34 research outputs found

    Circuit Depth Relative to a Random Oracle

    Get PDF
    The study of separation of complexity classes with respect to random oracles was initiated by Bennett and Gill and continued by many other authors. Wilson defined relativized circuit depth and constructed various oracles A for which   P^A ¬ NC^A NC^A_k ¬ NC^A_k+varepsilon, AC^A_k ¬ AC^A_k+varepsilon, AC^A_k ¬ subset= AC^A_k+1-varepsilon, and NC^A_k not subset= AC^A_ k-varepsilon,for all positive rational k and varepsilon, thus separating those classes for which no trivial argument shows inclusion. In this note we show that as a consequence of a single lemma, these separations (or improvements of them) hold with respect to a random oracle A

    Quantum Computation Relative to Oracles

    Get PDF
    The study of the power and limitations of quantum computation remains a major challenge in complexity theory. Key questions revolve around the quantum complexity classes EQP, BQP, NQP, and their derivatives. This paper presents new relativized worlds in which (i) co-RP is not a subset of NQE, (ii) P=BQP and UP=EXP, (iii) P=EQP and RP=EXP, and (iv) EQP is not a subset of the union of Sigma{p}{2} and Pi{p}{2}. We also show a partial answer to the question of whether Almost-BQP=BQP

    Strengths and Weaknesses of Quantum Computing

    Full text link
    Recently a great deal of attention has focused on quantum computation following a sequence of results suggesting that quantum computers are more powerful than classical probabilistic computers. Following Shor's result that factoring and the extraction of discrete logarithms are both solvable in quantum polynomial time, it is natural to ask whether all of NP can be efficiently solved in quantum polynomial time. In this paper, we address this question by proving that relative to an oracle chosen uniformly at random, with probability 1, the class NP cannot be solved on a quantum Turing machine in time o(2n/2)o(2^{n/2}). We also show that relative to a permutation oracle chosen uniformly at random, with probability 1, the class NPcoNPNP \cap coNP cannot be solved on a quantum Turing machine in time o(2n/3)o(2^{n/3}). The former bound is tight since recent work of Grover shows how to accept the class NP relative to any oracle on a quantum computer in time O(2n/2)O(2^{n/2}).Comment: 18 pages, latex, no figures, to appear in SIAM Journal on Computing (special issue on quantum computing

    Thoughts on the Riemann hypothesis

    Full text link
    The simultaneous appearance in May 2003 of four books on the Riemann hypothesis (RH) provoked these reflections. We briefly discuss whether the RH should be added as a new axiom, or whether a proof of the RH might involve the notion of randomness

    Resource Bounded Immunity and Simplicity

    Get PDF
    Revisiting the thirty years-old notions of resource-bounded immunity and simplicity, we investigate the structural characteristics of various immunity notions: strong immunity, almost immunity, and hyperimmunity as well as their corresponding simplicity notions. We also study limited immunity and simplicity, called k-immunity and feasible k-immunity, and their simplicity notions. Finally, we propose the k-immune hypothesis as a working hypothesis that guarantees the existence of simple sets in NP.Comment: This is a complete version of the conference paper that appeared in the Proceedings of the 3rd IFIP International Conference on Theoretical Computer Science, Kluwer Academic Publishers, pp.81-95, Toulouse, France, August 23-26, 200

    Generic oracles, uniform machines, and codes

    Get PDF
    AbstractThe basic properties of generic oracles are reviewed, and proofs given that they separate P and NP and are weakly incompressible. A new notion of generic oracle, called t-generic, is defined. It is shown that t-generic oracles do not exist, and consequently a nondeterministic oracle machine which for any oracle X accepts the tautologies relativized to X when running with oracle X does not run in polynomial time at any oracle. A weak form of t-generic oracle, called r-generic, is shown to exist, and it is shown that if there exists an r-generic oracle X at which the r-query relativized tautologies are not in co NPX then NP ≠ co NP. The notion of a code for the Boolean functions is defined, and it is shown that generic oracles do not have short codes in any code. Universal circuits of size O(n log4 n) are shown to exist, and it is shown that increasing the number of ⋏, ⋎ gates from g to 2g + 1 allows the computation of new Boolean functions
    corecore