): T^ST\ is strongly dense in si(z\, ¡x-a.e. on Z. 
(Here T= f © T(z)dfi(z).) 

z 

P r o o f . By the definition of the direct integral of von Neumann algebras there 
is a sequence A„= J © A„(z)dfi(z) (n€N) such that si(z) is the von Neumann 

z 
algebra generated by {A„(z): H€N} /t-a.e. on Z and we may assume that si is 
generated by {An: n£N}. Let J f be the *-algebra over the complex rationals gen-
erated by {A„: M£N}. Take 

V i ' U-Mir1 if imii>i. 

9" is countable and by Kaplansky's density theorem it satisfies (i)—(ii). 

2.2. T h e o r e m . Let si— f © si(z)dp.(z) and x be a normal center-valued state 
z 

on si. Then for almost every z£Z there is a normal center-valued state xz on si (z) 
such that for every A— f © A(z) dp(z)£s/ the operator field zy-*xzA(z) is fi-meas-

z 
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urable and 
T (A)= f®TzA(z)dn(z). 

z 

P r o o f . Using the lemma we have two countable families Sf and ST such that 
(i) J ( z ) c ^ ( z ) ! and C(z)c(g'(z1) /i-a.e. on Z, 

(ii) 9~(ST(z)) is strongly dense in (in s£{z\ p-a.e. on Z) , 
(iii) if (Sf(z)) is strongly dense in % (in (3(z)1 fi-a.e. on Z) . 
Let 

M = a¡SITR. fc£N; r ;€C, af is complex rational (/ s 

If T is a normal center-valued state then for z £ Z we define by the formula 

iz f 1 ^ ( z ) r , (z)] = 2 «,• s-z^niz) 

k 
where ^ a^jTjd Si. We will show that tz is well-defined fi-a.e. on Z. 

i = l 

Take R^ R^® ( j ? i = 2 < x I S ^ , R2 = 2 PJSJT} v >=l J=i ' 

and put 

H{Rx,R2) = \z<iZ-. Rx(z) = R2(z), ¿ a i S i ( z ) T ( T i ) ( z ) ^ 2 PJSJ(ZMTJ)(Z)}-
<• ¡=i j=i > 

This set is measurable and its characteristic function x belongs to Hence 

yj(Ri) = - = /z(R2). 

So T ( 7 ? 1 ) ( Z ) = T ( 7 ? 2 ) ( Z ) for /i-a.e. / Y . Since J « ¡^(z ) TIRi)(z) = T(7?1)(z) 
i=l 

I x.; 
and 2 Pjsj(z)T(Ty)(z)—t(i?2)(z) fi-a.e., we have obtained that /?2))=0 

J = I 
Since ^ is countable, if follows 

U H(RltBJ) = 0. 

Let 
S = {z£Z: ^ ^ ( z X is not weak operator continuous at 0}, 

where ^(z\={R(z): Re Si, ||i?(z)||==l}. 
We claim that N(S)=0. For A, B£ST(Z) define 

QZ(A,B)=2 \((A-B)xJ(z),xi(z))\2-i-J. 
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So q. is a measurable field of metrics metrizing the unit ball of si{z) endowed with 
the weak operator topology (see 0). The set 

H{k, 1, e, S) = {z<SZ: there is such that ||/?(z)|| < 1, 

QZ{R{Z), 0) < 5 and |<t_,(/?(z))x,(z), x,(z)) | > e} 
is measurable and 

U U U n H(k, I,e.„ 5j) l=lk=li=lJ=0 

provided that e , \ 0 and <5y\0. Hence 5 is measurable. 

Suppose that / t ( S ) > 0 . Then we have KczS, e > 0 , and k, /£N such that 

(iv) f i ( K ) > 0 

and for z£K and N there is an RJ
Z£3$ with the properties 

(v) ||*>(z)|| < 1, 

(vi) ez(Ri(z),o)^Sj, 
(vii) \(tz(Ri(z))Xl(z), xk(z))\ > e. 

By Lusin's lemma we may assume that K is compact and the functions 

(viii) z - H T O I I , 

( ix) Z^Qz{R(Z), 0 ) , 

( X ) Z {(TR)(Z)X1(Z), xk(z)) 

are continuous on K for any . In this case the inequalities (v)—(vii) are ful-
filled on an open set in K. For any N a compactness argument gives a meas-
urable partition {Hf: i^p( j)} of K and operators R{^3tt (i^p(j)) such that 
for z£Hf R\{z) satisfies (v)—(vii). Let yj be the characteristic function of H{ (j£N, 
i ^ p ( j ) ) and define 

PU) 
R'(z)= 2 xi(z)Ri(z)ej(z) where ej(z) = Arg<tzJR/(z)x i(z), xk(z)), 

i=i 

and for (MA€C set ArgA=A-|A|~1 . 
Taking RJ= f © RJ(z)dpi(z) we have RJe and 

z 

Q(R\ 0) S / SZ(RJ(z), 0 ) d p ( z ) =2 F (z), 0 ) d p ( z ) p(K)Sj; 
Z I = 1 H{ 

moreover, 
<t(RJ)xt, xk) = /<T^ ' ( z )x i ( z ) , xk(z))dn(z) = 

z 
PU) . 

= 2 f \(^R{(z)xl(z), xk(z))\dp(z) S n(K)e. i = 1 H{ 
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This contradicts the continuity of x. Hence p(S) =0 so tz\dt{z\ is weak 
operator continuous /i-a.e. on Z. It is then also uniformly continuous with respect 
to the uniformity defined by the metric gz. 

Now extend by uniform continuity with respect to the compact 
metrizable weak operator topology to si (z)1 and then by the homogeneity to si {z). 
So we get a linear t z such that ||tz|| s 1 and xz\^(z) is the identity. Hence xz is a 
center-valued state /i-a.e. on Z. 

We want to check that x(A) = f © xzA(z)dp if A= f © A(z)dp(z). We may 
z z 

assume that In this case there is a sequence (n£N) such that 
T„-^—A. Then for a subsequence we have TnJ,z)-^—A{z) for /i-a.e. z£Z 
(cf. [3] chap. II. § 2. prop. 4). According to the weak continuity of x, now 

zT„(z)-^-xzA{z). Consequently t ( T )= /© t z T (z)dp{z)^U j ® xzA(z)dfi(z), 
z z 

On the other hand x{TnJ^—xz{A) so x(A) = f © xzA(z)dfi(z). k z 

2.3. Theo rem. Let si be a von Neumann algebra acting on the Hilbert space 
£> = / ® $>(.z)dp(z) and suppose that is decomposable as a direct integral of factors 
j © sl{z)dp{z). Then x: si—ft is a normal center-valued state if and only if it 
has the form 

x (A)=f® J (A ( z H ( z ) , uf(z)> / ( z ) dfi{z) (A = f®A(z) dp(z)) 

OO 
where u£$t> (i'€N) and 2 li";(z)ll2=l /i-a.e. on Z. 

P r o o f . If x: sl-<€ has the form described above then x is a center-valued 
state since # consists of the diagonal operators and it follows from 1.6 that x is 
normal. 

: Now assume that x is a normal center-valued state. By Theorem 2.2, 
T= /© xzdfi(z). Let H„ = {z£Z: d im§(z )=n} (/1=1,2, . . . ,°°) and put t„ = 

z 
= .f®xzdp(z). So x= ©T„ and it suffices to prove the theorem for xn 

Hn 
(n = 1, 2, Hence we may identify each §(z) with a fixed Hilbert space § 0 -

Let Y be the unit ball of § 0 © 5 o © ••• endowed with the weak topology. So Y 
is a compact metrizable space. 

Let 9~<zsl be a countable family with the properties (i)—(ii) in 2.1. Define 

H(T) = {(z, _yx, y2, ...)eZxY: xzT(z) = J <T(z)yi, y;> 7(z)} 
i = 0 

H(T) is a Borel set in Z x Y and so is H= fl {H(T): 

15 
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We will use the principle of measurable choice (see [7] p. 35). H is analytic 
and for z £ Z there is a normal state (p2 on s.i(z) such that ?.=<pz • I(z). Hence, 

t z ( S ) = ¿ < 5 « i , u i > / ( z ) 
i = l 

for every S£si(z) and for some 0'€N). Consequently (z, ul,u2, 
By the principle of measurable choice there exists a //-measurable function $ : Z— Y 
such that <P(z)£H n-a.e. on Z. If ^(z)^(ut(z), u2(z), ...) then «¡€5 (¿€N). We 
have obtained that 

*,T(z) = ¿ < r ( z ) U l . ( z ) , U l ( z ) ) / ( z ) 
i = J . 

for any /i-a.e. on Z. Since is dense in s i x and t is continuous we have 

OO 
x(A) = / © 2 (A(z)Ui(z), u , ( z )>7(z )d f i ( z ) 

z 1=1 

for every Moreover, 2 ||w;(z)||2= 1 /¿-a.e. on Z because r ( / ) = / . This 
i = l 

completes the proof. 

3. An application. In this section we use 2.2 in order to give an alternative 
proof for an extension, given in [8] and [5], of a result of J. B. Conway. 

3.1. We introduce some notations. If A belongs to the algebra si then let 
C0(A) be.. the convex hull of the set {UAU*: U is a unitary in si}. Moreover, let 
C(A)=C0(A)vT\etf and W(A) be the closed numerical range of A. The following 
proposition was proved by J. B. CONWAY [2]. 

3.2. P r o p o s i t i o n . If si is a type III factor and A£si then C(A) = W(A) = 
=Z(A). 

3.3. P r o p o s i t i o n . If si= f®si(z)dn(z) and A = f@A(z) dn(z) then 
z z 

C(A)= J® C(A (z)) dfi(z). 
z 

The latter assertion was proved by S. KOML6SI [5] and it means that 
B= f® B(z)dfi(z)£ C(A) if and only if B(z)£ C(A (z)) /t-a.e. on Z. 

z 

3.4. L e m m a . Let s4= j © si(z)dp(z) and A— j ffi A(z)dfi(z)£si. Assume 
z z 

that Uisa weak operator neighbourhood of the diagonal operator B= j ffi f(z)I(z)dn(z) 
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and f(z)dW(A(z)) for z€Z. Then there is a «€§ such that 

(i) J @(A(z)u(z), u(z))dp(z)£U, 
z 

(ii) ¡¡»(z)i| - 1' //-a.e. on Z. 

P r o o f . Take a sequence {c„)c§ such that ||e„(z)|| = l and {en(z)} is dense 
in {i i§( i ) : / | | s | |=f l} /i-a.e. on Z. Suppose that U is determined by e>0 and 

( i ^ m ) that is 
1 ' U= {Test: |<(T-B)yt: yj)\ < e ( i j m)}. 

Choose a compact KaZ with the properties 

(a) z >—- (A(z)ei(z), e,(z)) is continuous on K (i,_/'£N), 

(b) p(Z\K)^S, 

(c) / \(y-Xz), yj(z))\ dp(z) < a (i, j =§ m), 
Z \ K 

(d) / is continuous on AT. 

05 is arbitrary but fixed). We can find xz£ {e„} and an open Gz containing z 
such that 

for z(iK. Using compactness one has a measurable partition {//,-: i^k} of K 
such that HiczGz for some zfcK (i^k). Let (x) be the characteristic function 
of Hi ( Z \ K ) and define u by 

u(z) = x(z)el(z)+Zxi(z)xzl(z) (z£Z). 
¡=1 

||M(Z)|| = 1 isfulfilled: evidently for //-a.e. z£Z. An easy estimation gives 

|<(/® (A(z)u(z), w(z)> /(z)^/z(z) - fl) 3l-, J>,->| =S ¿ ( M l + ||fi||+11^11 • ll^ll). 
z 

5>o if 5 is small .enough then (i) is satisfied. 

3.5. T h e o r e m . If si is a type III von Neumann algebra and Ads/ then 

C(A) = r(A)w 

P r o o f . We express s4 as a direct integral of type III factors: J © s/(z) dp(z). 
z 

If B= f © B(z)dp(z)eC(A) then B(z)£C(A(z)) //-a.e. on Z by 3.3. According 
z 

to 3.2 B(z)dW(A(z)) and we can use 3.4. For every weak neighbourhood U of B 

15* 
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there is a such that 

/©/(<(2)u (z), u(z)> 7(z) dtx(z)dU. 
z 

However, TV- J © (T(z)u(z), u(z))](z)dn(z) defines a normal center-valued state 
z 

(cf. 1.6) hence C(A) c Zn(A)w. 
Conversely, fo r any RÇZ", Z= J ©T :dfi(z) follows f r o m 2.2 and TZ(A(Z))Ç.C(A(Z)) 

z 
f r o m 3.2. By 3.3 we have f®xz(A(zj) dp(z)£ f@C(A(z)) dfi(z)=C(A). So 

z z 
r(A)£C(A) and we have obtained that In(A)czC(A). Since C(A) is closed, it fol-
lows Zn(A)w<zC(A). 
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P. J . Cameron and J . H. van Lint, Graphs, codes and designs, London Math. Soc. Lecture Note 
Series 43, VII+147 pages, Cambridge University Press, Cambridge—London—New York—New 
Rochelle—Melbourne—Sidney, 1980. 

The study of highly symmetric finite structures (block designs, finite geometries, latin squares, 
error-correcting codes, strongly regular graphs etc.) has been a fascinating field of combinatorial 
research for centuries. Characteristic of the subject is the abundance of extremely difficult problems. 
Is there a projective plane of order 10? Is there a 6-transitive non-trivial permutation group? One 
feels that such questions should be answerable by straightforward arguments; but in fact they are 
unsolved in spite of the efforts of a sizeable group of outstanding people working on them. As a 
matter of fact, after a few trivial steps virtually any progress assumes the introduction of surprising 
and ingenious methods, quite often involving modern advanced mathematics. Just a fraction of such 
methods would mean a breakthrough in most other fields of combinatorics. 

This book is a considerably revised, updated and extended version of a previous work by the 
authors (LMS Lecture Notes Series 19). A chapter containing a brief introduction to design theory 
has been added, making the book more self-contained and easier accessible for non-specialists. After 
discussing strongly regular graphs, partial geometries, and other symmetric structures, the main 
weight is put on the study of codes. The authors discuss or sketch recent important results such as 
the inequalities of Ray-Chandhuri and Wilson, the linear programming bound by Delsarte, the 
Krein—Scott bound, and others. Cross-references betwen chapters, and references to further relevant 
publications make this excellent book a very interesting, informative and enjoyable reading for 
combinatorialists. 

L. Lovász (Szeged) 

R. E. Edwards, A Formal Background to Mathematics 2: A Critical Approach to Elementary 
Analysis, Universitext, XLVII +1170 pages, two volumes, Springer Verlag, Berlin—Heidelberg—New 
York, 1980. 

The aim of the book is to face and clear up the most problematical points in elementary analy-
sis in a half-formal framework and to treat some more advanced topics. Thus, it is "not intended for 
readers totally new to convergence, calculus, etc. but rather for those who have some informal work-
ing acquaintance with these matters and who wish to review their understanding and see links and 
contrasts with the formal background." 

However, the necessity of this "link...with the formal background" is not quite convincing. 
Generally the study of elementary analysis precedes that of mathematical logic, furthermore a good 
informal treatment may be just as useful as a formal approach. These formal parts, comments, cross 
references etc. break the line of the book into pieces. By my count 60—70% of its text-part is an almost 
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ordinary (and quite good!) presentation of analysis and the remaining part consists of remarks and 
comments which quite often do not help to understand the material. 

The mentioned relation with formalism forced the author to decline from ordinary notation; 
to mention just one example, it hardly causes any problem in an elementary analysis book if the 
restriction of the function*—a to the interval I is denoted also by x—a and not byj—a,. 

The selected topics do not cover the usual college part of analysis, e.g. the multidimensional 
case is completely omitted. The way of the introduction of exp z for complex z is interesting; and 
we can only greet such themes as the irrationality of n, transcendental numbers, etc. 

Volume 2 contains a number of more or less advanced exercises (on more than 300 pages) but 
many of them belong rather to logic than to calculus. Elements of advanced analysis are also incorpo-
rated in these exercises. 

The book may be recommended to teachers or future reseachers of elementary analysis. 

V. Totik (Szeged) 

P. Hajek, T. Havranek, Mechanizing Hypothesis Formation Mathematical Foundations for a 
General Theory, Springer-Verlag, Berlin, Heidelberg, New York, 1978, XV+396 p. 

The volume is devoted to a systematic formalization and development of one important aspect 
of scientific reasoning, the hypothesis formation. The authors themselves declare their aim as being 
a response to the challenging question: "Can computers formulate and justify scientific hypotheses?". 

In organization the book follows a proposal by Gordon Plotkin. After an introductory chapter, 
the authors develop and investigate in details the so called "logic of induction" and "logic of sugges-
tion", which are, according to the proposal, determined as "studying the notion of justification" 
and "studying methods of suggesting reasonable hypotheses", respectively. 

Logic of induction presented in this volume (Part A) is a generalized version of Suppes's predi-
cate calculus. The modifications are motivated by statistical considerations, using particular "quan-
tifiers" such as 

"for sufficiently many x, P(x)" and "the property Q(x) is associated with /?(*)", 
can be viewed as an illustrative example. 

Dealing with logic of suggestions (Part B), the authors define and study some GUHA (General 
Unary Hypotheses Automaton) methods. 

Presentation of the matter is clear and completely logically oriented with an extreme stress on 
Tarskian semantics and computability (mechanizability). 

The authors recommend their text to mathematical logicians and statisticians with computer 
scientific interest, and to students interested in interrelations among mathematical logic, statistics, 
computer science, and artificial intelligence. 

P. Ecsedi-Toth (Szeged) 

Peter G. Hinman, Recursion-Theoretic Hierarchies, Springer-Verlag. Berlin, Heidelberg 
New York, 1978. XII+ 480 p. 

Notions of definability are among the most popular, and of course, among the most importan 
topics of current research in mathematical logic. The book under review, published as the second 
volume of the noteworthy sequence "Perspectives in Mathematical Logic", is concerned with one 
aspect of definability. Central to the discussion in the book is '"'the classification of mathematical 
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objects according to various measures of their complexity" into levels, that is, into a hierarchy in 
such a way that objects being in a higher level are more complex than those being in a lower one. 
In fact, this topic is common in different mathematical theories such as Descriptive Set Theory and 
(Generalized) Recursion Theory. Generally speaking, Descriptive Set Theory deals with explicit 
and constructive means (i.e. that do not require the Axiom of Choice) in analysis and is developed as 
the analytical counterpart of Cantorian set theory. Recursion Theory deals also with a kind of con-
structivity, the mechanical computability of certain mathematical objects. These two areas of "con-
structive mathematics" developed parallelly for decades until it was realized that they had a common 
generalization. This book presents the generalized theory in a clear and attractive manner pointing 
out how earlier results follow. 

The volume is divided into three parts, each of them containing several chapters and sections, 
dealing with the basic notions of definability (background, ordinary recursion theory, hierarchies and 
definability with arithmetical and analytical hierarchies, inductive and implicit definability, arithme-
tical forcing etc.), the analytical and projective hierarchies (wellorderings, boundedness principle, 
Borel hierarchy, hyperarithmetical hierarchy, pre-wellordering, constructibility, projective determi-
nancy etc.) and generalized recursion theories (recursion in Type-2 and Type-3 functionals, higher 
types, recursion on ordinals etc.) respectively. 

The book is intended for a "student with some general background in abstract mathematics 
— at least a smattering of topology, measure theory, and set theory — who has finished a course 
in logic covering the completeness and incompleteness theorems". In fact, this excellently written 
volume can be recommended to everyone who is interested in definability or constructivity and, in 
particular, in (Generalized) Recursion Theory and Descriptive Set Theory. 

P. Ecsedi-Toth (Szeged) 

D. L. Johnson, Topics in the Theory of Group Presentations (London Mathematical Society 
Lecture Note Series, 42) VII+311 pages, Cambridge University Press, Cambridge—London—New 
York—Melbourne, 1980. 

This book is an extended version of the author's earlier contribution to this series. As before, 
the emphasis is on concrete examples of groups, demonstrating the pervasive connection between 
group theory and other branches of mathematics and bringing, this way, the material closer to the 
graduate and post-graduate students. 

Chapter I starts with a proof of the Nielsen—Schreier theorem (every subgroup of a free group 
is free) and works out the elements of group presentations. In Chapter II presentations of some 
popular groups (such as the dihedral group, the generalized quaternion group and the symmetric 
group) and the presentations of Abelian groups are considered. Chapter III deals with groups with 
few relations, introducing some new examples of groups, which are already less well-known than 
those in the previous chapter, but are, on the other hand, most useful for the specialist of this theory. 
Chapter IV concerns presentations of subgroups. A geometric application is found in Chapter V, 
where tessalations of a plane by a triangle are described in each of the three different cases, the Euc-
lidean, the elliptic, and the hyperbolic one. The main purpose of Chapter VI is to give a proof of the 
celebrated theorem of Golod and Safarevii stating that, if a finite p-group G is minimally generated 
by d elements, then the minimal number of relations needed to define G is greater than cP/4. Coho-
mology of groups plays an essential part in the proof. Chapter VII deals with small cancellation 
groups. Finally, Chapter VIII reflects the intimate connection between group theory and topology. 
This chapter deals with the classification theory of surfaces and the theory of knots. 
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"Such is the current rate of progress in combinatorial group theory that no attempt at comple-
teness in feasible, though it is hoped to bring the reader to within hailing distance of the frontiers of 
research in one or two places." 

This lecture notes can serve as a text for beginning research students and as an introduction for 
specialists in other fields. 

A. P. Huhn (Szeged) 

P. Koosis, Introduction to Ht spaces, London Math. Soc. Lecture Notes Series, 40, XV+376 
pages, Cambridge, University Press, 1980. 

This book contains the lectures on the elementary theory of Hp spaces held at the Stockholm 
Institute of Technology in 1977—78. It is a good introduction to the theory of Hp spaces. The details 
and long explanations help the reader in the understanding of the material very much. Much effort 
is made to enlighten the role of the theorem of the brothers Riesz. Beyond classical results quite 
recent developments are also treated: Marshall's theorem about the uniform approximation of H „ 
functions by Blaschke products; the maximal function characterization of RH r , etc. 

Chapter X contains a brief introduction of BMO. Finally, in the appendix Wolff's simple (?) 
proof of the corona theorem is given. 

V. Totik (Szeged) 

W. Rudin, Function Theory in the Unit Ball of C" (Grundlehren der mathematischen Wissen-
schaften 241), X m + 4 3 6 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1980. 

This book contains a quite new and rapidly developing theory for functions on the unit ball 
in C". The subject is presented in an extraordinarily clear way. Domains different from the unit ball 
are almost completely omitted and this enabled the author to show the main ideals withouth the hard 
and very technical "side-dish" of the general theory. 

Two further values of the book: 1. it is self-contained, 2. it is up to date, many results being 
dated from the late seventies. The publisher did also his best by the quick, well-ordered, and very 
accurate printing. 

The main topics are the following: integral representations, boundary behaviour of Poisson 
and Cauchy integrals, measures related to the ball algebra, interpolation sets, invariant function 
spaces, analytic varieties, proper holomorphic maps, the 3-problem, the Henkin—Skoda theorem, 
tangential Cauchy—Riemann operators. 

The book concludes with a series of open problems which will certainly stimulate further inves-
tigations. 

It is highly recommended to anyone who wants to get acquainted with this beautiful part of 
complex function theory. 

V. Totik (Szeged) 
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