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Abstract
All Pairs Shortest Path (APSP) is a classic problem in graph theory. While for general weighted
graphs there is no algorithm that computes APSP in O(n3−ε) time (ε > 0), by using fast matrix
multiplication algorithms, we can compute APSP in O(nω logn) time (ω < 2.373) for undirected
unweighted graphs, and in O(n2.5302) time for directed unweighted graphs. In the current state
of matters, there is a substantial gap between the upper bounds of the problem for undirected
and directed graphs, and for a long time, it is remained an important open question whether it
is possible to close this gap.

In this paper we introduce a new parameter that measures the symmetry of directed graphs
(i.e. their closeness to undirected graphs), and obtain a new parameterized APSP algorithm for
directed unweighted graphs, that generalizes Seidel’s O(nω logn) time algorithm for undirected
unweighted graphs. Given a directed unweighted graph G, unless it is highly asymmetric, our
algorithms can compute APSP in o(n2.5) time for G, providing for such graphs a faster APSP
algorithm than the state-of-the-art algorithms for the problem.
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1 Introduction

All Pairs Shortest Path (APSP) has a long history, emerging from the 1950’s to our present
days. In APSP our goal is to compute the distances between all pairs of vertices in the graph.
For general directed weighted graphs with n vertices, the algorithm of Floyd-Warshall [6]
computes APSP in O(n3) time. For sparse graphs with m edges, we can obtain an improved
algorithm that runs in O(mn + n2 logn) time, by first finding and eliminating cycles of
negative weight, using Johnson’s algorithm [15], and then executing Dijkstra algorithm [6]
(implemented with Fibonacci heaps [8]) from each vertex in the graph. This classic result
was later improved by Pettie [16] to O(mn+ n2 log logn), and for undirected graphs with
nonnegative edge weights, APSP can be computed in O(mn) time, using Thorup’s algorithm
for single source shortest path [24].

All the algorithms mentioned above have a running time of O(n3) for dense graphs.
Fredman was the first to break the O(n3) (cubic) time barrier, by obtaining an algorithm
with a running time of O(n3/(log logn/ logn)1/3) [7]. Since then, a line of subsequent
improvements to Fredman’s algorithm followed (e.g. [22, 12, 23, 27, 13, 3], etc.), where
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72:2 New Parameterized Algorithms for APSP in Directed Graphs

the current best result for the problem was recently obtained by Chan and Williams [4],
which showed an algorithm that computes APSP in O(n3/2Ω(log n)1/2) time. Nevertheless,
these algorithms only provides a slightly improvement to the classic cubic-time algorithm of
Floyd and Warshall, and it remains an open question whether an O(n3−ε)-time algorithm for
APSP exists. The hardness of APSP and other fundamental graph and matrix problems (e.g.
minimum weight cycle, replacement paths on directed weighted graphs, etc.) that are all
known to have cubic time algorithms but no O(n3−ε)-time algorithms, might be explained by
the result of V. Vassilevska Williams and R. Williams [25], which proved that these problems
are subcubic equivalent, meaning, either all of these problems can be solved in O(n3−ε) time
or none of them can be.

By using Fast Matrix Multiplication (FMM) algorithms, truly subcubic time (i.e. O(n3−ε))
algorithms can be obtained for unweighted graphs and for graphs with small integer edge-
weights. The naïve algorithm for multiplying two n×n matrices runs in O(n3) time, however,
there exist faster algorithms to compute matrix multiplication (e.g. Strassen’s algorithm [6],
Coppersmith-Winograd [5]). Denote ω to be the exponent of square matrix multiplication,
currently ω < 2.373 ([11]) is the smallest known value for ω. Notice, it is straightforward
to reduce Boolean Matrix Multiplication (BMM) to FMM in O(n2) time, hence BMM can
be also computed in O(nω) time. Given this fact, many APSP algorithms use the following
basic property: let G be an unweighted graph with adjacency matrix A and let M = Ak,
it follows M [i, j] = 1 if and only if there is a shortest path in G from i to j of length at
most k. Alon, Galil and Margalit [2] were the first to obtain a truly subcubic algorithm for
APSP. They showed an algorithm that computes APSP in Õ(n(ω+3)/2) = Õ(n2.69) time1 for
directed graphs with edge-weights from {−1, 0, 1}. Zwick in [26] improved Alon, Galil, and
Margalit’s result [2]. He showed that using fast rectangular matrix multiplication algorithms
(current fastest rectangular matrix multiplication algorithm is due to Le Gall [10]), APSP
for directed graphs with edges of weights {−M, . . . ,M} can be computed in O(M0.68n2.53)
time. For undirected graphs with edges of small integers weights {1, . . . ,M}, Galil and
Margalit [9] showed an algorithm with a running time of Õ(M (ω+1)/2nω). This result was
later improved by Shoshan and Zwick [21] to Õ(Mnω). Considering the case of undirected
unweighted graphs, Seidel [20] obtained an algorithm for APSP that runs in Õ(nω) time.
The advantage of Seidel’s Õ(nω) time algorithm is that it is much simpler than that of [9].

Currently, for unweighted graphs, there is a large gap in the upper bounds for directed
and undirected graphs. Many believe that ω = 2+o(1), and if this is indeed the case, then the
Õ(nω) algorithms for undirected (e.g. Seidel’s algorithm) match, up to logarithmic factors,
the natural O(n2)-time lower bound for the problem. On the other hand, considering this
case for directed graphs, both the algorithm of Alon, Galil and Margalit, and the algorithm
of Zwick run in Õ(n2.5) time. Moreover, the improved result of Zwick relies on the fact, that
currently there exist faster algorithms for rectangular matrix multiplication (e.g. [10]) than
square rectangular matrix multiplication. Actually, if only using square matrix multiplication,
the over twenty years old result of Alon, Galil and Margalit is still the best we know so far.
Also, currently, the only known way to achieve Õ(nω)-time APSP algorithm for directed
graphs is to settle with an approximation: Zwick showed in [26] an algorithm that computes
a (1 + ε) approximation to APSP in Õ( 1

εn
ω log 1

ε ) time. This raises an interesting open
question, whether an Ω(n2.5)-time is the lower bound to compute APSP for directed graphs.

So what are the obstacles that prevent us from obtaining an Õ(nω)-time algorithm for
directed unweighted graphs as well? Consider Seidel’s algorithm. The idea of this algorithm

1 The notation Õ-notation suppress polylogarithmic factors from the O-notation.
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is fairly simple: let G = (V,E) be a directed graph with adjacency matrix A, and assume we
have computed recursively the distance matrix for the graph G′ induced by A2. Recall that
in G′, an edge (u, v) exists if and only if there is a path of length at most 2 from u to v. This
implies that either dG(u, v) = 2dG′(u, v), if dG(u, v) is even, or dG(u, v) = 2dG′(u, v) − 1,
otherwise. Since in each recursion the distances in the induced graph is cut by half, the depth
of the recursion is O(logn). The only thing that is left in order to complete the algorithm, is
to determine for every u, v ∈ V , if dG(u, v) is even or odd. Let N(v) be the set of neighbors
of v in G. For every w ∈ N(v), by the triangle inequality for unweighted undirected graphs,

d(u, v)− 1 ≤ d(u,w) ≤ d(u, v) + 1

Using this property, it is not hard to verify that
∑

w∈N(v) dG′(u,w) ≥ |N(v)| · dG′(u, v)
when dG(u, v) is even and

∑
w∈N(v) dG′(u,w) < |N(v)| · dG′(u, v) otherwise. Since the sums∑

w∈N(v) dG′(u,w), for every u, v ∈ V , can be computed at once using a single matrix
multiplication, the total computation time of a recursion stage is O(nω) (for more details, see
[20]). The sole obstacle that prevents us from implementing Seidel’s algorithm for directed
graphs is that the triangle inequality in directed unweighted graphs holds only for one side:
for an incoming edge (w, v), it only holds that d(u, v)−1 ≤ d(w, u) (similarly, for an outgoing
edge (v, w), we have d(u,w) ≤ d(u, v) + 1). For an incoming edge (w, v), we can get two-sides
bounds for d(u,w), if we have a path from v to w. Specifically, if for an incoming edge (w, v),
it holds that d(v, w) ≤ d (for some d), then d(u,w) ≤ d(u, v) + d (similar argument can be
applied for an outgoing edge as well). In other words, for any u, v ∈ V , the more an edge
(w, v) is “symmetric” (i.e. d(v, w) is close to 1), the better bounds we get from the triangle
inequality on d(u,w), using d(u, v). As by definition, undirected graphs are fully-symmetric,
we have that d(v, u) = 1 for every edge (u, v) in an undirected unweighted graph. On the
other hand, in a directed graph, for an edge (w, v), it might be the case that the graph does
not have any path at all from v to w, thus we cannot guarantee a two-sides bound by the
triangle inequality for d(u,w) as in unweighted graphs.

In this paper we introduce a new parameter for directed strongly-connected graphs
that measures the closeness of a directed strongly-connected graph to symmetric graph
(i.e. undirected). The symmetry parameter s(G) of a directed strongly-connected graph
G = (V,E) is defined to be max(u,v)∈E{d(v, u)}. Interestingly, the definition of the symmetry
parameter is very similar to the definitions of the girth and diameter, both natural and
well-studied (e.g. [1, 14, 17, 18, 19]) distance-related graphs parameters: the girth of directed
graphs is min(u,v)∈E{d(v, u)}, and the diameter of the graph is max(u,v)∈V×V {d(u, v)}. As
we shall see later, similarly to the girth and the diameter, we can also compute the symmetry
parameter of the graph in Õ(nω) time.

Our main contribution in this paper is an algorithm (Theorem 8) that provides a non-trivial
generalization of Seidel’s algorithm, and computes APSP for a directed strongly-connected
graph G with symmetry parameter s = s(G) in O(s ·nω logs+1 n) time. The rough idea of the
algorithm is as follows. As discussed above, using the symmetry parameter, we can obtain
generalized triangle inequalities. In our algorithm we use these new inequalities, and adapt
Seidel’s algorithm to find all the pairs (u, v) ∈ V × V , such that d(u, v) ≡ 1 mod (s + 1),
and their distances. However, it is unclear how to deduce the distances for all other pairs
of vertices, i.e., for all (u, v) ∈ V × V , such that d(u, v) 6≡ 1 mod (s+ 1). Our approach to
tackle this obstacle is to find, using one BMM, all the pairs (u, v) ∈ V such that d(u, v) ≡ i
mod (s+ 1), based on that we already know all the pairs (u, v) ∈ V , such that d(u, v) ≡ j
mod (s+1), for all 0 < j < i. Surprisingly, here comes the parameter into action again. Using
a designated matrix multiplication, the parameter allows us to find all the relevant pairs and
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their distances. Continuing this process inductively, we can compute the distances between
all pairs of vertices. Our algorithm can also be applied on general directed unweighted graphs,
by using an Õ(nω)-time reduction from APSP for general directed unweighted graphs to
APSP for directed strongly-connected unweighted graphs.

In the definition of the symmetry parameter, we are taking the maximum over all the
edges, thus, even a single edge in a graph can cause the symmetry parameter of the graph
to be very large. However, this can be relaxed by the concept of violating-edge. Let z < n

be some threshold value. An edge (u, v) is a z-violating edge if d(v, u) > z. By applying
Breadth-First Search (BFS) in and out of the endpoints of all z-violating edges in the graph,
we can remove these edges, and by that, decrease the symmetry parameter of the new graph
to be as small as our threshold value z. Now, the distance from u to v in the original graph
is either their distance in the new graph, or otherwise, equals to d(u, x) + 1 + d(y, v), where
(x, y) is some z-violating edge. Using this idea, for any graph that has at most o(n0.53)
violating edges for a o(n0.157)-threshold, we can compute APSP faster than the state of
the art algorithm for the problem. Notice that a larger threshold is allowed as ω decreases.
For example, if ω = 2 + o(1), then our APSP runs in o(n2.5) time for any graph that has
at most o(n1/2) violating edges for any o(n1/2)-threshold. This may suggest the following
strategy to compute APSP for directed unweighted graphs. First compute in Õ(nω) time
(Lemma 13) the number of violating-edges for any o(n0.157)-threshold. If there are at most
o(n0.53) violating edges, use our algorithm, otherwise use the state of the art algorithm for
the problem.

Another interesting property of our algorithm is that it provides an improvement over
a basic parameterized-APSP algorithm for directed unweighted graphs, that is also used
sometimes as an ingredient in other algorithms for the problem (e.g. in [2]). For a directed
unweighted graph G with adjacency matrix A and diameter D ≤ n, we can easily compute
APSP in O(D · nω) by computing A,A2, A3, . . . , AD. For a large diameter, the running time
of this algorithm can be as high as O(n1+ω) (which is even worse than Floyd-Warshall’s
algorithm), however, it can be turned to be useful for graphs that their diameter is less
than n2.5−ω, in this case, the running time of this algorithm will be o(n2.5). Our algorithms
provide improvements over this basic algorithm in two ways. First they provide a weaker
constraint on the graph, as s(G) = max(u,v)∈E{d(v, u)} ≤ max(u,v)∈V×V {d(u, v)} = D. Also,
using the concept of z-violating edges, we can decrease the value of the symmetry parameter,
while, to our best knowledge, there is no such equivalent method for the parameterized-APSP
algorithm that is based on the diameter.

The paper is organized as follows. In the next section we provide some preliminaries for
our algorithms. Section 3 presents our main algorithm. In Section 4 we show a reduction that
allows us to compute APSP on general directed graphs using our parameterized algorithm.
In Section 5 we give a hybrid algorithm that allows us to reduce the size of the symmetry
parameter of the graph in exchange to additional BFS executions on the graph. We also
show in this section how to compute in Õ(nω) time the symmetry parameter of a graph and
the violating edges in the graph for some specific threshold.

2 Preliminaries

Let G = (V,E) be a directed graph with n vertices and m edges. Let u, v ∈ V and let
dG(u, v) be the length of the shortest path from u to v in G. If there is no path from u to v
in G, then dG(u, v) =∞. We use a simplified notation d(u, v), when the referred graph is
clear from the context. A directed graph is strongly-connected if for all u, v ∈ V , d(u, v) <∞.
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Our goal in this paper is to compute efficiently All Pairs Shortest Path (APSP) for directed
unweighted graphs. The general form of the problem is defined as follows.

I Definition 1 (The APSP Problem). Let G = (V,E). Compute a matrix M of size |V |× |V |,
such that for every u, v ∈ V , M(u, v) = d(u, v).

The diameter of a graph G is D(G) = maxu,v∈V {d(u, v)}. Notice that a directed
graph G is strongly-connected if and only if D(G) < ∞. An extended definition of the
diameter that includes non-necessarily strongly-connected graphs (with non-empty edges set)
is maxu,v∈V {d(u, v) | d(u, v) <∞}. Let v ∈ V , Nin(v) is the set of all vertices that have an
outgoing edge to v, namely, Nin(v) = {u | (u, v) ∈ E}.

The symmetry parameter introduced here is a new notion that measures the closeness
of a directed strongly-connected graph to a symmetric (undirected) graph. We define the
symmetry parameter of an edge (u, v) as d(v, u). The symmetry parameter of a graph is the
maximum over the symmetry parameters of all the edges in the graph.

I Definition 2 (Directed Graphs, Symmetry Parameter). Let G = (V,E) be a directed
strongly-connected graph. s(G) = max(u,v)∈E{d(v, u)}.

Notice that in undirected graphs s(G) = 1. Since the definition of the symmetry parameter
of the graph takes the maximum over all the edges, we may achieve a smaller value for the
parameter if we exclude some of the edges in the graph. This idea is encapsulated in the
definition of z-violating edges.

I Definition 3 (z-violating Edges). Let G = (V,E) be a directed strongly-connected graph
and let z < s(G) be a threshold value. An edge (u, v) ∈ E is z-violating if d(v, u) > z.

We denote by AG, the adjacency matrix of a graph G. In AG, it holds for every u, v ∈ V
that:

AG(u, v) =
{

1 (u, v) ∈ E ∨ u = v

0 (u, v) /∈ E

Note that for undirected graphs the adjacency matrix is symmetric.
Let A and B be two n × n matrices with integral values. We denote A · B as the

integer multiplication of A and B. We use the same notation, when A and B are Boolean
matrices and the operation is Boolean Matrix Multiplication (BMM).We can multiply two
integer/Boolean metrics in O(nω) time, where currently ω < 2.373 [10].

We use the notation Ak (k > 0) for the multiplication of A by itself k times. For the rest
of the paper, when using Ak, we assume the multiplication that is taken is BMM. Naïvely, we
can compute Ak in O(k · nω), however this can be done in O(nω logn) time using “repeated
squaring" method (e.g. [14]). The matrix that is obtained from multiplying the adjacency
matrix of a graph by itself is meaningful in respect to the distances of the graph. This
relation is given in the following proposition.

I Proposition 4 (Distances vs. the Adjacency Matrix [14]). Let Dk = (AG)k. Dk(u, v) = 1
if and only if d(u, v) ≤ k.

Denote Gk to be the graph induced from the adjacency matrix Dk. The graph Gk is
the graph G with some additional new edges. Specifically, Gk has a new edge (u, v), if
(u, v) /∈ G and there exists a shortest path in G from u to v of length at most k. In other
words, in Gk we add “shortcuts edges” to paths of length at most k in G. This leads us to
the following definition: let k > 1 and u, v ∈ V , we denote ruv to be (dG(u, v) mod k), that
is, the residues of d(u, v)/k.

ESA 2016



72:6 New Parameterized Algorithms for APSP in Directed Graphs

3 Parameterized Algorithm for APSP

In this section we show in Theorem 8 how to compute APSP for a directed strongly-connected
graph G in O(s · nω logs+1 n) time, where s = s(G) is the symmetry parameter of G. Before
we turn to prove the theorem, we give some lemmas that are needed for our theorem.

In undirected graphs, for vertices u, v and a neighbor w of v, using the triangle inequality,
we have d(u, v) − 1 ≤ d(u,w) ≤ d(u, v) + 1. Considering the same situation in directed
graphs, however, we can only guarantee either that d(u, v) − 1 ≤ d(u,w), where (w, v) is
an incoming edge of v, or that d(u,w) ≤ d(u, v) + 1, where (v, w) is an outgoing edge of v.
With the symmetry parameter we can obtain both the following lower and upper bounds on
d(u,w).

I Lemma 5. Let G = (V,E) be a directed, strongly-connected, unweighted graph. Then:
1. For every u, v ∈ V and every w ∈ Nin(v), it follows that d(u, v) − 1 ≤ d(u,w) ≤

d(u, v) + s(G).
2. For every u, v ∈ V (u 6= v) there exists a w ∈ Nin(v) such that d(u,w) = d(u, v)− 1.

Proof. Let u, v ∈ V . If w ∈ Nin(v), then d(w, v) = 1, and from the definition of the
symmetry parameter d(v, w) ≤ s(G). From the triangle inequality on the pair (u, v), we
get that d(u, v) ≤ d(u,w) + d(w, v) ≤ d(u,w) + 1, that is, d(u, v)− 1 ≤ d(u,w). From the
triangle inequality on the pair (u,w), we get that d(u,w) ≤ d(u, v) +d(v, w) ≤ d(u, v) + s(G).
This proves the first part of the lemma.

For the second part, consider a shortest path P from u to v, and let w be the vertex
that immediately preceding v on P . Since u 6= v, we have that w 6= v, and therefore
w ∈ Nin(v). Since w is on a shortest path from u to v, d(u, v) = d(u,w) + 1, and thus
d(u,w) = d(u, v)− 1. J

The next lemma shows the relation between the distances in the original graph G and
the graph that is induced by A′ = (AG)x.

I Lemma 6. Let G = (V,E) be a directed graph and let 0 < x ≤ n be an integer. Let G′ be
the graph induced from A′ = (AG)x. Let ruv = dG(u, v) mod x, for every u, v ∈ V it follows
that:
1. dG′(u, v) = ddG(u,v)

x e.
2. If ruv = 0: dG(u, v) = x · dG′(u, v).
3. If ruv 6= 0: dG(u, v) = x · (dG′(u, v)− 1) + ruv.

Proof. Let u, v ∈ V , such that d = dG(u, v). Notice that dG(u, v) = x · bdG(u,v)
x c + ruv.

Proposition 4 implies that dG(u, v) ≤ x · dG′(u, v). Notice first that it cannot be dG′(u, v) <
ddG(u,v)

x e, as otherwise we get dG(u, v) ≤ x · (ddG(u,v)
x e − 1) < bdG(u,v)

x c + ruv. Denote
b = bdG(u,v)

x c. Let P = 〈u = v0, . . . , vd = v〉 be a shortest path from u to v in G. From
Proposition 4 we have for every 0 ≤ i ≤ b the edges (vi·x, v(i+1)·x) are in G′. Also, if ruv 6= 0,
we have the edge (vb·x, vd), and otherwise (i.e. when ruv = 0) we have vb·x = vd. In both
cases, we get that there exists a path from u to v in G′ of length ddG(u,v)

x e. Claims (2) and
(3) of this lemma follow immediately from the construction of the path in G′. J

Lemma 7 guarantees that the symmetry parameter of the graph induced by A′ = (AG)x

is not bigger than s(G).

I Lemma 7. Let G = (V,E) be a directed strongly-connected graph and let 0 < x ≤ n

be an integer. Let G′ be the graph induced from A′ = (AG)x. It follows that G′ is also
strongly-connected and s(G′) ≤ s(G).
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Proof. First note that since G is strongly-connected and we have from Lemma 6 that
dG′(u, v) = ddG(u,v)

x e for every u, v ∈ V , it follows that G′ is also strongly-connected. Let
(u, v) be an edge in G′. From the way we obtained G′, dG(u, v) ≤ x ·dG′(u, v) = 1 ·x = x. Let
P = 〈u = v0, . . . vd = v〉 be a shortest path from u to v in G. By the symmetry parameter of
G, there exists a path in G of length s(G) at most from every (vi+1, vi), 0 ≤ i ≤ dG(u, v).
This implies a shortest path in G from v to u of length x · s(G) at most. By Lemma 6,
dG′(v, u) = ddG(v,u)

x e ≤ dx·s(G)
x e = ds(G)e = s(G), as required. J

We now turn to present our main theorem. Notice that the algorithm receives as an input
the parameter s(G) of G. As we shall show later, s(G) can be computed in O(nω logn) time.
A pseudocode of our algorithm is given in Algorithm 2.

I Theorem 8. Let G = (V,E) be a directed strongly-connected unweighted graph with a
parameter s = s(G). We can compute APSP for G in O(s · nω logs+1 n) time.

Proof. Notice first that s = s(G) is well defined, since G is strongly-connected. Let s′ = s+1.
Our algorithm will follow a similar approach as done in Seidel’s algorithm [20] for undirected
graphs.

Let A be the adjacency matrix of the graph G (recall we assume that A always has 1’s in
its diagonal). If all entries in A are 1’s, we return A as the distance matrix for G. If this
is not the case, we compute A′ = As′ in O(s′ · nω) time. Let G′ be the graph of A′ and let
D′ be the distance matrix for G′, that is, D′(u, v) = dG′(u, v). We obtain D′ by invoking
our algorithm recursively. Notice that according to Lemma 7 the parameter s(G) does not
increase in G′ (i.e. s(G′) ≤ s(G)).

Our goal is to compute D, the distance matrix of G, based on D′, the distance matrix
computed recursively for G′. According to Lemma 6, for every u, v ∈ V it follows that
dG′(u, v) = ddG(u,v)

s′ e and dG(u, v) = s′ · (dG′(u, v)− 1) + ruv (or dG(u, v) = s′ · dG′(u, v), for
the case that ruv = 0). Since we know dG′(u, v), this implies we only left to compute ruv in
order to find the distance from u to v in G.

Our first step is to compute the distances for all u, v ∈ V such that dG(u, v) = dG′(u, v)+1
(i.e. ruv = 1).

Let u, v ∈ V . Denote k = dG′(u, v). Examine first the case where ruv = 1. Let w ∈ Nin(v).
It follows from Lemma 5 that there exists a w′ ∈ Nin(v) such that dG(u,w′) = dG(u, v)− 1.
Since ruv = 1, it must be that dG′(u,w′) = k − 1, as ruw′ = 0 and dG′(u,w′) = dd(u,w′)

s′ e.
From Lemma 5 and from the symmetry parameter s of G it follows that for every w ∈
Nin(v), dG(u,w) ≤ dG(u, v) + s. Therefore, dG′(u,w) ≤ k, and for ruv = 1, we have that∑

w∈Nin(v) dG′(u,w) < |Nin(v)|k = |Nin(v)|dG′(u, v).
For the case that ruv 6= 1. We know from Lemma 5 that for every w ∈ Nin(v) we have

dG(u, v)− 1 ≤ dG(u,w) ≤ dG(u, v) + s. Since for every w′ ∈ Nin(v), such that dG(u,w) =
dG(u, v)− 1, it holds that dG′(u,w′) = k, it implies that dG′(u,w) ≥ k for every w ∈ Nin(v)
and we have in this case that

∑
w∈Nin(v) dG′(u,w) ≥ |Nin(v)|k = |Nin(v)|dG′(u, v).

We conclude that for every u, v ∈ V , ruv = 1 if and only if
∑

w∈Nin(v) dG′(u,w) <
|Nin(v)|dG′(u, v). We can obtain

∑
w∈Nin(v) dG′(u,w), for every u, v ∈ V , by computing the

integer matrix multiplication D1 = D′ ·A in O(nω) time. By computing the integer matrix
multiplication 1n×n · A, we can obtain |Nin(v)| for every v ∈ V . Overall we can check for
every u, v ∈ V if

∑
w∈Nin(v) dG′(u,w) < |Nin(v)|dG′(u, v) in O(1) time. At this stage we set

D(u, v) = s′(D′(u, v)− 1) + 1, for every u, v ∈ V such that ruv = 1.
It is left to compute the distances for every u, v ∈ V such that ruv 6= 1. We show by

induction for 1 ≤ i ≤ s′, that we can compute the distances for every u, v ∈ V such that
ruv = i mod s′ in O(nω) time. We already showed the base case of the induction (i.e. for
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i = ruv = 1). By the hypothesis of the induction, we assume that we have the distances for
every u, v ∈ V such that ruv = j mod s′, 1 ≤ j ≤ i, and we show that we can compute the
distances for u, v ∈ V such that ruv = (i+ 1) mod s′.

Let N i
uv = {w ∈ Nin(v) | ruw = i mod s′}.

I Claim 9. Let u, v ∈ V (u 6= v), such that dG′(u, v) = k. For every w ∈ N i
uv, dG′(u,w) is

either k − 1, k or k + 1. Moreover, if ruv 6= 1, it cannot be that dG′(u,w) = k − 1.

Proof. By Lemma 5, dG(u, v)− 1 ≤ dG(u,w). Now, dG′(u,w) = ddG(u,w)
s′ e ≥ ddG(u,v)−1

s′ e ≥
ddG(u,v)

s′ e−1 = dG′(u, v)−1 = k−1. Notice that the only case that ddG(u,v)−1
s′ e = ddG(u,v)

s′ e−1
is when ruv = 1. Therefore, dG′(u,w) ≥ k − 1, and dG′(u,w) ≥ k for ruv 6= 1.

Assume toward contradiction that there exists w ∈ N i
uv such that dG′(u,w) > k + 1. For

such a w, we have dG(u,w) > s′(k + 1). Now, since (w, v) ∈ E and the symmetry parameter
of G is s, it follows that dG(v, w) ≤ s, but then dG(u, v) + dG(v, w) ≤ s′k + s′ = s′(k + 1) <
dG(u,w), a contradiction to the minimality of dG(u,w). J

Using Claim 9 we can now provide a criteria we will use to identify every u, v ∈ V (u 6= v)
such that ruv = (i+ 1) mod s′.

I Claim 10. Let u, v ∈ V (u 6= v), such that ruv = j mod s′. Then:
1. If j = i+ 1 ⇒

∑
w∈Ni

uv
dG′(u,w) < |N i

uv| · (dG′(u, v) + 1)
2. If i+ 2 ≤ j ≤ s′ ⇒

∑
w∈Ni

uv
dG′(u,w) ≥ |N i

uv| · (dG′(u, v) + 1)

Proof. Denote dG′(u, v) = k. Since the claim only considers j ≥ 2, we have that ruv 6= 1.
Now, according to Claim 9 it holds that dG′(u,w) = k or dG′(u,w) = k + 1 for every
w ∈ N i

uv. If j = i + 1 then there exists a w′ ∈ N i
uv with dG′(u,w′) = k. Therefore,∑

w∈Ni
uv
dG′(u,w) < |N i

uv| · (k + 1) = |N i
uv| · (dG′(u, v) + 1).

If j ≥ i+ 2 we cannot have any w ∈ N i
uv such that dG′(u,w) = k, since otherwise we get

that dG(u,w)+dG(w, v) = (s′ ·(k−1)+i)+1 < s′ ·(k−1)+(i+2) ≤ dG(u, v), a contradiction
to the minimality of dG(u, v). Therefore,

∑
w∈W i

uv
(dG′(u, v) + 1) = |N i

uv| · (k + 1) =
|N i

uv| · (dG′(u, v) + 1). J

By Claim 10 we can now identify ruv = j mod s′, j = i+ 1 by first checking whether∑
w∈Ni

uv
D′G(u,w) < |N i

uv| · (D′G(u, v) + 1) is satisfied or not. Even if the inequality holds, it
still may be that j < i+ 1, but since by the induction hypothesis we already computed the
distances for j ≤ i, we can distinguish between j = i+1 and j < i+1. We compute the exact
distances for ruv = (i + 1) mod s′ using Lemma 6. We are left to show how to compute∑

w∈Ni
uv
D′G(u,w) and |N i

uv|. Notice that at this stage we know the exact distance for every
u, v ∈ V such that ruv = i mod s′. We define D′i(u, v) to be D′(u, v) if ruv = i mod s′

and 0 otherwise. Similarly, we define Ai(u, v) to be 1 if ruv = i mod s′ and 0 otherwise.
We compute by integer matrix multiplications Di = D′i · A and Ni = Ai · A. Notice that
Di(u, v) =

∑
w∈Ni

uv
D′G(u,w) and that Ni(u, v) = |N i

uv|. This concludes the correctness of
the algorithm.

By Lemma 12 the symmetry parameter of the graph can be obtained in O(nω logn)
time. The time to compute As′ is O(s · nω). The time to compute a specific ruv = i mod s′

(1 ≤ i ≤ s′) is also O(nω), therefore, the total running time for a recursive invocation is
(s′ + 1) ·O(nω). Since G is an unweighted graph, its diameter is at most n− 1, and hence we
have at most O(logs′ n) recursive invocations. The total time of the algorithm, therefore, is
O(s · nω logs′ n). J
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4 Extending to general directed graphs

As noted earlier, Algorithm 2 works only on strongly-connected graphs, where s(G) is well-
defined. Nevertheless, as we shall see here, it is possible to reduce any directed unweighted
graph to a directed strongly-connected unweighted graph, where our parameterized-APSP
can be applied. Let G = (V,E) be our graph. Let Diam(G) = maxu,v∈V {dG(u, v) |
dG(u, v) < ∞} be the diameter of the graph G. In the reduced graph G′, we will have
s(G′) ≤ Diam(G) + 1.

The reduction is done as follows. Let G = (V,E), and let d = Diam(G). First we build a
new directed graph G′ = (V ′, E′). The graph G′ is initially a copy of G. Next, we add to
G′ new vertices v1, v2, . . . , vd, and the edges (vi, vi+1), where 1 ≤ i ≤ d − 1, and the edge
(vd, v1). We also add for each vertex v ∈ V the edges (v, v1) and (vd, v).

We can apply on G′ our parameterized APSP of Theorem 8.
From our construction s(G′) ≤ d + 1. To see that, first notice that the new vertices

v1, v2, . . . , vd are connected by a cycle of length d − 1, therefore, for the edges (vi, vi+1),
where 1 ≤ i ≤ d− 1, and the edge (vd, v1) the symmetry parameter is d− 2. Let v ∈ V , the
edges (v, v1) and (vd, v) are contained in the cycle v → v1 → v2 → · · · → vd → v, thus the
symmetry parameter of the edges (v, v1) and (vd, v) for every v ∈ V is d. Also, for an edge
(u, v) ∈ E we have the path 〈v, v1, v2, . . . , vd, u〉 of length d + 1. The insertion of the new
edges to G may shorten the distance between vertices that were originally in G. However,
it is easy to see that any path in G′ between two vertices from G, that uses at least one of
the new edges, must has a length of at least d + 1. Since the original diameter of G is d,
this implies that for every u, v ∈ V , if dG′(u, v) ≤ d then dG′(u, v) = dG(u, v), otherwise, if
dG′(u, v) > d then dG(u, v) =∞.

The diameter can be computed, using repeated squaring, in O(nω logn) time. The time
to construct G′ and to compute the distances of G from the distances of G′ is bound by
O(n2). Thus the total time of the reduction is O(nω logn).

Any algorithm that computes APSP must take Ω(nω) time (otherwise matrix multi-
plication can be computed faster), therefore, using the reduction above, we can convert
any algorithm that computes APSP for strongly-connected directed graphs in T (n) time
into algorithm that computes T (2n) +O(nω log(n)) = O(T (n) log(n)) time general directed
graphs.

5 A hybrid APSP algorithm for directed graphs

As shown, the efficiency of our parameterized-APSP algorithm strongly depends on the
symmetry parameter of the input graph. Since by the definition of the parameter, the
maximum is taken over all the edges of the graph, even a single edge might cause the
parameter of the graph to be large.

Recall that for a threshold value z < s(G) of a directed strongly-connected graph G, an
edge (u, v) is z-violating edge, if d(v, u) > z. We now show that our algorithm can be easily
modified such that even if a graph holds to have o(n0.53) edges that are o(n0.16)-violating,
the modified algorithm provides a faster algorithm than the state-of-the-art algorithm for
the problem [26].

Let βz(G) be the number of z-violating edges in G. The following theorem gives an
algorithm to compute APSP for G in a time that depends on z and βz(G). A pseudocode of
the algorithm is also given in Algorithm 3.
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I Theorem 11. Let G = (V,E) be a directed, strongly-connected graph, with a parameter
s(G), and let z < s(G) be an integer. We can compute APSP for G in O(znω logn+n2βz(G))
time.

Proof. Let Ez(G) be the set of edges in G that are z-violating. We first compute Ez(G) in
O(nω log z) time, using Lemma 13. Let (u, v) ∈ Ez(G), we compute in O(m) = O(n2) time
BFS in and out of u and v. Next we removed from G all the edges in Ez(G). Let H be
the new graph after the removal of the edges. For the sake of simplicity we assume H is
strongly-connected (otherwise, we can run the parameterized APSP algorithm on each of
its strongly-connected components). Notice that s(H) < z, since we remove all the edges
that violate the threshold, and any non-violating edge must participates in a cycle such that
all its edges are non-violating edges (thus removing the violating edges would not affect a
non-violating edge). Therefore, we compute in O(znω logn) time the distances of H. If a
shortest path from u to v in G contains an edge (p, q) from Ez(G), we can find the distance
in |Ez(G)| = βz(G) time by taking the minimum from min(p,q)∈Ez(G){d(u, p) + d(q, v) + 1}
(the distances d(u, p) and d(q, v) are obtained from the in and out BFS computed for all the
endpoints in Ez(G)). Otherwise, d(u, v) = dH(u, v). The time for this step is O(n2βz(G))
and the total time for this algorithm is O(znω logn+ n2βz(G)). J

Since the reduction to strongly-connected graph and the computation of the z-violating
edges takes O(nω logn) time, this leads us to the following hybrid approach. Reduce the
graph to strongly-connected and compute the violating edges for z such that it gives faster
running time than the current known fastest algorithm for the problem. If the number of
violating edges does not exceed the threshold, use Algorithm 3, otherwise use the fastest
known algorithm for the problem. Unless an O(nω logn)-time algorithm for the problem is
found, this hybrid approach may provide a faster running time for some instances of the
problem.

5.1 Fast computation of the parameter and the violating edges
Our algorithms need to know the symmetry parameter of the graph. We show in the next
lemma how to compute this parameter in O(nω logn) time.

I Lemma 12. Let G = (V,E) be a directed strongly-connected graph with symmetry parameter
s(G). We can compute s(G) in O(nω logn) time.

Proof. Denote DG = (AG

∨
I). Compute DG, D

2
G, D

4
G, . . . , D

2log n

G using repeated squaring.
Let k be the first value in {0, . . . , dlogne} such that D2k

G (v, u) = 1 for every (u, v) ∈ E.
If k = 0, then s(G) = 1. Otherwise, by Proposition 4 it must be that s(G) ∈ [2k−1, 2k].
By setting s′(G) = 2k, we have a 2-approximation for s(G). We need only dlogne matrix
multiplication to compute DG, D

2
G, D

4
G, . . . , D

2log n

G , thus the time for this is O(nω logn).
Now, we show how to compute s(G) exactly. We have s(G) ∈ [2k−1, 2k], we perform

a binary search for s(G) in the range [2k−1, 2k]. Let [a, b] (a < b) be the current range,
we compute Dc

G for c = a+b
2 . We check if Dc

G(v, u) = 1 for every (u, v) ∈ E. If it is true,
we continue the search in the range [a, c], otherwise we continue the search in the range
[c, b]. There are O(logn) steps in the binary search. We can compute Dc

G by using only
2 matrix multiplications. To see this, notice first, that since we do our binary search on
[2k−1, 2k], it follows, that at any stage of the binary search, (b− a)/2 is a power of 2. Since
c = a+b

2 = a + (b−a)
2 , we have that Dc

G = Da
G ·D2j

G (for some j ≤ k), where Da
G and D2j

G

were already computed. This concludes that the total time to compute s(G) exactly is
O(nω logn). J
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Similarly, we find all z-violating edges for a z < n in time O(nω log z), by computing Dz
G

and returning all the edges (u, v) ∈ E such that Dz
G(v, u) = 0. The statement is given in the

following lemma.

I Lemma 13. Let G = (V,E) be a directed strongly-connected graph, and let z < n be an
integral value. We can find all z-violating edges for a z < n in O(nω log z) time.
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A Algorithms

Algorithm 1: Directed-APSP(G = (V,E))
if G is not strongly-connected then

Reduce G to a strongly-connected graph G′;
G← G′;

Compute s = s(G);
return Param-Directed-APSP(AG, s);

Algorithm 2: Param-Directed-APSP(A, s)
A← A ∨ I;
if A = 1n×n then

return A

D′ ← Param-Directed-APSP(As+1, s);
D1 ← D′ ·A;
foreach (u, v) ∈ V 2 do D(u, v)← −∞ ;
foreach (u, v) ∈ V 2 do

if D1(u, v) < |Nin(v)| ·D′(u, v) then
D(u, v)← (s+ 1)(D′(u, v)− 1) + 1;

foreach i ∈ {2, . . . , s+ 1} do
foreach (u, v) ∈ V 2 do

if D(u, v) = (s+ 1)(D′(u, v)− 1) + i− 1 then
D′i(u, v)← D′(u, v); Ai(u, v)← 1;

else
D′i(u, v)← 0; Ai(u, v)← 0;

Di ← D′i ·A; Ni ← Ai ·A;
foreach (u, v) ∈ V 2 do

if Di(u, v) < |Ni(u, v)| ·D′(u, v) ∧D(u, v) = −∞ then
D(u, v) = (s+ 1)(D′(u, v)− 1) + i;

return D

Algorithm 3: Directed-APSP-z(G = (V,E), z)
Compute Ez(G), the z-violating edges of G;
foreach (u, v) ∈ Ez(G) do

Compute in and out BFS for u and v, and store the obtained distances;
Let H = (V,E \ Ez(G)) ;
DH ← Param-Directed-APSP(AH , s(H));
foreach (u, v) ∈ V 2 do

D(u, v) = min{DH(u, v),min(p,q)∈Ez(G){d(u, p) + d(q, v) + 1}};
return D;
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