140 research outputs found

    2048 is (PSPACE) Hard, but Sometimes Easy

    Full text link
    We prove that a variant of 2048, a popular online puzzle game, is PSPACE-Complete. Our hardness result holds for a version of the problem where the player has oracle access to the computer player's moves. Specifically, we show that for an n×nn \times n game board G\mathcal{G}, computing a sequence of moves to reach a particular configuration C\mathbb{C} from an initial configuration C0\mathbb{C}_0 is PSPACE-Complete. Our reduction is from Nondeterministic Constraint Logic (NCL). We also show that determining whether or not there exists a fixed sequence of moves S{,,,}k\mathcal{S} \in \{\Uparrow, \Downarrow, \Leftarrow, \Rightarrow\}^k of length kk that results in a winning configuration for an n×nn \times n game board is fixed-parameter tractable (FPT). We describe an algorithm to solve this problem in O(4kn2)O(4^k n^2) time.Comment: 13 pages, 11 figure

    Multicontrol Turing machines

    Get PDF

    The subpower membership problem for semigroups

    Full text link
    Fix a finite semigroup SS and let a1,,ak,ba_1,\ldots,a_k, b be tuples in a direct power SnS^n. The subpower membership problem (SMP) asks whether bb can be generated by a1,,aka_1,\ldots,a_k. If SS is a finite group, then there is a folklore algorithm that decides this problem in time polynomial in nknk. For semigroups this problem always lies in PSPACE. We show that the SMP for a full transformation semigroup on 3 letters or more is actually PSPACE-complete, while on 2 letters it is in P. For commutative semigroups, we provide a dichotomy result: if a commutative semigroup SS embeds into a direct product of a Clifford semigroup and a nilpotent semigroup, then SMP(S) is in P; otherwise it is NP-complete

    Efficient Algorithms for Membership in Boolean Hierarchies of Regular Languages

    Get PDF
    The purpose of this paper is to provide efficient algorithms that decide membership for classes of several Boolean hierarchies for which efficiency (or even decidability) were previously not known. We develop new forbidden-chain characterizations for the single levels of these hierarchies and obtain the following results: - The classes of the Boolean hierarchy over level Σ1\Sigma_1 of the dot-depth hierarchy are decidable in NLNL (previously only the decidability was known). The same remains true if predicates mod dd for fixed dd are allowed. - If modular predicates for arbitrary dd are allowed, then the classes of the Boolean hierarchy over level Σ1\Sigma_1 are decidable. - For the restricted case of a two-letter alphabet, the classes of the Boolean hierarchy over level Σ2\Sigma_2 of the Straubing-Th\'erien hierarchy are decidable in NLNL. This is the first decidability result for this hierarchy. - The membership problems for all mentioned Boolean-hierarchy classes are logspace many-one hard for NLNL. - The membership problems for quasi-aperiodic languages and for dd-quasi-aperiodic languages are logspace many-one complete for PSPACEPSPACE

    Trading Determinism for Time in Space Bounded Computations

    Get PDF
    Savitch showed in 19701970 that nondeterministic logspace (NL) is contained in deterministic O(log2n)\mathcal{O}(\log^2 n) space but his algorithm requires quasipolynomial time. The question whether we can have a deterministic algorithm for every problem in NL that requires polylogarithmic space and simultaneously runs in polynomial time was left open. In this paper we give a partial solution to this problem and show that for every language in NL there exists an unambiguous nondeterministic algorithm that requires O(log2n)\mathcal{O}(\log^2 n) space and simultaneously runs in polynomial time.Comment: Accepted in MFCS 201

    Reconfiguration in bounded bandwidth and treedepth

    Full text link
    We show that several reconfiguration problems known to be PSPACE-complete remain so even when limited to graphs of bounded bandwidth. The essential step is noticing the similarity to very limited string rewriting systems, whose ability to directly simulate Turing Machines is classically known. This resolves a question posed open in [Bonsma P., 2012]. On the other hand, we show that a large class of reconfiguration problems becomes tractable on graphs of bounded treedepth, and that this result is in some sense tight.Comment: 14 page
    corecore