
Copyright

by

Razieh Nokhbeh Zaeem

2014

The Dissertation Committee for Razieh Nokhbeh Zaeem
certifies that this is the approved version of the following dissertation:

Contract-Driven Data Structure Repair:

A Novel Approach for Error Recovery

Committee:

Sarfraz Khurshid, Supervisor

Adnan Aziz

John Hasenbein

Kathryn S. McKinley

Dewayne E. Perry

Contract-Driven Data Structure Repair:

A Novel Approach for Error Recovery

by

Razieh Nokhbeh Zaeem, B.E., M.S.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2014

To my mother Fatemeh.

Acknowledgments

First and foremost, I thank God, the most merciful, for everything.

I wish to thank the multitudes of people who helped me throughout

my journey as a PhD student. I would like to sincerely thank my supervisor,

Dr. Sarfraz Khurshid, for his priceless help and support. Sarfraz always under-

stood my situation (an international student with many travel limitations and

a baby at home, to mention only a few), traveled on my behalf, campaigned for

my job, and gave me the freedom much required to develop my own research

agenda. I would like to extend my appreciation to my committee members,

Dr. Adnan Aziz, Dr. John Hasenbein, and Dr. Dewayne E. Perry, for their in-

valuable guidance. In particular, I am grateful to Dr. Kathryn S. McKinley for

helpful ideas, detailed discussion and feedback, as well as her overall support.

I am thankful to my peers in Software Verification, Validation and

Testing group: Guowei Yang, Muhammad Zubair Malik, Lingming Zhang,

Allison Sullivan, Shadi Abdul Khalek, Junaid Haroon Siddiqui, Chang Hwan

Peter Kim, Vidya Narayanan, Mehmet Erol Yesin, and particularly my friend

and co-author Divya Gopinath for her many helpful comments. I also thank

Ms. Melanie Gulick, the graduate coordinator of the Electrical and Computer

Engineering department.

v

I thank my dear friends for always being there for me: Maryam Mor-

tazavi, Zahra Mohammadi, Mansoureh Peydayesh, Pegah Zabetirad, Zahra

Dehghani, Kowsar Yousefi, Hosniyeh Nekoofar, Leila Moravvej, and Marzieh

Sadat Tabatabayi. I especially thank Maryam Jelvehi Moghaddam for helping

on my defense day.

Finally, I am deeply grateful to the love of my life and my husband,

Mahdi Kefayati, not only for his affection and emotional support, but also for

his inspiration and contribution to my research as a fellow PhD student. He is

the one always thanked in my papers for helpful discussion and proofreading,

and in my heart, for his unbelievably enormous love. Time would fail me

to tell how I am indebted to my parents, Fatemeh and Davoud. May God

endow them with best of rewards. I thank my sister Marzieh and my brother

Mohammad for filling my empty space in the family, and wish to see them

soon after seven long years. I also extend my love to my dear aunt Tooba.

Lastly, I would like to make special mention of my baby, Fatima Grace, and

thank her for accommodating an always busy mom, and for playing quietly as

I finish this dissertation.

The idea of repair abstraction was originally proposed by Muhammad

Zubair Malik in his doctoral dissertation proposal.

This work was funded in part by the NSF under Grant Nos. CCF-

0845628, CCF-1319688, CNS-0958231, IIS-0438967, CCF-1018271, CCF-0811524,

and SHF-0910818, AFOSR grant FA9550-09-1-0351, and Fujitsu Labs of Amer-

ica SRA No. UTA12-001194.

vi

Contract-Driven Data Structure Repair:

A Novel Approach for Error Recovery

Publication No.

Razieh Nokhbeh Zaeem, Ph.D.

The University of Texas at Austin, 2014

Supervisor: Sarfraz Khurshid

Software systems are now pervasive throughout our world. The re-

liability of these systems is an urgent necessity. A large degree of research

effort on increasing software reliability is dedicated to requirements, architec-

ture, design, implementation and testing—activities that are performed before

system deployment. While such approaches have become substantially more

advanced, software remains buggy and failures remain expensive.

We take a radically different approach to reliability from previous ap-

proaches, namely contract-driven data structure repair for runtime error recov-

ery, where erroneous executions of deployed software are corrected on-the-fly

using rich behavioral contracts. Our key insight is to transform the software

contract—which gives a high level description of the expected behavior—to

an efficient implementation which repairs the erroneous data structures in the

vii

program state upon an error. To improve efficiency, scalability, and effective-

ness of repair, in addition to rich behavioral contracts, we leverage the current

erroneous state, dynamic behavior of the program, as well as repair history

and abstraction.

A core technical problem our approach to repair addresses is construc-

tion of structurally complex data that satisfy desired properties. We present a

novel structure generation technique based on dynamic programming—a clas-

sic optimization approach—to utilize the recursive nature of the structures.

We use our technique for constraint-based testing. It provides better scala-

bility than previous work. We applied it to test widely-used web browsers

and found some known and unknown bugs. Our use of dynamic programming

in structure generation opens a new future direction to tackle the scalability

problem of data structure repair.

This research advances our ability to develop correct programs. For

programs that already have contracts, error recovery using our approach can

come at a low cost. The same contracts can be used for systematically testing

code before deployment using existing as well as our new techniques. Thus,

we enable a novel unification of software verification and error recovery.

viii

Table of Contents

Acknowledgments v

Abstract vii

List of Tables xii

List of Figures xiv

List of Listings xvii

Chapter 1. Introduction 1

1.1 Contract-Driven Data Structure Repair 2

1.2 Background: Basic Idea of Contract-Based Data Structure Re-
pair Using Alloy . 5

1.3 Optimizations for Contract-Driven Data Structure Repair . . . 7

1.3.1 Program Execution History through Write and Read Bar-
riers for Data Structure Repair 7

1.3.2 Repair History through Unsatisfiable Cores for Data Struc-
ture Repair . 7

1.3.3 Abstract Repair History 10

1.4 Structure Generation Problem in Testing and Repair 11

1.4.1 Test Input Generation Using Dynamic Programming . . 11

1.4.2 Ideas for Repair Using Dynamic Programming 12

1.5 Usability . 13

1.6 Contributions . 14

Chapter 2. Related Work 18

2.1 Data Structure Repair . 18

2.2 Test Input Generation . 22

ix

Chapter 3. Background: Contract-Based Data Structure Re-
pair Using Alloy 25

3.1 Example . 25

3.2 Background on Alloy . 28

3.3 Our Previous Work: Contract-Based Data Structure Repair Us-
ing Alloy . 32

Chapter 4. History-Aware Data Structure Repair Using SAT 37

4.1 Using Barriers for Data Structure Repair 39

4.2 Using UNSAT Cores for Data Structure Repair 40

4.3 Illustration of History-Aware Data Structure Repair 41

4.4 Cobbler: Implementation of History-Aware Repair 43

4.5 Cobbler Evaluation . 44

4.5.1 Evaluation Metrics . 45

4.5.2 Subject Programs . 46

4.5.3 Errors . 48

4.5.4 Subject Tools . 50

4.5.5 Results . 51

4.5.6 ANTLR BaseTree addChild 56

4.6 Summary . 57

Chapter 5. Repair Abstractions 59

5.1 Repair Abstractions with Alloy Back-End 60

5.2 DREAM Framework . 63

5.2.1 Abstraction and Concretization 67

5.3 DREAM with Alloy Back-End 70

5.3.1 Arreh . 70

5.4 Evaluation of DREAM with Alloy Back-End 71

5.5 Summary . 80

x

Chapter 6. Data Structure Generation Using Dynamic Program-
ming 81

6.1 Example . 85

6.2 Test Input Generation Framework 87

6.2.1 Recursive repOK Methods 88

6.2.2 Algorithms . 89

6.2.2.1 DP . 89

6.2.2.2 Random Generation 96

6.2.2.3 LazyDP . 97

6.2.2.4 SymboLazyDP 98

6.2.3 Theorem on Test Generation Algorithm 100

6.3 Evaluation: Test Input Generation Using Dynamic Programming106

6.3.1 Experimental Settings 108

6.3.2 Microbenchmarks . 108

6.3.3 Random Test Generation 116

6.3.4 Google Chrome and Apple Safari 118

6.3.4.1 Modeling HTML and CSS Test Inputs 119

6.3.4.2 Experimental Results 120

6.3.4.3 Differential Testing 121

6.3.4.4 Bugs Found . 122

6.3.4.5 Applying Symbolic Execution and Korat 126

6.3.5 Threats to Validity . 127

6.4 Applicability . 128

6.5 Ideas on Leveraging Dynamic Programming for Repair 129

6.5.1 Localizing Errors with Recursive Contracts 130

6.5.1.1 Detecting Cycles 132

6.5.1.2 Supporting Post-Conditions 133

6.5.2 Repairing Data Structures with Pre-Generated Patches . 133

6.6 Summary . 134

Chapter 7. Conclusions 136

7.1 Final Thoughts . 138

xi

Bibliography 140

Vita 158

xii

List of Tables

4.1 The injected faults and ANTLR addChild() fault. The last

column shows if the field(s) that should be corrected appear in

the write barrier log (WB), read barrier log (RB), or all fields

excluding the write and read barrier logs (ALL fields). 49

5.1 Description of the Singly Linked List errors used for experimen-

tal evaluation of DREAM. 73

5.2 Abstract repair actions suggested by DREAM for Singly Linked

List. 74

5.3 Time taken to repair erroneous Singly Linked Lists (ms). . . . 75

5.4 Description of the Red Black Tree errors used for experimental

evaluation. 77

5.5 Abstract repair actions suggested by DREAM for Red Black Tree. 78

5.6 Time taken to repair erroneous Red Black Trees (ms). Timeout

represents a timeout of 500,000 ms. 79

xiii

6.1 Exhaustive test generation for the biggest sizes considered. Bench-

marks include sorted singly-linked lists (LL), binary trees (BT),

red-black trees (RBT), Fibonacci heaps (FH), binary heaps

(BH), and hash tables (HT). TO represents a timeout of 1000s.

Best performance highlighted. 109

6.2 Random generation of ten tests with 90 ≤ size ≤ 100. Bench-

marks include sorted singly-linked lists (LL), binary trees (BT),

red-black trees (RBT), Fibonacci heaps (FH), binary heaps

(BH), and hash tables (HT). TO represents a timeout of 1000s.

Best performance highlighted. 117

6.3 Chrome and Safari test input generation results. 121

xiv

List of Figures

1.1 Traditional approach to errors (left) versus repair approach (right). 2

1.2 An example of combining binary trees to build a bigger binary

tree. 13

3.1 Bug cycle manifested as a faulty output and the repair result. 30

3.2 Relational representation of data structures in Alloy models. . 31

4.1 cycle manifested as a faulty output and its history-aware repair

result. 42

4.2 The relationship between Cobbler, the Java Virtual Machine,

and the program. 44

4.3 Performance and accuracy: repairing singly linked lists with

Cobbler (C), Tarmeem (T), an enhanced version of Juzi (J),

and PBnJ (P). 53

4.4 Cobbler performance and accuracy: repairing Kodkod red-black

trees. 55

4.5 Cobbler performance and accuracy: repairing ANTLR trees. . 56

xv

5.1 Concrete and abstract repair actions to repair the result of bug

cycle on a tree of three nodes. 61

5.2 Abstract and concrete repair actions to repair the result of bug

cycle on a tree of five nodes. 62

5.3 The relationship between DREAM, the underlying repair frame-

work, the Java Virtual Machine, and the program. 64

5.4 A snapshot of Arreh. 72

6.1 All binary trees up to size 2. 86

6.2 A tree representation of an HTML input. 87

6.3 Finding binary trees up to size three (first iteration). 93

6.4 Finding binary trees up to size three (second iteration). 94

6.5 Finding binary trees up to size three (third iteration). 95

6.6 Performance comparison on linked lists. 111

6.7 Performance comparison on binary trees. 111

6.8 Performance comparison on red-black trees. 113

6.9 Memory usage on red-black trees. 113

6.10 Performance comparison on Fibonacci heaps. 114

6.11 Performance comparison on binary heaps. 115

6.12 Performance comparison on hash tables. 116

xvi

6.13 A back-face visibility bug found in Chrome (left). Safari (right)

shows the expected output. 123

6.14 A webkit-perspective bug found in Chrome (up). Safari (down)

shows the expected output. 124

6.15 A rotation direction bug found in Chrome (left). Safari (right)

shows the expected output. 126

6.16 Patching structures to repair the faulty output of bug cycle. . 131

xvii

List of Listings

3.1 A binary search tree implementation in Java [2]. 26

3.2 A binary search tree node implementation in Java [2]. 27

3.3 Binary search tree contract specification in Alloy. 29

4.1 History-aware contract-based repair using read and write logs
and unsatisfiable cores. 39

5.1 DREAM main algorithm. 65

6.1 A recursive binary tree in Java. 86

6.2 HTML repOK method. 87

6.3 Test generation algorithm in Java. 91

6.4 Instrumenting BinaryTree for symbolic execution. 100

6.5 An automatically generated HTML test input. 119

6.6 Abstraction of a CSS rule. 119

6.7 An automatically generated CSS test input (file.css). 120

6.8 Simplified HTML/CSS test input that reveals the webkit-perspective
bug in Chrome. 124

6.9 Simplified HTML/CSS test input that reveals the rotation di-
rection bug in Chrome. 125

xviii

Chapter 1

Introduction

Software systems are pervasive and integrated into almost every aspect

of life. Software reliability is essential for life-critical, science, and business

applications. For entertainment, software reliability drives system usability.

There is a considerable body of research around producing reliable software in

various phases of the software development lifecycle before deployment, from

extracting requirements to design, implementation, and testing. However,

improving the reliability of an already deployed (possibly faulty) system using

error recovery is a less explored area.

In practice, systems are deployed with unknown and known unfixed

bugs. When bugs cause failures, the usual approach is to restart the program

because fixing bugs and redeploying software may take months. Although the

latter approach may resolve the fundamental source of the problem, system

downtime is undesirable and not always feasible. Many applications, such as

operating systems, may prefer to trade slight deviations in intended function-

ality for system uptime. Better still, if developers annotate programs with

specifications, then the runtime may restore the system state to provide its

intended functionality. Continuing program execution by fixing the effect of

1

3

Check
Contract

False

54

• Terminate
• Debug
• Re-execute

True

method();
assert postCond();
…

3

Check
Contract

False

54

• Repair
• Report Logs

3
4

True

method();
assert postCond();
…

Figure 1.1: Traditional approach to errors (left) versus repair approach (right).

bugs on the program state on-the-fly is called data structure repair. Figure 1.1

compares the traditional approach to errors with the repair approach.

1.1 Contract-Driven Data Structure Repair

Existing techniques for repair have not so far lived up to their full

potential, because they are either not general purpose or too inefficient. While

repair mechanisms are not in standard use today, repair has featured in various

systems over the last couple of decades [4, 6, 75, 45]. However, a limitation of

the traditional approaches to repair is to use dedicated repair routines, which

must be implemented for each system they are intended to work for. As a

result, these routines are mostly ad-hoc and ill-understood.

Recent work introduced constraint-based repair where data structure

constraints written using first-order logic [30, 29] or as Java assertions [55, 31]

are used as a basis for repairing erroneous states. While these approaches do

2

not necessitate writing a dedicated repair routine, they also have a basic limi-

tation: data structure constraint specifications are too weak for error recovery

in general. To illustrate, in object-oriented programs, the class invariant [64]

(which defines the data structure constraints for the valid objects of the class)

applies to the entry and exit points of all public methods—even though the

precise behaviors of the methods may be very different. For example, consider

an erroneous implementation of a method to insert an element into a binary

tree—an acyclic data structure. Previous approaches [30, 55] to constraint-

based repair would accept an empty tree as a valid structure since it satisfies

the acyclicity constraint. However, an empty tree is unlikely to be a valid

output of insert.

Method contracts [71] naturally suit the repair process since they sup-

port class invariants as well as pre- and post-conditions. However, while they

have long been used to improve software reliability in different phases of soft-

ware development lifecycle, their common usage follows the same standard

halt-on-error approach upon detecting an erroneous program state in a de-

ployed software.

Our previous work [105, 104, 102] introduced contract-based error re-

covery, which addresses the fundamental limitation of constraint-based repair.

Our insight is to transmute the inherently non-deterministic specification pro-

vided as program contract into an efficient implementation. While contract-

based repair introduces a new exciting direction, developing practical solutions

poses a suite of challenges: (1) Efficiency: Contracts used to describe the in-

3

tended functionality of a system are inherently inefficient if directly used as an

implementation. Even though the repair framework comes into play occasion-

ally (only when an error occurs), its use of contracts should still be efficient

enough to satisfy the system requirements. Moreover, the repair framework

should be lightweight when the system is functioning as intended and no prob-

lem occurs. (2) Scalability: Real world programs maintain data structures

with thousands of objects as a part of their state, for which repair must remain

capable of enforcing contracts, locating errors, and fixing them efficiently. (3)

Effectiveness: In addition to providing a data structure that adheres to the

contracts, we would like to minimize the amount of perturbation introduced

by the repair process to keep the final result closer to what would be gener-

ated by the program in the absence of any bugs. (4) Usability: For a repair

system to be usable, not only should it be fast, scalable, and effective, but

it should have a user-friendly interface, give appropriate feedback, and report

logs about the repaired error so that the user can fix it permanently.

In this dissertation, we propose optimizations to address the above

challenges. In addition to rich behavioral contracts, we use program execution

history through barriers, SAT solving history through unsatisfiable cores that

SAT solvers provide, and abstracted history of previous successful repairs.

Experimental results show that our new repair technique scales better than

previous work.

Furthermore, we observe that structure construction, a central prob-

lem in repair, also arises in a slightly different form in systematic constraint-

4

based testing. We leverage dynamic programming—a well-known optimiza-

tion method—to define a novel structure generation technique, which provides

better scalability than previous work. We applied our technique to test two

widely-used web browsers, Apple Safari and Google Chrome, and found some

known and unknown bugs in Chrome. Our use of dynamic programming in

structure generation opens a new future direction to tackle the scalability

problem of data structure repair.

1.2 Background: Basic Idea of Contract-Based Data
Structure Repair Using Alloy

The basic idea of contract-driven repair was introduced in my Master’s

thesis [105, 104, 102]. This work presented a contract-based approach for data

structure repair, which repairs erroneous executions in deployed software by

repairing erroneous states. The key novelty is the support for rich behavioral

contract specifications, such as those that relate pre-states with post-states of

methods. We leveraged the Alloy tool-set, specifically the Alloy language [51]

and SAT solver-based Alloy Analyzer for systematically repairing erroneous

states.

This prior work mathematically defines the repair problem.

Definition: Let φ be a method post-condition that relates pre- and

post-states such that φ(r, t) if and only if pre-state r and post-state t satisfy

the post-condition. Given a valid pre-state u, and an invalid post-state s (i.e.,

!φ(u, s)), mutate s into state s′ such that φ(u, s′).

5

Four different algorithms are presented and implemented in our previ-

ous data structure repair framework—Tarmeem: (1) The basic method which

is oblivious to the current faulty post-state and directly applies the contract

on the pre-state to obtain a solution; (2) Iterative relaxation which enhances

the performance and scalability by focusing on specific parts of the faulty post-

state and leverages Alloy Analyzer to find proper replacements for corrupted

values one at a time; (3) Error localization, which in addition to the faulty

post-state, makes use of the post-condition to accurately locate the error and

repair it; and (4) Guided error localization which builds on top of error local-

ization and takes user guides to more precisely specify the erroneous parts of

the data structure.

To improve the effectiveness of repair, this prior work proposes the

graph edit distance metric to measure the perturbation introduced by the re-

pair process. To address the usability challenge, this work uses the Alloy lan-

guage to describe invariants, pre- and post-conditions. In addition, it provides

annotations for the user to give hints to the repair system via guides.

Experiments using complex specifications show the approach holds much

promise in increasing software reliability [105, 104, 102]. However, our use

of SAT back-end of Alloy Analyzer limited the efficiency and scalability of

Tarmeem. For instance, it would take Tarmeem up to 15 seconds to repair a

linked list data structure of 20 nodes.

6

1.3 Optimizations for Contract-Driven Data Structure
Repair

We present a suite of three optimizations to for more efficient, scalable,

and effective data structure repair using contracts.

1.3.1 Program Execution History through Write and Read Barriers
for Data Structure Repair

History-aware repair utilizes the history of a faulty program execution

by focusing repair on fields recently modified or read by the program, thereby

reducing the search space for SAT [103]. We record program writes and reads

to the key data structure with barriers. A barrier is a code sequence that

performs an action just prior to a write or read. Barriers are widely available

in commercial and research implementations of managed languages, e.g., the

HotSpot and Jikes RVM Java Virtual Machines, and the .NET C# system.

Our approach inserts barrier instrumentation on writes and reads or piggy-

backs on existing barriers.

1.3.2 Repair History through Unsatisfiable Cores for Data Struc-
ture Repair

History-aware repair further utilizes the unsatisfiable core generated

by a SAT run, which captures the history and core elements of the solver’s

reasoning and not only facilitates locating faults but can even be leveraged

directly to optimize a successive SAT run [103]. While using the history of

program execution through write and read barriers aids in improving repair

7

performance and scalability, its heuristic nature implies that there exist cases

in which we have to perform a broader search and consider fields not included in

the execution trace. In such cases, we take advantage of UNSAT cores, which

are minimal unsatisfiable sub-formulas provided by failed SAT invocations.

When SAT invocations fail, we utilize their UNSAT cores to identify faulty

fields. A final SAT invocation with the list of faulty fields extracted from the

UNSAT core results in a repaired data structure.

We implement history-aware contract-driven repair for Java programs

in a tool called Cobbler [103]. As an enabling technology, Cobbler uses the Al-

loy tool-set, its Kodkod back-end, and a SAT solver. Cobbler inserts write and

read instrumentation for the specified data structures to log dynamic program

behavior. When Cobbler detects a contract violation, it starts by restricting

the SAT solver to correcting written fields and values, followed by read fields

during the execution, and if the SAT solver has still not found a correction, it

utilizes the UNSAT core provided by the previous SAT invocations to identify

and mutate faulty fields of the data structure.

History-aware repair addresses repair challenges in several ways. First,

it improves efficiency in two orthogonal directions: (1) It promises a minimal

overhead burdened on an error-free execution by presenting a non-conventional

application of write barriers, which are a routinely used mechanism in garbage

collection and (2) it provides speedups over basic contract-based repair by

reducing the size of the search space when performing repair [103]. We explore

the efficiency and accuracy of Cobbler on microbenchmarks and two open

8

source programs: Kodkod solver[93] and ANTLR[1, 12]. We compare our

history-aware contract-based repair tool, Cobbler, to contract-based repair

alone using PBnJ [82] and our previous tool Tarmeem [104], two repair tools

which leverage user guides and heuristics along with a SAT solver. Cobbler is

substantially more efficient and scalable than PBnJ and Tarmeem. We also

compare Cobbler with Juzi, which uses data structure specifications for repair,

but does not use method post-conditions [33, 32]. Juzi’s dedicated constraint

solver is more efficient than Cobbler, but Juzi’s repair is applicable to far fewer

cases and Cobbler is much more accurate.

Second, we make repair more scalable by making it more efficient. E.g.,

Cobbler repairs a linked list of 200 nodes in 15 seconds which is ten times more

than what Tarmeem could handle in the same period of time.

Third, we keep the amount of perturbation introduced by repair low

by focusing on fields that conceivably would have been modified by a correct

implementation. Empirical evaluation of Cobbler shows it often achieves the

exact output of the deployed implementation in the absence of any bugs. Our

experiments show that for small to moderate instantiations of data structures,

Cobbler provides repaired data structures which are 100% to 90% similar to

the correct structure in more than 90% of the cases. Cobbler also finds and

repairs a previously unknown error in ANTLR.

Fourth, integration of the repair framework with commonly used frame-

works such as Java Virtual Machines (JVM) and SAT solvers adds to the us-

ability of repair systems. Cobbler lays between the JVM and the Java program

9

and makes use of barrier logs provided by the virtual machine. The layers use

shared memory to communicate. This design enhances the portability of our

framework and makes it independent of JVM and the program. Furthermore,

Cobbler utilizes UNSAT cores provided by SAT solvers which also improve

usability by pointing out the user to corrupted parts of the state, as well as

parts of the contract which cannot be satisfied on the current state.

1.3.3 Abstract Repair History

Repair abstractions [107, 65] are a technique for abstracting and mem-

oizing concrete repair actions for future reuse when a similar data structure

error occurs, thereby prioritizing repair actions and likely pruning the space

of structures to explore before a fix is found. Whereas history-aware repair

concentrates on the program execution trace and the history of current re-

pair attempts, repair abstractions provide an abstract summary of successful

repairs on previous errors.

We implemented the idea of abstracting and reusing repair actions in

a tool that we call DREAM (Data structure Repair using Efficient Abstrac-

tion Methods). DREAM provides a generic repair abstraction interface to be

used in conjunction with different underlying repair frameworks. Experimental

evaluation of DREAM, when used on top of Cobbler, reveals how abstracting

and reusing repair actions improves repair performance (e.g., an average of

3,000 times speedup on considered errors of a linked list), and its scalability

(e.g., repairing linked lists of 500 nodes in a fraction of a second), without

10

compromising effectiveness (e.g., producing the exact same repair as Cobbler

when repairing linked lists). Finally, DREAM provides a generic interface,

which interacts with any repair framework, to obtain higher usability.

1.4 Structure Generation Problem in Testing and Re-
pair

The central technical problem in data structure repair is the construc-

tion of a valid data structure (given an erroneous data structure). This tech-

nical problem reduces to the problem of constraint-based structure genera-

tion [15, 67]—test input generation leverages constraint solving to enumerate

solutions that are refined as tests, whereas data structure repair leverages

constraint solving to generate a solution that repairs the erroneous state. We

present a novel technique for efficient test input generation [106] based on

dynamic programming—a problem solving methodology designed to exploit

common subproblems. We also discuss ideas on how it enables efficient data

structure repair.

1.4.1 Test Input Generation Using Dynamic Programming

Constraint-based test input generation is an effective technique for test-

ing programs, such as compilers and web browsers, which have complex in-

puts [15, 67, 37, 27]. Constraints are used to define desired inputs and are

solved using off-the-shelf systematic constraint solvers and then refined as test

inputs. Efficient and scalable constraint-based test input generation, however,

11

remains a challenging problem.

We present a novel input generation technique that takes constraints

written as recursive predicates in the underlying programming language and

uses dynamic programming to solve the constraints efficiently. Our key in-

sight is to leverage the recursive structure of desired inputs and partition the

problem of generating an input into several sub-problems of generating smaller

inputs that exhibit the same structure, and then to use dynamic programming

to combine them. (e.g., Figure 1.2 shows how two binary trees can be combined

to build a bigger one.) A lazy initialization strategy and symbolic execution

optimize our basic technique. Our technique provides not only bounded ex-

haustive input generation but also enables random input generation.

We argue that the dynamic programming algorithm is sound and com-

plete, and show the experimental results of generating test inputs for a variety

of subject programs. We demonstrate how our technique outperforms Korat

(an efficient solver for structural constraints) and Pex (a state-of-the-art tool

for symbolic execution). Finally, we use our technique to test Apple Safari and

Google Chrome web browsers and efficiently find three bugs in the production

version of Chrome.

1.4.2 Ideas for Repair Using Dynamic Programming

We discuss ideas on the unification of test input generation and re-

pair problems. An efficient constraint-based test input generation scheme can

be utilized to perform data structure repair by providing small pre-generated

12

�� ��
null

�� ��
null null

+ null →
�� ��

�� ��

null

null

�� ��
null null

Figure 1.2: An example of combining binary trees to build a bigger binary
tree.

substructures to be patched onto the faulty data structure. Recursive checks

and memoization [86] localize the error by recursively applying checks on the

smaller sections of the data structure. Dynamic programming suggests small

data structures to replace the infected part. Therefore, repair does not af-

fect the correct parts of the state and becomes more efficient, scalable, and

effective. With respect to usability, this technique gives the user the alter-

native way of describing the contracts recursively. Also, this idea makes the

repair framework more usable since we amortize the overhead of writing and

maintaining contracts between test input generation and repair.

1.5 Usability

Enhancing the usability of repair is a critical part of applying it on real

world applications. In our comprehensive repair framework, the user writes

the contracts in Alloy. The framework uses the contracts to monitor deployed

software and repair faulty executions. Furthermore, it provides repair ab-

straction logs to help the user debug and permanently fix the bug. Write and

13

read barrier logs and UNSAT cores are other examples of reports from the

repair framework which the user might find useful for debugging. Using such

reports, data structure repair will be, in turn, useful in program repair. To

achieve more useful and usable data structure repair, we presented three tools

that implement these ideas and facilitate fulfilling the promise of repair for

real programs: Tarmeem1, Cobbler, and DREAM.

One final challenge in the face of repair is to make it non-intrusive and

lightweight in the absence of errors. Frequent checks of contracts through a

SAT solver (e.g., as done in Cobbler) diminishes the usability of repair because

the time it takes is of the same order of magnitude as of repair. We build

on the idea of translating contracts from the Alloy specification language to

Java [8] and present an extension, called Arreh, to the Alloy 4 tool-set. Arreh

receives a model in Alloy, translates its commands to Java methods, and checks

them using the Java Virtual Machine instead of a SAT solver to improve the

efficiency of checking contracts.

1.6 Contributions

The results in this dissertation are based on published papers at TACAS 2012 [103],

FSE 2012 [106], and RV 2013 [107]. We make the following contributions:

• The basic idea of contract-based data structure repair was intro-

duced in my Master’s thesis [105, 104, 102]. This PhD dissertation

1As a part of my Master’s thesis [105, 104, 102].

14

presents a comprehensive framework that embodies a practical and scal-

able approach for error recovery using data structure repair.

• History-aware contract-based repair combines the program’s dy-

namic behavior with contracts and the current erroneous state of a pro-

gram to perform repair.

• Read and write barriers for repair are an unconventional use of

barriers to obtain program execution history for repair.

• Minimal unsatisfiable cores provided by SAT solvers help to reduce

the search space when a field outside the execution trace should be mod-

ified to repair data structures.

• The basic idea of repair abstraction was introduced in Malik’s PhD

proposal [65]. We develop the idea in the context of contract-based data

structure repair using Alloy.

• Dynamic programming for input generation is a novel technique

that generates structurally complex inputs. We further optimize this

technique with lazy initialization and symbolic execution. We discuss

ideas for using dynamic programming for data structure repair.

• Recursive predicates in constraint-based generation and contract-

based repair of complex structures facilitate predicate formulation

and enable faster input generation and more accurate repair.

15

• We implement a tool-suite for data structure repair and test input gen-

eration. Cobbler is an automated portable framework for repairing Java

programs that enhances real applications with repair functionality, and

is based on history-aware data structure repair. Experimental evaluation

shows that Cobbler efficiently and accurately repairs text-book examples

and real world programs. DREAM provides a generic framework that

can be embodied by different data structure repair techniques and imple-

ments the idea of repair abstractions using Alloy. Arreh is a tool that

extends Alloy Analyzer and translates Alloy checks to Java methods, to

significantly reduce the burden of constantly checking contracts.

• We present rigorous experimental evaluation of our repair and test

input generation frameworks using case studies, open-source projects,

and production software. Experimental results, using microbenchmarks

and two open source programs (Kodkod solver and ANTLR), show that

our repair techniques improve repair efficiency, scalability, and effective-

ness. Moreover, Cobbler finds and repairs a previously unknown bug

in ANTLR. Experimental results also show that our test generation

technique improves input generation performance and scalability for mi-

crobenchmarks over state-of-the-art testing tools Pex and Korat. The

test generation technique when applied to test two web browsers, Apple

Safari and Google Chrome, finds three known and unknown errors in the

production version of Chrome, which are now fixed.

16

The ideas presented in this dissertation improve the efficiency, scala-

bility, effectiveness, and usability of data structure repair. More efficient and

effective repair facilitates the use of repair in real world applications and en-

hances software reliability. Unification of test input generation and repair

makes repair an even more attractive option to improve our ability to produce

and maintain reliable software.

17

Chapter 2

Related Work

Our work builds on two research threads and unifies them: Section 2.1

covers previous work on data structure repair, and Section 2.2 provides back-

ground on constraint-based test input generation.

2.1 Data Structure Repair

Dynamic repair techniques that aim to counteract the effects of faults

at runtime and prolong the uptime of a system have been in existence for a

long time. File system utilities such as fsck [4] and chkdsk[6], database check-

pointing, and rollback techniques are standard repair routines used to monitor

and correct system state at runtime.

Some commercially developed systems, such as the IBM MVS operating

system [75] and the Lucent 5ESS telephone switch [45], have dedicated routines

for monitoring and maintaining properties of their data structures. These

repair routines suffer from the limitation of being too specific and tailor-made

for their system structures and hence cannot be generalized as data structure

repair tools.

Demsky and Rinard [29, 30] pioneered the idea of general purpose data

18

structure repair with constraint-based repair. Users write declarative con-

straints. The system translates the constraints into disjunctive normal form

and solves them using an ad hoc search.

The assertion-based repair technique [91, 31] implemented in the

Juzi tool [31] detects errors by asserting user defined repOK methods which

hold the class invariants (aka data structure integrity constraints). Symbolic

execution of the repOK method combined with systematic search of the object

space based on last field access aids in efficiently restoring the data structure to

a state satisfying the invariants. The limitation of this technique is that class

invariants hold at the entry and exit points of all public methods. The tool

alters the faulty data structure to produce an arbitrary state which may satisfy

the integrity constraints but may be very different from the intended output

of the method. This may adversely affect the functionality of the system as a

whole. For instance, the output of a faulty binary tree insert method, could

get converted into an empty tree which may be a valid structure satisfying the

invariants but is an unlikely output of the insert algorithm. A post-condition

Java predicate could be asserted along with the repOK method to solve this

problem. But as the size and complexity of properties and the size of the data

structure increases, such techniques would not scale well. The repair precision

and efficiency is also heavily impacted by the order in which the repOK method

checks different properties or accesses different fields.

Several techniques improve assertion-based repair: e.g., STARC and

DSDSR. STARC [34] uses static analysis of the repOK method to identify re-

19

current fields, i.e., fields that are accessed to merely traverse the data structure,

and local field constraints, i.e., constraints that relate the value of neighbor-

ing objects. STARC uses the result of this static analysis to prioritize repair

actions and prune the search space.

Dynamic Symbolic Data Structure Repair [50] (DSDSR) extends assertion-

based repair by producing a symbolic representation of fields and objects along

the path executed in repOK. DSDSR builds the path constraint required to

take the current path in repOK. When repOK returns false, DSDSR uses

the conjunction of the negation of the path constraint with the other path

conditions and solves them, directly generating a fix irrespective of the exact

location of the corrupted object references or fields in the repOK method.

Our previous work [107, 65] applies the idea of abstracting and reusing

repair actions in the context of assertion-based repair. Previous successful

repairs are abstracted to prioritize repair actions Juzi takes, in order to improve

repair efficiency.

While assertion-based repair is geared toward data structure invariants,

the Plan B approach and its tool PBnJ [82], similarly to our contract-driven

repair, support data structure invariants as well as method pre- and post-

condition specifications. The user writes these specifications in a declarative

first order relational logic extension to Java that is similar to Alloy. The sys-

tem then translates these specifications into Java predicate methods invokable

from other methods. These Java methods are used for checking properties of

data structures, similar to the basic idea of our tool Arreh. Once a check fails,

20

PBnJ falls back on executing the specifications: i.e., it ignores the Java im-

plementation and uses a SAT solver to generate a data structure that satisfies

both invariants and method post-conditions. However, PBnJ suffers from low

repair performance, as it completely ignores the Java code, the execution his-

tory of the program, the previous repair actions, and the current faulty data

structure.

Automatic workaround [20, 19] is another recent technique which ex-

ploits the inherent redundancy of software components to avoid failures. When

a failure is detected, the state and data structures are rolled back to a check-

point. The system then dynamically changes the code to call a different library

method (instead of the one that failed) which includes a potential workaround.

This technique makes the assumption that several methods implement the

same logic and are indicated equivalent in library equivalence specifications.

Ditto [86] is a framework that uses write barriers to recursively check

the invariants. Ditto leverages recursive checks to incrementally assert struc-

tural integrity constraints of data structures. It only re-evaluates those parts

of the data structure that have been modified since the last evaluation and

are logged by the write barrier. Ditto justifies this method by observing that

the invariants still hold on the unchanged parts of the data structure. In con-

trast, our framework does not use write barrier and recursion to only check

the invariants but also to repair the data structure.

We would like to highlight that our technique differs from the class of

automated debugging and program repair techniques [97, 10, 69, 90, 98,

21

53, 79, 22, 83, 76, 96, 57, 62, 43] which are intended to be used in the testing

phase prior to the deployment of software. However, as Malik et al. pro-

pose [66], dynamically performed data structure repair actions could translate

into program statements thus aiding in program repair. They could act as an

input to program repair frameworks such as the AUTO E-FIX tool[97], pro-

viding useful information regarding the differences between faulty and correct

concrete program states.

2.2 Test Input Generation

The importance of using specifications in testing has long been recog-

nized [42]. Several projects automate test generation from specifications in

various languages [48, 77]. The specific use of logical constraints to repre-

sent inputs dates back at least three decades [24, 44, 49, 60, 80]. But a focus

of prior work has been to solve constraints on primitives, and not on com-

plex structures—which require very different constraint solving techniques.

Korat [15] and TestEra [67] are among the first frameworks to provide sys-

tematic generation of structurally complex tests from constraints. Following

this spirit of systematic black-box testing, ASTGen [27] and UDITA [37] are

two more recent frameworks, which have been used successfully to find bugs in

real applications, including refactoring engines. ASTGen requires the user to

write imperative test input generators, whose executions produce input pro-

grams for refactoring engines. ASTGen bears some similarities to our test

generation framework in composing test generators to build bigger inputs.

22

However, ASTGen is limited to testing refactoring engines and requires the

user to explicitly specify how to generate test inputs. UDITA provides a pro-

gramming language to describe test inputs using a combination of declarative

and imperative styles, where constraint solving is used in conjunction with

partial generators.

Lava [88] and QuickCheck [23] can also provide generation of com-

plex structures. Lava requires the user to describe inputs using a production

grammar and generates strings in the grammar, but cannot handle complex

constraints, such as those of a red-black tree. QuickCheck requires the user to

write a generator for complex inputs and generates random inputs for testing

functional programs in Haskell using a technique similar to our recursion with

lazy initialization. Similarly, Gast [59] generates tests for programs written

in functional languages. However, QuickCheck and Gast use pure top-down

recursion and not dynamic programming.

To our knowledge, our work on test input generation is the first use

of dynamic programming for test input generation. The general principle of

memoization, which is a central idea in dynamic programming, has previously

been used in the context of bug finding [46, 86, 100, 17, 41], albeit without the

specific framework of dynamic programming. Dynamic programming has pre-

viously been applied in the context of runtime verification to generate monitors

from formal specifications [47].

Several tools use method sequences for testing object-oriented pro-

grams, and can generate complex structures using systematic [99] or random-

23

ized exploration [78]. While these tools allow unit testing, they cannot feasibly

generate inputs that are parsed from strings with semantic and syntactic con-

straints, e.g., XML files, which our constraint-based test generation handles

readily.

As a part of our test generation technique, we leverage symbolic ex-

ecution. The recent advances in constraint solving technology [11, 28] have

led to a rebirth of symbolic execution [58, 24]—a powerful program analy-

sis technique that was traditionally used for checking small programs with

primitive types. Generalized symbolic execution [56] implements Korat using

the Java PathFinder model checker [95] and supports structural constraints

using symbolic execution. Guiding symbolic execution using concrete execu-

tions is rapidly gaining popularity as a means of scaling it up in several recent

frameworks, most notably DART [40], CUTE [85], EXE [18], and Pex [92].

While DART and EXE focus on properties of primitives and arrays to check

for security bugs, such as buffer overflows, CUTE and Pex support the use of

preconditions in white-box testing. Compositional techniques for symbolic ex-

ecution, introduced by PREfix and PREfast [16], can handle larger code bases

but they do not currently handle complex structural properties [39]. Our work

provides a novel way to scale symbolic execution by applying it with dynamic

programming in synergy.

24

Chapter 3

Background: Contract-Based Data Structure

Repair Using Alloy

This chapter provides necessary background on our previous work on

constraint-based repair [105, 104, 102]. We first give a motivating example

(Section 3.1), which is followed by basics of the Alloy tool-set (Section 3.2),

and then we describe our previous technique (Section 3.3).

3.1 Example

In this section, we illustrate a motivating example to describe data

structure repair algorithms. This data structure is a binary search tree of

unique integers. Listings 3.1 and 3.2 show the data structure and its remove

method in Java.

Listing 3.3 demonstrates a model of the binary search tree data struc-

ture in Alloy [51]—a relational first order logic language suitable for express-

ing software designs—which we use for writing specifications. The repOK

method1 describes all method-independent constraints and include acyclicity,

1Predicates that check constraints, especially class invariants, are traditionally called
repOK methods [64].

25

1 class BinarySearchTree {
2 Node root ;
3 int btS i z e ;
4

5 boolean remove (int x) {
6 i f (root == null)
7 return fa l se ;
8 else {
9 boolean r e s u l t ;

10 i f (root . e lement == x) {
11 Node auxRoot = new Node () ;
12 auxRoot . l e f t = root ;
13 r e s u l t = root . remove (x , auxRoot) ;
14 root = auxRoot . l e f t ;
15 } else {
16 r e s u l t = root . remove (x , null) ;
17 }
18 i f (r e s u l t) // us ing uniqueness o f e lements
19 btSize−−;
20 return r e s u l t ;
21 }
22 }
23 }

Listing 3.1: A binary search tree implementation in Java [2].

search property of binary search trees, correctness of size, and that elements

are unique. The user may also express method post-conditions, as shown in

remove postcondition. This post-condition specifies a correct remove with

respect to the data structure and the return value from the remove method.

Alloy represents Java classes with signatures (e.g., sig BinarySearchTree

in Listing 3.3) and field relations with a relational view. The keywords lone

and one for a unary relation denote that the relation may or must not be

empty, respectively. Binary relations can be defined as total or partial func-

tions among other options (e.g., right is a partial function). We use the

syntactic sugar of adding back-tick (‘‘’) to distinguish post-state Alloy rela-

tions from pre-state relations. The Alloy repOK predicate (pred) expresses

26

1 class Node {
2 Node l e f t , r i g h t ;
3 int element ;
4

5 boolean remove (int x , Node parent) {
6 i f (x < element) {
7 i f (l e f t != null)
8 return l e f t . remove (x , this) ;
9 else

10 return fa l se ;
11 } else i f (x > element) {
12 i f (r i g h t != null)
13 return r i g h t . remove (x , this) ;
14 else
15 return fa l se ;
16 } else {//x == element
17 i f (l e f t != null && r i gh t != null) {
18 element = r i gh t . minNode () . e lement ;
19 r i g h t . remove (element , this) ;
20 } else i f (parent . l e f t == this) {
21 i f (l e f t != null)
22 parent . l e f t = l e f t ;
23 else
24 parent . l e f t = r i gh t ;
25 } else i f (parent . r i g h t == this) {
26 i f (l e f t != null)
27 parent . r i g h t = l e f t ;
28 // to in t roduce bug cy c l e r ep l a ce with
29 // l e f t . r i g h t = parent
30 else
31 parent . r i g h t = r i gh t ;
32 }
33 return true ;
34 }
35 }
36

37 Node minNode () {
38 i f (l e f t == null) return this ;
39 else return l e f t . minNode () ;
40 }
41 }

Listing 3.2: A binary search tree node implementation in Java [2].

27

data structural integrity rules. For instance, the directed acyclicity constraint

specifies that for any node reachable from root by applying zero or more left

or right pointers, the node cannot reach itself by following one or more left or

right pointers, so it cannot traverse a cycle. * and ^ represent “zero or more”

and “one or more” applications of a relation. Alloy supports membership, car-

dinality, and complement, in, #, and - respectively as in the acyclicity, size,

and correct remove constraints. Quantifiers ∀ and ∃ have their usual meaning

and are expressed with the keywords all and some. The expressions not (!)

and implies (=>) have their expected meaning in first order logic.

To illustrate our repair process, consider the following bug introduced

to the Java program to make a faulty implementation:

• Bug cycle: In Listing 3.2 line number 27, the programmer wrongly puts

left.right = parent instead of parent.right = left.

This bug can be manifested by calling remove using the faulty implan-

tation on some inputs. Figure 3.1 shows the result of executing the faulty

implementation on a bug revealing input and some possible repair results.

3.2 Background on Alloy

This section uses the example to describes necessary background on the

Alloy tool-set, which our repair frameworks use.

28

1 one s i g True , Fa l se {}
2 abs t r a c t s i g BinarySearchTree {
3 r o o t : l one Node ,
4 root ’ : l one Node ,
5 b t S i z e : one Int ,
6 btS i z e ’ : one Int
7 }
8 abs t r a c t s i g Node{
9 l e f t : l one Node ,

10 l e f t ’ : l one Node ,
11 r i g h t : l one Node ,
12 r i g h t ’ : l one Node ,
13 e l ement : l one Int ,
14 element ’ : l one Int
15 }
16 pred repOK(t : BinarySearchTree) { // c l a s s i nva r i an t
17 // d i r e c t ed a c y c l i c i t y
18 a l l n : t . root ’ . ∗ (l e f t ’+r i gh t ’) | n ! in n . ˆ (l e f t ’+r i gh t ’)
19 // search property
20 a l l n , m: t . root ’ . ∗ (r i g h t ’+l e f t ’) |
21 m in n . l e f t ’ . ∗ (r i g h t ’+l e f t ’) =>
22 i n t m. element ’ < i n t n . element ’
23 a l l n , m: t . root ’ . ∗ (r i g h t ’+l e f t ’) |
24 m in n . r i g h t ’ . ∗ (r i g h t ’+l e f t ’) =>
25 i n t m. element ’ > i n t n . element ’
26 // s i z e OK
27 # t . root ’ . ∗ (l e f t ’+r i gh t ’) = in t t . b tS i z e ’
28 // unique e lements
29 a l l n , m: t . root ’ . ∗ (l e f t ’+r i gh t ’) |
30 i n t n . element ’ = in t m. element ’ => n = m
31 }
32 pred remove postcond i t ion (Th i s : BinarySearchTree , x : Int , removeResult : (True

+False)) {
33 repOK [This]
34 // c o r r e c t remove
35 This . root . ∗ (r i g h t+l e f t) . e lement − x =
36 This . root ’ . ∗ (r i g h t ’+l e f t ’) . e lement ’
37 // c o r r e c t remove r e s u l t
38 x in This . root . ∗ (r i g h t+l e f t) . e lement <=> removeResult in True
39 }

Listing 3.3: Binary search tree contract specification in Alloy.

29

(a) input (b) expected output of remove(5)

root // 3
btSize = 3

�� ��
null 5

�� ��
4

�� ��

null

null null

root // 3
btSize = 2

�� ��
null 4

�� ��
null null

(c) faulty output of remove(5) (d) possible repaired output

root // 3
btSize = 2

�� ��
null 5

�� ��
4

��

OO

null

null

root // 4
btSize = 2

�� ��
3

�� ��

null

null null

(e) possible repaired output

root // 3
btSize = 2

�� ��
null 4

�� ��
null null

Figure 3.1: Bug cycle manifested as a faulty output and the repair result.

Alloy is a relational first order logic language [51]. An Alloy model (e.g.,

Listing 3.3) consists of relations and constraints on them. The Alloy Analyzer

performs bounded exhaustive analysis of Alloy models. A bound is a function

which maps each relation to a set of tuples (bound: R→ 2T), where each tuple

30

(a) a Java object graph

T0.root // N0 : 3
T0.btSize = 2

r
$$
N1 : 5

l
zz

N2 : 4

r

OO

(b) relational representation
inst(root) = {(T0, N0)}
inst(btSize) = {(T0, 2)}
inst(right) = {(N0, N1), (N2, N0)}
inst(left) = {(N1, N2)}
inst(element) = {(N0, 3), (N1, 5), (N2, 4)}

(c) relaxing the dotted edge
LB(right) = {(N0, N1)}
UB(right) = {(N0, N1), (N2, N0), (N2, N1), (N2, N2)}

Figure 3.2: Relational representation of data structures in Alloy models.

consists of atoms. For each relation R, two sets are defined: a lower bound

LB(R), which includes all tuples that R must have in its instance (inst(R)),

and an upper bound UB(R), which includes all tuples that R may have in its

instance. Therefore, LB(R) ⊆ inst(R) ⊆ UB(R). Figure 3.2 (b) shows the

relational representation of the Java object graph shown in Figure 3.2 (a).

We use Kodkod [93], the back-end of Alloy Analyzer, which is a SAT-

based constraint solver for first order logic that supports relations, transitive

closure, and partial models. Kodkod provides a finite model for satisfiable

specifications and an UNSAT core for unsatisfiable ones. To perform repair,

31

Kodkod suggests mutations to the data structure such that it meets the Al-

loy specification. Specifically, given a satisfiable relational formula and the

bounds, Kodkod uses a backtracking search to find a satisfying instance. The

search space is typically exponential in the number of atoms.

Kodkod allows explicit specification of upper and lower bounds for anal-

ysis, which provides partial solutions and restricts the search space. We use

this functionality to specify which fields of the state can be mutated by the

SAT solver to perform repair. Thus, to relax a field in Kodkod means to let

the SAT solver suggest different values other than the one present in the faulty

post-state, in order to find a satisfiable answer. Relaxing a field, which is a

mutation of a field of a specific object, is done through binding a relation to

suitable lower and upper bounds. For example, in Figure 3.2 (a) the dotted

edge can be relaxed by setting the lower and upper bounds as shown in Fig-

ure 3.2 (c). Setting both lower and upper bounds to the same set makes it the

only answer for that relation, i.e., the set becomes a partial solution for the

Kodkod model.

3.3 Our Previous Work: Contract-Based Data Struc-
ture Repair Using Alloy

Our first work [105, 104, 102] introduced a contract-based approach to

data structure repair. This work was presented as a Master’s thesis and we

summarize it here. The key novelty was the support for rich behavioral spec-

ifications, such as those that relate pre-states with post-states of the method

32

to accurately specify expected behavior and enable precise repair.

Method contracts naturally suit the repair process since they intro-

duce class invariants, as well as pre- and post-conditions, and they are widely

used for other phases of software development. While our repair framework

introduced in this work—Tarmeem2—allows specifications to be provided in

different modeling languages, we translate them to Alloy and leverage Alloy

Analyzer to systematically repair erroneous states. Four different heuristics

were presented and implemented in this work. Additionally, this work for-

mally defined repair and used edit distance for graph similarity to compute

the effect of repair on an erroneous program state. We take a relational view

of the program heap, and view data structures as edge-labeled graphs. This

view enables using edit distance—defined as the minimum number of edge

additions/deletions to change a graph to another—as a metric for computing

the perturbation of the erroneous program state, which undergoes repair. Our

algorithms attempt to keep the perturbation to a minimum.

Tarmeem instruments the Java program to record pre- and post- states.

When a failure occurs during execution (i.e., a contract check fails), Tarmeem

invokes a repair algorithm to let some fields of the data structure be modifiable

by the SAT solver (relaxed), and uses SAT to compute values for those fields.

We proposed four different repair heuristics in this work.

1. Basic method uses the pre-state but is oblivious to the erroneous post-

2Tarmeem means repair in Persian (Farsi).

33

state. Although this approach provides a correct output, it has high

performance penalty and can possibly introduce unnecessary perturba-

tion to the data structure. Considering our example of faulty remove, the

basic method only uses Figure 3.1 (a) and not Figure 3.1 (c) to perform

repair and it might produce Figure 3.1 (d) which is, although an ac-

ceptable answer, rather different than what the correct implementation

produces (Figure 3.1 (b)).

2. Iterative relaxation aims to optimize performance when the number

of errors is relatively small. A deployed system that has been well-tested

can be assumed to have few errors. This heuristic iteratively calls SAT

allowing it to modify one relation, two relations and so forth. Note

that this heuristic uses a relation-based relaxation by which we mean

it allows all fields of the same name (e.g., right fields of all nodes in

a binary search tree) to be determined by SAT. In contrast, the edge-

based relaxation has finer granularity and allows SAT to determine a

specific field of a specific object. Edge-based relaxation is used in our

second work (Chapter 4) to improve accuracy and performance of repair.

Iterative relaxation, when applied on Figure 3.1 (c), explores different

relations to finally pick right to be relaxed to obtain Figure 3.1 (e).

Here, relaxation of one relation (right) suffices, but two right edges

should be mutated by the SAT solver.

3. Error localization uses the post-condition to isolate erroneous parts

of the output. It focuses on those parts of the specification that are

34

violated by the erroneous post-state and selects relations used in those

parts to perform proper relaxation. In the case of the faulty remove

example, it focuses on the violated constraints, namely acyclicity and

correct remove post-conditions (Listing 3.3), and also search property

and size constraints as byproducts, to pick relations and relax them upon

SAT invocation. These constraints include root, left, right, btSize,

and element in the post-state. Error localization does not assume few

errors in the data structure, but is not very effective and might give as

a perturbed result as Figure 3.1 (d).

4. Guided error localization builds on top of error localization and lever-

ages user provided guides to more accurately determine the faulty parts

of the data structure. A guide specifies which parts of the data struc-

ture are subject to test by a specific specification as opposed to which

relations are just used and not validated in that specification (e.g., the

size constraint checks btSize but uses root, right and left to traverse

the tree). The guide set provides a hint to prioritize relaxations. For

instance, in Figure 3.1 (c) the following constraints are violated: acyclic-

ity (checks left and right), search property (checks left, right and

element), size (checks btSize) and correct remove (checks left, right

and element). Relaxation of these relations guides the repair process

toward producing Figure 3.1 (e).

We evaluated Tarmeem using a text-book data structure (singly-linked

35

list) and an open-source application (ANTLR which is a part of the DaCapo

benchmark [12]). We injected errors into the source codes to mimic several

types of errors. We measured the effectiveness of the repair process by looking

at the edit distance between the repaired data structure and the faulty one.

We also measured the efficiency of repair by measuring time to repair as well as

other SAT-related metrics. Tarmeem is capable of repairing errors of singly-

linked lists of up to 20 nodes in 15 seconds (worst case). The framework

repairs errors injected into an ANTLR tree of 30 nodes in at most 15 seconds.

The best heuristics are iterative relaxation when the assumption of presence

of relatively few errors holds and guided error localization in general.

While the results of Tarmeem were encouraging and showed the fea-

sibility of repairing complex structures of small sizes with a small number of

faults, our use of SAT represented a bottleneck for scaling the algorithms to

larger structures. Relying solely on the contracts and not obtaining any in-

formation from the faulty code left this approach to repair with a huge search

space of all possible candidates for repair. Therefore, scalability remained a

key technical challenge.

36

Chapter 4

History-Aware Data Structure Repair Using

SAT

Our previous work, Tarmeem, showed the feasibility of the basic idea

of contract-based data structure repair. Repair performance and scalability,

however, remained as technical challenges. In this chapter, we present a novel

technique, history-aware data structure repair, for improving the scalability

and efficiency of repair. This chapter is based on our TACAS 2012 paper [103].

Recall that the foundation of contract-driven data structure repair is

to use class invariants and method post-conditions to detect erroneous execu-

tions and perform repair. Although the post-condition specifies the expected

behavior of the method, there is often a wide range of correct possibilities for a

given input since there may be many ways to implement the same specification.

Additionally, for a SAT-based repair framework (e.g., Tarmeem), relaxing all

fields of the data structure and letting the SAT solver mutate them explodes

the search space and is infeasible for real world applications.

Our insight into history-aware data structure repair is two-fold: (1)

execution history: the dynamic program trace of field writes and reads

provides useful guidance to identify incorrect state mutations made by a faulty

37

program; and (2) SAT solving history: the unsatisfiable core generated by

a SAT run captures core elements of the solver’s reasoning, which not only

facilitates locating faults but can even be leveraged directly to optimize a

successive SAT run.

In history-aware data structure repair, we first use the program execu-

tion history through reads and writes to guide the repair process. In deployed

software, the program is expected to contain most of the intended logic. Fur-

thermore, given sufficient pre-deployment testing, there should not be many

bugs in the code. By observing the dynamic behavior of a faulty execution,

we can substantially reduce the size of the search space and make the repair

process more efficient and effective. The core idea is to focus on fields mod-

ified and/or read during the execution. To obtain the execution history, we

record write and read actions performed by the program. Our implementation

instruments the program, but alternatively the Java Virtual Machine could

efficiently provide them through barriers [13] (more details in Section 4.1).

We start by restricting the SAT solver to correcting written fields and val-

ues, followed by read fields during the execution, heuristically trying to find

a repaired data structure by mutating only those fields. However, there exist

cases in which we have to perform a broader search and consider fields not

included in the execution trace. In such cases, we take advantage of UNSAT

cores (more details in Section 4.2). If the SAT solver cannot find a satisfying

solution by mutating only written and read fields, we then utilize the UNSAT

core provided by the failing SAT invocation to identify and mutate faulty fields

38

of the data structure.

Listing 4.1 shows the repair algorithm in pseudo-code. If an assertion

is violated, the repair framework initially only mutates (relaxes) fields in the

write log, holding all other data structure fields constant (through providing

a partial solution for the SAT solver). It then calls the SAT solver to compute

correct values for the relaxed fields. If this step does not yield a structure

satisfying the contracts, the next step relaxes the fields in the read and write

logs. If it still is unsuccessful, it relaxes fields appearing in the UNSAT core.

If the SAT solver finds no solution, there is an inconsistency in the contract

itself which the repair framework reports.

1 i f (! a s s e r tCont ra c t s ()) {
2 relaxSAT (wr i t eBar r i e rLog) ;
3 i f (! a s s e r tCont ra c t s ()) {
4 relaxSAT (wr i teBarr i e rLog , readBarr ie rLog) ;
5 i f (! a s s e r tCont ra c t s ()) {
6 relaxSAT (unsatCoreFie lds) ;
7 i f (! a s s e r tCont ra c t s ()) {
8 r epor tMode l Incons i s t ency () ;}}}}

Listing 4.1: History-aware contract-based repair using read and write logs and
unsatisfiable cores.

4.1 Using Barriers for Data Structure Repair

We use instrumentation or Java Virtual Machine barriers for logging

write and read activities of programs under repair. A barrier is a code se-

quence that performs an action just prior to a write or read. Languages with

automatic memory management, such as Java, widely support such barriers.

Commonly-used generational garbage collectors, all incremental collectors, and

39

concurrent collectors require write barriers [13, 21, 63, 9, 14, 94]. For example,

write barriers record pointers between regions for independent generational

collection, and detect concurrently updated objects for completeness in con-

current collectors. Barriers are widely available in commercial and research

implementations of managed languages, e.g., the HotSpot, J9, JRockit, and

Jikes RVM Java Virtual Machines, and the .NET C# system. Our approach

for data structure repair inserts barrier instrumentation on writes and reads

or piggybacks on existing barriers. Here, we assume that read/write barri-

ers are available for both pointer and non-pointer load and stores, although

traditionally barriers are more widely implemented for pointers.

4.2 Using UNSAT Cores for Data Structure Repair

We benefit from UNSAT cores in history-aware data structure repair.

UNSAT cores are minimal unsatisfiable sub-formulas provided by failed SAT

invocations. If the SAT solver cannot satisfy the constraints in a model, it

produces a minimal unsatisfiable core, which is a subset of the constraints of

the model. Given an unsatisfiable CNF formula X, a minimal unsatisfiable

sub-formula is a subset of X’s clauses that is both unsatisfiable and minimal,

which means any subset of it is satisfiable. There could be many independent

reasons for a formula’s unsatisfiability and hence more than one minimal core.

Kodkod, the back-end of Alloy Analyzer, provides UNSAT cores after failed

SAT invocations. The Recycling Core Extractor algorithm, implemented as

the RCE Strategy in Kodkod, returns an unsatisfiable core of specifications

40

written in the Alloy language that is guaranteed to be sound (constraints not

included in the core are irrelevant to the unsatisfiability proof) and irreducible

(removal of any constraint from the set would make the remaining formula

satisfiable).

4.3 Illustration of History-Aware Data Structure Re-
pair

To illustrate history-aware repair, consider bug cycle from Section 3.1.

When using the incorrect implementation, after the method returns, checking

the conjunction of repOK and the method post-condition indicates that there

is an error, triggering the repair process.

To repair the erroneous output of the cycle faulty implementation,

constraint-based repair methods [30, 55, 50] observe the cycle and remove

it from Figure 4.1(c) to produce Figure 4.1(a), but fail to remove node 5.

Contract-based repair techniques without history [104, 82] (e.g., Tarmeem)

may generate Figure 4.1(d), which although a correct output, is different from

what the program would have been generated in the absence of any bugs.

History-aware contract-based repair first invokes the SAT solver and

tries to find a solution by only changing the values of the fields which the

program writes into during the execution (Figure 4.1 (e)). These fields are

distinguished by dotted lines in the faulty output. In this invocation, the SAT

solver does not find a solution because the program failed to update some fields

that need to be modified. Our history-aware repair framework next considers

41

(a) input (b) expected output of remove(5)
constraint-based repair history-aware contract-based repair

root // 3
btSize = 3

�� ��
null 5

�� ��
4

�� ��

null

null null

root // 3
btSize = 2

�� ��
null 4

�� ��
null null

(c) faulty output of remove(5) (d) contract-based repair

root // 3

�� ��

btSize = 2

null 5

�� ��
4

��

OO

null

null

root // 4
btSize = 2

�� ��
3

�� ��

null

null null

(e) write barrier log (dotted lines in part (c)):
{[4].right, btSize}, [x] represents the node with value x before execution.

(f) read barrier log (dashed lines in part (c)):
{root, [3].element, [3].right, [5].element, [5].left, [5].right, [3].left}

Figure 4.1: cycle manifested as a faulty output and its history-aware repair
result.

changing fields read by the program (Figure 4.1 (f)) and shown as dashed

lines. It invokes SAT to find suitable replacements for the fields written or

read by the program. This invocation produces a repaired structure as shown

in Figure 4.1 (b), which is identical to the expected output. Utilizing the

barrier logs keeps us from generating Figure 4.1 (d) since the left field of

42

node 4 is not relaxed and is held constant to be null. However, there remains

a chance that a field that was not touched at all during the execution needs to

be changed. Our repair framework obtains an UNSAT core from the previous

SAT invocations. The UNSAT core is the conjunction of contradicting repOK

and post-condition specifications, which were not satisfiable at the same time.

In this example, if we were to proceed to the third SAT call, the UNSAT core

would not include, for example, the correct remove result post-condition.

Therefore, the final invocation of SAT would not relax the removeResult field.

4.4 Cobbler: Implementation of History-Aware Repair

We implemented the above history-aware repair algorithm in Cobbler1,

which repairs Java programs. Like Tarmeem, Cobbler uses the Alloy tool-set

and its Kodkod back-end.

Cobbler works as follows: (1) The user provides the Java data structure

class and its methods. Cobbler instruments this code with setters and getters

to obtain logs of writes and reads. Cobbler also instruments the program for

our experiments to measure the repair time, edit distance and other metrics.

(2) Cobbler generates a stub for the repOK and method post-conditions for

the Java class. Cobbler extracts class-specific relations, types, and properties

into the stubs, and the user enhances them with the application specific logic.

(3) Cobbler then instruments the program to check the post-conditions and

1Cobbler means a person who repairs shoes.

43

Java Virtual Machine

Repair Framework

Java Program

Figure 4.2: The relationship between Cobbler, the Java Virtual Machine, and
the program.

call the repair method when needed. (4) The user executes the Java program

inside the Cobbler framework.

Figure 4.2 shows how the repair framework sits on top of the Java Vir-

tual Machine and executes the Java program. The layers use shared memory

to communicate. This design enhances the portability of our framework and

makes it independent of JVM and the program. Alternative implementations

could implement the framework inside the JVM, which would lower the over-

head when programs are correct. When programs need to be repaired, the

SAT solving time is orders of magnitude bigger than time saved by merging

the repair framework into JVM.

4.5 Cobbler Evaluation

The objectives of our evaluation are to empirically validate the hypoth-

esis that using execution history and UNSAT cores improves the efficiency,

accuracy, and scalability of contract-based repair with SAT solvers. To this

end, we simulated various errors in microbenchmarks and examined two real

44

world applications: Kodkod [93] and ANTLR [1, 12]. Cobbler discovered a

previously unreported bug in the addChild method of ANTLR version 3.3

that resulted in a cycle in the output Tree. Our repair algorithm fixes this

error accurately for a Tree with 300 nodes within 30 seconds.

Throughout the evaluation, we ran each experiment five times and re-

ported the averages. All the experiments used a 2.50GHz Core 2 Duo processor

with 4.00GB RAM running Windows 7 and Sun’s Java SDK 1.6.0 JVM. All

the repair frameworks used their default SAT solvers: Cobbler used MiniSat

and MiniSatProver, Tarmeem used DefaultSAT4J, and PBnJ used MiniSat.

4.5.1 Evaluation Metrics

To evaluate the efficiency of repair, we measured: (1) logging time:

the overhead due to logging read and write actions; (2) check time: the time

to detect a contract violation; and (3) repair time: the time to search and

find a repaired data structure.

To evaluate the accuracy of repair, we measure the edit distance be-

tween the object graphs of the repaired data structure r, and the expected

data structure e that a correct implementation would produce. Note that, r

satisfies the method contract but might be different from the expected output.

We define edit distance as the minimum number of edge additions/deletions

to change a graph to another [84, 104]. We create the correct graphs by a

separate correct implementation and then measure the edit distance in set

difference operations between two graphs using the relational representation

45

discussed in Section 3.2. Here insti(R) is the instance of relation R in data

structure i.

Definition 1. dist(e, r) =
∑

R(|inste(R)− instr(R)|+ |instr(R)− inste(R)|).

The lower this distance, the closer the repaired data structure is to the expected

post-state data structure. We define the similarity percentage between the

repaired output r and the expected output e as follows:

Definition 2. sim(e, r) = (1− dist(e,r)∑
R |inste(R)|)× 100.

4.5.2 Subject Programs

We applied Cobbler to (1) the remove method of Singly Linked List, (2)

the insert method of the Kodkod.util.ints.IntTree class of the Kodkod

solver implementation, and (3) the deleteChild and addChild methods of

BaseTree of ANTLR.

Singly linked list: Linked list is widely used and is a part of libraries

such as java.util.Collection. The post-condition of the remove(int value)

method, checks if the method has (1) deleted all nodes with elements equal to

the input value, (2) maintained acyclicity, (3) inserted no new nodes, and (4)

deleted no other nodes.

Red-black tree of Kodkod: Kodkod [93] is a SAT-based constraint

solver for first order logic. It consists of 33,985 lines of Java code in 169 classes.

The IntTree class with 570 lines of code and 21 methods sits at the core of

the Kodkod solver, and is a generic implementation of the red-black tree data

46

structure. Red-black tree comprises complex data structure invariants which

include binary search tree invariants: every node has at most two children,

key values of the left subtree are smaller and those of the right subtree are

greater than the node value, and the tree is acyclic. In addition, constraints

are imposed on the color of each node to keep the tree balanced: every node is

either red or black, every leaf node is black, no red node has a red parent and

all paths from the root to a descendant leaf contain the same number of black

nodes. The insert method of this class comprises 58 lines of code with 67

branch statements. The post-condition of the insert(int newKey) method

checks if an element with the new key value has been added without adding

or deleting any other elements.

BaseTree of ANTLR: We use ANTLR (ANother Tool for Language

Recognition) from the DaCapo 2009 benchmark suite, version 9.12 [1, 12].

ANTLR builds language parsers, interpreters, compilers, and translators from

grammars. It comprises 29,710 lines of Java code, and has a download rate of

about 5,000 per month. Rich tree data structures represent language gram-

mars and are the backbone of this application. The abstract class BaseTree is

a generic tree implementation. A few classes, such as ParseTree, extend this

data structure. Each BaseTree instance maintains a list of successor children.

The childIndex represents its position in the list. Each child node is a tree

and points back to its parent. Every node may contain a token field that rep-

resents the payload of the node. Based on the documentation and the program

logic, we derived invariants for the BaseTree data structure such as acyclicity

47

through children references, accurate parent-child relationships, and correct

values for child indices. The addChild(Tree node) and deleteChild(int

childIndex) methods are the main functions used to build and manipulate all

tree structures in ANTLR. The respective post-conditions check that nodes are

added or deleted without any unwarranted perturbations to the other nodes.

4.5.3 Errors

Table 4.1 enumerates all the inserted faults and, for ANTLR, a detected

error. It explains the errors and displays the violated constraints. The accu-

racy and performance of the repair algorithm depends on which and how many

fields are relaxed in each step, and the number of calls to the solver. The data

structure size, size of the log, and size of violated constraint formula influence

repair accuracy and efficiency. We explore these parameters with a range of

errors that violate different constraints and appear in different program state-

ments, such as incorrect field assignments, incorrect branch conditions, and

errors of omission.

The last column in the table indicates if the field(s) that should be

corrected appear in the write barrier log (WB), read barrier log (RB), or

neither (ALL fields). For instance, in the first faulty linked list remove method

(Err 1 of SLL remove), the header field is wrongly assigned to null. Since the

wrongly updated header field appears in the write barrier log and the error lies

in the value assigned to it, the tool can repair the data structure by relaxing

the fields in the write barrier log alone. The tool repairs the data structure

48

T
ab

le
4.

1:
T

h
e

in
je

ct
ed

fa
u
lt

s
an

d
A

N
T

L
R

ad
d
C

h
il
d
()

fa
u
lt

.
T

h
e

la
st

co
lu

m
n

sh
ow

s
if

th
e

fi
el

d
(s

)
th

at
sh

ou
ld

b
e

co
rr

ec
te

d
ap

p
ea

r
in

th
e

w
ri

te
b
ar

ri
er

lo
g

(W
B

),
re

ad
b
ar

ri
er

lo
g

(R
B

),
or

al
l

fi
el

d
s

ex
cl

u
d
in

g
th

e
w

ri
te

an
d

re
ad

b
ar

ri
er

lo
gs

(A
L

L
fi
el

d
s)

.
M
et
h
o
d

F
a
u
lt

d
es
cr
ip
ti
o
n

V
io
la
te
s

E
rr
o
r
in

SLLremove

E
rr

1
S

et
s

th
e

h
ea

d
er

to
n
u

ll
C

o
rr

ec
t

re
m

ov
e,

S
iz

e
W

B
E

rr
2

F
ai

ls
to

u
p

d
at

e
th

e
si

ze
S

iz
e

A
L

L
fi

el
d

s
E

rr
3

D
el

et
es

a
n

o
d

e
w

it
h

a
n

on
-m

a
tc

h
in

g
el

em
en

t
C

o
rr

ec
t

re
m

ov
e,

S
iz

e
W

B
E

rr
4

In
tr

o
d

u
ce

s
a

cy
cl

e
af

te
r

p
er

fo
rm

in
g

co
rr

ec
t

re
m

ov
e

A
cy

cl
ic

it
y

W
B

E
rr

5
B

re
ak

s
th

e
li

st
to

re
ta

in
on

ly
th

e
fi

rs
t

tw
o

n
o
d

es
C

o
rr

ec
t

re
m

ov
e,

S
iz

e
W

B
E

rr
6

D
el

et
es

th
e

m
at

ch
in

g
el

em
en

t
b

u
t

a
d

d
s

it
a
g
a
in

C
o
rr

ec
t

re
m

ov
e

W
B

E
rr

7
F

ai
ls

to
re

m
ov

e
th

e
el

em
en

t
a
n

d
u

p
d

a
te

s
th

e
si

ze
in

co
rr

ec
tl

y
C

o
rr

ec
t

re
m

ov
e,

S
iz

e
W

B

RBTinsert

E
rr

1
C

re
at

es
a

cy
cl

e
of

le
n

gt
h

on
e

A
cy

cl
ic

it
y

W
B

E
rr

2
S

et
s

th
e

co
lo

r
of

a
n

o
d

e
to

b
la

ck
in

st
ea

d
o
f

re
d

C
o
lo

r
co

n
st

ra
in

ts
W

B
E

rr
3

A
d

d
s

th
e

n
ew

el
em

en
t

as
ri

g
h
t

ch
il

d
in

st
ea

d
o
f

le
ft

K
ey

co
n

st
ra

in
ts

R
B

E
rr

4
V

io
la

te
s

ke
y

co
n

st
ra

in
ts

d
u

e
to

a
b

ra
n

ch
co

n
d

it
io

n
er

ro
r

K
ey

co
n

st
ra

in
ts

R
B

E
rr

5
S

am
e

as
E

rr
3

w
it

h
a

d
iff

er
en

t
in

p
u

t
K

ey
co

n
st

ra
in

ts
W

B
E

rr
6

S
am

e
as

E
rr

4
w

it
h

a
d

iff
er

en
t

in
p

u
t

K
ey

co
n

st
ra

in
ts

W
B

E
rr

7
S

k
ip

s
b

al
an

ci
n

g
o
f

th
e

tr
ee

a
ft

er
in

se
rt

io
n

C
o
lo

r
co

n
st

ra
in

ts
A

L
L

fi
el

d
s

ANTLR
deleteChild

E
rr

1
S

k
ip

s
d

el
et

io
n

of
th

e
ap

p
ro

p
ri

a
te

ch
il

d
C

o
rr

ec
t

R
em

ov
e

R
B

E
rr

2
S

k
ip

s
u

p
d

at
in

g
ch

il
d

re
n

in
d

ic
es

a
ft

er
d
el

et
io

n
C

h
il
d

In
d

ex
co

n
st

ra
in

ts
A

L
L

fi
el

d
s

E
rr

3
S

et
s

a
w

ro
n

g
ch

il
d

in
d

ex
d

u
e

to
a
n

in
co

rr
ec

t
b

ra
n

ch
co

n
d

it
io

n
in

a
lo

o
p

C
h

il
d

In
d

ex
co

n
st

ra
in

ts
R

B
E

rr
4

S
et

s
a

n
o
d

e
as

it
s

ow
n

p
a
re

n
t

A
cy

cl
ic

it
y

W
B

A
N
T
L
R

a
d
d
C
h
ild

A
d

d
s

a
n

o
d

e
to

it
se

lf
a
s

a
ch

il
d

A
cy

cl
ic

it
y,

C
h

il
d

In
d

ex
W

B

49

by assigning the correct value to the header. Whereas, in the second faulty

method, the statement which updates the size field is completely omitted hence

the field does not get logged in write or read barrier logs. The tool thus needs

to relax all fields in the UNSAT core to produce a correct data structure.

The program logic and thus which fields Cobbler logs depends on the

input structures. Faults five and six of the red-black tree insert method

execute the same faulty code versions as that of three and four, but with a

different data structure. The program writes and reads different fields on the

first and second inputs and Cobbler repairs the outputs by relaxing read and

written fields respectively.

4.5.4 Subject Tools

We compare Cobbler to Juzi repair framework, which only uses struc-

tural constraints, and to Tarmeem and PBnJ, which consider post-conditions

too.

Recall that Juzi’s assertion-based repair automatically corrects data

structure violations in Java programs [33, 32]. Upon detecting a constraint vi-

olation, Juzi searches for a repair solution based on the data structure traver-

sal encoded in repOK [15]. Juzi further boosts its performance with sym-

bolic execution. Since Juzi does not use a SAT solver, it is generally faster

than SAT-based approaches. Juzi however does not consider method post-

conditions, which causes it to miss errors that result in well-formed output.

Even if repOK is violated, without the post-condition, Juzi cannot accurately

50

correct the structure with respect to the contracts. To compare Juzi and

Cobbler, we manually implemented a check for the post-condition in Juzi by

recording the method pre-state and the desired data structure specific post-

state. This implementation is a cumbersome and unusual way of checking the

post-condition, but it did force Juzi to return an output that satisfies both

repOK and post-conditions.

Our previous work, Tarmeem (Section 3.3), uses Alloy contracts and

a SAT solver [104]. Tarmeem repairs faulty post-states using heuristics and

user-guided techniques. Tarmeem’s heuristics limit the relaxations based on

post-conditions when calling the SAT solver. User guides further focus the

repair actions. We experimented with all four of Tarmeem’s heuristics and

picked the best.

PBnJ executes method specifications when methods fail to produce a

correct data structure [82]. Users express invariants and specifications in a

declarative first order relational logic. Translating them into Java methods

and then invoking the methods implements program logic declaratively. This

program synthesis approach leverages constraint solving technology.

4.5.5 Results

Figure 4.3 compares the performance and accuracy of repair of Cobbler,

Tarmeem, Juzi, and PBnJ on the singly linked list microbenchmark. Logging,

check, and repair times are accumulated into a single bar on a logarithmic

scale. Logging time is only applicable to Cobbler and is negligible. Tarmeem

51

and Cobbler have the same check time since they both use Kodkod evaluation

(not SAT solving) to perform checks after methods execute. Juzi executes

repOK and PBnJ translates specifications to Java assertions, which more effi-

ciently check the data structure. Cobbler’s overhead on an error-free execution

includes both logging and check times. Translating specifications to Java as-

sertions (Section 5.3.1) could reduce the check time and the total overhead.

We timeout after 60 seconds and report zero for accuracy upon a timeout.

Cobbler is substantially faster than all the other tools on five of the

seven errors, despite the fact that Tarmeem and PBnJ receive specific user

annotations to guide the repair process and Juzi performs symbolic execution.

Error two skips a required update to size. Since the size field is not read

or written, Cobbler does not correct it until the third call to the SAT solver,

which causes its time to exceed the other repair schemes. Error four introduces

a cycle. Juzi is tailored for such errors: it satisfies the constraint by breaking

cycles quickly and performs better than Cobbler in this case.

Cobbler, except for one case, always produces the most accurate data

structure among the four. When Cobbler does not time out, it achieves exactly

the same output as expected. The edit distance between the result of a correct

implementation and the repaired data structure is zero. This comparison is

solely for evaluation, since in the wild, the system would not know the correct

implementation.

Because original Juzi solely relies on the repOK method instead of check-

ing method post-conditions, it does not find error six at all. Moreover, Juzi

52

0
.0

0
0

0
0

.0
0

0
1

0
.0

0
1

0
0

.0
1

0
0

0
.1

0
0

0
1

.0
0

0
0

1
0

.0
0

0
0

Si
ng

ly
-L

in
ke

d
Li

st
 R

ep
ai

r T
im

e
(s

) -
Lo

ga
rit

hm
ic

 S
ca

le

Lo
g

g
in

g
C

h
e

ck
R

e
p

a
ir

N
um

be
r o

f N
od

es

0

5
0

1
0

0

Percent

Si
ng

ly
-L

in
ke

d
Li

st
 R

ep
ai

r A
cc

ur
ac

y

1
0

5
0

1
0

0
2

0
0

1
0

5
0

1
0

0
2

0
0

1
0

5
0

1
0

0
2

0
0

1
0

5
0

1
0

0
2

0
0

1
0

5
0

1
0

0
2

0
0

1
0

5
0

1
0

0
2

0
0

1
0

5
0

1
0

0
2

0
0

N
um

be
r o

f N
od

es

F
ig

u
re

4.
3:

P
er

fo
rm

an
ce

an
d

ac
cu

ra
cy

:
re

p
ai

ri
n
g

si
n
gl

y
li
n
ke

d
li
st

s
w

it
h

C
ob

b
le

r
(C

),
T

ar
m

ee
m

(T
),

an
en

h
an

ce
d

ve
rs

io
n

of
J
u
zi

(J
),

an
d

P
B

n
J

(P
).

53

cannot access out of scope nodes that are not reachable from the header. Since

Juzi does not consider the execution history, it first explores all the correct

data structures nearby, but there is no guarantee that the expected output is

close to the faulty one. We could enhance Juzi to work with post-conditions,

as we did for evaluation of accuracy, but the original Juzi did not perform any

repairs with respect to post-conditions.

Tarmeem is not very accurate because when it invokes the SAT solver, it

relaxes all tuples of a relation together, causing unnecessary changes. Cobbler

significantly improves efficiency and accuracy over Tarmeem, especially for

errors which involve incorrectly updated fields. For example, Tarmeem takes

around 10 seconds at best to repair a faulty linked list of only 20 nodes with

error three. Cobbler relaxes based on the write log, which is accurate for

this error, and thus repairs the structure within 0.8 seconds (13x faster than

Tarmeem). Similarly, Cobbler reduces the repair time for error five, which

breaks the list structure, by a factor of 8.6x compared to Tarmeem.

PBnJ’s performance is similar to Tarmeem at best. The reason is that

it always ignores the current faulty state and utilizes SAT to regenerate an

acceptable output from scratch. It is however more accurate than Tarmeem

in some cases.

Figure 4.4 shows the performance and accuracy of Cobbler on a faulty

Kodkod red-black tree insert method. Figure 4.5 depicts the results of exper-

imenting with ANTLR. When it does not timeout, Cobbler is very accurate

on these real world applications.

54

0.0010

0.1000

10.0000

Kodkod Red-Black Tree Repair Time (s) - Logarithmic Scale

Repair

0.0000

Number of Nodes

20

40

60

80

100

Pe
rc

en
t

Kodkod Red-Black Tree Repair Accuracy

Error 1 Error 2 Error 3 Error 4 Error 5 Error 6 Error 7

Number of Nodes

Figure 4.4: Cobbler performance and accuracy: repairing Kodkod red-black
trees.

The results show that the read and write field logs improve the scala-

bility and efficiency of repair. Cobbler repairs linked lists with up to 200 nodes

within 20 seconds. It performs well even on more complex data structures. For

the red-black tree remove method, it repairs up to 50 nodes within 40 seconds

and for the deleteChild method of ANTLR BaseTree, it repairs 40 nodes

within 30 seconds. The size of the logs is proportional to the number of reads

and writes to the data structure and was usually a few hundred bytes with a

maximum of 900 bytes for error four of ANTLR.

For errors that cannot be fixed by relaxing only written and read fields,

such as error two of linked list, error seven of red-black tree insert, and error

55

0.0000
0.0010
0.1000

10.0000

ANTLR Tree Repair Time (s) - Logarithmic Scale

Repair

Error 1 Error 2 Error 3 Error 4

Number of Nodes

Logging

0
20
40
60
80

100

Pe
rc

en
t

ANTLR Repair Accuracy

Error 1 Error 2 Error 3 Error 4

Number of Nodes

Figure 4.5: Cobbler performance and accuracy: repairing ANTLR trees.

two of ANTLR deleteChild (see Table 4.1), Cobbler uses the UNSAT core

to identify which fields to modify, and performs better than the other SAT-

based tools. These cases however are challenging for Cobbler, because despite

barrier logs that indicate fields of specific objects, UNSAT cores identify all

fields with the same name as potentially faulty.

4.5.6 ANTLR BaseTree addChild

The public method addChild adds child node trees to an ANTLR

BaseTree object. When the input tree does not have a payload (isNil),

the method adds the children of the input tree to the children list of the cur-

rent tree, otherwise, it adds the input tree itself to the children list. In the

56

addChild method (version 3.3), when the input tree does not have any pay-

load, a check ensures that the a tree is not being added to itself. However,

such a check is not performed for input trees with payloads. Hence, when the

current tree has a payload, it may be added as a child of itself. Similarly,

any tree with a payload which is already an existing child of the current tree

may be added as a child again. We generated inputs that caused invariant

(such as acyclicity and ascending child indices) violations. Cobbler repairs

the Tree structure and restores it back to its pre-state, which is correct. This

state would be the output of addChild if it had been implemented correctly.

Cobbler repairs a tree with 300 nodes within 30 seconds.

We contacted the ANTLR development team and they confirmed that

BaseTree assumes acyclicity but does not check for it. Yet, since addChild is

a public method, it should perform the check.

4.6 Summary

This chapter covered the idea of using program execution history for

efficient and accurate contract-based data structure repair. We utilize program

traces, specifically reads and writes of key fields, to direct repair of erroneous

program states. Moreover, we use unsatisfiable cores provided by SAT solvers

when we cannot repair the data structure by changing only read and written

fields. We implemented this approach in Cobbler. Compared with previous

repair techniques, our experimental results show Cobbler provides significant

speedups and better accuracy, and finds and repairs a previously undetected

57

bug in the widely used open-source ANTLR program.

58

Chapter 5

Repair Abstractions

Tarmeem and Cobbler improve data structure repair and pave the way

for it to be used in real applications. However, a more efficient, scalable, and

accurate repair is needed to fulfill the promise of repair for real world applica-

tions. Recent work by Malik introduced the idea of repair abstractions [65], a

new approach for scalability by memoizing and reusing repair actions to more

efficiently repair errors that recur. This chapter develops the idea in the con-

text of contract-driven data structure repair using the Alloy tool-set and is

based on our joint publication at RV 2013 [107].

The key issue with current repair frameworks is that finding a sequence

of repair actions, which produces a desired state, necessitates transmuting the

specification into a partial implementation, say using a backtracking search

over a large state space—an inherently complex operation.

Most data structure repair frameworks [32, 55, 50, 82, 104, 103] instan-

tiate a search in the space of valid data structures to find a close and correct

data structure to replace the faulty one. This search poses a major challenge to

the scalability of data structure repair, as the size of the state space increases

typically exponentially with the size of the data structure.

59

Recall the running example of binary search tree. The result of the

faulty remove method with bug cycle when applied on input Figure 5.1 (a)

to remove element 5 is shown in Figure 5.1 (b), and a possible repair result

is Figure 5.1 (c). Now consider the result of the same faulty implementation

when applied on Figure 5.2 (a) to remove element 7 depicted in Figure 5.2 (b).

The search space grows with the size of the data structure, and so does the

repair time to repair the error caused by bug cycle. Yet, the conceptual action

required to break the cycle and remove the element is the same. Indeed, it is

enough to undo and fix the effect of the wrong pointer manipulation of bug

cycle in the code.

5.1 Repair Abstractions with Alloy Back-End

Our key insight, introduced in a co-authored work [103], is to abstract

out repair actions and use them as possible repair action candidates in the fu-

ture, before opting into searching the state space. The idea is that if an error

in the data structure is due to a fault in software or hardware, a similar error

may occur again, for example when the same buggy code segment is executed

again or when the same faulty memory location is accessed again. Repair ab-

stractions capture the essence of how certain data structure corruptions are

repaired by specific actions of a data structure repair routine, such as Cob-

bler [103], Juzi [32], PBnJ [82] or any other repair framework. Conceptually,

a repair abstraction is a tuple (condition; action) where action is an abstract

repair action performed when condition is met on a program state that needs

60

(a) input for remove(5) (b) faulty output of remove(5)

root // 3
btSize = 3

�� ��
null 5

�� ��
4

�� ��

null

null null

root // 3
btSize = 2

�� ��
null 5

�� ��
4

��

OO

null

null

(c) repair result of remove(5)

root // 3
btSize = 2

�� ��
null 4

�� ��
null null

(d) concrete repair actions: [3].right = [4], [4].right = null

(e) abstract to: First(in post-state).right = First.Neighbor.Neighbor(in post-
state), First.Neighbor.Neighbor(in post-state).right = null

Figure 5.1: Concrete and abstract repair actions to repair the result of bug
cycle on a tree of three nodes.

repair.

Consider the example of repairing the faulty output of remove(5)

shown in Figure 5.1 (b). The concrete repair actions suggested by the underly-

ing repair framework include the assignments [3].right = [4] and [4].right

= null1 shown in Figure 5.1 (d). We abstract out these concrete repair ac-

tions to the abstract actions shown in Figure 5.1 (e). Suppose that a similar

1[x] represents the node with value x before execution.

61

(a) input for remove(7) (b) faulty output of remove(7)

root // 2
btSize = 5

xx &&
1

�� ��

7

�� ��
null null 6

�� ��

null

5
�� ��

null

null null

root // 2
btSize = 4

xx %%
1

�� ��

7

�� ��
null null 6

��

UU

null

5
�� ��

null null

(c) repair result of remove(7)

root // 2
btSize = 4

ww %%
1

�� ��

6

�� ��
null null 5

�� ��

null

null null

(d) reuse abstract repair actions: First(in post-state).right =
First.Neighbor.Neighbor(in post-state), First.Neighbor.Neighbor(in post-
state).right = null

(e) concretize to: [2].right = [6] [6].right = null

Figure 5.2: Abstract and concrete repair actions to repair the result of bug
cycle on a tree of five nodes.

error occurs again, now on a tree of five nodes with a different input to the

remove method as shown in Figure 5.2. Before starting to search the state

space of correct data structures, we first try the previous abstract repair ac-

tions in the hope of finding a quick fix. We reuse the abstract repair actions

(Figure 5.2 (d)). Concretizing the abstract repair actions on the current data

62

structures gives Figure 5.2 (e) which is a correct repair.

Repair abstractions offer two key advantages. One, they allow summa-

rizing concrete repair actions into intuitive descriptions of how certain errors

in data structures were repaired, which helps programmers understand and

debug faulty program behaviors (when the errors in the state were due to

bugs in code). Two, they allow a direct reuse of repair actions without the

need for a systematic exploration of a large number of data structures when

the same error appears in a future program execution. The cost of repair, in

cases that we do perform a search, will now be amortized over many repairs.

5.2 DREAM Framework

We implemented the idea of abstracting and reusing repair actions in a

tool called DREAM (Data structure Repair using Efficient Abstraction Meth-

ods). In this section, we explain the fundamentals of DREAM. DREAM sits

on top of an external data structure repair framework (Figure 5.3). Recall

that when a data structure repair framework is in place, specifications are pe-

riodically checked to make sure that data structure invariants and/or method

post-conditions hold. Once a check fails, the repair routine is triggered. Our

repair algorithm (shown as a Java like pseudo code in Listing 5.1) has three

major phases:

1. DREAM tries previously abstracted repair actions to see if it can find a

repair without calling the repair routine of the underlying repair frame-

63

Java Virtual Machine

Underlying Repair Framework

DREAM

Java Program

Figure 5.3: The relationship between DREAM, the underlying repair frame-
work, the Java Virtual Machine, and the program.

work.

2. If the previous phase does not generate an acceptable repair, DREAM

calls the repair routine of the underlying repair framework.

3. DREAM abstracts the concrete repair actions taken by the underlying

repair framework and saves them as possible repair candidates for future.

To illustrate, consider repairing the result of bug cycle in the faulty

output of Figure 5.1 (b). The first time this bug causes a failure, no previous

repair abstraction is available (in Listing 5.1, abstractRepairCandidateSets

is empty). Therefore, the first phase (Lines 3 to 19 of Listing 5.1) is skipped.

Line 20 performs the second phase and calls the underlying repair framework,

which repairs the data structure by setting [3].right = [4] and [4].right

= null. These concrete actions are abstracted in the third phase by Lines 21 to

23 to be saved as First(in post-state).right = First.Neighbor.Neighbor(in

post-state) and First.Neighbor.Neighbor(in post-state).right = null

64

1 Object dreamRepair (Object input , Object faultyOutput) {
2 Object repairedOutput ;
3 for (Set<AbstractRA> abstractCand : abst ractRepa i rCandidateSets) {
4 Set<ConcreteRA> concreteCand = new HashSet<ConcreteRA>() ;
5 for (AbstractRA act i on : abstractCand) {
6 List<Fie ld . ConcreteFie ld> l e f t = new LinkedList<Fie ld . ConcreteFie ld

>() ;
7 Object baseObject = act i on . dere fLe f t InOutput ? faultyOutput : input ;
8 for (F i e ld . Abst rac tF ie ld f : a c t i on . d e r e f L e f t)
9 l e f t . addAll (concret izeOnObject (f , baseObject)) ;

10 Object l e f tHandSide = getObject (l e f t , baseObject) ;
11 . . . // S im i l a r l y f o r the r i g h t hand s i d e and f i e l d
12 concreteCand . add (new ConcreteRA (le ftHandSide , conc r e t eF i e ld ,

r ightHandSide)) ;
13 }
14 repairedOutput = apply (faultyOutput , concreteCand) ;
15 i f (check (input , repairedOutput)) {
16 i n c r e a s eS co r e (abstractCand) ;
17 return repairedOutput ;
18 }
19 }
20 repairedOutput = r epa i r (input , faultyOutput) ;
21 Set<ConcreteRA> newConcreteCand = getConcreteRA (faultyOutput ,

repairedOutput) ;
22 Set<AbstractRA> newAbstractCand = abstractOut (newConcreteCand , input ,

faultyOutput) ;
23 abst ractRepa i rCandidateSets . add (newAbstractCand) ;
24 }

Listing 5.1: DREAM main algorithm.

65

respectively. More details about the abstraction process follows in Section 5.2.1.

The next time an error is observed in the data structure, DREAM

attempts to reuse previous repair actions to avoid the prohibitively costly

repair routine of the underlying repair framework. Let us say that we have

Figure 5.2 (b) as the output of faulty remove(7) with bug cycle this time.

Lines 3 to 19 implement the first phase of DREAM. They examine candidate

sets of abstract repair actions.

Firstly, on Lines 5 to 13, DREAM concretizes each abstract action on

the current data structure. An abstract action (like First.Neighbor.Neighbor(in

post-state).right = null) contains a left hand side dereferencing list (here

First.Neighbor.Neighbor(in post-state)), a field on which the assign-

ment should be applied (here right), and a right hand side dereferencing list

(here null). Such dereferencing lists are abstracted forms of actual derefer-

encing lists that were used in concrete repair actions and may contain ab-

stract fields (e.g., First and Neighbor) as well as concrete fields (e.g., null

and left). In the concretization process (Section 5.2.1), abstract fields are

translated back into sequences of concrete data structure fields (Lines 8 and

9 translate abstract fields to concrete fields to build a concrete dereferencing

list). The concretized lists are applied on the input or the faulty output to

identify the target object on which the assignment should take place (Line 10

finds the left hand side object), the target field, and the target value (simi-

larly for the field and right hand side). Line 12 accumulates concrete repair

actions for application. DREAM can utilize either the input or the faulty out-

66

put for concretizing abstract actions and identifying target objects by using

baseObject (Line 7).

Secondly, on Line 14, the set of concrete actions is applied on the faulty

output. It is noteworthy that abstraction and concretization is performed on

a snapshot of the input or the faulty output, and the application of repair

actions applied at the same time does not affect the meaning of one another.

Finally, Line 15 checks if the result is indeed a correct output with re-

spect to the specification. If so, DREAM ascends the abstract set that created

this repair in the ordered list of candidates abstractRepairCandidateSets

(Line 16) and returns the repaired output without continuing to phases two

and three (Line 17). If the problem was not fixed, the repair action is rolled

back to the faulty post-state and the algorithm continues with other abstrac-

tions followed by phases two and three.

5.2.1 Abstraction and Concretization

This section elaborates on abstraction (Line 22 of Listing 5.1) and con-

cretization (Line 9). DREAM uses a pre-defined yet generic and extensible

repository of meaningful abstractions. We define the following abstractions as

the basis of our approach:

Examples of pointer-based abstractions:

• null : the null value;

• First : the first object of a type reachable from the given root pointer

67

(e.g., the root of a tree or the first node in a list);

• Last or Leaf : the furthest object(s) of a type reachable from the given

root pointer (e.g., leaves of a tree or the last node in a list);

• Self : the object itself;

• Neighbor : a neighboring object, where two object O1 and O2 are neigh-

bors if a field of O1 points to O2 or vice versa (e.g., the parent of a node

in a tree);

Examples of value-based abstractions:

• A value with an offset : the numeric value of a node plus/minus an offset

(e.g., the size of a binary heap plus one);

• A value with a coefficient : the numeric value of a node multiplied/di-

vided by a coefficient (e.g., twice the value of a key in a Red Black Tree);

Pointer-based abstractions view the program heap as a directed, edge-

labeled graph. They may be defined with respect to the entire structure (e.g.,

null or First) or with respect to a particular node (e.g., Self or Neighbor).

Value-based abstractions are used to abstract repair actions on integer fields,

e.g., size.

The abstraction process has two steps:

68

1. A breath first search of the data structure (for both the input and faulty

output) is performed along all concrete fields. This search assigns a

concrete dereferencing list that can be used to reach any object. For

example, [4] in Figure 5.1 (a) and (b) is reached via root.right.left.

2. Using the above repository of abstractions, all possible abstractions that

are equal to a concrete dereferencing list are built. E.g., root.right.left

is considered equal to First.Neighbor.Neighbor(in post-state), or

Leaf(in pre-state). The abstractions Self, null, Offset, and Coeffi-

cient are only useful as the right hand side of a repair action.

The concretization process is the exact reverse of abstraction. First,

DREAM transforms the abstract fields of a dereferencing list to their concrete

forms which only use the data structure fields. E.g., First.Neighbor.Neighbor(in

post-state) could be root.right.right(in post-state), root.right.left(in

post-state), etc. Then, it traverses the data structure along those fields to

get to the desired objects. When multiple abstractions/concretizations are

applicable, all of them are used in turn as possible candidates and checked,

until one is found to work or all are exhausted.

Both abstraction and concretization can be performed on the input data

structure as well as the faulty output of a method. This flexibility enhances

DREAM’s ability to access objects that get lost because of broken pointers.

derefLeftInOutput and similar boolean flags are put in place to distinguish

between cases that the faulty output and the input are used to access an

69

object.

5.3 DREAM with Alloy Back-End

Connecting DREAM with an Alloy-based repair framework (like PBnJ [82],

Cobbler [103] or Tarmeem [105, 104]) is quite straightforward. The underlying

repair framework performs regular checks and provides concrete repair actions

in case abstractions do not work.

5.3.1 Arreh

Our repair techniques concentrate on the efficiency and scalability of re-

pair. A repair framework, however, constantly checks contracts. Such checking

using SAT is rather time consuming. To speed up the checking of contracts,

we built the Arreh2 tool for checking specifications based on the Minshar [8]

technique. This technique translates Alloy checks to Java runtime checks.

Using Java checks instead of Alloy improves the performance and scalability

of checking. The original Minshar tool only supported data structure invari-

ants and not pre- and post-conditions. We enhanced Minshar to include the

support for pre- and post-conditions as well.

Arreh is an extension to Alloy Analyzer. It receives a model in Alloy,

parses the model using the Alloy Analyzer parser, and translates its contract

2A sequence of research tools (TestEra, Minshar, etc.) that provide automated testing
and checking have been named saw, the tool for cutting wood, in the native languages of
their authors. Arreh means saw in Persian (Farsi).

70

checks (i.e., commands) to Java run time checks (i.e., Boolean methods). In

order to translate Alloy commands, Arreh starts by parsing the Alloy spec-

ification into Alloy Abstract Syntax Tree (AST), which indicates how Alloy

expressions are recursively built from subexpressions. Arreh then traverses

this AST, and recursively replaces each operation with a Java method call.

Figure 5.4 shows a snapshot of the Arreh tool, which extends Alloy

Analyzer. For each Alloy command, Arreh adds Translate to Java to the

Execute menu, through which the user can translate the command to Java.

Arreh then shows the Java check, which is a stand alone Java program, in a

separate window.

Experimental evaluation (Section 5.4) shows that Arreh significantly

reduces the burden of constantly checking contracts. While Arreh and the

SAT-based back-end of Alloy Analyzer take the same time to translate to Java

and SAT respectively, executing Java checks is orders of magnitude faster than

checking through the SAT solver. Better still, translation to Java is a one time

operation for Arreh and the same Java code can be reused, while reusing Alloy

to SAT translation is not available at this time.

5.4 Evaluation of DREAM with Alloy Back-End

We present the experimental evaluation of DREAM combined with

Cobbler. All the experiments used a 2.50GHz Core 2 Duo processor with

4.00GB RAM running 64 bit Windows 7 and Sun’s Java SDK 1.7.0 JVM.

Cobbler used MiniSat and MiniSatProver SAT solvers.

71

Figure 5.4: A snapshot of Arreh.

Our evaluation of DREAM with Cobbler considers the scenario when

repair is initially performed on an erroneous structure of a specific size and

then re-applied on another erroneous structure that has a different size but

a similar fault as before. Both Cobbler and DREAM use Alloy specifications

here. However, in Cobbler the specifications are checked at runtime using

SAT, whereas in DREAM the specifications are checked using the JVM since

the specifications are translated to Java assertions using Arreh.

The first data structure we look at is a basic Singly Linked List that

also keeps its size. We use the same errors we used to evaluate Cobbler in

Section 4.5.3. In that section, we included seven erroneous remove methods

for Singly Linked List. We used the same seven errors plus two new ones here.

72

Table 5.1: Description of the Singly Linked List errors used for experimental
evaluation of DREAM.

Err. # Description

S
in

g
ly

L
in

k
e
d

L
is

t 1 Sets the header to null
2 Fails to update the size
3 Deletes a node with a non-matching element
4 Introduces a cycle after performing correct remove
5 Breaks the list to retain only the first two nodes
6 Deletes the matching element but adds it again
7 Fails to remove the element and updates the size incorrectly
8 Fails to remove the element
9 Fails to update the size because of a missing left hand side

in an assignment

Table 5.1 shows the errors and a brief description of each of them. Some of the

errors violate the invariants of Singly Linked List (e.g., Error 4), some violate

the post-condition of the remove method (e.g., Error 1), and some violate both

(e.g., Error 7).

We start by repairing a Singly Linked List of 10 nodes. Upon the

very first error, no repair abstraction is available, so DREAM has to use the

underlying repair routine which is Cobbler here. Then DREAM abstracts out

the set of concrete repair actions taken by Cobbler and memorizes them for

future use. In the next experiment, we used a Singly Linked List of 500 nodes

with each error. DREAM applies the abstract repair actions which fix the

problem without calling Cobbler in 8 out of 9 errors. Table 5.2 shows the

abstractions that DREAM extracted for each error. Some abstractions, e.g.,

the first and second abstraction for Error 9, are unnecessary but harmless since

73

Table 5.2: Abstract repair actions suggested by DREAM for Singly Linked
List.

Err. # Abstract Repair Action(s)

S
in

g
ly

L
in

k
e
d

L
is

t

1 list (in post-state).header = First (in pre-state)
2 DREAM Not Working: Call SAT
3 First (in post-state).next = header.next.next (in pre-state)
4 Last (in post-state).next = null
5 Last (in post-state).next = header.next.next.next (in pre-state)
6 First (in post-state).elt = header.elt (in pre-state)
7 First (in post-state).elt = header.elt (in pre-state)

list (in post-state).size = size - 1 (in post-state)
8 First (in post-state).next = null

list (in post-state).header = header.next (in post-state)
header.next (in post-state).elt = header.elt (in post-state)
First (in post-state).elt = null

9 header.next (in pre-state).next = null
header.next (in pre-state).elt = null
list (in post-state).size = size - 1 (in post-state)

they change now unreachable nodes. These unnecessary actions exist because

SAT suggested them as concrete repair actions.

Table 5.3 displays the time performance of Cobbler repairing lists of

size 10 and 500, as well as DREAM repairing the same lists. For the case of

calling Cobbler, an initial call is made to SAT to discover the problem and

trigger repair (the check column in Table 5.3). Hence, the total time for re-

pair with Cobbler includes the initial check time plus the repair time. For

DREAM, first the repair actions are abstracted (column Abs.) using concrete

repair actions taken by Cobbler on the data structure of 10 nodes. Then,

using the data structure of 500 nodes, a Java check is performed to find out

74

T
ab

le
5.

3:
T

im
e

ta
ke

n
to

re
p
ai

r
er

ro
n
eo

u
s

S
in

gl
y

L
in

ke
d

L
is

ts
(m

s)
.

Error#

C
o
b
b
le

r/
D

R
E

A
M

C
o
b
b
le

r
D

R
E

A
M

Improvement

(S
iz

e
=

1
0
)

(S
iz

e
=

5
0
0
)

(S
iz

e
=

5
0
0
)

Check

Repair

Total

Check

Repair

Total

Abs.

Check

R
e
p
a
ir

Check

Total

Con.

App.

1
32

0
79

9
11

19
28

70
34

12
56

38
41

26
72

24
0

0
1

77
78

52
91

x
2

91
5

88
46

97
61

O
u
t

of
H

ea
p

N
ot

W
or

k
in

g:
C

al
l

S
A

T
B

ot
h

fa
il

3
16

6
41

7
58

3
12

74
34

24
06

74
36

81
08

14
38

0
39

37
11

4
32

29
x

4
12

8
38

1
50

9
O

u
t

of
H

ea
p

6
0

0
1

41
42

C
ob

b
le

r
fa

il
s

5
13

0
29

2
42

2
52

62
1

61
75

1
11

43
72

6
0

0
6

40
46

24
86

x
6

14
5

41
0

55
5

55
69

1
14

20
61

19
77

52
7

42
0

44
32

11
8

16
76

x
7

12
6

31
9

44
5

52
35

6
13

35
12

18
58

68
6

19
0

21
32

72
25

82
x

8
13

1
25

9
39

0
51

76
6

23
49

13
28

66
79

6
16

1
17

32
66

43
44

x
9

22
8

79
7

10
25

92
21

9
29

82
15

39
04

34
8

64
1

69
69

20
3

19
23

x

75

that the specification is violated. This Java check is a manual translation of

the specification from Alloy to Java using the Arreh technique which can be

automated using the Arreh tool. When this initial check fails, DREAM re-

pair performs concretization (the Con. column) followed by the application

of concretized actions (the App. column). Unlike Cobbler which only sug-

gests correct repairs, the result of applying a set of abstract repair actions by

DREAM should be checked to see if the abstractions can indeed resolve the

problem. Therefore, there is another Java-based check after DREAM repair.

Note that abstracting repair actions is a one time procedure whose results are

reused multiple times, therefore it is not included in the total time for repairing

with DREAM.

DREAM abstractions do not work for Error 2, mainly because the

repair suggested by Cobbler is too tailored to the specific data structure of

10 nodes and cannot be generalized. However, Cobbler cannot repair a data

structure of 500 nodes for Error 2 either because it runs out of the heap space.

Cobbler also fails to repair Error 4 on 500 nodes while DREAM repairs this

error in a total of 42 ms. As Table 5.3 shows DREAM (utilizing Arreh) is

substantially (about 3000 times on average) faster than Cobbler and it repairs

8 out of 9 errors in less than a quarter of a second. The improvement is in

part due to Arreh, because it makes checking much faster. However, even if

Cobbler uses Arreh for checking, it would still not be as efficient as DREAM,

since Cobbler has to use SAT for repair without the reuse of previous repair

actions. Finally, note that DREAM repair is as accurate as the underlying

76

Table 5.4: Description of the Red Black Tree errors used for experimental
evaluation.

Err. # Description

R
e
d

B
la
ck

T
re

e

1 Creates a cycle of length one
2 Sets the color of a node to black instead of red
3 Adds the new element as right child instead of left
4 Violates key constraints due to a branch condition error

repair framework: In cases that Cobbler does not fail, DREAM and Cobbler

generate the exact same repair.

The second data structure we consider is the Red Black Tree imple-

mentation in the open source Kodkod model finder [93] as explained in Sec-

tion 4.5.2. Table 5.4 repeats a brief description of the first four errors which

we use to evaluate DREAM.

Similar to the Singly Linked List experiment, we repaired Red Black

Trees of 10 and 500 nodes. Table 5.5 shows the abstract repair actions sug-

gested by DREAM.

Table 5.6 shows the performance measurements. For a Red Black Tree

of 500 nodes, Cobbler always times out where the timeout value is 500,000 ms.

DREAM repairs all the errors in less than one minute. Note that the time

Arreh takes for final checks is high since it is a direct, unoptimized translation

of Alloy to Java. Since the structures are valid after repair, final checks do not

short-circuit and take much longer than initial failing checks.

77

T
ab

le
5.

5:
A

b
st

ra
ct

re
p
ai

r
ac

ti
on

s
su

gg
es

te
d

b
y

D
R

E
A

M
fo

r
R

ed
B

la
ck

T
re

e.

E
rr

.
#

A
b
st

ra
ct

R
e
p
a
ir

A
ct

io
n
(s

)

RedBlackTree

1
F

ir
st

(i
n

p
os

t-
st

at
e)

.p
ar

en
t

=
n
u
ll

F
ir

st
(i

n
p

os
t-

st
at

e)
.c

ol
or

=
F

ir
st

.r
ig

h
t.

ri
gh

t.
ri

gh
t.

le
ft

.k
ey

(i
n

p
os

t-
st

at
e)

2
F

ir
st

.l
ef

t.
le

ft
(i

n
p

os
t-

st
at

e)
.c

ol
or

=
F

ir
st

.c
ol

or
(i

n
p

os
t-

st
at

e)
F

ir
st

(i
n

p
os

t-
st

at
e)

.c
ol

or
=

F
ir

st
.r

ig
h
t.

ri
gh

t.
ri

gh
t.

le
ft

.c
ol

or
(i

n
p

os
t-

st
at

e)
3

F
ir

st
.r

ig
h
t

(i
n

p
os

t-
st

at
e)

.k
ey

=
F

ir
st

.r
ig

h
t.

ke
y

(i
n

p
re

-s
ta

te
)

4
F

ir
st

(i
n

p
os

t-
st

at
e)

.r
ig

h
t

=
F

ir
st

.r
ig

h
t

(i
n

p
re

-s
ta

te
)

F
ir

st
(i

n
p

os
t-

st
at

e)
.c

ol
or

=
F

ir
st

.r
ig

h
t.

ri
gh

t.
ri

gh
t.

ri
gh

t.
co

lo
r

(i
n

p
re

-s
ta

te
)

78

T
ab

le
5.

6:
T

im
e

ta
ke

n
to

re
p
ai

r
er

ro
n
eo

u
s

R
ed

B
la

ck
T

re
es

(m
s)

.
T

im
eo

u
t

re
p
re

se
n
ts

a
ti

m
eo

u
t

of
50

0,
00

0
m

s.

Error#

C
o
b

b
le

r/
D

R
E

A
M

C
o
b
b
le

r
D

R
E

A
M

Improvement

(S
iz

e
=

1
0
)

(S
iz

e
=

5
0
0
)

(S
iz

e
=

5
0
0
)

Check

Repair

Total

Check

Repair

Total

Abs.

Check

R
e
p
a
ir

Check

Total

Con.

App.

1
28

2
58

2
86

4
T

im
eo

u
t

7
11

0
14

54
64

2
54

66
7

C
ob

b
le

r
fa

il
s

2
24

9
52

1
77

0
T

im
eo

u
t

5
37

0
40

56
04

2
56

11
9

C
ob

b
le

r
fa

il
s

3
33

1
77

2
11

03
T

im
eo

u
t

6
9

0
11

53
95

4
53

97
4

C
ob

b
le

r
fa

il
s

4
25

1
49

4
74

5
T

im
eo

u
t

6
10

45
0

10
48

53
50

8
55

60
1

C
ob

b
le

r
fa

il
s

79

5.5 Summary

In this chapter, we developed the idea of repair abstraction in the con-

text of contract-driven data structure repair using the Alloy tool-set to allow

memoization and reuse of repair actions for fixing errors that recur. Our

tool embodiment DREAM piggybacks on other repair frameworks and records

concrete repair actions they take to fix a particular erroneous state. The exper-

imental evaluation of the use of DREAM in accordance with Cobbler on basic

and complex data structures show that DREAM offers significant performance

improvement. We envision that repair abstractions can be a valuable addition

to data structure repair frameworks. DREAM’s ability to integrate with dif-

ferent repair frameworks provides a promising step toward making repair scale

to real applications.

80

Chapter 6

Data Structure Generation Using Dynamic

Programming

In this chapter, we build on the observation that structure construc-

tion is a central problem in two research thrusts in software engineering: test

input generation and data structure repair. The problem solving structures of

constraint-based test generation and contract-driven data structure repair are

similar. The former uses constraint solving to enumerate solutions that are

refined as tests, and the latter uses constraint solving to generate a solution

that repairs the erroneous state. This chapter presents a new technique for

efficient structure generation and is based on our FSE 2012 paper [106]. While

the focus of this chapter is on structure generation for testing, in Section 6.5

we discuss future ideas on how it enables better data structure repair.

Test input generation is one of the most challenging tasks in automated

testing. Generation is especially hard for programs, such as browsers or com-

pilers, which take complex structures, e.g., HTML or Java programs, as inputs,

because such inputs are hard to generate automatically or sample at random.

Constraint-based testing [24, 44, 49, 60, 80] provides the basis for effective

techniques [26, 73, 72, 15, 67, 37, 38, 54] for generation of such structurally

81

complex inputs: an input constraint defines the structural properties of a class

of desired inputs, a constraint solver enumerates solutions to the constraint,

and the solutions are refined as test inputs. Advances in constraint solving

technology [11, 28] have enabled solvers to handle more complex constraints.

However, scaling constraint-based testing remains a challenging problem, par-

ticularly when used for systematic testing, i.e., bounded exhaustive testing,

which tests against all inputs within a bound on the input size.

There are two fundamental questions any constraint-based test input

generation technique addresses: (1) how to write constraints that define a de-

sired class of inputs and (2) how to solve constraints. In this chapter, we intro-

duce a novel constraint-based test input generation technique that addresses

both these questions and enables efficient and scalable input generation of

structurally complex inputs.

To write constraints, our technique supports recursive predicates that

are written in the same language as the program under test. Our key insight

is that not only are recursive predicates more natural to write for recursive

structures (which may also have some non-recursive elements)—e.g., a binary

tree is either null, or a node whose left and right children are each a binary

tree—but also recursive predicates naturally lend themselves to recursive input

generation. Intuitively, since the predicate definition is recursive, it suffices to

build the non-recursive elements of a new input, and use the same method to

recursively build the recursive elements. For example, to build a binary tree

which is not null, it suffices to assign one node as the root and recursively

82

call the same procedure to build binary trees for the right and left children.

Our technique utilizes the recursive structure of desired inputs to di-

vide the problem of generating an input into several sub-problems of gener-

ating smaller inputs that exhibit the same structure, and employs dynamic

programming [25]—a well-known problem solving methodology designed to

exploit common sub-problems—to combine them and generate inputs in a

bottom-up manner. To illustrate, when exhaustively generating binary trees

as inputs, we build all binary trees of sizes 0, 1, 2, and 3 and use them to

construct binary trees of size 4. For random test generation, we randomly

generate some binary trees of sizes 0, 1, 2, and 3, and then combine them to

sample binary trees of size 4. Since many recursive test inputs exhibit the

property of overlapping sub-problems, dynamic programming saves us a lot of

computation.

We present three algorithms for input generation: (1) a basic algorithm

that uses dynamic programming directly, (2) a lazy initialization strategy that

optimizes dynamic programming, and (3) a further optimization using sym-

bolic execution [58, 24]. Our first algorithm (DP) utilizes dynamic program-

ming to generate test inputs up to a given size. To build a new test input, we

take formerly generated test inputs and combine them to build the recursive

parts, explore the state space to assign values to the non-recursive parts, and

pass the resulting candidate object to the repOK predicate for evaluation. If

repOK returns true, this object is saved as a valid input and is then used to

create larger inputs.

83

Our second algorithm (LazyDP) uses lazy initialization to optimize per-

formance. To cope with the limitation of other resources beyond computa-

tional time, such as memory, we store a recursive test input concisely as an

array of numbers, where each number recursively represents a formerly gener-

ated test. When combining inputs to build a candidate, we do not expand all

smaller test inputs in the hierarchy from their concise form to actual objects.

Instead, we expand them lazily whenever repOK accesses them. For instance,

consider the repOK method of a binary tree which indicates that both of the

right and left children are valid binary trees, and the size of the new binary

tree is one more than the sum of the sizes of its right and left children. This

means that, when investigating a candidate test input, repOK will only access

the size fields of the right and left children and not the size fields of all the

other sub-trees. Therefore, we can limit the expansion of recursive objects

to the right and left children and keep the smaller sub-trees in their concise

form. Dynamic programming and lazy initialization together form our second

algorithm, abbreviated as LazyDP.

Our third algorithm (SymboLazyDP) further enhances the performance

by skipping a systematic search for non-recursive fields when possible. For

recursive fields, this search is improved by using the first two algorithms where

we restrict the choice of smaller sub-problems to formerly generated solutions.

To avoid the search for non-recursive fields, the third algorithm adds symbolic

execution [58, 56, 92], which uses symbolic values for non-recursive fields,

builds a path condition while executing repOK, and uses an in-house constraint

84

solver to solve for the symbolic values. For example, symbolic execution solves

for the size of a binary tree by using the size fields of its children, and hence

avoids the invocation of repOK on various candidates with different values

for the size. Furthermore, symbolic execution provides less, yet representative

tests, and hence helps test execution, by representing each class of inputs with

only one solution for a path condition, instead of exploring the entire state

space.

Our technique not only enables efficient generation of inputs based on

textbook data structures, but also a wide-range of string-based inputs that

represent structured data, e.g., strings that belong to a context-free grammar,

SQL queries, data in a database management system, Java programs, and

HTML/CSS pages. We developed a prototype implementation of our three al-

gorithms and evaluated it using microbenchmarks and real world applications,

including Google Chrome and Apple Safari web browsers.

6.1 Example

In this section, we describe two examples: a binary tree, based on

the example of Section 3.1, and an HTML input that we use alongside with

a CSS input to test a web browser. We simplify the binary search tree of

Section 3.1 by excluding the field element, for the sake of clarity in explaining

the algorithms. The recursive definition of a binary tree is as follows: a binary

tree is either null, or a node whose left and right children each point to a

binary tree. The tree should not have any loops. Furthermore, in our binary

85

(a) null
btSize = 0 (b) btSize = 1

�� ��
null null

(c) btSize = 2

�� ��
null

�� ��
null null

(d) btSize = 2

�� ��

�� ��

null

null null

Figure 6.1: All binary trees up to size 2.

tree, btSize is equal to the number of nodes in the tree. Listing 6.1 shows

the recursive implementation of a binary tree. One can easily see that a

recursive repOK is a natural way of describing the properties of a recursive

data structure. Figure 6.1 shows all binary trees up to size 2.

1 class BinaryTree {
2 BinaryTree r ight , l e f t ;
3 int btS i z e ;
4 boolean repOK() {
5 i f (! a c y c l i c ()) return fa l se ;
6 return recurs ive repOK () ;}
7 boolean recurs ive repOK () {
8 int r i ghtBtS i ze , l e f tB t S i z e ;
9 i f (r i g h t == null) r i gh tBtS i z e = 0 ;

10 else {
11 i f (! r i g h t . recurs ive repOK ())
12 return fa l se ;
13 r i gh tBtS i z e = r i gh t . b tS i z e ;}
14 i f (l e f t == null) l e f tB t S i z e = 0 ;
15 else {
16 i f (! l e f t . recurs ive repOK ())
17 return fa l se ;
18 l e f t B t S i z e = l e f t . b tS i z e ;}
19 i f (b tS i z e==r i gh tBtS i z e+l e f tB t S i z e +1) return true ;
20 else return fa l se ;}}

Listing 6.1: A recursive binary tree in Java.

Listing 6.2 shows the repOK method of an HTML input. The backbone

of such an input is a generic tree, a recursive data structure. In addition, other

86

constraints are enforced on HTML tags. In Section 6.3.4, we demonstrate how

to leverage this modeling of HTML files and list-modeling of CSS files to

automatically generate bug revealing test inputs for the Chrome and Safari

web browsers. Figure 6.2 models the nested structure of tags in Listing 6.5

(Section 6.3.4).

1 class HTML {
2 int tagIndex ; HTML[] c h i l d ;
3 Attr ibute [] a t t r ;
4 St r ing [] HTMLTags =
5 {”html” , ”head” , ” l i n k ” , ”body” , . . . } ;
6 boolean repOK() {
7 i f (! a c y c l i c ()) return fa l se ;
8 i f (tagIndex != 0) //”html”
9 return fa l se ;

10 i f (! c h i l d [0] . repOKHead ())
11 return fa l se ;
12 i f (! c h i l d [1] . repOKBody ())
13 return fa l se ;
14 . . .
15 return true ; }
16 boolean repOKBody () {
17 i f (tagIndex != 3) //”body”
18 return fa l se ;
19 i f (! c h i l d [0] . recurs ive repOK ())
20 return fa l se ;
21 . . .
22 return true ; }}

Listing 6.2: HTML repOK method.

html

�� ��
head

��

body

��
link div

��
h1

��
div

��
h1

Figure 6.2: A tree
representation of an
HTML input.

Note that we support repOK methods with both recursive and non-

recursive parts. The btSize of each subtree in Listing 6.1 and the repOKHead

and repOKBody checks in Listing 6.2 are examples of non-recursive parts of a

repOK.

87

6.2 Test Input Generation Framework

In this section, we describe how we use recursive definitions of data

structures for exhaustive and random test generation. We explain our three

algorithms and prove a theorem on their correctness.

6.2.1 Recursive repOK Methods

Many test inputs, such as data structures, have an embedded recursive

structure. Sets, trees, stacks, queues, arrays, heaps, and many other data

structures have recursive definitions1. Using recursion in repOK to identify

correct instances of recursive loop-free data structures makes repOK easier to

write, read, and debug.

Besides identifying correct instances of a data structure, a repOK method

should be able to identify incorrect structures as well, but incorrect struc-

tures are not necessarily loop-free. To comply with this standard definition of

repOK, we require the template shown in the repOK method of Listing 6.1.

This repOK first checks for cycles, and then enters the recursion phase to

avoid an infinite loop. Throughout this chapter we use recursive repOK meth-

ods that assume acyclicity.

We process the source of a recursive repOK through a simple pattern

1Nevertheless, recursive repOK methods are inherently unsuitable for describing data
structures with loops. Therefore, a few data structures (e.g., circular linked lists) are not
directly compatible with our test generation algorithm. Our framework can generate the
recursive backbones of such data structures, and add loops later via a separate generation
phase.

88

matching to find all recursive calls. A field on which repOK is recursively

called is identified as a recursive field. We could also identify recursive calls

by processing the Abstract Syntax Tree of method calls.

6.2.2 Algorithms

Here we describe DP, LazyDP, and SymboLazyDP. The use of these

algorithms is orthogonal to exhaustive or random test generation. In Sec-

tion 6.2.2.2 we describe a variation of the algorithms that generates random

tests.

6.2.2.1 DP

Generation of test inputs can benefit from the recursive structure of

repOK. Given a recursive repOK, the goal of exhaustive test generation is to

generate all test inputs, in a given scope, for which repOK returns true. For

example, the recursive repOK of a binary tree (Listing 6.1) checks whether its

right and left children are correct binary trees and whether btSize is correctly

set to the sum of the btSize fields of the children plus one. By observing the

execution of repOK, we present our recursive method of generation: a new

candidate test is generated by setting its recursive fields to formerly generated

correct tests, and finding correct values for the non-recursive fields. Then,

repOK is invoked on the candidates to filter out the incorrect ones. The

repOK method directly rejects the candidates with loops and recursively calls

itself to evaluate different parts of the loop-free candidates. This check in-

89

cludes assuring the correctness of recursive substructures. Because we provide

previously generated valid test inputs as substructures, we can bypass these

internal recursive calls and directly return true for them.

Besides breaking the problem into subproblems, our generation method

demonstrates the other property necessary to a dynamic programming solu-

tion: overlapping subproblems. The same substructure is used multiple times

to build new candidate test inputs. For instance, the binary tree of size 1

(Figure 6.1 (b)) is used twice in the generation of all binary trees of size 2

(Figure 6.1 (c,d)).

For more efficient test generation, the DP algorithm avoids generating

repetitive candidates. To this end, we generate test inputs in iterations and

keep three sets of previously generated inputs: thisRoundTests contains cor-

rect tests generated in the current iteration, lastRoundTests includes correct

tests generated in the last iteration (which have not yet been used to build

other candidates), and pool contains all other correct tests generated so far.

At the beginning of test generation, pool and thisRoundTests are empty, and

lastRoundTests contains only null (line 6 of Listing 6.3). We assume that

null is always a valid test input because we cannot call repOK on null (e.g.,

it throws a nullPointerException in a Java program), and for all common

data structures null is a valid instance.

The DP algorithm proceeds as follows (Listing 6.3): If repOK makes

r recursive calls, we need r (not necessarily different, but ordered) tests to

build a new test. The outer while loop (lines 10 to 31) executes as long as

90

1 void t e s tGenera t i on () {
2 int r = getNumRecursiveChildren () ;
3 int s = getNumNonRecursiveFields () ;
4 pool = i n i t i a l i z e () ;
5 lastRoundTests = i n i t i a l i z e () ;
6 addTo(lastRoundTests , null , 0) ; //0 i s the s i z e o f n u l l
7 to ta lExp lo red++;
8 val idCasesGenerated++;
9 boolean prog r e s s = true ;

10 while (p rog r e s s) {// t e s t genera t ion round loop
11 prog r e s s = fa l se ;
12 thisRoundTests = i n i t i a l i z e () ;
13 int [] r e c u r s i v e s = nextPermutation (r) ;
14 while (r e c u r s i v e s != null) {
15 i f (s i z e (r e c u r s i v e s) >= maxNumRecursives) {
16 r e c u r s i v e s = nextPermutationPruning (r , s i z e (r e c u r s i v e s)) ;
17 continue ;}
18 int [] f i e l d s = nextValuat ion (s) ;
19 while (f i e l d s != null) {
20 to ta lExp lo red++;
21 Object t e s t ca s eObj = bui ldCandidate (r e cu r s i v e s , f i e l d s) ;
22 i f (t e s t ca seObj . repOK() && (! randomIsOn () | | co inToss (s i z e (

r e c u r s i v e s)))) {
23 prog r e s s = true ;
24 val idCasesGenerated++;
25 addTo(thisRoundTests , combine (r e cu r s i v e s , f i e l d s) , s i z e (

r e c u r s i v e s)) ;}
26 f i e l d s = nextValuat ion (s) ;}
27 r e c u r s i v e s = nextPermutation (r) ;}
28 for (int [] t e s t : lastRoundTests)
29 addTo(pool , t e s t , s i z e (t e s t)) ;
30 lastRoundTests = thisRoundTests ;
31 }}//end t e s t genera t ion round loop

Listing 6.3: Test generation algorithm in Java.

91

it makes progress in generating new test inputs. At each iteration, the test

inputs generated in the previous iterations are combined to form new candi-

dates; then repOK is invoked to identify correct test inputs. More specifically,

the recursives array selects a permutation of r recursive substructures by

calling the nextPermutation method. This method iterates over pool and

lastRoundTests and upon each invocation, provides the next permutation of

r substructures from the set lastRoundTests∪pool, such that at least one

of the r substructures is selected from lastRoundTests. (Section 6.2.3 shows

how this constraint assures that we would avoid repetitive candidates.) When

all permutations are exhausted, this method returns null.

A challenge for DP is the exponential growth of the number of candi-

dates at the outer boundaries of the scope. In fact, even creating those can-

didates can considerably affect the performance. To address this challenge,

we keep the tests in each of the three sets sorted according to their sizes. We

use bucket sort [25] (since the maximum size of a valid test is known from

the scope) as we add new tests. In Listing 6.3, once recursives is selected,

we first examine its size in line 15. If a candidate built with this permuta-

tion would be outside the scope, we throw this permutation away and also

prune all other permutations with the same or bigger sizes via calling the

nextPermutationPruning method. This method gives the next permutation

that is inside the scope. Once we have such a permutation, we use the r sub-

structures to build the recursive fields of a new candidate. In order to find

the proper values for the non-recursive fields, we perform a systematic search

92

size = 0 size = 1 size = 2 size = 3
pool

lastRoundTests null btSize = 0, #0

thisRoundTests btSize = 1, #1

~~
null null

Figure 6.3: Finding binary trees up to size three (first iteration).

by calling the nextValuation method, which, upon each invocation, returns

one valuation for the non-recursive fields. A permutation for recursives to-

gether with a valuation of fields gives us a candidate (testcaseObj) which

we send to repOK. If repOK returns true (ignoring randomIsOn and coinToss

for now), the new test gets added to thisRoundTests with its appropriate

size, otherwise it is discarded. At the end of the outer while loop, when all

permutations are exhausted, the tests in lastRoundTests join pool (lines 28

and 29), the tests in thisRoundTests replace lastRoundTests (line 30), and

we move on to the next round.

In the DP algorithm, size is defined recursively as follows: If a candidate

is null, its size is 0. Otherwise, the size of a candidate is the sum of the sizes

of its recursive substructures plus one. Note that in the example of a binary

tree, btSize has the same meaning of size. The size concept built into the

DP algorithm, however, does not necessarily correspond to a field of the data

structure. The DP algorithm memoizes and uses the size of a test, whereas

it treats btSize as a non-recursive field, and performs a systematic search to

find its correct value for any candidate.

Consider the example of finding binary trees up to size 3. (Figures 6.3,

93

size = 0 size = 1 size = 2 size = 3

pool null btSize = 0, #0

l
a
s
t
R
o
u
n
d
T
e
s
t
s

btSize = 1, #1

~~
null null

t
h
i
s
R
o
u
n
d
T
e
s
t
s

btSize = 2, #2

}} ""
|| ##

null

null null

btSize = 2, #3

}} !!
null

|| ##
null null

btSize = 3, #4

ww ''
~~ ~~

null null null null

Figure 6.4: Finding binary trees up to size three (second iteration).

6.4, and 6.5 in which trees are numbered using # in the order they are gen-

erated.) In the first iteration, the invocation of nextPermutation returns

different permutations of r (i.e., two) formerly generated binary trees such

that at least one of them is from lastRoundTests. Here there is only one

option: null for both right and left children. The total size of the binary trees

in recursives is 0 + 0 = 0, which is still less than 3, so no pruning happens

at this point. Furthermore, s = 1 implies that there is one field (btSize)

for which we should systematically search all values in the scope. We build

candidates by assigning null as both children and exploring different values

94

size = 0 size = 1 size = 2 size = 3

pool null btSize = 0, #0
btSize = 1, #1

~~
null null

l
a
s
t
R
o
u
n
d
T
e
s
t
s

btSize = 2, #2

}} ""
|| ##

null

null null

btSize = 2, #3

}} !!
null

|| ##
null null

btSize = 3, #4

ww ''
~~ ~~

null null null null

t
h
i
s
R
o
u
n
d
T
e
s
t
s

btSize = 3, #5

}} !!
null

}} ""
null

{{ ##
null null

btSize = 3, #6

}} !!
null

}} ""
|| ##

null

null null

btSize = 3, #7

|| ""
}} ""

null

|| ##
null

null null

btSize = 3, #8

}} ""
}} !!

null

null

{{ ##
null null

Figure 6.5: Finding binary trees up to size three (third iteration).

95

for btSize ranging from 0 to 3 (these numbers come from the scope). Each

of these candidates is sent to repOK, and the one with btSize correctly set

to 1 returns true. Upon receiving true from repOK, the new test is saved in

thisRoundTests and the algorithm continues until all permutations and val-

uations are exhausted. At the end of this round, null moves to pool and tree

1 moves to lastRoundTests. The algorithm continues in the same manner.

In the third iteration, first, binary trees 2 and 3 are combined with binary tree

0 (null) to generate four binary trees of size 3. Then, an example of pruning

occurs. Once the algorithm selects tree 2 from lastRoundTests and tree 1

from pool, the check on the size of recursives indicates that the resulting

candidate would be outside the scope. Therefore, nextPermutationPruning

is called to find the next permutation of recursives that is inside the scope.

Because all other permutations are bigger in size, they are pruned. For brevity,

we do not show iteration 4, wherein no new test is generated. The algorithm

terminates at the beginning of iteration 5, when all valid inputs are in pool.

6.2.2.2 Random Generation

Our use of dynamic programming is orthogonal to random or exhaustive

test generation and can be applied to both. In order to generate random tests,

we introduce randomization into the process of saving valid inputs. For random

test generation, randomIsOn() returns true on line 22 of Listing 6.3. Therefore,

saving or discarding a correct test input depends on the value returned from

coinToss(size(recursives)). This method heuristically returns true for all

96

small inputs (inputs with a size less than a threshold parameter) in order to

save them all, and uses a random number generator (a coin toss) with a fixed

probability of success to randomly save or discard other correct test inputs.

As the algorithm continues to execute, discarded tests do not take part in test

generation. At the end, the algorithm generates one or several random tests of

a given size. Keeping all small inputs (for example the single-node binary tree)

helps in reducing the chance of having repetitive patterns in a random test.

In the case of generating multiple tests, if sharing structures between tests

is undesirable, one could run the algorithm from scratch multiple times. As

Section 6.3 shows, our algorithms are efficient enough to generate big inputs

in a matter of seconds and one can run them several times.

6.2.2.3 LazyDP

One problem that arises during the test generation is the limitation

of other resources beyond computational time, such as memory. If we keep

tests as objects, we run out of the heap memory space for bigger scopes. As

Listing 6.3 shows, to optimize memory usage, tests are saved in the compact

form of an array of integers. These integers are either indexes of smaller

substructures, which in turn point to other arrays of integers, or values of

non-recursive fields. For example, tree 5 is saved as {(right child =) 3, (left

child =) 0, (btSize =) 3} where tree 3 is in turn kept as {(right child =) 1,

(left child =) 0, (btSize =) 2}. The value of a non-recursive field is saved as an

index with respect to the scope. For example, if there is a field with primitive

97

type boolean whose values are false and true in the scope, 0 represents false

and 1 represents true.

Whenever we create a bigger candidate test input using smaller pre-

viously generated tests, we need to call repOK to examine the correctness of

the candidate. Consequently, we need to retrieve the smaller tests, build their

corresponding objects, and then utilize them to build the candidate. We build

the smaller tests with the lazy initialization technique, which means that the

substructures get initialized (i.e., expanded from arrays of integers to objects)

only when repOK accesses a field from them.

For binary trees, since repOK of Listing 6.1 only accesses btSize of the

direct children of a node, we only expand the direct children to objects and

keep their children as arrays. For example, the expansion of binary tree 5, is

limited to expanding binary trees 3 and 0, and not binary tree 1, which is a

child of binary tree 3.

6.2.2.4 SymboLazyDP

While both dynamic programming and lazy initialization improve find-

ing the recursive values of a candidate, in order to find the correct values for

its non-recursive fields (e.g., btSize), we still need to search all valuations,

which diminishes the efficiency and scalability of test generation. To avoid

such a search, we observe that the values of many non-recursive fields of a test

can be symbolically computed rather than searched for. Following previous

work [58, 56, 92] we use symbolic execution for non-recursive fields. Using

98

symbols (instead of concrete values) for fields, we build a path condition (a

boolean formula over the symbols which represents the constraints that should

be satisfied to follow a path) while executing repOK. At the end of the repOK

execution, we use a constraint solver to solve the path condition and calculate

concrete values for non-recursive fields.

In order to enable symbolic execution, we use a source to source instru-

mentation on the repOK method [56]. We replace each branch condition with

a boolean variable which takes both true and false values. When it takes the

true value, we add the original branch condition to the path condition. When

it takes the false value, we add the negation of the original condition. All valu-

ations of such boolean variables provide all execution paths. Listing 6.4 shows

the corresponding instrumentation for btSize (replacing the last two lines of

Listing 6.1). Upon reaching a return statement, we invoke a constraint solver

to solve the path condition and consider each solution as an acceptable valu-

ation for the non-recursive fields. For example, btSize of a candidate binary

tree is assigned through solving the condition added on line 20 of Listing 6.4.

We save the path condition with each valid substructure, but do not

save the solution; i.e., substructures are saved with symbolic non-recursive

fields and constraints on them. After combining the substructures, we per-

form symbolic execution on the entire candidate, including the recursive calls,

because solving the substructures separately does not necessarily give compat-

ible results (e.g., consider solving the search constraint on integer elements of

a binary search tree; it is possible to save valid integer elements in the right

99

and left children that violate the search constraint at the root, making the

constraint infeasible).

19 i f (getBoolean ()) {
20 addCond(” btS i z e ” , EQ, ” r i gh tBtS i z e+l e f tB t S i z e+1”) ;
21 return true ;
22 } else {
23 addCond(” btS i z e ” , NOTEQ, ” r i gh tBtS i z e+l e f tB t S i z e+1”) ;
24 return fa l se ;}

Listing 6.4: Instrumenting BinaryTree for symbolic execution.

6.2.3 Theorem on Test Generation Algorithm

In this section, we prove that the DP algorithm generates all valid tests

in the scope (i.e., it is complete), and it does not generated any valid or invalid

candidate more than once. The algorithm is sound because of the final repOK

check performed on each candidate.

Let us use the number of generation rounds as set subscripts. Define SR

as the value of set S (e.g., pool) at the end of round R. Furthermore, define

discardedR as the set of candidates discarded during round R, including those

outside the scope.

Definition 1. Visited candidates: visitedCandsR = poolR∪lastRoundTestsR∪⋃R
i=1 discardedi.

Definition 2. T (C): For a candidate C, let T (C) be the set of all test inputs

that C uses as its recursive substructures.

Lemma 1. At the end of each round R (R ≥ 0), and for any candidate C,

the following loop invariant holds:

100

T (C) ⊆ poolR → C ∈ visitedCandsR

The invariant means that, at the end of each round, any candidate that

uses only pool members is already generated.

Proof by induction. The base case is the beginning of round one, were pool0 =

∅. The only candidate that does not use any recursive substructures is null.

Yet null ∈ lastRoundTests0 and hence null ∈ visitedCands0, so the invari-

ant holds.

For the induction step, assume that:

T (C) ⊆ poolR → C ∈ visitedCandsR (6.1)

At the end of round R + 1, the tests in lastRoundTests join pool, and then

the tests in thisRoundTests replace lastRoundTests.

poolR+1 = poolR ∪ lastRoundTestsR (6.2)

lastRoundTestsR+1 = thisRoundTestsR+1 (6.3)

Suppose that the invariant does not hold at the end of round R + 1.

∃C ′ : T (C ′) ⊆ poolR+1 ∧ C ′ /∈ visitedCandsR+1 (6.4)

Now, T (C ′) ∩ lastRoundTestsR is either (a) = ∅ or (b) 6= ∅. For case (a):

(6.2) ∧ (6.4) ∧ (a)→ T (C ′) ⊆ poolR (6.5)

(6.1) ∧ (6.5)→ C ′ ∈ visitedCandsR (6.6)

101

Definition1 ∧ (6.2) ∧ (6.6)→ C ′ ∈ visitedCandsR+1 (6.7)

which contradicts with (6.4).

For case (b):

∃t ∈ T (C ′) : t ∈ lastRoundTestsR (6.8)

Note that the algorithm generates all permutations of the tests belonging to

lastRoundTests or pool that have at least one test from lastRoundTests,

i.e.,

(T (C) ⊆ poolR ∪ lastRoundTestsR

∧∃t ∈ T (C) : t ∈ lastRoundTestsR)

↔ C ∈ thisRoundTestsR+1 ∪ discardedR+1 (6.9)

(6.2)∧ (6.4)∧ (6.8)∧ (6.9)→C ′∈ thisRoundTestsR+1 ∪ discardedR+1 (6.10)

Definition1 ∧ (6.3) ∧ (6.10)→ C ′ ∈ visitedCandsR+1 (6.11)

which again contradicts with (6.4).

Theorem 1. Part 1: for a given scope, the algorithm generates all valid tests.

Part 2: the algorithm does not generate any (valid or invalid) candidate more

than once.

Proof of part 1. Let C ′′ be the smallest correct test that the algorithm fails to

generate. If the algorithm terminates right after round fin:

repOK(C ′′) = true ∧ C ′′ /∈ visitedCandsfin (6.12)

102

∀C : repOK(C) = true ∧ C /∈ visitedCandsfin

→ size(C) ≥ size(C ′′) (6.13)

The sizes of the valid tests that C ′′ uses as its recursive substructures are less

than the size of C ′′; because size is defined as the sum of the sizes of the

recursive substructures plus one.

∀t ∈ T (C ′′) : size(t) < size(C ′′) (6.14)

∀t ∈ T (C ′′) : repOK(t) = true (6.15)

Because C ′′ is assumed to be the smallest test that is not generated, we can

show that all of its substructures are generated:

(6.13)∧(6.14)∧(6.15)→∀t ∈ T (C ′′) : t∈visitedCandsfin (6.16)

Further, the termination of the algorithm at the end of round fin means

that no progress was made in this round. Accordingly, no test was added to

thisRoundTestsfin. By using (6.3)2:

lastRoundTestsfin = thisRoundTestsfin = ∅

→ visitedCandsfin = poolfin ∪
fin⋃
i=1

discardedi (6.17)

Now, let us assume that C ′′ is inside the scope.

size(C ′′) ≤ scope.size (6.18)

2fin > 0 since the test generation loop executes at least once.

103

(6.14) ∧ (6.18)→ ∀t ∈ T (C ′′) : size(t) ≤ scope.size (6.19)

From the definition of discarded, we have:

∀C∈discardedR→repOK(C) 6= true∨size(C)>scope.size (6.20)

(6.15) ∧ (6.19) ∧ (6.20)→ ∀t ∈ T (C ′′) : t /∈
fin⋃
i=1

discardedi (6.21)

(6.16) ∧ (6.17) ∧ (6.21)→ ∀t ∈ T (C ′′) : t ∈ poolfin (6.22)

Lemma1 ∧ (6.22)→ C ′′ ∈ visitedCandsfin (6.23)

But (6.23) contradicts with (6.12), which proves part 1.

Proof of part 2 by induction. Consider R = 0 for the induction base. Because

only one instance of null is generated before the first round, no repetition

happens at R = 0.

For the induction step, assume that all candidates visited up to the end

of round R are distinct. We use 6≡ to show that two candidates are different

instances, although they might be equal (=).

@t, t′ ∈ visitedCandsR : t 6≡ t′ ∧ t = t′ (6.24)

Suppose that the first repetitious candidate, named C, is generated during

round R + 1.

C ∈ thisRoundTestsR+1 ∪ discardedR+1 (6.25)

104

C is repetitious, so another instance of it, named C ′, is already generated at

round R′3.

C ′ ∈ thisRoundTestsR′ ∪ discardedR′ (6.26)

(6.9) ∧ (6.25)→ T (C) ⊆ poolR ∪ lastRoundTestsR (6.27)

(6.9)∧(6.26)→T (C ′)⊆poolR′−1∪lastRoundTestsR′−1 (6.28)

Either (a) R′ = R+ 1 or (b) R′ < R+ 1. For case (a), note that during

one round of test generation, methods nextPermutation and nextPermutationPruning

provide distinct permutations. So in order to have repetitive candidates, at

least one of the substructures should have more than one instance.

∃t ∈ T (C), t′ ∈ T (C ′) : t 6≡ t′ ∧ t = t′ (6.29)

(6.27) ∧ (6.28) ∧ (6.29) ∧ (a)→∃t, t′ ∈ visitedCandsR : t 6≡ t′ ∧ t = t′ (6.30)

which contradicts with (6.24).

For case (b), notice that at least one substructure is selected from

lastRoundTests.

(6.9)∧(6.25)∧C=C ′→∃t∈T (C ′) : t∈lastRoundTestsR (6.31)

(6.28)∧(6.31)→∃t∈lastRoundTestsR ∩ visitedCandsR′−1 (6.32)

(6.24) ∧ (6.32)→ R ≤ R′ − 1 (6.33)

which contradicts with (b).

3The algorithm never generates null again, so R′ 6= 0.

105

6.3 Evaluation: Test Input Generation Using Dynamic
Programming

In order to evaluate our test generation methods, we implemented a

prototype of the algorithms and designed some experiments wherein we address

two research questions:

• RQ1 How efficient and scalable are our algorithms, compared to state-

of-the-art test generation tools (Pex and Korat)?

• RQ2 How effective are the generated tests in finding bugs in real world

applications (Chrome and Safari web browsers)?

In the first set of experiments, we used six microbenchmarks, which

are complex data structures widely used in programs and as test inputs. Pre-

vious work has extensively used these benchmarks for evaluation [85, 78, 89,

81, 15, 37, 67]. In order to answer the first question, we need an alternative

exploration method of the state space of possible test inputs. A naive explo-

ration of the state space will give rather unacceptable results. Therefore, we

compare our methods to Microsoft Pex [92]—a state-of-the-art test generation

tool for .Net—and Korat [15]—a well-known test generation method and an

open source tool [74] for Java programs.

Pex is a white-box test generation tool that performs symbolic execu-

tion. In addition, it uses path-bounded model-checking to cover different paths

in the program. Pex is an appropriate subject tool; it particularly addresses

106

the effect of symbolic execution. Generation of test inputs considered in this

work is black-box with respect to the code under test, yet we allow Pex to

explore different paths in repOK. We used the same repOK methods for Pex

and Korat, except for minor changes to accommodate syntactic differences

between C# and Java respectively.

The Korat algorithm monitors repOK executions to prune large por-

tions of the bounded space of candidate structures. Korat is an appropriate

subject tool too; previous work [87] shows that Korat is among the most

efficient solvers for complex structural constraints, when compared to other

techniques (JPF model checker [95], Alloy alongside with a SAT solver [52],

and CUTE symbolic execution engine [85]).

In addition to exhaustively generating test inputs, we compare the ef-

ficiency and scalability of our algorithms with Pex and Korat, when sampling

a few large test inputs.

In the second set of experiments, we show how to naturally model

HTML and CSS3 files as acyclic data structures. Such files, which are test

inputs to any web browser, are examples of practical and common, yet user-

defined test inputs. By systematically generating HTML and CSS3 test in-

puts, our generation methods tested the latest versions of two well-known web

browsers, Google Chrome and Apple Safari, and found real bugs in Chrome.

107

6.3.1 Experimental Settings

Throughout the evaluation, we ran each experiment five times and re-

ported the averages. All experiments used a 2.50GHz Core 2 Duo processor

with 4.00GB RAM running Windows 7. We used Sun’s Java SDK 1.6.0 JVM

with our methods and Korat, and Microsoft Visual C# 2010 version 4.0.30319

RTMRel with Pex version 0.94.51006.1. Pex used Z3 theorem prover [28] ver-

sion 2.0. In Section 6.3.4, we used Google Chrome version 13.0.782.220 m for

Windows and Apple Safari 5.1 (7534.50), the latest versions as of the date of

these experiments.

For symbolic execution, we used our in-house constraint solver devel-

oped in Java. The source to source instrumentation for symbolic execution is

currently manual, but is mechanical and can be automated [56]. For exhaus-

tive test generation with Pex, we used the following setting to force Pex to

generate all test inputs:

TestEmissionFilter = PexTestEmissionFilter.All

6.3.2 Microbenchmarks

To address RQ1 for exhaustive test generation, we considered six mi-

crobenchmarks.

Table 6.1 shows the results for the biggest sizes considered. For all six

microbenchmarks and all sizes considered (including those not shown), DP and

LazyDP generate the same number of tests as Korat. SymboLazyDP and Pex

108

T
ab

le
6.

1:
E

x
h
au

st
iv

e
te

st
ge

n
er

at
io

n
fo

r
th

e
b
ig

ge
st

si
ze

s
co

n
si

d
er

ed
.

B
en

ch
m

ar
k
s

in
cl

u
d
e

so
rt

ed
si

n
gl

y
-

li
n
ke

d
li
st

s
(L

L
),

b
in

ar
y

tr
ee

s
(B

T
),

re
d
-b

la
ck

tr
ee

s
(R

B
T

),
F

ib
on

ac
ci

h
ea

p
s

(F
H

),
b
in

ar
y

h
ea

p
s

(B
H

),
an

d
h
as

h
ta

b
le

s
(H

T
).

T
O

re
p
re

se
n
ts

a
ti

m
eo

u
t

of
10

00
s.

B
es

t
p

er
fo

rm
an

ce
h
ig

h
li
gh

te
d
.

Bench.

V
a
li
d

T
e
st
s

C
a
n
d
id

a
te

s
G
e
n
e
r
a
ti
o
n

T
im

e
(s
)

S
ta

te

Size

K
o
r
a
t/

D
P
/

S
y
m
b
o
-

P
e
x

K
o
r
a
t

D
P
/

S
y
m
b
o
-

P
e
x

K
o
r
a
t

D
P

L
a
z
y
D
P

S
y
m
b
o
-

P
e
x

S
p
a
c
e

L
a
z
y
D
P

L
a
z
y
D
P

L
a
z
y
D
P

L
a
z
y
D
P

L
a
z
y
D
P

L
L

1
7

1
3
1
0
7
2

1
8

1
8

1
7
8
2
5
9
6
3

2
2
2
8
2
0
8

3
4

3
6

3
3
.1
8
8

7
.0
8
9

3
.4
9
1

0
.0
2
5

9
.1
9
5

1
0
4
1

B
T

1
2

2
9
0
5
1
2

2
9
0
5
1
2

T
O

1
5
7
7
0
9
7
4

3
7
7
6
6
4
4

5
8
1
0
2
3

T
O

5
1
.5
3
3

1
7
.5
2
4

7
.9
4
7

7
.4
1
6

T
O

1
0
2
6

R
B
T

9
6
7
5
3

2
7
1

T
O

2
2
0
7
6
9
9

6
1
0
2
1
7
4
6
1

4
4
5
2
2
7

T
O

8
.7
2
8

9
6
2
.4
8
3

T
O

4
.5
9
0

T
O

1
0
2
6

F
H

6
1
1
2
5
1
3
9

1
9
7

T
O

1
3
6
4
3
9
8

2
1
0
1
9
5
7

3
1
9
0

T
O

5
.6
5
4

1
0
.2
5
4

1
6
.0
3
5

0
.0
7
8

T
O

1
0
1
4

B
H

8
3
4
4
5
7
1

9
9

2
4
9
0
0
1
6
5

1
8
6
6
4
4
6
4
1

3
5
9
3

7
0

6
5
.1
2
9

3
0
0
.8
6
2

2
8
3
.0
9
9

0
.0
7
5

9
.7
7
6

1
0
2
1

H
T

1
2

4
0
8
3

2
3
3

T
O

1
1
0
9
8
0
7
5

3
1
9
5
3
5
2
9

4
1
7
6

T
O

5
1
.0
4
3

7
5
.8
3
4

5
6
.7
4
0

0
.1
5
9

T
O

1
0
3
8

109

generate the same number of tests, since they both use symbolic execution and

report one solution for each path condition, instead of exploring all valuations

from the state space. In addition to improving test generation performance

and scalability, symbolic execution improves test execution by reporting less,

yet representative test inputs. SymboLazyDP is the most efficient generation

method for all the microbenchmarks on the biggest size.

We consider six microbenchmarks: sorted singly-linked lists (LL), bi-

nary trees (BT), red-black trees (RBT), Fibonacci heaps (FH), binary heaps

(BH), and hash tables (HT). The first data structure is a sorted singly-linked

list of integer elements. In addition to acyclicity, a sorted list requires the

integer elements to be sorted in ascending order. Repetitions are not allowed.

Figure 6.6 shows the performance evaluation results for linked lists. Here, DP

and LazyDP constantly outperform Korat. Lazy initialization is effective here,

especially because properties like being sorted are verified locally: it suffices

to compare each node’s element with its neighbor’s. Pex outperforms DP and

LazyDP on bigger sizes for two data structures: singly-linked list and binary

heap. The reason is that Pex generates far fewer tests by symbolically execut-

ing repOK and representing all sorted lists of a given size with only one test,

while Korat, DP, and LazyDP exhaust different valuations. SymboLazyDP,

however, shows the best performance among all the methods. It generates the

same number of tests and grows with the same pace as Pex, but it is multiple

times faster. Notice that the vertical axis is logarithmic.

The next benchmark is a binary tree as described in Section 6.1. As

110

1.00

10.00

100.00

1,000.00

0.00

0.01

10 11 12 13 14 15 16 17

Size of Generated Tests (SortedSinlyLinkedList)
Korat DP LazyDP SymboLazyDP Pex

Figure 6.6: Performance comparison on linked lists.

1.00

10.00

100.00

1,000.00

0.00

0.01

5 6 7 8 9 10 11 12

Size of Generated Tests (BinaryTree)
Korat DP LazyDP SymboLazyDP Pex

Figure 6.7: Performance comparison on binary trees.

Figure 6.7 displays, SymboLazyDP performs the best. Pex can only enumerate

all binary trees up to size 7 before timing out.

111

We also experimented with red-black trees with size, key and color. Our

repOK enforces the following properties: all leaves are black, both children of

a red node are black, every path from a node to any of its descendant leaves

contains the same number of black nodes, and keys maintain the binary search

tree property (the key of each node is bigger than all keys in the left sub-tree

and smaller than all keys in the right sub-tree). Figure 6.8 depicts the results.

While DP and LazyDP are faster than Korat at first, Korat takes over them

at some point because DP and LazyDP have to explore all valuations of key

and color, but Korat prunes many of them. Notice that LazyDP takes slightly

more time than DP on this benchmark. This is because repOK needs to explore

down the tree to find minimum and maximum keys to evaluate the search tree

property, and eventually expands many substructures, which undermines the

usage of lazy initialization. Pex uses symbolic execution for key and color, but

cannot generate all red-black trees with four nodes or more. SymboLazyDP,

using dynamic programming and symbolic execution, closely competes with

Korat and eventually takes over.

Figure 6.9 compares the memory usage of our methods and Korat for

red-black trees. DP and LazyDP generate the same number of tests, so they

always use equal amounts of memory. SymboLazyDP generates less tests and

hence uses less memory. Korat keeps only one candidate vector while we have

to keep all correct tests (albeit in a compact format). Hence, the memory

usage of our methods grows faster than Korat. However, since the Java heap

space is usually in the order of a few GB’s, 10MB of memory usage should

112

1.00

10.00

100.00

1,000.00

0.00

0.01

2 3 4 5 6 7 8 9

Size of Generated Tests (RedBlackTree)
Korat DP LazyDP SymboLazyDP Pex

Figure 6.8: Performance comparison on red-black trees.

1,000

10,000

100,000

1,000,000

10,000,000
Korat

DP, LazyDP

1

10

100

2 3 4 5 6 7 8 9

Size of Generated Tests

Figure 6.9: Memory usage on red-black trees.

not be a problem. The memory usage of the other benchmarks follows a very

similar pattern.

The next benchmark is a Fibonacci heap (Figure 6.10), a collection of

113

1.00

10.00

100.00

1,000.00

0.00

0.01

1 2 3 4 5 6 7 8

Size of Generated Tests (FibonacciHeap)
Korat DP LazyDP SymboLazyDP Pex

Figure 6.10: Performance comparison on Fibonacci heaps.

trees with no limit on the number of children of a node. The heap maintains

minimum-heap property (the key of a node is always less than the keys of

its children). The Korat implementation of repOK for this class is recursive

which shows that an intuitive way of checking the properties of this class is

through recursion. Nevertheless, Korat does not make use of recursion for test

generation. This is the only case where the memory usage is a concern for DP

and LazyDP. In fact, for Fibonacci heaps with more than six nodes, DP and

LazyDP run out of the heap space and Korat and Pex run out of time. Yet,

SymboLazyDP does not time out and is the most efficient.

The next benchmark, a binary heap (Figure 6.11), is a complete binary

tree (all levels of the tree, except possibly the last one, are fully filled), the

tree is balanced, and the leaves of the last level are filled from left to right.

114

1.00

10.00

100.00

1,000.00

0.00

0.01

1 2 3 4 5 6 7 8

Size of Generated Tests (BinaryHeap)
Korat DP LazyDP SymboLazyDP Pex

Figure 6.11: Performance comparison on binary heaps.

Also, it maintains the minimum-heap property. This benchmark gives results

similar to the sorted singly-linked list. SymboLazyDP is the most efficient.

The last benchmark is a hash table implemented using nested lists

(Figure 6.12). Each integer element in the hash table is hashed to a value

using a given hash function. Entries with the same hash value are kept in a list.

LazyDP and DP are slightly better than Korat. The difference increases when

a time-consuming hash function is used. Since we use previously generated

tests, we avoid many calls to the hash function. The generation time for Pex

starts off at a bigger value and increases at the same pace as SymboLazyDP.

SymboLazyDP outperforms all the other methods.

Finally, it is worth mentioning that Pex and SymboLazyDP both re-

quire path bounds (e.g., for loop unrolling). Throughout the experiments, we

115

1.00

10.00

100.00

1,000.00

0.00

0.01

5 6 7 8 9 10 11 12

Size of Generated Tests (HashTable)
Korat DP LazyDP SymboLazyDP Pex

Figure 6.12: Performance comparison on hash tables.

used trial and error to find and set the smallest bounds that provide all tests.

Similarly, Korat, DP, and LazyDP need a bound on primitive (e.g., integer)

values. The number of primitives used usually has a relationship with the test

size.

6.3.3 Random Test Generation

To address RQ1 for random test generation, we considered generat-

ing ten random tests of ninety to a hundred nodes (Table 6.2). For Korat

and Pex, we took the first ten tests generated in the desired size range. For

SymboLazyDP, all small tests (up to size 3) were saved and bigger tests were

saved or discarded at random (Section 6.2.2.2). Except for the Fibonacci heap

benchmark, SymboLazyDP is the most efficient and scalable.

116

T
ab

le
6.

2:
R

an
d
om

ge
n
er

at
io

n
of

te
n

te
st

s
w

it
h

90
≤

si
ze
≤

10
0.

B
en

ch
m

ar
k
s

in
cl

u
d
e

so
rt

ed
si

n
gl

y
-l

in
ke

d
li
st

s
(L

L
),

b
in

ar
y

tr
ee

s
(B

T
),

re
d
-b

la
ck

tr
ee

s
(R

B
T

),
F

ib
on

ac
ci

h
ea

p
s

(F
H

),
b
in

ar
y

h
ea

p
s

(B
H

),
an

d
h
as

h
ta

b
le

s
(H

T
).

T
O

re
p
re

se
n
ts

a
ti

m
eo

u
t

of
10

00
s.

B
es

t
p

er
fo

rm
an

ce
h
ig

h
li
gh

te
d
.

Bench.

V
a
li
d

T
e
st
s

C
a
n
d
id
a
te
s

G
e
n
e
ra

ti
o
n

T
im

e
(s
)

S
ta

te
K
o
ra

t
S
y
m
b
o
L
a
z
y
D
P

P
e
x

K
o
ra

t
S
y
m
b
o
L
a
z
y
D
P

P
e
x

K
o
ra

t
S
y
m
b
o
L
a
z
y
D
P

P
e
x

S
p
a
c
e

L
L

10
10

10
8
1
1
0

1
9
7

1
9
8

0
.1

3
7

0
.1
3
6

3
2
2

1
0
3
5
1

B
T

10
10

10
8
7
4
6

1
1
6
1
5

6
0
2

0
.2

6
6

0
.1
7
4

3
7
5

1
0
3
5
3

R
B
T

T
O

10
T

O
T

O
2
3
5
0
7
3
2

T
O

T
O

2
0
.2
5
6

T
O

1
0
5
2
9

F
H

10
10

T
O

4
1
0
6

5
4
6
2
4

T
O

0
.1
1
4

0
.5

6
7

T
O

1
0
5
2
7

B
H

10
10

10
34

3
3
0
0

4
6
7
5
2
2

1
5
3

7
.6

1
7

2
.8
2
3

8
3

1
0
5
2
7

H
T

T
O

10
T

O
T

O
1
5
3
5
0
8

T
O

T
O

3
.9
4
7

T
O

1
0
5
2
7

117

6.3.4 Google Chrome and Apple Safari

To address RQ2 and showcase the ability of our methods in finding bugs

in real world, well-tested4, commercial applications, we tested the support for

rendering CSS3 3D effects by Chrome and Safari web browsers. CSS (Cascad-

ing Style Sheets) is a style sheet language that separates the presentation of a

markup language document from its content, and is commonly used to style

web pages written in HTML and XHTML. CSS3, the latest variation of CSS,

enables web developers to add 3D effects to web pages, i.e., position and move

elements in the three dimensional space.

Apple Safari and Google Chrome web browsers support CSS3 3D ef-

fects. As of the date of these experiments, Chrome and Safari are the third and

fourth most widely used desktop web browsers with 21.5% and 4.8% worldwide

usage share respectively [7]. Safari is developed in C++ and Objective-C, and

precedes Chrome in supporting 3D transforms. Chrome is developed in C++,

Assembly, Python, and JavaScript. Both of these browsers use Webkit layout

engine which introduced 3D transforms in CSS.

We directly tested 11 KLOC of C++ code (74 .cc/.h files) from Chrome.

Safari is 37 MB compiled. Our test for Safari included 2.7 KLOC (19 .cpp/.h

files) of its open source code plus its closed source implementation.

4For example, Chrome is extensively tested before release and claims to pass 99% of
WebKit’s layout tests [5]. The CSS3 3D effects are among the WebKit’s layouts.

118

6.3.4.1 Modeling HTML and CSS Test Inputs

An HTML file is composed of a set of nested HTML elements. An

HTML element includes a start tag (e.g., <h1>) and an end tag (e.g., </h1>).

The start tag might also have some attributes (e.g., class=”ClassName”). We

modeled an instance of an HTML file as a tree. The whole document is con-

tained between <html> start and end tags, which we consider as the root of

the tree. Further, each tag is represented as a node that has some attributes

and an ordered set of children, which are the tags immediately inside it. List-

ing 6.2 shows some parts of the HTML model. Figure 6.2 shows the tree

representation of Listing 6.5.

1 <html>
2 <head>
3 <l ink rel=” s t y l e s h e e t ” type=” text / c s s ” href=” f i l e . c s s ”></ l ink></head>
4 <body>
5 <div class=”ClassName4”>
6 <h1>This i s some text
7 <div class=”ClassName12”>
8 <h1>This i s some text</h1></div></h1></div></body></html>

Listing 6.5: An automatically generated HTML test input.

1 s e l e c t o r 1 {
2 property1 : value11 [value12 . . .] ;
3 [property2 : value12 [value22 . . .] ;
4 . . .] }

Listing 6.6: Abstraction of a CSS rule.

A CSS file consists of a list of rules. A rule has a selector and a dec-

laration block. Inside a block, each declaration has a property, followed by a

list of values. Listing 6.6 shows an abstraction of a CSS rule. Since multiple

119

1 . ClassName4{
2 −webkit−trans form : rotateY (180deg) ;}
3 . ClassName12{
4 −webkit−pe r sp e c t i v e : 800 ;
5 −webkit−backface−v i s i b i l i t y : hidden ;}

Listing 6.7: An automatically generated CSS test input (file.css).

selectors can be modeled by duplicating the declaration block for each of them,

we only support single selectors. We modeled each CSS rule as a linked list

of alphabetically sorted5 properties where each property has a linked list of

values. As one could see, our HTML and CSS models are intuitive and easy

to implement as recursive loop-free data structures. Indeed, we have already

implemented both of them as microbenchmarks.

Listings 6.7 and 6.5 show bug-revealing examples of HTML and CSS

inputs, automatically generated by our methods.

6.3.4.2 Experimental Results

Using the above models, we systematically generated all test inputs

with up to eight tags (two <div> tags) inside an HTML file and two decla-

rations inside a CSS declaration block. Five CSS properties were used: per-

spective, backface-visibility, transform, transform-origin, and transform-style.

Also, various values for these properties were used including perspective, ro-

tate, scale, skew, and translate for the transform property. Each HTML tag

could have a CSS selector as its class attribute (See Listings 6.7 and 6.5 as

5Because the order of properties is irrelevant, we keep them sorted to avoid duplicates.

120

Table 6.3: Chrome and Safari test input generation results.
Candidates Gen. Time (s) #Tests

CSS HTML CSS HTML

DP 10,231 3,815,626 0.140 10.851 3081

LazyDP 10,231 3,815,626 0.140 10.850 3081

SymboLazyDP N/A 116,766 N/A 1.628 3081

an example). Consistency constraints between CSS and HTML files are main-

tained by first running the CSS input generator and then feeding the number

of classes it generates to the HTML input generator to exhaustively cover all

classes.

Table 6.3 shows a summary of the results. In total, 3081 test inputs

(each including an HTML file with the corresponding CSS file) were generated.

The size of the input space for the chosen bounds is 1010. The size bound in

this experiment is too small to get LazyDP benefits. However, SymboLazyDP

gives a clear advantage. In our model, SymboLazyDP is not applicable on CSS

inputs for the lack of non-recursive fields that can be executed symbolically.

6.3.4.3 Differential Testing

So far, we have automatically generated the test inputs. But in order

to test Chrome and Safari with these tests, we need an oracle that defines

the correct rendered output for any given test input. Since no such oracle

was available6, we use differential testing [70], where the outputs of two im-

6In some domains, it is possible to exploit domain knowledge to define specific purpose
oracles, as we did in a previous work to test Android apps [108].

121

plementations are checked against each other. Whenever the outputs are not

the same, there likely is a bug in at least one of the implementations. We

wrote a test harness in Java that automatically launches Chrome and Safari

with each test input, and performs a basic image differencing algorithm to

compare screen shots taken from them. All test inputs were checked in less

than 2 hours. Such time-consuming checks are specific to this application.

Furthermore, improving the performance of launching the browsers and image

differencing is possible, yet beyond the scope of this work.

6.3.4.4 Bugs Found

Among the 3081 tests generated, 818 tests were rendered differently by

Chrome and Safari. We semi-automatically investigated these tests. Out of

these 818 failures, 148 cases were false positive due to the inaccuracy of our

image differencing algorithm. We manually classified the rest of the failing

tests (670 tests) based on the CSS properties used, and found at least three

distinct bugs in the production code, stable release of Chrome. The actual

number of faults in the code, which produce these failures, in fact, may be

greater. However, localizing the faults was beyond the scope of this work.

We found three bugs in Chrome. One of these bugs was regarding

the hidden backface-visibility of an element. Listings 6.7 and 6.5 reveal this

bug. Figure 6.13 shows the faulty output of Chrome (left) versus the expected

output of Safari (right). The second line should be hidden because it is showing

its back-face (it is inside ClassName4) and has its backface-visibility set to

122

Figure 6.13: A back-face visibility bug found in Chrome (left). Safari (right)
shows the expected output.

hidden (it is inside ClassName12). This bug in Chrome was already reported

and confirmed (issue 76947 in the Chromium project) and is fixed in the next

Canary release.

Another bug involved the webkit-perspective property. We reported

this bug (issue 93682 in the Chromium project). This bug is now confirmed

and fixed. Listing 6.8 shows a manually simplified version of this bug as a

single HTML file. Figure 6.14 shows the outputs.

The last bug was due to a rotation direction inconsistency with the

W3C editor’s draft (21 March 2011) [3] as the standardization in progress

of CSS 3D transforms. As Listing 6.9 simplifies, the red box has a positive

rotation around the Y axis (whose positive direction is down). According to the

standardization, such a rotation should be performed clockwise. Figure 6.15

shows snapshots of this bug. This bug was fixed independently.

Consider Listings 6.7 and 6.5. To reveal this bug, we need two nested

classes where the outer one has a 180 degree rotation and the inner one has

123

1 <head>
2 <style media=” sc r een ”>
3 . red {
4 −webkit−pe r sp e c t i v e : 800 ;
5 }
6 . box{
7 background−c o l o r : red ;
8 −webkit−trans form : rotateY (45deg) ;
9 }

10 </ style>
11 </head>
12 <body>
13 <div class=”red”>
14 <div class=”box”>
15 This box should be rotated , but i t ’ s not ! Only the text l ook s kind o f

weird .
16 </div>
17 </div>
18 </body>

Listing 6.8: Simplified HTML/CSS test input that reveals the webkit-
perspective bug in Chrome.

Figure 6.14: A webkit-perspective bug found in Chrome (up). Safari (down)
shows the expected output.

124

1 <head>
2 <style media=” sc r een ”>
3

4 . c on ta ine r {
5 width : 200px ;
6 he ight : 200px ;
7 border : 1px s o l i d #CCC;
8 margin : 0 auto 40px ;
9 }

10

11 . box {
12 width : 100%;
13 he ight : 100%;
14 }
15

16 #red . box {
17 background−c o l o r : red ;
18 −webkit−trans form : p e r sp e c t i v e (600) rotateY (45deg) ;
19 }
20

21 </ style>
22 </head>
23 <body>
24 <s e c t i o n id=”red” class=” conta ine r ”>
25 <div class=”box”>t e s t</div>
26 </ s e c t i o n>
27 </body>

Listing 6.9: Simplified HTML/CSS test input that reveals the rotation
direction bug in Chrome.

125

Figure 6.15: A rotation direction bug found in Chrome (left). Safari (right)
shows the expected output.

a hidden visibility as well as the webkit-perspective property. Invoking the

hidden visibility by itself or in any other setting is not enough to show the

problem.

6.3.4.5 Applying Symbolic Execution and Korat

We strove to use symbolic execution on the source code available from

Chrome. The corresponding code, however, includes 74 .cc/.h files (11 KLOC

of code) that collectively render a CSS 3D effect. We were unable to apply

white box symbolic execution due to the code size and complexity. Symbolic

execution is not feasible for testing closed source systems (Safari). Korat

can, in principle, find the bugs if given enough time. Yet, as we showed, our

technique outperforms Korat in all the cases of exhaustive test generation.

126

6.3.5 Threats to Validity

Internal validity. (1) To implement our algorithms for test generation using

dynamic programming, we strictly followed the original algorithms, used well-

known libraries, and validated the number of inputs generated to match the

numbers generated by other independently developed tools, namely Korat and

Pex. (2) To compare with Korat, we used its open-source implementation

that has been in the public domain for over five years, and used the repOK’s

that are distributed with it. (3) To compare with Pex, we used its public

distribution (version 0.94.51006.1) while setting the search depth bound to

the smallest number required to complete the generation of all inputs within

the chosen size in order to minimize the exploration time for Pex. We carefully

performed a faithful translation of Java repOK’s used for Korat into C# to

run Pex. We used our own in-house constraint solver developed in Java for

symbolic execution with dynamic programming, which might give different

performance results compared to Z3 [28] used by Pex. It is unlikely that our

solver in Java is faster than the state-of-the-art Z3.

External validity. The main threat here involves using only two industrial

programs (Chrome and Safari). To address this threat, we experimented with

microbenchmarks that have previously been used by a number of other au-

thors [85, 78, 89, 81, 15, 37, 67].

Construct validity. We used metrics commonly used in software testing

research to compare test generation tools, and automated our entire test gen-

eration and execution process. Furthermore, we manually investigated the

127

failures reported for the browser testing.

6.4 Applicability

Our work directly enables systematic (i.e., bounded exhaustive) test-

ing to scale better for certain applications, e.g., refactoring engines, compilers,

model checkers, and browsers, which clearly must be tested against larger

inputs. The inputs to these applications are programs themselves, which

can be modeled and generated at the Abstract Syntax Tree level—an acyclic

structure—using structural constraints. E.g., Alloy programs were modeled

and generated to find bugs in Alloy-alpha [67]; more recently, systematic test-

ing found bugs in Eclipse, NetBeans, Sun javac, and JPF [37, 27].

More generally, our work can help systematic grammar-based testing

techniques [68, 61]. Such techniques enumerate all strings, up to a given

bound, that belong to a context-free grammar. Context-free grammars can

describe various input types, such as XML schemas and programs. To il-

lustrate, consider the work of Khalek et al. [54], which uses constraint-based

testing to reveal bugs in Oracle 11g. It enumerates solutions for a subset of

SQL grammar and a schema to provide queries and populate the database.

Our technique has a direct application in generating strings that belong to the

SQL grammar, and can also improve the generation of tabular test data.

Our use of dynamic programming is not limited to bounded exhaustive

generation, rather our technique also facilitates random test generation, which

complements systematic testing and has also been used successfully to find

128

bugs [36, 23, 78, 40]. Most recently, Yang et al. used random test generation

to find numerous bugs in mainstream C compilers [101]. As our work shows,

dynamic programming can be used in synergy with random test generation.

While we describe algorithms for generating recursive structures with-

out cycles, our approach can be used to generate cyclic structures as a part

of a multi-step generation technique. For example, we can generate an acyclic

backbone in the first step using dynamic programming and populate the re-

maining fields using constraint-based data structure repair [35] in the second

step.

6.5 Ideas on Leveraging Dynamic Programming for Re-
pair

Another research thrust is based on our insight into the similarities in

the problem solving structures of constraint-based test generation and contract-

driven repair. Test generation frameworks have already been used as special

solvers for data structure repair [32, 33]. We generalize these specific usages

and observe that both constraint-based test generation and contract-driven

data structure repair find data structures that satisfy given specifications (con-

straints or contracts). The former provides those data structures as test inputs

while the latter uses them as repair candidates. By identifying this similarity,

we discuss future ideas for the unification of these two problems.

Our idea combines recursive and memoized checks of specifications [86]

with the dynamic programming scheme. By utilizing the recursive nature of

129

common data structures, (1) we recursively apply the contracts (including

repOK methods and post-conditions) to locate the fault in the state, and (2)

we use a set of small pre-generated substructures built using our structure

generation technique as patches to repair the corrupted section of the state.

6.5.1 Localizing Errors with Recursive Contracts

To localize the error in the data structure, we build on the technique

presented in Ditto [86] and improve it with the support for (1) cycles and (2)

pre- and post-conditions. Ditto is a framework that incrementally checks data

structure invariants (i.e., only repOK) in recursive data structures. Assuming

a recursive repOK, Ditto memoizes the result of previous checks and re-checks

the invariants only on the parts that have been modified since the last check.

Ditto uses write barriers to identify those modified parts for checking (similarly

to what we did in Chapter 4 for repair). To illustrate, consider the result of the

faulty remove(7) with bug cycle shown in Figure 6.16. Ditto assumes that

the recursive repOK has already been executed on the input and the results

are memoized (Figure 6.16 (a)). After running remove(7), Ditto monitors the

write barrier log (dotted lines) to identify the parts of the data structure that

have changed, and checks repOK anew only on those parts. For example, in

Figure 6.16 (b), repOK is not called on [1] and [5] again, because the write

barrier log indicates that the implicit and explicit inputs to [1].repOK() and

[5].repOK() have not changed.

Furthermore, Ditto optimistically assumes that the result of checking

130

(a) input for remove(7)

root // 2
btSize = 5

yy %%

repOK(): true
ks

repOK(): true
+3 1

�� ��

7

�� ��

repOK(): true
ks

null null 6

�� ��

null

5

�� ��

null repOK(): true

fn

null null repOK(): true

hp

(b) faulty output of remove(7)

root // 2
btSize = 4

{{ ""

repOK(): false,
postCondition(): false

ks

repOK(): true,
postCondition(): true

+3 1

�� ��

7

�� ��

repOK(): false,
postCondition(): false

ks

null null 6

��

TT

null

5

�� ��

repOK(): false,
postCondition(): false

fn

null null repOK(): true,
postCondition(): true

go

(c) patches generated with SymboLazyDP (d) repair result of remove(7)

x
#1

}} !!
null null

x
#5, x < y < z

�� ��
null y

�� ��
null z

�� ��
null null

x
#3, x < y

�� ��
null y

}} !!
null null

x
#6, x < z < y

�� ��
null y

�� ��
z

}} !!

null

null null

root // 2
btSize = 4

xx $$
1

�� ��

6

�� ��
null null 5

�� ��

null

null null

Figure 6.16: Patching structures to repair the faulty output of bug cycle.

131

the invariant on substructures remains the same as before, unless proved oth-

erwise. In case the optimistic assumption turns out wrong, Ditto has to prop-

agate the result upward and re-calculate repOK. For example, when calling

repOK on [6] in Figure 6.16 (b), Ditto optimistically assumes that repOK

still holds on [5]. Had there been any changes logged by write barriers in

[5].right or [5].left, the optimistic assumption of Ditto would still hold

as long as the result of repOK on [5] remained true. The optimistic assump-

tion, however, might turn out wrong, and hence Ditto might have to re-check

repOK for all the places that incorrectly assumed a return result for a repOK.

6.5.1.1 Detecting Cycles

Ditto, as it currently is, does not support data structures with cycles.

The reason is that optimistic assumption does not necessarily work with cy-

cles. Consider the execution of [6].repOK(), which checks acyclicity, in Fig-

ure 6.16 (b). Ditto optimistically assumes that both [5] and [2] still return

true for the repOK method. However, [2] makes the same assumption about

[7] and [7] in turn makes the same assumption about [6]. The optimistic

assumption of Ditto makes the cycle go undetected and a repOK that checks

it returns true.

Our structure generation technique assumes acyclicity too. Our repair

technique, however, should be able to detect cycles introduced as errors and

repair them. Therefore, we improve Ditto to detect erroneous cyclic states.

Utilizing the domain knowledge that any cycle in our recursive data structures

132

is the result of an error, we return false as soon as we detect a cycle by

requiring the template shown in the repOK method of Listing 6.1 which first

checks for cycles.

6.5.1.2 Supporting Post-Conditions

We further improve Ditto to check recursive post-conditions. Such post-

conditions cannot be memoized, as they check properties that relate pre- and

post-states and so Ditto’s caching and optimistic assumption do not make

sense for checking post-conditions. We record the pre-state and check the

post-condition recursively on substructures. For example, in Figure 6.16 (b),

the post-condition which checks that the element 7 is removed is calculated

recursively. Despite checking repOK, recursively checking post-conditions is

a heuristic, and does not work for all types of post-conditions, e.g., an add

method.

6.5.2 Repairing Data Structures with Pre-Generated Patches

The previous step heuristically determined the location of error in the

data structure as [2], [7], and [6]. To repair the error in the data structure,

we use small structures pre-generated by dynamic programming with symbolic

execution (Figure 6.5) as patches to replace the location of error. In this case,

we need a patch whose root has a null left child in order to connect to [1].

Therefore, trees #0, #2, #4, #7, and #8 are inappropriate. Next, we in

turn use each of trees #1, #3, #5, and #6 (Figure 6.16 (c)) as candidate

133

patches. We solve for the symbolic values saved on the candidate patch using

the values form the location of error, replace the location of error with the

candidate patch, and finally check the repOK and post-condition, until they

both return true for a patch. Tree #3 with x = 2 and y = 6 returns true for

both repOK() and postCondition() and repairs the data structure.

6.6 Summary

In this chapter, we presented a novel technique for exhaustive and ran-

dom generation of test inputs for programs that operate on structurally com-

plex tests, e.g., recursive data structures. Our key insight is to leverage the

recursive structure of desired inputs and partition the problem of generating

an input into several sub-problems of generating smaller inputs that exhibit

the same structure, and to use dynamic programming to combine them. We

used a lazy initialization strategy as well as symbolic execution to optimize

the technique. We formally proved the correctness of our algorithm. Exper-

imental results show that our technique provides more efficient and scalable

generation of structurally complex tests for a variety of subject programs, com-

pared to state-of-the-art test generation tools Pex and Korat. Furthermore,

our technique found real bugs in a well-tested commercial application, Google

Chrome.

While in this work we focused on the generation of recursive data struc-

tures for testing, our work paves the way for the development of novel tech-

niques for data structure repair. Given the increasing use of constraint solving

134

technology in software verification, we believe the time is ripe for dynamic

programming to make a significant impact on our ability to find more bugs

faster and to deploy more reliable software.

135

Chapter 7

Conclusions

We presented contract-driven data structure repair, a novel approach

for error recovery, which uses rich behavioral contracts to repair erroneous

executions on-the-fly. We addressed challenges that arise in transmuting high

level and inherently non-deterministic contracts to efficient and scalable im-

plementations that repair errors. Our three fold insight seeks to improve the

efficiency, scalability, effectiveness, and usability of repair.

Firstly, we take advantage of the history of program execution and

current repair in history-aware data structure repair. We obtain program

execution history through write and read barriers, which log writes and reads

the program performs to its data structures. Moreover, we access the history of

current repair attempts through unsatisfiable cores provided by SAT solvers we

use. Experiments using our prototype implementation, Cobbler, demonstrate

the potential of history-aware data structure repair in correcting the effect of

errors efficiently without unnecessarily perturbing data structures. Cobbler

found and fixed a previously undetected error in an open source software,

ANTLR.

Secondly, we applied the idea of abstracting and reusing repair actions

136

in the context of repair with SAT solvers. Our prototype tool, DREAM,

piggybacks on other repair frameworks to record, abstract, and reuse repair

actions they take in the event of future errors. We further implemented a

prototype tool named Arreh which translates contracts to Java checks and

checks them through the Java Virtual Machine to avoid repetitive calls to the

SAT solver for checking. Experimental evaluation of DREAM, in accordance

with Cobbler as the underlying repair framework and Arreh as the checking

tool show that repair abstractions offer significant performance improvement.

Thirdly, we observed the similarities between contract-driven data struc-

ture repair and another important problem in software engineering, namely

constraint-based structure generation for testing. We presented a new tech-

nique for exhaustive and random generation of test inputs for programs that

operate on complex data structures. By exploiting the recursive nature of

common data structures through dynamic programming, as well as using lazy

initialization and symbolic execution, we outperformed state-of-the-art test

generation tools Pex and Korat. We tested two commercial web browsers,

Google Chrome and Apple Safari, and found tow known and one new bug

in the production version of Chrome. Finally, we discussed future ideas on

the unification of contract-driven data structure repair and constraint-based

structure generation.

137

7.1 Final Thoughts

Using our repair techniques, a program can be enhanced with the abil-

ity to recover from bugs quickly and with minimum amount of perturbation.

This ability can act as a quick workaround bug fix, which potentially provides

useful insights that could be utilized by the user to perform localization and

correction of the fault in code later on. Data structure repair, in turn, can

help automated debugging.

While repair has various applications, it does not suit all types of soft-

ware systems. For systems that cannot tolerate even slight divergences in the

state of the program from the original behavior (e.g, financial systems), it is

not advisable to use automatic repair routines unless complete contracts with

all the required details are available.

Amortizing the cost of writing and maintaining contracts between test-

ing and repair seems a promising avenue to make repair useful in real world

settings. Another idea along the same lines is amortizing the cost of repair

between multiple errors. Moreover, sometimes the cost of writing contracts

can even be amortized over different programs. Our recent work [108] exploits

this possibility in the context of testing mobile apps where there is a common

expectation of how an app would behave when subjected to a specific event,

such as device rotation, for automated test oracles.

The use of dynamic programming, a classic optimization algorithm, in

our test generation technique showed how fundamental text book methods

138

can solve software engineering problems. We think that similar theoretically

well-founded algorithms can address arising challenges in software engineering.

Finally, we believe contract-driven data structure repair holds much

promise in improving our ability to correct errors in deployed software. When

unified with solutions to the widespread problem of testing, repair becomes an

even more appealing idea to make software systems more reliable.

139

Bibliography

[1] ANTLR parser generator home page. http://www.antlr.org.

[2] Binary search tree remove implementation. http://www.algolist.net/

Data_structures/Binary_search_tree/Removal.

[3] CSS 3D transforms, editor’s draft 21 March 2011. http://dev.w3.org/

csswg/css3-3d-transforms.

[4] Ext2 fsck manual page. http://e2fsprogs.sourceforge.net.

[5] Google Chrome. http://www.google.com/googlebooks/chrome.

[6] Microsoft chkdsk manual page. http://support.microsoft.com/kb/

315265.

[7] Statcounter. http://statcounter.com.

[8] Bassel Y. Al-Naffouri. MintEra: A testing environment for Java pro-

grams. Master’s thesis, Massachusetts Institute of Technology, 2004.

[9] Andrew W. Appel. Simple generational garbage collection and fast allo-

cation. Software: Practice and Experience, 19(2):171–183, 1988.

[10] Shay Artzi, Julian Dolby, Frank Tip, and Marco Pistoia. Directed test

generation for effective fault localization. In Proceedings of 19th In-

140

http://www.antlr.org
http://www.algolist.net/Data_structures/Binary_search_tree/Removal
http://www.algolist.net/Data_structures/Binary_search_tree/Removal
http://dev.w3.org/csswg/css3-3d-transforms
http://dev.w3.org/csswg/css3-3d-transforms
http://e2fsprogs.sourceforge.net
http://www.google.com/googlebooks/chrome
http://support.microsoft.com/kb/315265
http://support.microsoft.com/kb/315265
http://statcounter.com

ternational Symposium on Software Testing and Analysis, pages 49–60,

Trento, Italy, 2010.

[11] Clark Barrett and Sergey Berezin. CVC Lite: A new implementation

of the cooperating validity checker. In Proceedings of the 16th Inter-

national Conference on Computer Aided Verification, pages 515–518,

Boston, MA, July 2004.

[12] Stephen M Blackburn, Robin Garner, Chris Hoffmann, Asjad M Khan,

Kathryn S McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg,

Daniel Frampton, Samuel Z Guyer, Martin Hirzel, Antony Hosking,

Maria Jump, Han Lee, J Eliot B Moss, Aashish Phansalkar, Darko

Stefanovic, Thomas VanDrunen, Daniel von Dincklage, and Ben Wie-

dermann. The DaCapo Benchmarks: Java Benchmarking Development

and Analysis. In Proceedings of Conference on Object-Oriented Program-

ming, Systems, Languages, and Applications (OOPSLA), pages 190–211,

Portland, Oregon, 2006.

[13] Stephen M. Blackburn and Antony L. Hosking. Barriers: friend or foe?

In Proceedings of the 4th International Symposium on Memory Manage-

ment, pages 143–151, New York , NY, 2004.

[14] Stephen M Blackburn and Kathryn S McKinley. In or out? putting write

barriers in their place. In Proceedings of 3rd International Symposium

on Memory Management, pages 175–184, Berlin, Germany, 2002.

141

[15] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Korat:

Automated testing based on Java predicates. In Proceedings of Inter-

national Symposium on Software Testing and Analysis (ISSTA), pages

123–133, Rome, Italy, July 2002.

[16] William R. Bush, Jonathan D. Pincus, and David J. Sielaff. A static

analyzer for finding dynamic programming errors. Software—Practice

and Experience, 30(7), 2000.

[17] Cristian Cadar, Daniel Dunbar, and Dawson R Engler. Klee: Unassisted

and automatic generation of high-coverage tests for complex systems

programs. In USENIX Symposium on Operating Systems Design and

Implementation, pages 209–224, San Diego, CA, 2008.

[18] Cristian Cadar and Dawson Engler. Execution generated test cases:

How to make systems code crash itself. In Proceedings of 12th SPIN

Workshop on Software Model Checking, pages 2–23, San Francisco, CA,

2005.

[19] Antonio Carzaniga, Alessandra Gorla, Andrea Mattavelli, Nicolo Perino,

and Mauro Pezze. Automatic recovery from runtime failures. In Pro-

ceedings of the 2013 International Conference on Software Engineering,

pages 782–791, San Francisco, CA, 2013.

[20] Antonio Carzaniga, Alessandra Gorla, Nicolò Perino, and Mauro Pezzè.

Automatic workarounds for web applications. In Proceedings of the 8th

142

ACM SIGSOFT International Symposium on Foundations of Software

Engineering, pages 237–246, Santa Fe, New Mexico, 2010.

[21] Patrick J. Caudill and Allen Wirfs-Brock. A third generation Smalltalk-

80 implementation. In Proceedings of Conference on Object-Oriented

Programming, Systems, Languages, and Applications (OOPSLA), pages

119–130, Portland, Oregon, 1986.

[22] Satish Chandra, Emina Torlak, Shaon Barman, and Rastislav Bodik.

Angelic debugging. In 33rd International Conference on Software Engi-

neering (ICSE), pages 121–130, Waikiki, Honolulu, Hawaii, May 2011.

[23] Koen Claessen and John Hughes. QuickCheck: A lightweight tool for

random testing of Haskell programs. In Proceedings of Fifth ACM SIG-

PLAN International Conference on Functional Programming, pages 268–

279, Montreal, Canada, 2000.

[24] Lori A. Clarke. A system to generate test data and symbolically execute

programs. IEEE Transactions on Software Engineering, pages 215–222,

September 1976.

[25] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Intro-

duction to Algorithms. The MIT Press, 1990.

[26] Christoph Csallner, Yannis Smaragdakis, and Tao Xie. DSD-Crasher:

A hybrid analysis tool for bug finding. ACM Transactions on Software

Engineering and Methodology (TOSEM), 17(2):8, 2008.

143

[27] Brett Daniel, Danny Dig, Kely Garcia, and Darko Marinov. Automated

testing of refactoring engines. In Proceedings of the 6th joint meeting of

the European Software Engineering Conference and the ACM SIGSOFT

symposium on the Foundations of Software Engineering, pages 185–194,

Dubrovnik, Croatia, 2007.

[28] Leonardo de Moura and Nikolaj Bjorner. Z3: An efficient SMT solver. In

Proceedings of Conference on Tools and Algorithms for the Construction

and Analysis of Systems (TACAS), pages 337–340, Budapest, Hungary,

2008.

[29] Brian Demsky. Data Structure Repair Using Goal-Directed Reasoning.

PhD thesis, Massachusetts Institute of Technology, January 2006.

[30] Brian Demsky and Martin Rinard. Automatic detection and repair of er-

rors in data structures. In Proceedings of Conference on Object-Oriented

Programming, Systems, Languages, and Applications (OOPSLA), pages

78–95, Anaheim, California, 2003.

[31] Bassem Elkarablieh. Assertion-based Repair of Complex Data Structures.

PhD thesis, University of Texas at Austin, 2009.

[32] Bassem Elkarablieh, Ivan Garcia, Yuk Lai Suen, and Sarfraz Khurshid.

Assertion-based repair of complex data structures. In 22nd IEEE/ACM

International Conference on Automated Software Engineering (ASE),

pages 64–73, Atlanta, GA, 2007.

144

[33] Bassem Elkarablieh and Sarfraz Khurshid. Juzi: A tool for repairing

complex data structures. In Proceedings of 30th International Conference

on Software Engineering (ICSE), pages 855–858, Leipzig , Germany, May

2008. Research Demo Paper.

[34] Bassem Elkarablieh, Sarfraz Khurshid, Duy Vu, and Kathryn S. McKin-

ley. STARC: Static analysis for efficient repair of complex data. In

Proceedings of Conference on Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA), pages 387 – 404, Montreal,

Quebec, Canada, October 2007.

[35] Bassem Elkarablieh, Yehia Zayour, and Sarfraz Khurshid. Efficiently

generating structurally complex inputs with thousands of objects. In

Proceedings of 21st European Conference on Object-Oriented Program-

ming (ECOOP), pages 248–272, August 2007.

[36] Justin E Forrester and Barton P Miller. An empirical study of the

robustness of Windows NT applications using random testing. In Pro-

ceedings of the 4th USENIX Windows System Symposium, pages 59–68,

San Diego, CA, 2000.

[37] Milos Gligoric, Tihomir Gvero, Vilas Jagannath, Sarfraz Khurshid, Vik-

tor Kuncak, and Darko Marinov. Test generation through programming

in UDITA. In Proceedings of the 32nd ACM/IEEE International Con-

ference on Software Engineering-Volume 1, pages 225–234, Cape Town,

South Africa, 2010.

145

[38] Milos Gligoric, Tihomir Gvero, Steven Lauterburg, Darko Marinov,

and Sarfraz Khurshid. Optimizing generation of object graphs in Java

PathFinder. In International Conference on Software Testing Verifica-

tion and Validation (ICST), pages 51–60, Denver, Colorado, 2009.

[39] Patrice Godefroid. Compositional dynamic test generation. In Proceed-

ings of 34th annual ACM SIGPLAN-SIGACT symposium on Principles

of Programming Languages, pages 47–54, Nice, France, 2007.

[40] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed

automated random testing. In Programming Language Design and Im-

plementation (PLDI), pages 213–223, Chicago, Illinois, 2005.

[41] Patrice Godefroid, Michael Y Levin, and David A Molnar. Automated

whitebox fuzz testing. In Proceedings of Network and Distributed Sys-

tems Security, pages 151–166, San Diego, CA, 2008.

[42] John B. Goodenough and Susan L. Gerhart. Toward a theory of test data

selection. IEEE Transactions on Software Engineering, SE-1(2):156–173,

1975.

[43] Divya Gopinath, Razieh Nokhbeh Zaeem, and Sarfraz Khurshid. Improv-

ing the effectiveness of spectra-based fault localization using specifica-

tions. In Proceedings of the 27th International Conference on Automated

Software Engineering, pages 40–49, Essen, Germany, 2012.

146

[44] Arnaud Gotlieb, Bernard Botella, and Michel Rueher. Automatic test

data generation using constraint solving techniques. In Proceedings of

International Symposium on Software Testing and Analysis (ISSTA),

pages 53–62, Clearwater Beach, FL, 1998.

[45] G Haugk, FM Lax, RD Royer, and JR Williams. The 5ESS(TM) switch-

ing system: Maintenance capabilities. AT&T Technical Journal, 64(6

part 2):1385–1416, 1985.

[46] Klaus Havelund and Grigore Roşu. Monitoring java programs with

java pathexplorer. Electronic Notes in Theoretical Computer Science,

55(2):200–217, 2001.

[47] Klaus Havelund and Grigore Roşu. Synthesizing monitors for safety

properties. In Tools and Algorithms for the Construction and Analysis

of Systems (TACAS), pages 257–268, Grenoble, France, 2002.

[48] Hans-Martin Horcher. Improving software tests using Z specifications.

In Proceedings of 9th International Conference of Z Users, The Z Formal

Specification Notation, pages 152–166, 1995.

[49] J. C. Huang. An approach to program testing. ACM Computing Surveys,

7(3):113–128, 1975.

[50] Ishtiaque Hussain and Christoph Csallner. Dynamic symbolic data struc-

ture repair. In Proceedings of 32th International Conference on Software

Engineering (ICSE), pages 215–218, Cape Town, South Africa, 2010.

147

[51] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis.

The MIT Press, 2006.

[52] Daniel Jackson, Ian Schechter, and Ilya Shlyakhter. ALCOA: The Alloy

constraint analyzer. In Proceedings of 22nd International Conference on

Software Engineering (ICSE), pages 730–733, Limerick, Ireland, June

2000.

[53] Dennis Jeffrey, Min Feng, Neelam Gupta, and Rajiv Gupta. BugFix: a

learning-based tool to assist developers in fixing bugs. In Proceedings of

17th International Conference on Program Comprehension, pages 70–79,

Vancouver, BC, Canada, 2009.

[54] Shadi Abdul Khalek and Sarfraz Khurshid. Systematic testing of

database engines using a relational constraint solver. In 4th International

Conference on Software Testing, Verification and Validation (ICST),

pages 50–59, Berlin, Germany, 2011.

[55] Sarfraz Khurshid, Iván Garćıa, and Yuk Lai Suen. Repairing structurally

complex data. In 12th SPIN Workshop on Model Checking of Software,

pages 123–138, San Francisco, CA, August 2005.

[56] Sarfraz Khurshid, Corina Pasareanu, and Willem Visser. Generalized

symbolic execution for model checking and testing. In Proceedings of

9th Conference on Tools and Algorithms for Construction and Analysis

of Systems (TACAS), pages 553–568, Warsaw, Poland, April 2003.

148

[57] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. Au-

tomatic patch generation learned from human-written patches. In Pro-

ceedings of the 2013 International Conference on Software Engineering,

pages 802–811, San Francisco, CA, 2013.

[58] James C. King. Symbolic execution and program testing. Communica-

tions of the ACM, 19(7):385–394, 1976.

[59] Pieter Koopman, Artem Alimarine, Jan Tretmans, and Rinus Plasmei-

jer. Gast: Generic automated software testing. Implementation of Func-

tional Languages, pages 991–991, 2003.

[60] Bogdan Korel. Automated test data generation for programs with pro-

cedures. In Proceedings of International Symposium on Software Testing

and Analysis (ISSTA), pages 209–215, San Diego, CA, 1996.

[61] Ralf Lämmel and Wolfram Schulte. Controllable combinatorial coverage

in grammar-based testing. In Testing of Communicating Systems, pages

19–38, New York, NY, 2006.

[62] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley

Weimer. Genprog: A generic method for automatic software repair.

IEEE Transactions on Software Engineering, 38(1):54–72, 2012.

[63] Henry Lieberman and Carl Hewitt. A real-time garbage collector based

on the lifetimes of objects. Communications of the ACM, 26(6):419–429,

1983.

149

[64] Barbara Liskov and John Guttag. Program Development in Java: Ab-

straction, Specification, and Object-Oriented Design. Addison-Wesley,

2000.

[65] Muhammad Zubair Malik. Combining data structure repair and program

repair. PhD Thesis Proposal, University of Texas at Austin, Austin, TX,

2013.

[66] Muhammad Zubair Malik, Khalid Ghori, Bassem Elkarablieh, and Sar-

fraz Khurshid. A case for automated debugging using data structure

repair. In Proceedings of 24th Conference on Automated Software Engi-

neering (ASE), pages 620–624, Auckland, New Zealand, 2009.

[67] Darko Marinov and Sarfraz Khurshid. TestEra: A novel framework for

automated testing of Java programs. In Proceedings of 16th Conference

on Automated Software Engineering (ASE), pages 22–31, San Diego, CA,

November 2001.

[68] Peter M. Maurer. Generating test data with enhanced context-free gram-

mars. IEEE Software, 7(4):50–55, 1990.

[69] Wolfgang Mayer and Marcus Stumptner. Evaluating models for Model-

Based debugging. In Proceedings of 23th Conference on Automated Soft-

ware Engineering (ASE), pages 128–137, L’Aquila, Italy, 2008.

[70] William M McKeeman. Differential testing for software. Digital Techni-

cal Journal, 10(1):100–107, 1998.

150

[71] Bertrand Meyer. Applying “design by contract”. IEEE Computer,

25(10):40–51, 1992.

[72] Bertrand Meyer, Ilinca Ciupa, Andreas Leitner, and Lisa Ling Liu. Auto-

matic testing of object-oriented software. In Current Trends in Theory

and Practice of Computer Science (SOFSEM), pages 114–129, Harra-

chov, Czech Republic, 2007.

[73] Bertrand Meyer, Arno Fiva, Ilinca Ciupa, Andreas Leitner, Yi Wei, and

Emmanuel Stapf. Programs that test themselves. Computer, 42(9):46–

55, 2009.

[74] Aleksandar Milicevic, Sasa Misailovic, Darko Marinov, and Sarfraz

Khurshid. Korat: A tool for generating structurally complex test inputs.

In Proceedings of 29th International Conference on Software Engineering

(ICSE), pages 771–774, Minneapolis, MN, May 2007.

[75] Samiha Mourad and Dorothy Andrews. On the reliability of the IBM

MVS/XA operating system. IEEE Transactions on Software Engineer-

ing, 13(10):1135–1139, 1987.

[76] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and

Satish Chandra. Semfix: Program repair via semantic analysis. In Pro-

ceedings of the 2013 International Conference on Software Engineering,

pages 772–781, San Francisco, CA, 2013.

151

[77] Jeff Offutt and Aynur Abdurazik. Generating tests from UML specifica-

tions. In Proceedings of Second International Conference on the Unified

Modeling Language, pages 416–429, Fort Collins, CO, October 1999.

[78] Carlos Pacheco, Shuvendu K Lahiri, Michael D Ernst, and Thomas Ball.

Feedback-directed random test generation. In 29th International Con-

ference on Software Engineering, pages 75–84, Minneapolis, MN, 2007.

[79] Jeff H. Perkins, Sunghun Kim, Sam Larsen, Saman Amarasinghe,

Jonathan Bachrach, Michael Carbin, Carlos Pacheco, Frank Sher-

wood, Stelios Sidiroglou, Greg Sullivan, Weng-Fai Wong, Yoav Zibin,

Michael D. Ernst, and Martin Rinard. Automatically patching errors in

deployed software. In Proceedings of 27th ACM Symposium on Operating

Systems Principles (SOSP), pages 87–102, Big Sky, MT, 2009.

[80] Chittoor V Ramamoorthy, Siu-Bun F Ho, and WT Chen. On the auto-

mated generation of program test data. IEEE Transactions on Software

Engineering, 2(4):293–300, 1976.

[81] Michael Roberson and Chandrasekhar Boyapati. Efficient modular glass

box software model checking. In Proceedings of the 25th Conference

on Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA), pages 4–21, Reno/Tahoe, Nevada, 2010.

[82] Hesam Samimi, Ei Darli Aung, and Todd Millstein. Falling Back on

Executable Specifications. In Proceedings of 24th European Conference

152

on Object-Oriented Programming (ECOOP), pages 552–576, Maribor,

Slovenia, EU, May 2010.

[83] Hesam Samimi, Max Schäfer, Shay Artzi, Todd Millstein, Frank Tip,

and Laurie Hendren. Automated repair of HTML generation errors in

php applications using string constraint solving. In Proceedings of the

34th International Conference on Software Engineering (ICSE), pages

277–287, Zurich, Switzerland, 2012.

[84] Alberto Sanfeliu and King-Sun Fu. Distance measure between attributed

relational graphs for pattern recognition. Systems, Man and Cybernetics,

IEEE Transactions on, 13(3):353–362, 1983.

[85] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: A concolic unit

testing engine for C. In Proceedings of European Software Engineer-

ing Conference and ACM SIGSOFT International Symposium on Foun-

dations of Software Engineering (ESEC/FSE), pages 263–272, Lisbon,

Portugal, 2005.

[86] Ajeet Shankar and Rastislav Bodik. DITTO: automatic incremental-

ization of data structure invariant checks (in Java). In Proceedings of

ACM SIGPLAN’07 Conference on Programming Language Design and

Implementation (PLDI), pages 310–319, San Diego, California, 2007.

[87] Junaid Haroon Siddiqui and Sarfraz Khurshid. An empirical study of

structural constraint solving techniques. In ternational Conference on

153

Formal Engineering Methods (ICFEM), pages 88–106, Rio de Janeiro,

Brazil, 2009.

[88] Emin Gün Sirer and Brian N. Bershad. Using production grammars in

software testing. In Proceedings of 2nd conference on Domain-specific

languages, pages 1–13, 1999.

[89] Matt Staats and Corina Pasareanu. Parallel symbolic execution for struc-

tural test generation. In Proceedings of the 19th International Symposium

on Software Testing and Analysis, pages 183–194, Trento, Italy, 2010.

[90] Stefan Staber, Barbara Jobstmann, and Roderick Bloem. Finding and

fixing faults. In 13th IFIP WG 10.5 Advanced Research Working Con-

ference on Correct Hardware Design and Verification Methods, pages

35–49, Saarbrucken, Germany, 2005.

[91] Yuk Lai Suen. Automatically repairing structurally complex data. Mas-

ter’s thesis, Department of Electrical and Computer Engineering, Uni-

versity of Texas at Austin, May 2005.

[92] Nikolai Tillmann and Jonathan De Halleux. Pex–white box test gener-

ation for .NET. Tests and Proofs, 4966:134–153, 2008.

[93] Emina Torlak and Daniel Jackson. Kodkod: A relational model finder.

In Proceedings of 13th Conference on Tools and Algorithms for Construc-

tion and Analysis of Systems (TACAS), pages 632–647, Braga, Portugal,

March 2007.

154

[94] Martin T Vechev and David F Bacon. Write barrier elision for concurrent

garbage collectors. In In Proceedings of 4th International Symposium

on Memory Management, pages 13—24, Vancouver, British Columbia,

2004.

[95] Willem Visser, Klaus Havelund, Guillaume Brat, SeungJoon Park, and

Flavio Lerda. Model checking programs. In 18th International Confer-

ence on Automated Software Engineering (ASE), pages 203–232, 2003.

[96] Christian Von Essen and Barbara Jobstmann. Program repair without

regret. In 25th International Conference on Computer Aided Verifica-

tion, pages 896–911, Saint Petersburg, Russia, 2013.

[97] Yi Wei, Yu Pei, Carlo A. Furia, Lucas S. Silva, Stefan Buchholz,

Bertrand Meyer, and Andreas Zeller. Automated fixing of programs

with contracts. In Proceedings of International Symposium on Software

Testing and Analysis (ISSTA), pages 61–72, Trento, Italy, 2010.

[98] Westley Weimer. Patches as better bug reports. In Proceedings of 5th

international conference on Generative programming and component en-

gineering, pages 181–190, Portland, Oregon, 2006.

[99] Tao Xie, Darko Marinov, Wolfram Schulte, and David Notkin. Symstra:

A framework for generating object-oriented unit tests using symbolic ex-

ecution. In Proceedings of 11th Conference on Tools and Algorithms for

Construction and Analysis of Systems (TACAS), pages 365–381, Edin-

burgh, UK, April 2005.

155

[100] Guowei Yang, Corina S Păsăreanu, and Sarfraz Khurshid. Memoized

symbolic execution. In Proceedings of the International Symposium on

Software Testing and Analysis, pages 144–154, Minneapolis, MN, 2012.

[101] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and

understanding bugs in C compilers. In 32nd ACM SIGPLAN conference

on Programming Language Design and Implementation (PLDI), pages

283–294, San Jose, California, 2011.

[102] Razieh Nokhbeh Zaeem. Contract-based data structure repair using Al-

loy. Master’s thesis, Department of Electrical and Computer Engineer-

ing, University of Texas at Austin, May 2010.

[103] Razieh Nokhbeh Zaeem, Divya Gopinath, Sarfraz Khurshid, and

Kathryn S McKinley. History-aware data structure repair using SAT.

In Tools and Algorithms for the Construction and Analysis of Systems

(TACAS), pages 2–17, Tallinn, Estonia, March 2012.

[104] Razieh Nokhbeh Zaeem and Sarfraz Khurshid. Contract-Based Data

Structure Repair Using Alloy. In Proceedings of 24th European Confer-

ence on Object-Oriented Programming (ECOOP), pages 577–598, Mari-

bor, Slovenia, EU, May 2010.

[105] Razieh Nokhbeh Zaeem and Sarfraz Khurshid. Introducing Specification-

Based Data Structure Repair Using Alloy. In Proceedings of Interna-

tional Conference on ASM Alloy B and Z, pages 398–399, Orford, Que-

bec, Canada, February 2010.

156

[106] Razieh Nokhbeh Zaeem and Sarfraz Khurshid. Test input generation

using dynamic programming. In Proceedings of the ACM SIGSOFT 20th

International Symposium on the Foundations of Software Engineering,

number 34, Cary, North Carolina, 2012. 11 pages.

[107] Razieh Nokhbeh Zaeem, Muhammad Zubair Malik, and Sarfraz Khur-

shid. Repair abstractions for more efficient data structure repair. In

Fourth International Conference on Runtime Verification, pages 235–

250, INRIA Rennes, France, 2013.

[108] Razieh Nokhbeh Zaeem, Mukul R. Prasad, and Sarfraz Khurshid. Auto-

mated generation of oracles for testing user-interaction features of mobile

apps. In 7th International Conference on Software Testing, Verification

and Validation, pages 183–192, Cleveland, OH, 2014.

157

Vita

Razieh Nokhbeh Zaeem received the Bachelor of Science degree in

Computer Engineering from Sharif University of Technology, Tehran, Iran in

September 2006. In May 2010, she received the Master of Science and Engi-

neering degree in Electrical and Computer Engineering from the University of

Texas at Austin and was honored as a 2010 Google Anita Borg Scholarship

Finalist. She interned at Rockwell Automation Inc. in Austin, TX in Summer

2010, and at Fujitsu Laboratories of America in Sunnyvale, CA in Summer

and Fall 2012. She received her PhD in Electrical and Computer Engineering

from the University of Texas at Austin in May 2014.

Permanent address: nokhbeh@gmail.com

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

158

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	List of Listings
	Chapter 1. Introduction
	Contract-Driven Data Structure Repair
	Background: Basic Idea of Contract-Based Data Structure Repair Using Alloy
	Optimizations for Contract-Driven Data Structure Repair
	Program Execution History through Write and Read Barriers for Data Structure Repair
	Repair History through Unsatisfiable Cores for Data Structure Repair
	Abstract Repair History

	Structure Generation Problem in Testing and Repair
	Test Input Generation Using Dynamic Programming
	Ideas for Repair Using Dynamic Programming

	Usability
	Contributions

	Chapter 2. Related Work
	Data Structure Repair
	Test Input Generation

	Chapter 3. Background: Contract-Based Data Structure Repair Using Alloy
	Example
	Background on Alloy
	Our Previous Work: Contract-Based Data Structure Repair Using Alloy

	Chapter 4. History-Aware Data Structure Repair Using SAT
	Using Barriers for Data Structure Repair
	Using UNSAT Cores for Data Structure Repair
	Illustration of History-Aware Data Structure Repair
	Cobbler: Implementation of History-Aware Repair
	Cobbler Evaluation
	Evaluation Metrics
	Subject Programs
	Errors
	Subject Tools
	Results
	ANTLR BaseTree addChild

	Summary

	Chapter 5. Repair Abstractions
	Repair Abstractions with Alloy Back-End
	DREAM Framework
	Abstraction and Concretization

	DREAM with Alloy Back-End
	Arreh

	Evaluation of DREAM with Alloy Back-End
	Summary

	Chapter 6. Data Structure Generation Using Dynamic Programming
	Example
	Test Input Generation Framework
	Recursive repOK Methods
	Algorithms
	Theorem on Test Generation Algorithm

	Evaluation: Test Input Generation Using Dynamic Programming
	Experimental Settings
	Microbenchmarks
	Random Test Generation
	Google Chrome and Apple Safari
	Threats to Validity

	Applicability
	Ideas on Leveraging Dynamic Programming for Repair
	Localizing Errors with Recursive Contracts
	Repairing Data Structures with Pre-Generated Patches

	Summary

	Chapter 7. Conclusions
	Final Thoughts

	Bibliography
	Vita

