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On Modeling the Performance and Reliability of 

Multi-Mode Computer Systems* 

V. G. Kulkarnit, V. F. Nicola* and K. S. Trivedi* 

Abstract 

We present an effective technique for the combined performance and reliability 

analysis of multi-mode computer systems. A reward rate (or a performance level) is 

associated with each mode of operation. The switching between different modes is 

characterized by a continuous time Markov chain. Different types of service- 

interruption interactions (as a result of mode switching) are considered. We consider 

the execution time of a given job on such a system and derive the distribution of its 

completion time. A useful dual relationship, between the completion time of a given 

job and the accumulated reward up to a given time, is noted. We demonstrate the use 

of our technique by means of a simple example. 
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1.  Introduction 

we consider a model for the combined evaluation of performance and reliability of 

a multi-mode computer system. Performance (e.g., throughput, response time, 

instruction execution rate) changes from mode to mode and a mode change occurs in 

response to an event such as a failure or a repair. The stochastic process representing 

the modes (structure-states) and mode changes can be thought of as a reward process 

by associating a reward (performance index) with each mode [4,10]. We can then study 

the the distribution of the accumulated reward until time t by time domain 

methods[l0] or by transform techniques^, 14]. 

The authors who have taken such a system-oriented view do not consider the 

effect of a fault occurring during the execution of a program. A task(job or program)- 

oriented view of such a sytsem recognizes the fact that it is possible for a system 

failure to occur before the completion of a task [7] and that even if the task is com- 

pleted, its completion time is likely to be different from its execution time in a given 

mode [3,5,12]. The job in service is interrupted with each mode change and the type of 

service -interruption interaction depends upon the mode just entered. For example, 

the occurrence of a fault during the execution of a job preempts the job and a later 

system recovery may allow the job to resume from the point of interruption (the 

preemptive-resume (prs) discipline) or the job may have to be repeated from the 

beginning. In the latter case, the repeated job may have the identical work require- 

ment as the original preempted job (the preemptive-repeat-identical (pri) discipline) 

or a different work requirement sampled from the same distribution (the preemptive- 

repeat-different iprd) discipline). 

The purpose of this paper is to develop a model that unifies and extends the 

efforts of these two groups of researchers. In particular, we show that if all interrup- 

tions are of the preemptive-resume type then the completion time of a given task and 

the accumulated reward until a given time are dual measures, so that the distribution 
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of one of them allows us to compute (the distribution of the other. In fact, our model is 

even more, general - in that bothiacy elic (closed or non-repairable) and cyclic (open or 

repairable) systems are modeled. 

Our model provides an exact analysis of the completion time distribution of a pro- 

gram (job) executing in a multb-mode system. It is also possible to incorporate the 

effect of queueing in our model. If the time spent in each structure-state is large com- 

pared with the interarrival and processing times of jobs, then we can use steady- state 

performance measures as reward rates for each structure-state. Such approximate 

decomposition methods have been considered by several authors [4,7,10,15]. If the 

assumption of a wide separation between the structure-state holding times and job pro- 

cessing times does not hold, then a more complex analysis is required [1,5,12]. 

We develop the basic model; in the next section. In sections 3, 4 and 5 , we con- 

sider the individual cases where all structure-states are of the same type, that is, 

preemptive-resume, preemptive-repeat-identical, or preemptive-repeat-different, 

respectively. 

2. The Basic Modal 

Consider a single server (e.g., a computer) serving a single job (e.g., a program). 

The job is characterized by its work requirement, B. For example, the work require- 

ment of a computer program can be measured in terms of the number of instructions 

to be executed. "We assume that B is a random variable with cumulative distribution 

function G(x) = P(B <x) and LST \CT(s)=E(e~*B). To avoid trivialities we assume 

f?(0+) = 0. 

The rate at which the server performs work is assumed to change with time 
I 

according to the following modeh At any time the server is in one (and only one) of the 

n+1 states(modes) numbered 0,1,2,....n. 'In state i the server performs work at rate 

rt>0, l*i*n. work units per unititime (e.g., the instruction execution rate). The state 
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0 is an absorbing "failure" state, i.e.. once the server is in state 0. it stays there forever 

and the work rate in this state is zero ( r0=0). We allow absorbing non-failure states 

among the states l,...,n with reward rates greater than zero so that if the server enters 

such a state, the job will eventually complete. Let Z't) be the state of the server at 

time t. \Z{t),t fc 0} is called the structure-state process. We shall assume that the 

structure-state process is a stochastic process with piecewise constant paths with fin- 

ite number of jumps in finite intervals of time. Furthermore, the structure-state pro- 

cess is assumed to be independent of the work requirement B of the job. 

The  states i = 1,2,...n  are  classified as  (i) prs:  preemptive-resume,  (ii) pri: 

preemptive-repeat-identical or (iii) prd: preemptive-repeat-different. 

The following quantities have been analyzed before in the literature for some spe- 

cial \Z(t),t is Oj processes: 

I. The job completion time (T(x)): defined to be the total time the server takes to com- 

plete a job that requires z units of work. T denotes the unconditional completion time 

of a job that requires a random amount of work, say B units. Gaver[5] studied the dis- 

tribution of the r.v. T for a system subject to one type of failure and repair, in which 

the operating state is Markovian and the failure state is semi-Markovian. Nicola[l2] 

extended Gaver's model to allow for mixed types of failures and repairs. Castillo and 

Siewiorek [3] condsidered a system with two types of failures in which the preemptive- 

repeat type failure could occur during the repair-time of the preemptive-resume type 

failure. 

II. The probability of dynamic failure (rj): defined to be the probability that the sys- 

tem fails before the job is completed, Le. the server enters state 0 before completing 

B units of work[7]. 

III. The cumulative reward upto time t (Y(t)): defined to be the total amount of work 

done by the system up to time t.   Y is the total accumulated work during the system's 
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lifetime; it is the limit of Y(t) as t -» «. The r.v. Y(t) was first studied by Puri [14] for 

Markovian Z(f) processes. Meyer[lO] and Donatiello and Iyer[4] studied the distribu- 

tion of Y(t) for an acyclic Markovian Z(t) process. Beaudry [2] studied the r.v. Y for a 

Markovian Z(t) process, while Osaki and Nishio [13] studied the r.v. Y for a semi- 

Markovian Z(t) process. 

To present a unifying view of the quantities defined above, we introduce the cumu- 

lative measure, W(t), defined as follows: Suppose that at time t = 0 the server starts 

processing a job with infinite work requirement. W(t) is the amount of useful work 

completed by the server until time t (thus, excluding the work done prior to the last 

visit to apri or a prd state). The following properties of the cumulative measure, W(t), 

are immediately obvious: 

(i)     V(0) = 0. 

(ii)   Z(t)=i->dW(t)/dt =rt, 

(iii) If there is a transition in the structure-state process at time t and Z(t +) = i, 

then W(t +) = 0 if i is ajwi or aprd state and W(t+) = W(t-) if i. is a prs state. 

Typical sample paths of the structure-state process and the cumulative measure, 

W(t), are shown in figure 1, for the following case: Set of states = {0,1.2,3}. state 1 is 

prs with r, = 1, states 2 and 3 are pri or prd with r8 = 2 and ra = 0, state 0 is the 

absorbing failure state. 

The following theorem shows how the quantities T, r\, Y(t) and Y can be related to 

each other via the cumulative measure , W(t). 

Theorem 1. 

(i)   T-mm\t>0:W(t) = B\. 

(ii) The dynamic failure probability, tj - P( T = <*>). 

(iii) If all states are prs, then 
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P(Y(t)<x) = l-P(T(x)<t) 

and 

P(Y*x) - l-P(T(z) < «). 

Proof: (i) Let T be the job completion time. It is clear that 

\T>tl**\W(u)<B, for all 0^u^t\. 

since W(u) represents the useful work done upto time u.  As W(t) has piece-wise con- 

tinuous paths with only downward jumps, T is given by (i). 

(ii) It is clear that 

{ Dynamic Failure J   «=> { system fails before job completion J 

«*» fJT(f) <B toraU  t fe Q\ «=> \T=-\. 

Hence TJ = P{T = <"). 

(iii) Let T(x) - min$* fe 0:W(t) = zj. If all states areprs, then 

lit«) > z{ «* |r<#j > xj«=» ir(«) < t j. 

Henoe 

p(y(0>*) = ^(7'(z)<0.        QED. 

It is apparent from the above theorem that 

r*minlt*0:fK(t) = Bj (2.1) 

is the unifying random variable. This paper is devoted to the study of this random vari- 

able. Define the following distribution functions: 
^-1 r 

Ft(t,x) = P(T * 11B = x. Z(0) = i). xiO.   lsrtin. •££. 

/-(*.*) = p(T*t\B = x). xio. £:..;:-:; 

/«(<) = P(r<<|Z(0)=t),   l«:i*n, 
#• •».' 
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Ft~(s)=jFi~(s*)dG(z),   liisn, (2.7) 
o 

f~(s) = £ /i»P(Z(0) = i). (2.8) 

From equations (2.6) - (2.B) it is clear that the conditional LSTs Ff(s,x) are of central 

importance to the analysis of T. In order to obtain explicit formulae for Ff(s ,x) it is 

necessary to make some further assumptions about the structure-state process. In 

the remaining paper we make the assumption that [Z(i ),t > Oj is a time homogeneous 

continuous time Markov chain (CTMC). The results derived here can be extended in a 

straight forward manner to the case when the structure-state process is assumed to be 

semi- Markov. Let jy 1 <i / j s n, be infinitesimal transition rate from state i to j 

and gio be the absorbing failure rate from state i.  Let Q - [gy], 1 •& i, j « n, be the n 

by n generator matrix where qt = £)  9y = — 7« • Note that row sums of Q are ^ 0. We 

mention one property of the CTMC for future reference. Define 

H • min(f > 0:Z(t) * Z(0){ (2.9) 

( ~) denotes LST', i.e., the Laplace transform of a probability density function. 

':'.•••• 

F(t) = P(T*t) 

and the corresponding LSTs (Laplace Stieltjes Transforms), 

FT(s^) = E(a-*T]B=x,Z(0) = i).    tiO,lsisn, (2.2) 

F~(s*)=E(e-'T\B=x),    liO, (2.3) 

FC(s) = £"(« "** I Z{0) « t).     1 * i * n, (2.4) 

F-(s) = E(e~'T). (2.5) 

From the independence of [Z(t ),t > 0{ and B it follows that 

F~(s,z) = £ /T(s.*)P(Z(0) = t).    *fe0. (2.6) 

- -. 
.-.•-• 
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P(H * x,Z(H+) = j | Z(0) = t) = ^-(l-e^*).    (i * j). (2.10) 

In the next section we treat the case where all states i = 1,2,..n are preemptive- 

resume (prs) and in sections 4 and 5 we consider the case where all states are 

preemptive-repeat (pri andprd, respectively). The mixed cases where some states are 

prs and some are pri or prd have been studied in [B]. 

3.  The Preemptive-resume Qise 

In this section we assume that the states 1,2,..,n are all preemptive-resume 

states. Note that state 0 does not have to be classified since it is a failure state. 

Theorem 2 below gives a method of computing the conditional LSTs defined by equa- 

tion (2.2). First, some notation: 

o 

rr'is.u) = [Fr(s.u). /r<**«0 K \s,u)]T. 

R =düjg[rl,rz rn] , 

X. = Erl.»"2 rn]T. 

where the superscript T denotes transpose. 

Theorem <?. FC'{s,u) .for 1 £ i s£ n , is given by 

in».«) = *+r,u+gt      jf,«+»\u+gt 
 ?tf rrt»,«), 1 < i « n. 
c -i-r ti 4-rr * 

Proof: Conditioning on the sojov -n time H in the initial state we get 

E(e-*T\H=h.B=x.Z(0)=i) = 
"*£ ^/'/•(a.x-riÄ). if Ä <x/r< 

7* 

(') denote« the Laplace transform of a function 

(3-D 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

-' 
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Unconditioning yields 

FT(s*) = 7" E(e-'T\H = h.B = x.Z(O) = 1)9,8^* dfc 

Multiplying both sides by e -u* and integrating we get equation (3.5).   Q.E.D. 

Equation (3.5) can be put in a matrix form as follows: 

[sI+uR-Q]F\s.u)=Z, 

where I is the identity matrix.  As it is well known that [si + uR - Q] is invertible. we 

get 

£"\s,u)=[sl + uR - Q]-1!. . (3.5a) 

A direct inversion with respect to s yields 

H£'(«.u) = e«-«Ä)'r . 

After integration and some manipulations, we get 

--V. 

.-••<-" 

•J. -. 
.." . • 

•   _-  . 

£vvq 

E\t,u) ^Mi-iU-^'U u 
(3.6) 

We now describe how we can use the above theorem to compute F{"(s,x).  Using 

Cramer's rule we can write 

FT\s,u) = A(s.u)/ C(s,u) 

where C(s,u) = det[si + uR - Q] and J4[(S,II) are appropriate nbyn subdeterminants 

of the augmented matrix [si + uR — Q;x.]- It is obvious that both Ai(s,u) and C(s,u) 

«re polynomials in s and u. Hence one can use partial fractions to invert Fj~*(s,u) with 

respect to u. Let d - \{i:Tt > 0j|, i.e. d is the number of states in which work rate is 

positive. Then C(s,u) is a d-degree polynomial in u for a fixed value of s. Let 

-Ui(») -7/tf(s) be the roots of C(s,u).  In the special case when these roots are dis- 

•-.:••: 

•": 

» .•• .N .% 
LA -S -S .\ A -S -1 .V A .-. .'• ,. -• -. •„• 

.• ' f '.'. f» •". -'. -".•'. -\-.    ". »    S V S % S V "." "•" "•" •-  '• 
-'•-• -•'• '•• ------ •••'•- . --.-^ ^ • •- •- - - — 

-•• 

tal 



^—~—.—rrrr. - 

tinct, we can write 

w*.«)-Is^r   lsiin' «"> 
wbere 

4(s,u) 
(3.8) 

s*ft 

• ., 

-      •    s 
• 

^<s) • .-Aft, cWZT{u + ^(s))•    **' *d 

Inverting with respect to u, we get 

FC{s*) = t Ms) e^i{')' •        1 *i** (3.9) 

Hence from equation (2.4) 

/**(*) = 4 Vs) <?"(«*(«)) Ki*n, (3.10) 
•I 

(recaU that CT(s) = / e~ndG{x)), and 
o 

/» = t it "iMsH <?"(!*,(»)). (3.11) 

where rrt = P(Z(0) = i),isi^n. 

It is interesting to note that the LST of T for a given s is simply a linear combina- 

tion of the 1ST of B evaluated at ux(s) t^(s). 

Now, assuming that state 0 is reachable from every other state, the probability of 

dynamic failure can be computed easily from Theorem 1 as 

V = P(T = <*>) = l-UmrXs). (3.12) 

The following corollary indicates how the 1ST of the cumulative reward Y(t), for a 

given t, can be obtained from the FC*(s,u) functions. 

QrroUary 1. For a given fiO, let Y(t) be the cumulative reward upto time t. Let 

jj(*,0 = p(y(0** l z(o) = i). 

. • • 

•- *» ••. 
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and 

a» 

0 

Then 

Y?*(u,s)= y(l-uFf(s,u)) .     Uisn. (3.13) 

Proof: Part (in) of Theorem 1 implies that 

p(y(t) < x | z(o) = i) = i>(n*) > 11 z(o) = i). 

Now. 

ir*(u.s) = ? « *•**{« ^^l Z(0)=i)ctt 
0 

= f e—j e-*dxP(Y(t)<;x\Z(0)=i)dt     ' 

= 7 e_,"^[ 7 f*[i-F(r(«) *' lz(o) = i)]*] 

e - / e^d, Fi~(s,x)/s = [1 -u Fi\s,u)]/s.      QE.D. 
»«o 

Using equation (3.5a), we can write in a matrix form 

r*(u,s) = [si +uR -Q]-l£_ (3.13a) 
with 

.• .- v, m 

vv 

:•-•; 

-. 
.•--_• 

: •. •. 

•V 
r*(u.s) = [Y7*(u,s).YZ<(Lu,s) l^'(u.s)]r. 

A direct inversion with respect to s yields vjV* 

jr(u,o = f w - «*>' A . (a i4) :•:•:•.- 
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We end this section with a simple example. 

Example 3.1.  The switching server 

Consider a system that operates in two modes each with a different work rate, say 

T"i and rg for modes "1" and "2", respectively. The system switches between the two 

modes according to a Poisson process at different rates, say X and ii from modes "1" 

and "2", respectively. A total system failure may occur at any mode of operation at dif- 

ferent rates, say \o and yuo for modes "1" and "2", respectively. The CTMC representing 

the switching server is shown in figure 2. In the case where a total system failure may 

not occur, i.e. XJJ = /Uo = 0 and if re = 0 then the switching server model reduces to the 

completion time model of job execution in a system subject to breakdowns and repairs 

considered by Gaver [5]. 

In this example we consider the case in which both states 1 and 2 are of the 

preemptive-resume type. We note that if we set // = 0 in this example we obtain the 

reward model of a two processor system considered by Meyer [10]. In our example the 

Q matrix is 

-X'   X 

where X' == X + Xj> and /x* = /x + po. Then from Equation (3.5a) 

K*(s-u>l - fr+nu+x'   -x ]_IK1 
|Fg-(s/u)]" [     -A*       s+r«u+M']   jrgj 

Solving for Fi'{s,u) and F£*(s,u) we get 

n  **'   ' ~ (s+X' + r,u)(s+|i'+rgu)-X/i 

JP-V« v\ -     r>r*U +r8(s+X')+r1M 
• W*   '     (s+X'+r^Xs+Ai'+rgw)-^" 

Hence, using eq. (3.9) we get 

Fi(e,x) = A„(s)ezp(--u1(s)x) + Ai8(s)exp(-Ug(s)z), 

£v 
:<* 

.•V'. 
.* .« i 

v •• •• 
:•••:•. ;-v\- 
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fZ(*.zY- An(s )*xp(-ul(s)z) + i4B8(s)eap(-u8(s)z) 

where 

<**i(«) = [r,(s+At,)+r2(s +X')+V(r ,(s +/*')-»• BO? +X'))S!+4A/w1r8]/ (Sr ^j) 

u*g(«) = [r^s+ji'Hrgfs+XO-Vfr ,(s +/i')-i"8(s +X,))8+4X/xr1rg]/ (Sr^g1) 

*n(«) = l*,i(*+M*} + 'eX -rirgUi(s))/[(iA2(s) -ui(s))riTg] 

*ie(s) = C*'i(*+At,> + »"«* - TiTfUtis))/[(u,(s) - ix2(s))r!r8] 

*8i(») = t^»**) + *tf» - r,rgui(s))/[(u2(s) - u^«»^,] 

>WS) • fa(s+X') + *-,Ai -r1r8ug(s))/[(u1(s) -ug(s))r,rz] 

Then 

r-(s) = [iriAu(s)i-iTzAe1(s)]Gr(u1(s))+[ir1A1g(s)+nzA2z(s)]cr(u2(s)) .. 

And 77, the probability of dynamic failure, is given by 1 - /""(0). 

12 

I«. 

From corollary 1, we have 

JT*(u.sD=f-[l-uFr(s.ii)] 

__ (a +X')(s +/J.') + T&i(s +Xp) - X/j, 
" •[(»+X'+r1u)(s+f*'+rgiz)-X/x] 

„ PiofrO  |    Bn(u)    |    glg(u) 
ff ff+«l(tt) S+Sg(ll) 

where 

• i(u) = j|{(X' + rtu + ^' + rgu) + VfX'+nu-Ai'-rgu)* + 4X/z)] 

•s(u) • g{(X' + n<« + M' + »"i") ~ V(X,+rjU-/i'-jr8u)z + AX/J)) 

.* _^'A*'»rgMXa-X^ 
*»*u) "       «,<u).g(u) 

„   /..x _ KA'^i(«))(M'-»i(u)) » rgix(Xo-s,(u)) - X/x 

KX'-»8(u))(/i'-8g(u)) + reu(Xo-sg(ii)) - X/x 
""l^" »•(u)[««(u)-*i<u)] 

• • 



ä 

i 

I 

[-•- 
[••. 

01 KVJI A. .*»_ s.„v. v •. •jv.r^ÄT-.r '<••' mi." ^PW    *  I     1 

13 

Inverting with respect to s, yields 

In a similar manner we can compute Yg(u,t). We note that the above LSTs can be 

inverted in this case to obtain the distribution function of Y(t) as an infinite sum of 

Bessel functions owing to the occurrences of radicals in the expresions of st(u) and 

*g(u). However, in the case that /x=0 (as considered by Meyer), the radicals disappear 

and the inversion is relatively easy (as derived in [4] for arbitrary number of proces- 

sors). 

4.   The Preemptive-repeat-identical Case 

In this section we assume that all states are preemptive repeat-identical.   The 

main result is given in the following: 

Theorem 3. The conditional LSTs Fi"(s,x), lsisn as defined in equation (2.2) satisfy 

the following simultaneous equations: 

Fr(s,x) = e-(*^)'/r«+ £7^T(l-e"'(,+'<)*/Vr(s.x). l<t=sn. 

Proof- Conditioning on the holding time H in the initial state we have 

(4.1) 

E(a-'r\H=h.B=x.Z(0)=i) = 
r**/ri ,if /ifcx/rt 

B-^£ 2$L/v-(s.x), if ft<x/rt 

Unoonditioning yields equation (4.1).    Q ED 

Solving equations (4.1) we get F~(s,x), for   Ki <n.   Then equations (2.7) and 

(2.8) can be used to compute F~(s). Finally, tj = 1 - F~(0). 

Example 4.1.  Consider the switching server of example 3.1, except now we assume that 

, 

£•-: 

?^*-*^2*^^^i^ü^^: ^J^^s^^-^^^s^^ 
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states 1 and 2 are preemptive-repeat-identical. 

Equations (4.1) become: 

(s+V)*7(*.*) = <•**)•"****"' + X(l-#"^*Ä,"rW<*^) 

(s+^2 (*•*) * (s+A*•)e"(•*'')"/^, + /i(l-e~~l'*'i)"rt)F:(*.*)• 

Solving the above equations we get 

Fi(s,x) • (s+/i*)[s+\')o + X(l-a)b]/A 

FjT(s.x) = (s+\')[s+At')o + M(l-6)a]/A 

where a = exp^s+X'Jx/ri), b = exp(-(s+/x')*/'"2) and 

A = (s+X')(s+/i') -X^(l-a)(l-6) .  /<"(«). for i = 1.2 and F"(s) can be obtained from 

equations (2.7) and (2.8). 

.. 

..•:. .••\ 

5.  The Preemptive-repeat-differerü Case 

Here  we   consider  the   case,  where   all   structure-states  of the   process   are 

preemptive-repeat-different (prd). 

m 8 

m 

The following theorem holds 

Theorem 4. The LSTs F{"(s), for 1 a: i < n, as defined in equation (2.4) satisfy the fol- 

lowing simultaneous equations 

/i~(s) = Crds+qJ/ri) + | jStLjil-cras+qiVrMFfts),   Lfii««. (5 1} 

Note that when rt -» 0. Grfe+qJ/Ti) -» 0, since G (0+) = 0 and hence LimG~(s) -* 0. 

Proof: Conditioning on the work requirement B of the job to be executed and on the 

holding time H in the initial state we get 

•--•-   -V-fW-I V_V_j . -». --. -'.  r% •       .\  .•• •   •  • • -••. _S ,   ! [jjjjjjjj.'! I'll ••••.•v. •.:-Äi-:.\vy.-vy 
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E(*-"\B=x.H=h,Z(0)=i)= 

,-«/,•, if/ifex/r, 

.-*££JLF/-(S).        ifÄ<x/rt 

3* 

Note that if a structure state transition occurs before the job is completed then a dif- 

ferent job with independent and identical distribution is restarted. 

Now, unconditioning on B (the job's work requirement) yields 

E(»-T\H=h.Z(0)'i)= J •""/r<dC(*)+   f  e-* J^-r7(s)tfC(i) 

Unconditioning on H (the holding time in the initial state),  yields equation (5.1). 

Q.E.D. 

Solving equations (5.1) we get FC(s), for 1 •si <n.  Equation (2.8) can be used to get 

/**(»). The dynamic failure probability (n) follows immediately 

r, = /»(?•=-)= l-F-(O). 

Note that the preemptive-repeat-different case with a constant (or deterministic) 

work requirement of a job (B=x) corresponds to the preemptive-repeat-identical case. 

Example 5.1.  Again we consider the switching server of example 3.1 with the states 1 

and 2 being preemptive- repeat-different. From equations (5.1) we have 

*7(«) = CT((s+\'Vi) + p^l-Cr"((»+X')/r,)]/'t-(.) 

It follows that 

/?(•) = 
Cr((M^)/rl)+(^~i(l-Cr((s^)/rl))(r((s^)/re) 

llHjfa(jf^(l-CT((s+K)/Ti))(l-Cr«s+ß)/r2))} 

Z*Z+Z*ZPZ+Z+&Z+Z+ZfL+Z''Z''Z+Z**+s+Z*'Z.<*J*sZ'''Z'*Z'tZ*'Z<'Z'Z''Z*Z*Z •>."••;. >.'•• ••     •     VJ 
• - -  • 

W-. -r- «—, _. 

f. TZK 

"j- •:• '• 

••-.••.v. 

•-•••-•.i 
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F;(S) = 
cras+p.')/re)H7^(i-cr((s^')/re))cr((s+x)/Ti) 

[W7^(J^7)(1'G~((s+x')/r,))(1'cr((s+/iVrs!))] 

/*"(*) can be obtained from equation (2.B). 

6.  Conclusions and Extensions 

We bave developed a unified model for the combined evaluation of performance 

and reliability of multi-mode computer systems. This allows us to compute both 

system-oriented measures (such as the accumulated reward) and task-oriented meas- 

ures (such as the completion time and the dynamic failure probability) from a single 

model. We model preemptive-resume and preemptive-repeat interactions between 

task execution and mode change (failure/repair) events. It is clearly of interest to 

allow mixed preemptive-resume and preemptive-repeat interactions in the same 

model. This and other extensions have been studied and reported recently [8]. The 

techniques developed in this paper can be exetended to the case where the structure- 

state process is a semi-Markov process. 
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The Switching Server 

.-• .> 

*        •" 

fcifci* i ii 


