research

2048 is (PSPACE) Hard, but Sometimes Easy

Abstract

We prove that a variant of 2048, a popular online puzzle game, is PSPACE-Complete. Our hardness result holds for a version of the problem where the player has oracle access to the computer player's moves. Specifically, we show that for an n×nn \times n game board G\mathcal{G}, computing a sequence of moves to reach a particular configuration C\mathbb{C} from an initial configuration C0\mathbb{C}_0 is PSPACE-Complete. Our reduction is from Nondeterministic Constraint Logic (NCL). We also show that determining whether or not there exists a fixed sequence of moves S{,,,}k\mathcal{S} \in \{\Uparrow, \Downarrow, \Leftarrow, \Rightarrow\}^k of length kk that results in a winning configuration for an n×nn \times n game board is fixed-parameter tractable (FPT). We describe an algorithm to solve this problem in O(4kn2)O(4^k n^2) time.Comment: 13 pages, 11 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions