2,994 research outputs found

    Toward Biologically-Inspired Self-Healing, Resilient Architectures for Digital Instrumentation and Control Systems and Embedded Devices

    Get PDF
    Digital Instrumentation and Control (I&C) systems in safety-related applications of next generation industrial automation systems require high levels of resilience against different fault classes. One of the more essential concepts for achieving this goal is the notion of resilient and survivable digital I&C systems. In recent years, self-healing concepts based on biological physiology have received attention for the design of robust digital systems. However, many of these approaches have not been architected from the outset with safety in mind, nor have they been targeted for the automation community where a significant need exists. This dissertation presents a new self-healing digital I&C architecture called BioSymPLe, inspired from the way nature responds, defends and heals: the stem cells in the immune system of living organisms, the life cycle of the living cell, and the pathway from Deoxyribonucleic acid (DNA) to protein. The BioSymPLe architecture is integrating biological concepts, fault tolerance techniques, and operational schematics for the international standard IEC 61131-3 to facilitate adoption in the automation industry. BioSymPLe is organized into three hierarchical levels: the local function migration layer from the top side, the critical service layer in the middle, and the global function migration layer from the bottom side. The local layer is used to monitor the correct execution of functions at the cellular level and to activate healing mechanisms at the critical service level. The critical layer is allocating a group of functional B cells which represent the building block that executes the intended functionality of critical application based on the expression for DNA genetic codes stored inside each cell. The global layer uses a concept of embryonic stem cells by differentiating these type of cells to repair the faulty T cells and supervising all repair mechanisms. Finally, two industrial applications have been mapped on the proposed architecture, which are capable of tolerating a significant number of faults (transient, permanent, and hardware common cause failures CCFs) that can stem from environmental disturbances and we believe the nexus of its concepts can positively impact the next generation of critical systems in the automation industry

    Embryonic Architecture with Built-in Self-test and GA Evolved Configuration Data

    Get PDF
    The embryonic architecture, which draws inspirationfrom the biological process of ontogeny, has built-inmechanisms for self-repair. The entire genome is stored in theembryonic cells, allowing the data to be replicated in healthycells in the event of a single cell failure in the embryonic fabric.A specially designed genetic algorithm (GA) is used to evolve theconfiguration information for embryonic cells. Any failed embryoniccell must be indicated via the proposed Built-in Self-test(BIST) the module of the embryonic fabric. This paper recommendsan effective centralized BIST design for a novel embryonic fabric.Every embryonic cell is scanned by the proposed BIST in casethe self-test mode is activated. The centralized BIST design usesless hardware than if it were integrated into each embryoniccell. To reduce the size of the data, the genome or configurationdata of each embryonic cell is decoded using Cartesian GeneticProgramming (CGP). The GA is tested for the 1-bit adder and2-bit comparator circuits that are implemented in the embryoniccell. Fault detection is possible at every function of the cell due tothe BIST module’s design. The CGP format can also offer gate-levelfault detection. Customized GA and BIST are combinedwith the novel embryonic architecture. In the embryonic cell, self-repairis accomplished via data scrubbing for transient errors

    Using the CRISPR/Cas9 system to understand neuropeptide biology and regulation

    Get PDF
    Funding was provided by a Wellcome Trust ISSF starting grant (105625/Z/14/Z), Medical Research Scotland (PhD-719-2013), GW Pharmaceuticals (PhD-719-2013 - S.5242.001) and the BBSRC (BB/J012343/1).Peer reviewedPublisher PD

    Immunotronics - novel finite-state-machine architectures with built-in self-test using self-nonself differentiation

    Get PDF
    A novel approach to hardware fault tolerance is demonstrated that takes inspiration from the human immune system as a method of fault detection. The human immune system is a remarkable system of interacting cells and organs that protect the body from invasion and maintains reliable operation even in the presence of invading bacteria or viruses. This paper seeks to address the field of electronic hardware fault tolerance from an immunological perspective with the aim of showing how novel methods based upon the operation of the immune system can both complement and create new approaches to the development of fault detection mechanisms for reliable hardware systems. In particular, it is shown that by use of partial matching, as prevalent in biological systems, high fault coverage can be achieved with the added advantage of reducing memory requirements. The development of a generic finite-state-machine immunization procedure is discussed that allows any system that can be represented in such a manner to be "immunized" against the occurrence of faulty operation. This is demonstrated by the creation of an immunized decade counter that can detect the presence of faults in real tim

    Theoretical results of research on spatial and territorial development (with examples on the european north of Russia)

    Full text link
    This article focuses primarily on the correlation between the concepts of “spatial” and “territorial” development. It is shown that, while differing in their content, these concepts substantially complement each other when it comes to specific research studies. In this case, the topic of spatial development includes considering the general areas for the location of productive forces, geographic dimension of the specific types of economic activities, economic measurement of distances, linear communications and a network structure of the economy while. In the topic of territorial development, the author introduces the territory itself as a natural and economic capital and territorial economic management based on such capital. The study of spatial and territorial aspects of socio-economic development in the European North of Russia (ENR) showed that its immediate future is associated not so much with the large projects aimed at creating new fuel and energy, mineral and raw material, or forestry bases, as with the improvement in the existing economic systems based on scientific and technological progress and interregional integration. The progression from developed territories to new Arctic and Northern locations is associated with tremendous costs and requires time for scientific and technical preparation. The modernization of existing production facilities, territorial and production complexes is a priority in the development of productive forces in ENR. The author proposes to apply the theoretical provisions and practical recommendations formulated as a result of studying the spatial and territorial development in the elaboration of government strategic planning documents. Currently, the practice of strategic planning does not fully consider the substance of such concepts as “spatial development” and “territorial development.” This incompleteness is so significant that overcoming it should be considered as one of the key objectives pursued by the regional policy

    Embryonics: A path to artificial life?

    Get PDF
    Electronic systems, no matter how clever and intelligent they are, cannot yet demonstrate the reliability that biological systems can. Perhaps we can learn from these processes, which have developed through millions of years of evolution, in our pursuit of highly reliable systems. This article discusses how such systems, inspired by biological principles, might be built using simple embryonic cells. We illustrate how they can monitor their own functional integrity in order to protect themselves from internal failure or from hostile environmental effects and how faults caused by DNA mutation or cell death can be repaired and thus full system functionality restored. ©2006 Massachusetts Institute of Technology

    Embryonic Architecture with Built-in Self-test and GA Evolved Configuration Data

    Get PDF
    The embryonic architecture, which draws inspiration from the biological process of ontogeny, has built-in mechanisms for self-repair. The entire genome is stored in the embryonic cells, allowing the data to be replicated in healthy cells in the event of a single cell failure in the embryonic fabric. A specially designed genetic algorithm (GA) is used to evolve the configuration information for embryonic cells. Any failed embryonic cell must be indicated via the proposed Built-in Selftest (BIST) the module of the embryonic fabric. This paper recommends an effective centralized BIST design for a novel embryonic fabric. Every embryonic cell is scanned by the proposed BIST in case the self-test mode is activated. The centralized BIST design uses less hardware than if it were integrated into each embryonic cell. To reduce the size of the data, the genome or configuration data of each embryonic cell is decoded using Cartesian Genetic Programming (CGP). The GA is tested for the 1-bit adder and 2-bit comparator circuits that are implemented in the embryonic cell. Fault detection is possible at every function of the cell due to the BIST module’s design. The CGP format can also offer gate-level fault detection. Customized GA and BIST are combined with the novel embryonic architecture. In the embryonic cell, self-repair is accomplished via data scrubbing for transient errors
    corecore