11,836 research outputs found

    Optimal edge termination for high oxide reliability aiming 10kV SiC n-IGBTs

    Get PDF
    The edge termination design strongly affects the ability of a power device to support the desired voltage and its reliable operation. In this paper we present three appropriate termination designs for 10kV n-IGBTs which achieve the desired blocking requirement without the need for deep and expensive implantations. Thus, they improve the ability to fabricate, minimise the cost and reduce the lattice damage due to the high implantation energy. The edge terminations presented are optimised both for achieving the widest immunity to dopant activation and to minimise the electric field at the oxide. Thus, they ensure the long-term reliability of the device. This work has shown that the optimum design for blocking voltage and widest dose window does not necessarily give the best design for reliability. Further, it has been shown that Hybrid Junction Termination Extension structure with Space Modulated Floating Field Rings can give the best result of very high termination efficiency, as high as 99%, the widest doping variation immunity and the lowest electric field in the oxide

    Vacuum mechatronics

    Get PDF
    The discipline of vacuum mechatronics is defined as the design and development of vacuum-compatible computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. The importance of vacuum mechatronics is growing with an increased application of vacuum in space studies and in manufacturing for material processing, medicine, microelectronics, emission studies, lyophylisation, freeze drying and packaging. The quickly developing field of vacuum mechatronics will also be the driving force for the realization of an advanced era of totally enclosed clean manufacturing cells. High technology manufacturing has increasingly demanding requirements for precision manipulation, in situ process monitoring and contamination-free environments. To remove the contamination problems associated with human workers, the tendency in many manufacturing processes is to move towards total automation. This will become a requirement in the near future for e.g., microelectronics manufacturing. Automation in ultra-clean manufacturing environments is evolving into the concept of self-contained and fully enclosed manufacturing. A Self Contained Automated Robotic Factory (SCARF) is being developed as a flexible research facility for totally enclosed manufacturing. The construction and successful operation of a SCARF will provide a novel, flexible, self-contained, clean, vacuum manufacturing environment. SCARF also requires very high reliability and intelligent control. The trends in vacuum mechatronics and some of the key research issues are reviewed

    Beam lead technology

    Get PDF
    Beam lead technology for microcircuit interconnections with applications to metallization, passivation, and bondin

    A review of stencil printing for microelectronic packaging

    Get PDF
    PurposeThe purpose of this paper is to present a detailed overview of the current stencil printing process for microelectronic packaging.Design/methodology/approachThis paper gives a thorough review of stencil printing for electronic packaging including the current state of the art.FindingsThis article explains the different stencil technologies and printing materials. It then examines the various factors that determine the outcome of a successful printing process, including printing parameters, materials, apparatus and squeegees. Relevant technical innovations in the art of stencil printing for microelectronics packaging are examined as each part of the printing process is explained.Originality/valueStencil printing is currently the cheapest and highest throughput technique to create the mechanical and electrically conductive connections between substrates, bare die, packaged chips and discrete components. As a result, this process is used extensively in the electronic packaging industry and therefore such a review paper should be of interest to a large selection of the electronics interconnect and assembly community.</jats:sec

    Electromigration-Induced Flow of Islands and Voids on the Cu(001) Surface

    Full text link
    Electromigration-induced flow of islands and voids on the Cu(001) surface is studied at the atomic scale. The basic drift mechanisms are identified using a complete set of energy barriers for adatom hopping on the Cu(001) surface, combined with kinetic Monte Carlo simulations. The energy barriers are calculated by the embedded atom method, and parameterized using a simple model. The dependence of the flow on the temperature, the size of the clusters, and the strength of the applied field is obtained. For both islands and voids it is found that edge diffusion is the dominant mass-transport mechanism. The rate limiting steps are identified. For both islands and voids they involve detachment of atoms from corners into the adjacent edge. The energy barriers for these moves are found to be in good agreement with the activation energy for island/void drift obtained from Arrhenius analysis of the simulation results. The relevance of the results to other FCC(001) metal surfaces and their experimental implications are discussed.Comment: 9 pages, 13 ps figure

    Advancing automation and robotics technology for the Space Station and for the US economy. Volume 1: Executive overview

    Get PDF
    In response to Public Law 98-371, dated July 18, 1984, the NASA Advanced Technology Advisory Committee has studied automation and robotics for use in the Space Station. The Executive Overview, Volume 1 presents the major findings of the study and recommends to NASA principles for advancing automation and robotics technologies for the benefit of the Space Station and of the U.S. economy in general. As a result of its study, the Advanced Technology Advisory Committee believes that a key element of technology for the Space Station is extensive use of advanced general-purpose automation and robotics. These systems could provide the United States with important new methods of generating and exploiting space knowledge in commercial enterprises and thereby help preserve U.S. leadership in space

    Radiation effects on CMOS image sensors with sub-2”m pinned photodiodes

    Get PDF
    A group of four commercial sensors with pixel pitches below 2ÎŒm has been irradiated with 60Co source at several total ionizing dose levels related to space applications. A phenomenological approach is proposed through behavior analysis of multiple sensors embedding different technological choices (pitch, isolation or buried oxide). A complete characterization including dark current, activation energy and temporal noise analysis allows to discuss about a degradation scheme
    • 

    corecore