549 research outputs found

    Fast Parallel Algorithms for Basic Problems

    Get PDF
    Parallel processing is one of the most active research areas these days. We are interested in one aspect of parallel processing, i.e. the design and analysis of parallel algorithms. Here, we focus on non-numerical parallel algorithms for basic combinatorial problems, such as data structures, selection, searching, merging and sorting. The purposes of studying these types of problems are to obtain basic building blocks which will be useful in solving complex problems, and to develop fundamental algorithmic techniques. In this thesis, we study the following problems: priority queues, multiple search and multiple selection, and reconstruction of a binary tree from its traversals. The research on priority queue was motivated by its various applications. The purpose of studying multiple search and multiple selection is to explore the relationships between four of the most fundamental problems in algorithm design, that is, selection, searching, merging and sorting; while our parallel solutions can be used as subroutines in algorithms for other problems. The research on the last problem, reconstruction of a binary tree from its traversals, was stimulated by a challenge proposed in a recent paper by Berkman et al. ( Highly Parallelizable Problems, STOC 89) to design doubly logarithmic time optimal parallel algorithms because a remarkably small number of such parallel algorithms exist

    Real-time and distributed applications for dictionary-based data compression

    Get PDF
    The greedy approach to dictionary-based static text compression can be executed by a finite state machine. When it is applied in parallel to different blocks of data independently, there is no lack of robustness even on standard large scale distributed systems with input files of arbitrary size. Beyond standard large scale, a negative effect on the compression effectiveness is caused by the very small size of the data blocks. A robust approach for extreme distributed systems is presented in this paper, where this problem is fixed by overlapping adjacent blocks and preprocessing the neighborhoods of the boundaries. Moreover, we introduce the notion of pseudo-prefix dictionary, which allows optimal compression by means of a real-time semi-greedy procedure and a slight improvement on the compression ratio obtained by the distributed implementations

    Hu-Tucker alogorithm for building optimal alphabetic binary search trees

    Get PDF
    The purpose of this thesis is to study the behavior of the Hu- Tucker algorithm for building Optimal Alphabetic Binary Search Trees (OABST), to design an efficient implementation, and to evaluate the performance of the algorithm, and the implementation. The three phases of the algorithm are described and their time complexities evaluated. Two separate implementations for the most expensive phase, Combination, are presented achieving 0(n2) and O(nlogn) time and 0(n) space complexity. The break even point between them is experimentally established and the complexities of the implementations are compared against their theoretical time complexities. The electronic version of The Complete Works of William Shakespeare is compressed using the Hu- Tucker algorithm and other popular compression algorithms to compare the performance of the different techniques. The experiments justified the price that has to be paid to implement the Hu- Tucker algorithm. It is shown that an efficient implementation can process extremely large data sets relatively fast and can achieve optimality close to the Optimal Binary Tree, built using the Huffman algorithm, however the OABST can be used in both encoding and decoding processes, unlike the OBT where an additional mapping mechanism is needed for the decoding phase

    Functional programming abstractions for weakly consistent systems

    Get PDF
    In recent years, there has been a wide-spread adoption of both multicore and cloud computing. Traditionally, concurrent programmers have relied on the underlying system providing strong memory consistency, where there is a semblance of concurrent tasks operating over a shared global address space. However, providing scalable strong consistency guarantees as the scale of the system grows is an increasingly difficult endeavor. In a multicore setting, the increasing complexity and the lack of scalability of hardware mechanisms such as cache coherence deters scalable strong consistency. In geo-distributed compute clouds, the availability concerns in the presence of partial failures prohibit strong consistency. Hence, modern multicore and cloud computing platforms eschew strong consistency in favor of weakly consistent memory, where each task\u27s memory view is incomparable with the other tasks. As a result, programmers on these platforms must tackle the full complexity of concurrent programming for an asynchronous distributed system. ^ This dissertation argues that functional programming language abstractions can simplify scalable concurrent programming for weakly consistent systems. Functional programming espouses mutation-free programming, and rare mutations when present are explicit in their types. By controlling and explicitly reasoning about shared state mutations, functional abstractions simplify concurrent programming. Building upon this intuition, this dissertation presents three major contributions, each focused on addressing a particular challenge associated with weakly consistent loosely coupled systems. First, it describes A NERIS, a concurrent functional programming language and runtime for the Intel Single-chip Cloud Computer, and shows how to provide an efficient cache coherent virtual address space on top of a non cache coherent multicore architecture. Next, it describes RxCML, a distributed extension of MULTIMLTON and shows that, with the help of speculative execution, synchronous communication can be utilized as an efficient abstraction for programming asynchronous distributed systems. Finally, it presents QUELEA, a programming system for eventually consistent distributed stores, and shows that the choice of correct consistency level for replicated data type operations and transactions can be automated with the help of high-level declarative contracts

    CommCSL: Proving Information Flow Security for Concurrent Programs using Abstract Commutativity

    Full text link
    Information flow security ensures that the secret data manipulated by a program does not influence its observable output. Proving information flow security is especially challenging for concurrent programs, where operations on secret data may influence the execution time of a thread and, thereby, the interleaving between different threads. Such internal timing channels may affect the observable outcome of a program even if an attacker does not observe execution times. Existing verification techniques for information flow security in concurrent programs attempt to prove that secret data does not influence the relative timing of threads. However, these techniques are often restrictive (for instance because they disallow branching on secret data) and make strong assumptions about the execution platform (ignoring caching, processor instructions with data-dependent runtime, and other common features that affect execution time). In this paper, we present a novel verification technique for secure information flow in concurrent programs that lifts these restrictions and does not make any assumptions about timing behavior. The key idea is to prove that all mutating operations performed on shared data commute, such that different thread interleavings do not influence its final value. Crucially, commutativity is required only for an abstraction of the shared data that contains the information that will be leaked to a public output. Abstract commutativity is satisfied by many more operations than standard commutativity, which makes our technique widely applicable. We formalize our technique in CommCSL, a relational concurrent separation logic with support for commutativity-based reasoning, and prove its soundness in Isabelle/HOL. We implemented CommCSL in HyperViper, an automated verifier based on the Viper verification infrastructure, and demonstrate its ability to verify challenging examples

    Comprehensive evaluation of a New GPU-based approach to the shortest-path problem

    Get PDF
    Producción CientíficaThe Single-Source Shortest Path (SSSP) problem arises in many different fields. In this paper, we present a GPU SSSP algorithm implementation. Our work significantly speeds up the computation of the SSSP, not only with respect to a CPU-based version, but also to other state-of-the-art GPU implementations based on Dijkstra. Both GPU implementations have been evaluated using the latest NVIDIA architectures. The graphs chosen as input sets vary in nature, size, and fan-out degree, in order to evaluate the behavior of the algorithms for different data classes. Additionally, we have enhanced our GPU algorithm implementation using two optimization techniques: The use of a proper choice of threadblock size; and the modification of the GPU L1 cache memory state of NVIDIA devices. These optimizations lead to performance improvements of up to 23% with respect to the non-optimized versions. In addition, we have made a platform comparison of several NVIDIA boards in order to distinguish which one is better for each class of graphs, depending on their features. Finally, we compare our results with an optimized sequential implementation of Dijkstra's algorithm included in the reference Boost library, obtaining an improvement ratio of up to 19x for some graph families, using less memory space.Ministerio de Economía y Competitividad (Spain) and ERDF program of the European Union: CAPAP-H5 network (TIN2014-53522- REDT), MOGECOPP project (TIN2011-25639); Junta de Castilla y León (Spain): ATLAS project (VA172A12-2); and the COST Program Action IC1305: NESUS

    New Parameterized Algorithms for APSP in Directed Graphs

    Get PDF
    All Pairs Shortest Path (APSP) is a classic problem in graph theory. While for general weighted graphs there is no algorithm that computes APSP in O(n^{3-epsilon}) time (epsilon > 0), by using fast matrix multiplication algorithms, we can compute APSP in O(n^{omega}*log(n)) time (omega < 2.373) for undirected unweighted graphs, and in O(n^{2.5302}) time for directed unweighted graphs. In the current state of matters, there is a substantial gap between the upper bounds of the problem for undirected and directed graphs, and for a long time, it is remained an important open question whether it is possible to close this gap. In this paper we introduce a new parameter that measures the symmetry of directed graphs (i.e. their closeness to undirected graphs), and obtain a new parameterized APSP algorithm for directed unweighted graphs, that generalizes Seidel\u27s O(n^{omega}*log(n)) time algorithm for undirected unweighted graphs. Given a directed unweighted graph G, unless it is highly asymmetric, our algorithms can compute APSP in o(n^{2.5}) time for G, providing for such graphs a faster APSP algorithm than the state-of-the-art algorithms for the problem
    corecore