
INFORMATION AND COMPUTATION 96, 65-76 (1992)

Generic Oracles, Uniform Machines, and Codes

MARTIN DOWD

2532 Orange Avenue. Costa Mesa, California 92627

The basic properties of generic oracles are reviewed, and proofs given that they
separate B and NB and are weakly incompressible. A new notion of generic
oracle, called t-generic, is defined. It is shown that t-generic oracles do not exist,
and consequently a nondeterministic oracle machine which for any oracle X accepts
the tautologies relativized to X when running with oracle X does not run in polyno-
mial time at any oracle. A weak form of t-generic oracle, called r-generic, is shown
to exist, and it is shown that if there exists an r-generic oracle X at which the
r-query relativized tautologies are not in co .V‘P’ then ,+‘9 # co .h‘.Y. The notion
of a code for the Boolean functions is defined, and it is shown that generic
oracles do not have short codes in any code. Universal circuits of size O(n log“ n)
are shown to exist, and it is shown that increasing the number of A , v
gates from g to 2g + 1 allows the computation of new Boolean functions. 8 1992

Academic Press, Inc.

1. INTRODUCTION

A great deal of attention has been focused on the behavior of oracle
machines which run in some complexity bound. The results obtained
comporise a branch of complexity theory in their own right, and contribute
to an understanding of fundamental open questions of complexity theory.
For example the set of oracles separating 9 and X9 has measure 1
(Bennett and Gill, 1981), is co-meager (Mehlhorn, 1973), and contains all
generic oracles (Dowd, 1982; Regan, 1984; Poizat, 1986; Blum and
Impagliazzo, 1987). This suggests that .c? and NC!? are unequal; but since
there are also oracles for which they are equal, the unrelativized case must
be settled by new methods.

This paper presents primarily the theorem that a nondeterministic oracle
machine which uniformly accepts the relativized tautologies, that is, which
regardless of X accepts the tautologies relativized to X when running with
oracle X, never accepts in polynomial time, that is, does not accept in poly-
nomial time at any oracle X. That it does not accept in polynomial time
at any oracle X where Jlr~?~# co NYx is a triviality. Letting pX etc.
denote the class of functionals, certainly co Jfgx # NC?*; by Lemma 2.2
of (Blum and Impagliazzo, 1987), if JVCS’~ n co Ngx- # Yx then .!Y # NY.

The proof of the theorem involves a notion related to forcing. A notion
65

0890~5401192 53.00
Copyright 0 1992 by Academic Press, Inc.

All rights of reproduction in any form reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82803103?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

66 MARTINDOWD

of generic oracle, called t-generic, is defined; this notion is so strong that
t-generic oracles can be shown not to exist, and the theorem follows. If the
definition of t-generic oracle is sufficiently restricted, to what we call
r-generic for an integer r, then such oracles do exist. These have the
“genericity” property that if X is r-generic, and no nondeterministic
machine with oracle X accepts the r-query tautologies relativized to X in
polynomial time, then ,,Vp # co ,&‘g.

We review the standard notion of generic oracle also, and consider the
complexity of these and r-generic oracles as families of Boolean functions
and as strings, i.e., their Kolmogorov complexity. Also, some properties of
circuits as a model of computation of the Boolean functions are given.

2. GENERIC ORACLES

If X and Y are partial functions from the natural numbers JV to (0, 1),
Y is said to be an approximation to X, written Y E X, if the domain of Y
is a subset of the domain of X, and Y(n) = X(n) for all n in the domain of
Y. An oracle may be viewed as a total function from ,4’ to (0, 1 }, or “bit
string.” A partial function is called finite if its domain is. Often the domain
is (i: 0 < i < n}, resulting in a finite bit string. If X is a bit string we let X,
denote the finite bit string consisting of the first n bits of X.

We use M” to denote either an acceptinggrejecting oracle machine, the
recursive functional it computes, or the predicate at some particular oracle
X; the context makes clear which is intended. For Y a partial function, X
an oracle, and M an accepting-rejecting total deterministic oracle machine,
say that Y forces V.t-MX(x) if VxMX(x) is true whenever Y c X. Define an
oracle G to be m-generic if for any total deterministic oracle machine M,
if VxM’(.x) is true, then it is forced by some finite approximation to G.

Oracles generic for arithmetic or fragments thereof are of importance in
recursive function theory (Feferman, 1965; Hinman, 1969), and have more
recently been considered in complexity theory. The definition using
machines defines a slightly smaller class than the oracles generic for the n,
fragment of arithmetic with an extra unary predicate; this is so because
bounded quantifiers are no longer redundant. The DMPR theorem (see
Davis, 1973) implies that the Z, predicates are the same whether or not
bounded quantifiers are present, when the language is that of arithmetic.
Weiss (1980) has shown that this need not hold with an oracle. Certainly
m-generic oracles are generic for the n, formulas of relativised arithmetic,
but the converse does not follow, and indeed is false.

THEOREM 1. There is an oracle X which is III-generic but not m-generic.

GENERIC ORACLES 67

Proof Let E,, n > 1, be an enumeration of the open formulas in the
language of arithmetic with an oracle, such that E, makes fewer than n
queries. The usual nonconstructive procedure can be used to construct a
I7,-generic X, namely, at stage it, do nothing unless for some extension of
X and some y 1 E:(y); in this case extend X to guarantee that this holds.
To ensure that X is not m-generic, simply ensure at stage n that there is an
m d n such that (n, m) E X, where (n, m) is the Godel pairing function.

The following theorem states the usual properties of m-generic oracles;
a proof may be found in (Dowd, 1982). By Cantor space is meant the
space of oracles, equipped with the usual topology and measure (see
Rogers, 1967).

THEOREM 2. The m-generic oracles form a co-meager, measure 0 subset
of Cantor space, closed under complementation and finite changes. They do
not include r.e. or co-r.e. sets, but do include AI-sets.

Say that a subset S of Cantor space is n,(X) if there is a recursive
predicate MX(x) such that S(X) oVxMX(x); similarly S is C,(X) if there
is a recursive predicate M*(x) such that S(X)03xMX(x).

THEOREM 3. Zf S is a C,(X) predicate then S is true of every m-generic
oracle iff it is true in every open interval, that is, is true at some X in
the interval.

ProoJ: One direction follows since the m-generic oracles are a dense
subset of Cantor space. Conversely if 3x@(x) is false for G m-generic,
then VX 1 M’(x) is true and hence forced by some finite Y c G. 3.uMG(x)
is thus false for every X in the interval determined by Y.

COROLLARY 4. For any m-generic G, YG # ,,lr~Y~.

Proof: The statement that a particular polynomial time deterministic
oracle machine fails to accept the satisfiable formulas at X is C,(X).
Further it is true in any interval.

This corollary is well known (for various notions of generic oracles); the
proof here is short and useful for other questions. For example, consider
the question of whether m-generic sets are Kolmogorov incompressible. To
review the basic definitions, a name for an integer is a Turing machine with
no input which outputs the integer. The Kolmogorov complexity K(x) of
the integer x is the length of the shortest name. The system of names may
be required to be prefix-free or “instantaneous”; we denote this complexity
by &(x1.

We will say that a bit string S is incompressible if there are m, c such

68 MARTINDOWD

that K(S,) 2 n - c for n > m. Say that f: .N‘ I-+ ./1/’ is restricting if for any (
there is an n > c such that f(n) <n - c; S is incompressible iff there is no
restricting function bounding K(S,). Say that S is weakly incompressible if
there is no recursive restricting f bounding K(S,).

There are nonrecursive restricting g which are not bounded by any
recursive restricting f, so it is not obvious that weak incompressibility
implies compressibility. To see this, let (f, , . . . } be a list of recursive
restricting functions such that f, (x) <f, + I for all -Y, and every recursive
restricting f is dominated by some f, (i.e., f(?c) < f,(x) almost everywhere).
Then g may be defined by considering those values where f, crosses n - i
for the last time; details are left to the reader.

If a system of names is restricted to be prefix-free, then the incom-
pressible S form a subset of Cantor space of measure 1 (Chaitin, 1975).
This is not so if an arbitrary system of names is allowed (Chaitin, 1969).
To the author’s knowledge it is open whether for an arbitrary system of
names there is an incompressible bit string. As we will show in the next
corollary, m-generic bit strings are weakly incompressible. Another obvious
question, which we leave open, is whether for a prefix-free system of names
there is an incompressible m-generic bit string.

COROLLARY 5. An m-generic G is weakly incompressible.

Proof: The statement that a particular recursive restrictingf is a bound
on the names is n,(X). Further it is false in any interval.

3. UNIFORM MACHINES

The relativised propositional calculus adds to the language of the
propositional calculus an n-ary connective for each n; we will use X” to
denote this. Given a set X, the bit string Xzn determines an n-ary Boolean
function, by numbering the bit positions, from 0 on the left, and
considering the bit number as an n-tuple of bits. We let X” denote this
Boolean function also; whether the Boolean function or the connective is
intended will be clear from context.

Let TAUT”(x) be the functional which is true if x is the Gijdel number
of a relativized formula which is a tautology when the X” are interpreted
according to X (i.e., when the interpretation of the connective X” is the
Boolean function X”). TAUTX is “uniformly” complete for co .N”Px, mean-
ing that given any co ,N‘9 functional MX, there is a polynomial time
computable functionfsuch that for any oracle X, MX(x) iff TAUTx(f(x)).
This is well known, and follows by easy modifications to standard
arguments. We say that an oracle machine accepts TAUTX uniformly if for
each X, operating with respect to X it accepts exactly TAUTX.

GENERIC ORACLES 69

Define G to be t-generic if there is a polynomial p such that for any
(Godel number of a) relativized formula X, if TAUTG(x) then TAUTG(x)
is forced by at most p(1x1) queries to G, where 1x1 denotes the length of the
binary notation for x. By this we mean that there is a finite partial function
F whose domain has size at most p(I-u\), where F E G and TAUT*(x)
holds whenever F E X.

LEMMA 6. If a deterministic polynomial time oracle machine MX accepts
all its inputs with respect to a t-generic oracle G, then it is forced to do so
by a sparse set of queries. That is, there is a partial function Y from M to
(0, 1 } satisfying Yr G whose domain is sparse, which forces VxMX(x).

Proof The relativized formula asserting that “on all inputs of length
<n the machine M accepts” is a tautology with respect to the oracle G
for every n, and its length is bounded by a polynomial in n. Therefore
the n th is forced by a set W,, of queries to G of size polynomial in n.
Let W= u { W,: n is a power of 2). Then W is sparse, and forces the
statement.

The polynomial time restriction may be removed; for any total deter-
ministic oracle machine T there is a deterministic polynomial time oracle
machine U such that for each X, VxTx(x) iff VxUX(x).

LEMMA 7. There does not exist a t-generic oracle.

Proof: The statement that X is t-generic with a given polynomial p is
n,(X), and if true of X is forced by a sparse set of queries. Thus if there
is a t-generic set there is a sparse t-generic set. However, the statement that
X is sparse, with a particular polynomial p, is II,(X), so if X were sparse
and t-generic it would be forced to be sparse by a sparse set of queries,
which is clearly absurd.

THEOREM 8. If A4 is a nondeterministic oracle machine uniformly
accepting TAUTX, then for no X are the members of TAUTX accepted in
polynomial time.

Proof Suppose the members of TAUTX are accepted in polynomial
time for some X; then X is t-generic.

The argument is easily modified to show that the members of TAUTX
are not accepted in time t(n) for any recursive subexponential function t.
The analogous result for SATX and deterministic oracle machines is false.
Consider the deterministic oracle machine which assumes X is QVAL, the
quantified validities, and on input F, replaces queries by quantified

70 MARTIN DOWD

formulas and using self-reducibility computes a satisfying truth assignment.
If this truth assignment satisfies F accept, otherwise run an arbitrary
deterministic oracle machine accepting SAT” uniformly.

4. T-GENERIC ORACLES

A formula of the form

(Pl-xi,(ql) A ... A Pr-Xi,(q,))*F

for F query free is called an r-query formula. Restricting the formula to this
form is merely a convenience; the important property is that it has at most
r queries. If in the definition of t-generic oracle, the relativized formulas are
restricted to be r-query formulas the oracle is called r-generic.

LEMMA 9. If F is a I-quer.v formula which is a tautology with respect to
some X then there is a unique minimal set S qf queries which force F to be
a tautology (we say F specifies S).

Proof Suppose F is (po X,,(q,, qn)) * G, and consider any truth
assignment to the qi. For at least one value of p all extensions to the
remaining atoms must satisfy G. If there is only one value of p, X is deter-
mined at this place. With respect to any X,, having the correct value at the
determined places the formula is a tautology.

THEOREM 10. For any integer r, r-generic oracles exist.

ProoJ: By induction on r. Define l(F) for a formula F to be the number
of occurrences of atoms, O’s, and 1’s. For the basis r = 1 let k be sufficiently
large. Assume X” has been constructed deciding the l-query formulas
involving X’ with i < n. An X”+ ’ extending X” will be ruled out if there is
some formula F involving X”+ ‘, such that F specifies a partial function S
consistent with X” + ’ and JSl > 1”. If F specifies S, let S;, i = 0, 1, be those
queries of S where the first atom q1 is i. If S, is inconsistent with X” F is
irrelevant. Letting N denote 2”, if JS, 1 = s, there are 2NP ‘I X” + i consistent
with X” and S,. Also S, is specified by FO/q,, so (letting 1 denote l(F))
IS,] <(l- l)“, and so if ISI >lk then s, >lk-(l- l)k. Thus among the 2”
x ‘+I consistent with X” at most

are ruled out. Since this is 0(2~) for k sufficiently large the required X”+ ’
exists. For the induction step, define k, = k, k,, , = k. k, + 1, and suppose

GENERIC ORACLES 71

X” has been constructed deciding the s-query formulas involving X’ with
i < n, with polynomial lkS for 1 < s Q r. Proceeding as above, the number of
X”+’ ruled out by l-query formulas is determined as above. Now suppose
Fis (p-X”+‘(q,, 4n+l)) * G, where G is an (s - 1)-query formula. We
may further suppose that if G involves X’ then i B n, so that with respect
to X”, F is either never a tautology or specifies some set S of queries. In
the latter case let S, be the queries in S with q, = 1, and let ,?I be the
disjunction of the formulas

where Y+ ‘(1, ti2, ti,n+ i) o u are the queries in S,. Then 3, =z- G is a
tautology with respect to X”, and is forced by some query set T, which
we take as small as possible. S, u T forces F, and if IS,\ f lk then
for 1 sufficiently large (T16(l+(2n+4)jS,j)kS~’ and so JS,I+ITI<I”‘.
The remainder of the proof is similar to the case r = 1.

The sums in the above proof can be estimated using geometric series,
and it follows that the r-generic oracles have positive measure, and hence
since they are closed under finite changes measure 1. Thus, the r-generic
oracles separating Jlr.9 and co J-9 have measure 1. Let r TAUTX be the
r-query formulas which are tautologies with respect to X.

THEOREM 11. Zf ,&/‘P = co ,,V9 then there is a nondeterministic oracle
machine M uniformly accepting TAUT”, such that with respect to any
r-generic X, M accepts the members of r TAUTX in polynomial time.

Proof: Let TAUTX be the formulas which are tautologies with respect
to any oracle: TAUTX is in co ,IrY, indeed is complete. For one proof,
given a formula

(p~*x”(q,) A ... * P, * J-ir(s,)) * G,

replace the hypothesis with one requiring that the pi be consistent, i.e., have
the same value when the corresponding qi are equal. Thus, by hypothesis
TAUTX E NY’. Let M be the nondeterministic oracle machine which, with
the relativized formula F as input, where all queries by F involve Xi with
i < n, does the following:

(1) Guesses queries Q I, Q, involving X”.
(2) Checks if the Qi agree with X.
(3) If not, rejects.
(4) If so, runs a nondeterministic machine for TAUTX on

Q, A ... A Q,=F.

72 MARTIN DOWD

As a consequence, if there is an r-generic X such that rTAUTX&NYx
then ./1/‘P # co JfP. The statements about oracles which are forced by
sparse sets of queries when true with respect to an r-generic oracle are
those which can be verified by oblivious deterministic polynomial time
oracle machines, which make at most r queries on any input, since the
representing formulas for such machines are r-query formulas. Direct
arguments show that the r-generic oracles are closed under complementa-
tion and finite changes, and it follows as in (Dowd, 1982) that an r-generic
oracle is not r.e.

THEOREM 12. An m-generic aracle is not l-generic.

Proof: The statement that X is l-generic with polynomial p is n,(X),
and false in any interval.

5. CODES FOR THE BOOLEAN FUNCTIONS

The notion of a code for the Boolean functions provides a link between
Kolmogorov complexity and the complexity of Boolean functions. Also,
some obvious facts about complexity classes can be stated. A code for the
integers might be defined as a total recursive function whose range is JV.
For a code for the Boolean functions, however, we want the arity to be not
much bigger than the length of the name.

Define a pre-code for the Boolean functions to be a recursive function c:
A’ x .C” + (0, 1 } and a log space computable function a: JV’ + M. If
la(x)/ = n then x is said to be a name for the n-ary Boolean functionSgiven
by f(dn - , , &J=c(x,d,-, . .. do). If each Boolean function has a name,
the pre-code is called a code. The complexity of a code is defined to be
the complexity of c. Code (c, a) is said to simulate code (d, b) if there is
a function S(X) computable in log space such that a(s(x)) =b(x) and
lyl < lb(x)1 = cW), y) =4x, Y).

The complexity restriction on s is necessary; is s were allowed to be an
arbitrary recursive function then any code simulates any other. Indeed
define a code to be regular if for some a every n-ary Boolean function has
a code of length ~2”“. Regularity is not a severe restriction, in that any
code can be easily modified to yield a regular code simulating it. Between
any two regular codes, an exponential space simulation exists.

THEOREM 13. There is no optimum code, i.e., code which simulates every
other code.

Proof: Given a code (c, a) let {f,,} be a recursive set of Boolean func-
tions, where f, is n-ary and the shortest code for f,, is of length 22n. Define

GENERIC ORACLES 73

d(k Y) = c(x, y), 42x + 1, y) =f,,(v), and 6(2x) = a(x), b(2x + 1, v) = n,
where n= 1x1. Then (c, a) does not simulate (d, b).

THEOREM 14. Circuits are an optimum polynomial time code.

Proof. If c(x, -v) is a polynomial time code let p(n) be a polynomial
which bounds la(x)1 for 1x1 <n. Let c,, be the circuit which computes
c(.Y, y) for (xl <n and 11’1 d p(n). Then C, can be computed from x in log
space, and the bits of x plugged in for the x inputs, to obtain a circuit for
the Boolean function coded by x.

For any of the usual complexity classes, there are sets whose complete-
ness follows by coding computations on inputs of length n and then
“plugging in” the bits of X, such as the circuit value problem for 9. Such
constructions yield optimum codes, as in the theorem. For example, quan-
tified Boolean formulas are an optimum polynomial space code, and
branching programs an optimum log space code. We give a proof of the
latter, for the reader unfamiliar with branching programs.

A branching program is a rooted dag, whose interior vertices are of
outdegree 2 and are labelled with atoms, and whose leaves are labelled
with (0, 1). A truth assignment determines a path from the root to a
leaf, by taking the left branch out of a node labelled p if p is assigned 0,
else the right branch. A Boolean function is thus determined, where the
value at a truth assignment is the label of the leaf of the path determined
by the assignment.

THEOREM 15. The branching programs are an optimum log space code.

Proof: Consider a log space machine restricted to inputs of length n,
where the machine is assumed to halt in polynomial time on every input.
Associate a node with every configuration of the form (w, p) where w is the
work tape contents and p is the input tape position. The left edge out of
a configuration is the successor configuration when the input bit is 0, and
similarly for the right edge.

The formula value problem is known to be complete for log space by
alternating log time transformation, provided the formulas are suitably
coded (for example, by annotated adjacency matrices of their graphs); see
below for a proof. Branching programs simulate formulas with any
reasonable coding convention, since the formula value problem is in log
space (Lynch, 1977). The converse simulation seems not to hold; thus, it is
likely that the value problem for a code can be complete without the code
being optimum.

The above fact has been observed by the author and R. Statman, and
independently by M. Tompa. For a proof, assume each configuration is

74 MARTIN DOWD

entered at most once, and has at most two possible antecedents, Assuming
“true, ” “false,” and “or” are in the connective set, there is a vertex for each
configuration. If the configuration has no antecedents, it is a “false” gate,
unless it is the input configuration, in which case it is a “true” gate.
Otherwise, the left input is the left going antecedent, or “false” if none;
and similarly for the right input. If the nodes are “directly addressable” in
the representation of the formula than the transformation is in alternating
log time.

6. CODES AND GENERIC SETS

The following theorem is a relative of Corollary 5.

THEOREM 16. If G is m-generic then for any code c, the Boolean
functions G” do not have names bounded by any recursive subexponential
function.

Proof: The statement that the G” have c codes bounded by a particular
recursive subexponential function is n,(X). Further it is false in any
interval, since there are 2” extensions X”+’ of X”.

THEOREM 17. Zf G is l-generic then the Boolean functions G” do not have
formulas bounded b-v any subexponential function,

Proof Let F, be a formula for G”, and consider the formula X” o F,,.
All 2” queries are required to force this to be true. Thus 2” must be poly-
nomial in the length of F,,, so the latter is exponential.

7. SOME PROPERTIES OF CIRCUITS

Circuits are an important code; they have been extensively studied, and
many important questions remain open. This section includes two simple
theorems on circuits. The first is an instance of a general notion for codes,
and the second an improvement to Lemma 0 of (Kannan, 1981). We
assume that in a circuit, l’s occur only at the inputs; the complexity is the
number of A , v gates. Conventions are such that this is 0 for 0, 1, xi,
or i ?ci.

Given a code (c, a) define u to be n-universal if r = la(u)1 -n 3
max{ Ia(y Iyl <n}; and if x is an n-digit binary number (with leading O’s
allowed), then c(x, y) = c(u, yx), where yx denotes y with x appended.
Since the required Boolean function must have a code, n-universal codes
exist for all n in any code.

GENERIC ORACLES 75

THEOREM 18. There are n-universal circuits of size O(n log4 n).

Proof A circuit is coded as a list of triples a = bo c, where a, b, c are
bit strings of length O(log g) for g the number of gates; the assignments to
b and c occur previously in the list (or they are atoms or negated atoms);
and the a are increasing in the lexicographic order. The circuit value
problem can be solved on a multitape Turing machine in time O(n log* n)
as follows. Recursively label the gates of the first half with their output
values. Sort the triples of the second half into order by the left input and
label the left inputs with their values; do the same for the right input. Sort
the second half into original order and recursively label the second half.
The overhead is O(n log n), so the procedure runs in time O(n log* n). The
representing circuit has O(n log3 n) gates (Pippinger and Fischer, 1979)
and so O(n log4 n) bits.

THEOREM 19. Let F(n, g) be the n-ary Boolean functions computed by
the circuits with n inputs and g gates. Zf IF(n, g)l < 22n then F(n, g) is a
proper subset of F(n, 2g + 1).

Proof: By assumption F(n, g) cannot be closed under conjunction and
disjunction. However conjunctions and disjunctions of functions in F(n, g)
are in F(n, 2g + 1).

Without further restrictions this is the best possible result, as the
example F(2,2) = F(2, 1) shows.

8. CONCLUSION

Theorem 8 can be seen as adding to the evidence that NC? # co MY.
Uniform machines provide yet another relativized version of unrelativized
problems. This theorem is perhaps hardest of all to reconcile with the
existence of an JV~ algorithm for TAUT. Theorem 11 further substantiates
this feeling; one can to some extent adapt unrelativized algorithms to the
uniform case. Also, at oracles where JV~ = co MY, the machine witness-
ing this is particular to the oracle. One possible direction for further
research might be whether more can be said about this.

RECEIVED August 19, 1985; FINAL MANUSCRIPT RECEIVED May 22, 1990

REFERENCES

BENNETT, C., AND GILL, J. (1981), Relative to a random oracle PA # NP* #co - NpA with
probability 1, SIAM J. Comput. 10, 96.

BAKER, T.. GILL. J.. AND SOLAVAY, R. (1975). Relativizations of the P = NP question, SIAM
J. Compuf. 4 (1975), 431.

76 MARTIN DOWD

BLUM, M.. AND IMPAGLIAZZO, R. (1987). Generic oracles and oracle classes, in “Proc. 19th
Symp. FOCS,” pp. 11 g-126.

CHAITIN, G. (1969) On the length of programs for computing finite binary sequences,
J. Assoc. Compul. Mach. 16, 145.

CHAITIN, G. (1975), A theory of program size formally identical to information theory,
J. Assoc. Comput. Mach. 22. 329.

DAVIS, M. (1973), Hilbert’s tenth problem is undecidable, Ann. of Math. 80, 233.
DOWD, M. (1982), “Forcing and the P Hierarchy,” Rutgers University Laboratory for

Computer Science Research Technical Report No. LCSR-TR-35.
FEFERMAN, S. (1965). Some applications of the notion of forcing and generic sets, Fund. Mafh.

56, 325.
HINMAN (1969), Some applications of forcing to hierarchy problems in arithmetic, Z. Math.

Logik Grundlag. Math. 15, 341.
KANNAN, R. (1981), A circuit size lower bound, in “Proc. 22nd FOCS.” pp. 304309.
LYNCH, N. (1977), Log space representation and translation of parenthesis languages,

J. Assoc. Comput. Mach. 24, 583.
MEHLHORN, K. (1973), On the size of computable functions, in “Proc. 14th IEEE Svmp.

Switching and Automata Theory,” pp. 19&196.
PIPPINGER. N., AND FISCHER, M. J. (1979), Relations between complexity measures, J. Assoc.

Comput. Mach. 26, 361.
POIZAT, B. (1986), Q = NQ?. J. Symbolic Logic 51, 22.
&CAN, K. (1984), personal communication.
ROGERS, H. JR. (1967), “Theory of Recursive Functions and Effective Computability,”

McGraw-Hill, New York.
WEISS, M. (1980). “Arithmetic with a Distinguished Predicate: Diophantine Relations

and Existentially Complete Models,” Ph.D. thesis, Mathematics Department,
Rutgers University.

