10 research outputs found

    Immunity and Simplicity for Exact Counting and Other Counting Classes

    Full text link
    Ko [RAIRO 24, 1990] and Bruschi [TCS 102, 1992] showed that in some relativized world, PSPACE (in fact, ParityP) contains a set that is immune to the polynomial hierarchy (PH). In this paper, we study and settle the question of (relativized) separations with immunity for PH and the counting classes PP, C_{=}P, and ParityP in all possible pairwise combinations. Our main result is that there is an oracle A relative to which C_{=}P contains a set that is immune to BPP^{ParityP}. In particular, this C_{=}P^A set is immune to PH^{A} and ParityP^{A}. Strengthening results of Tor\'{a}n [J.ACM 38, 1991] and Green [IPL 37, 1991], we also show that, in suitable relativizations, NP contains a C_{=}P-immune set, and ParityP contains a PP^{PH}-immune set. This implies the existence of a C_{=}P^{B}-simple set for some oracle B, which extends results of Balc\'{a}zar et al. [SIAM J.Comp. 14, 1985; RAIRO 22, 1988] and provides the first example of a simple set in a class not known to be contained in PH. Our proof technique requires a circuit lower bound for ``exact counting'' that is derived from Razborov's [Mat. Zametki 41, 1987] lower bound for majority.Comment: 20 page

    The Robustness of LWPP and WPP, with an Application to Graph Reconstruction

    Get PDF
    We show that the counting class LWPP [FFK94] remains unchanged even if one allows a polynomial number of gap values rather than one. On the other hand, we show that it is impossible to improve this from polynomially many gap values to a superpolynomial number of gap values by relativizable proof techniques. The first of these results implies that the Legitimate Deck Problem (from the study of graph reconstruction) is in LWPP (and thus low for PP, i.e., \rm PP^{\mbox{Legitimate Deck}} = PP) if the weakened version of the Reconstruction Conjecture holds in which the number of nonisomorphic preimages is assumed merely to be polynomially bounded. This strengthens the 1992 result of K\"{o}bler, Sch\"{o}ning, and Tor\'{a}n [KST92] that the Legitimate Deck Problem is in LWPP if the Reconstruction Conjecture holds, and provides strengthened evidence that the Legitimate Deck Problem is not NP-hard. We additionally show on the one hand that our main LWPP robustness result also holds for WPP, and also holds even when one allows both the rejection- and acceptance- gap-value targets to simultaneously be polynomial-sized lists; yet on the other hand, we show that for the #P-based analog of LWPP the behavior much differs in that, in some relativized worlds, even two target values already yield a richer class than one value does. Despite that nonrobustness result for a #P-based class, we show that the #P-based "exact counting" class C=P\rm C_{=}P remains unchanged even if one allows a polynomial number of target values for the number of accepting paths of the machine

    Separating the low and high hierachies by oracles

    Get PDF
    AbstractThe relativized low and high hierarchies within NP are considered. An oracle A is constructed such that the low and high hierarchies relative to A are infinite, and for each k an oracle Ak is constructed such that the low and high hierarchies relative to Ak have exactly k levels

    Computational complexity and the P vs NP problem

    Get PDF
    Orientador: Arnaldo Vieira MouraDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação CientíficaResumo: A teoria de complexidade computacional procura estabelecer limites para a eficiência dos algoritmos, investigando a dificuldade inerente dos problemas computacionais. O problema P vs NP é uma questão central em complexidade computacional. Informalmente, ele procura determinar se, para uma classe importante de problemas computacionais, a busca exaustiva por soluções é essencialmente a melhor alternativa algorítmica possível. Esta dissertação oferece tanto uma introdução clássica ao tema, quanto uma exposição a diversos teoremas mais avançados, resultados recentes e problemas em aberto. Em particular, o método da diagonalização é discutido em profundidade. Os principais resultados obtidos por diagonalização são os teoremas de hierarquia de tempo e de espaço (Hartmanis e Stearns [54, 104]). Apresentamos uma generalização desses resultados, obtendo como corolários os teoremas clássicos provados por Hartmanis e Stearns. Essa é a primeira vez que uma prova unificada desses resultados aparece na literaturaAbstract: Computational complexity theory is the field of theoretical computer science that aims to establish limits on the efficiency of algorithms. The main open question in computational complexity is the P vs NP problem. Intuitively, it states that, for several important computational problems, there is no algorithm that performs better than a trivial exhaustive search. We present here an introduction to the subject, followed by more recent and advanced results. In particular, the diagonalization method is discussed in detail. Although it is a classical technique in computational complexity, it is the only method that was able to separate strong complexity classes so far. Some of the most important results in computational complexity theory have been proven by diagonalization. In particular, Hartmanis and Stearns [54, 104] proved that, given more resources, one can solve more computational problems. These results are known as hierarchy theorems. We present a generalization of the deterministic hierarchy theorems, recovering the classical results proved by Hartmanis and Stearns as corollaries. This is the first time that such unified treatment is presented in the literatureMestradoTeoria da ComputaçãoMestre em Ciência da Computaçã

    Complexity of certificates, heuristics, and counting types , with applications to cryptography and circuit theory

    Get PDF
    In dieser Habilitationsschrift werden Struktur und Eigenschaften von Komplexitätsklassen wie P und NP untersucht, vor allem im Hinblick auf: Zertifikatkomplexität, Einwegfunktionen, Heuristiken gegen NP-Vollständigkeit und Zählkomplexität. Zum letzten Punkt werden speziell untersucht: (a) die Komplexität von Zähleigenschaften von Schaltkreisen, (b) Separationen von Zählklassen mit Immunität und (c) die Komplexität des Zählens der Lösungen von ,,tally`` NP-Problemen
    corecore