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Abstract
Savitch showed in 1970 that nondeterministic logspace (NL) is contained in deterministicO(log2 n)
space but his algorithm requires quasipolynomial time. The question whether we can have a
deterministic algorithm for every problem in NL that requires polylogarithmic space and simul-
taneously runs in polynomial time was left open.

In this paper we give a partial solution to this problem and show that for every language in
NL there exists an unambiguous nondeterministic algorithm that requires O(log2 n) space and
simultaneously runs in polynomial time.
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1 Introduction

Deciding reachability between a pair of vertices in a graph is an important computational
problem from the perspective of space bounded computations. It is well known that reachab-
ility in directed graphs characterizes the complexity class nondeterministic logspace (NL).
For undirected graphs the problem was known to be hard for the class deterministic logspace
(L) and in a breakthrough result Reingold showed that is contained in L as well [20]. Several
other restrictions of the reachability problem are known to characterize other variants of
space bounded complexity classes [12, 5, 6].

Unambiguous computations are a restriction of general nondeterministic computations
where the Turing machine has at most one accepting computation path on every input. In
the space bounded domain, unambiguous logspace (in short UL) is the class of languages for
which there is a nondeterministic logspace bounded machine that has a unique accepting
path for every input in the language and zero accepting path otherwise. UL was first formally
defined and studied in [8, 2]. In 2000 Reinhardt and Allender showed that the class NL
is contained in a non-uniform version of UL [21]. In a subsequent work it was shown that
under the hardness assumption that deterministic linear space has functions that cannot be
computed by circuits of size 2εn, it can be shown that NL = UL [1]. Although it is widely
believed that NL and UL are the same unconditionally and in a uniform setting, the question
still remains open.
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10:2 Trading Determinism for Time in Space Bounded Computations

Savitch’s Theorem states that reachability in directed graphs is in DSPACE(log2 n),
however the algorithm requires quasipolynomial time [22]. On the other hand standard
graph traversal algorithms such as DFS and BFS can decide reachability in polynomial time
(in fact linear time) but require linear space. Wigderson asked the question that can we
solve reachability in O(n1−ε) space and polynomial time simultaneously, for some ε > 0 [26].
Barnes et. al. gave a partial answer to this question by giving a O(n/2

√
logn) space and

polynomial time algorithm for the problem [4]. Although this bound has been improved
for several subclasses such as planar graphs [16], layered planar graphs [10], minor-free and
bounded genus graphs [9], for general directed graphs (and hence for the class NL) we still
do not have a better deterministic space upper bound simultaneously with polynomial time.

1.1 Main Result
In this paper we show that directed graph reachability can be decided by an unambiguous
O(log2 n) space algorithm that simultaneously requires only polynomial time. Thus we get
an improvement in the time required by Savitch’s algorithm by sacrificing determinism.
Formally, we show the following theorem.

I Theorem 1. NL ⊆ poly−USPACE(log2 n).

For the remainder of this paper all graphs that we consider are directed graphs unless stated
otherwise.

1.2 Min-uniqueness of Graphs
An important ingredient of our proof is the min-uniqueness property of graphs. A graph G
is said to be min-unique with respect to an edge weight function W if the minimum weight
path between every pair of vertices in G is unique with respect to W . This turns out to
be an important property and has been studied in earlier papers [27, 15, 21]. In fact, the
fundamental component of Reinhardt and Allender’s paper is a UL algorithm for testing
whether a graph is min-unique and then deciding reachability in min-unique graphs in UL
[21]. They achieve this by proposing a double inductive counting technique which is a clever
adaptation of the inductive counting technique of Immerman and Szelepcsényi [17, 23]. As a
result of Reinhardt and Allender’s algorithm, in order to show that reachability in a class of
graphs can be decided in UL, one only needs to design an efficient algorithm which takes as
input a graph from this class and outputs an O(logn) bit weight function with respect to
which the graph is min-unique. This technique was successfully used to show a UL upper
bound on the reachability problem in several natural subclasses of general graphs such as
planar graphs [7], graphs with polynomially many paths from the start vertex to every other
vertex [19], bounded genus graphs [11] and minor-free graphs [3]. For the latter two classes
of graphs reachability was shown to be in UL earlier as well by giving reductions to planar
graphs [18, 24]. Note that Reinhardt and Allender defines min-uniqueness for unweighted
graphs where the minimum length path is unique, whereas we define it for weighted graphs
where the minimum weight path is unique. However it can easily be seen that both these
notions are equivalent.

1.3 Overview of the Proof
We prove Theorem 1 in two parts. We first show how to construct an O(log2 n) bit weight
function W with respect to which the input graph G becomes min-unique. Our construction
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of the weight function W uses an iterative process to assign weights to the edges of G. We
start by considering a subgraph of G having a fixed radius and construct an O(logn) bit
weight function with respect to which this subgraph becomes min-unique. For this we first
observe that there are polynomially many paths in such a subgraph and then use the prime
based hashing scheme of Fredman, Komlós and Szemerédi [14] to give distinct weights to all
such paths. Thereafter, in each successive round of the algorithm, we construct a new weight
function with respect to which a subgraph of double the radius of the previous round becomes
min-unique and the new weight function has an additional O(logn) bits. Hence in O(logn)
many rounds we get a weight function which has O(log2 n) bits and with respect to which G
is min-unique. We show that this can be done by an unambiguous, polynomial time algorithm
using O(log2 n) space. This technique is similar to the isolating weight construction in [13],
but their construction is in quasi−NC.

We then show that given a graph G and an O(log2 n) bit weight function with respect to
which G is min-unique, reachability in G can be decided by an unambiguous, polynomial
time algorithm using O(log2 n) space. Note that a straightforward application of Reinhardt
and Allender’s algorithm will not give the desired bound. This is because “unfolding” a
graph with O(log2 n) bit weights will result in a quasipolynomially large graph. As a result
we will not achieve a polynomial time bound. We tackle this problem by first observing
that although there are 2O(log2 n) many different weight values, the weight of a shortest path
can only use polynomial number of distinct such values. Using this observation we give a
modified version of Reinhardt and Allender’s algorithm that iterates over the “good” weight
values and ignores the rest. This allows us to give a polynomial time bound.

The rest of the paper is organized as follows. In Section 2 we define the various notations
and terminologies used in this paper. We also state prior results that we use in this paper.
In Section 3 we give the proof of Theorem 1.

2 Preliminaries

For a positive integer n, let [n] = {1, 2, . . . , n}. Let G = (V,E) be a directed graph on n
vertices and let E = {e1, e2, . . . , em} be the set of edges in G. Let s and t be two fixed
vertices in G. We wish to decide whether there exists a path from s to t in G. The length of
a path P is the number of edges in P and is denoted as len(P ). The center of a path P is a
vertex x in P such that the length of the path from either end point of P to x is at most
dlen(P )/2e and x is no farther from the tail of P than from the head of P .

A weight function w : E → N is a function which assigns a positive integer to every edge
in G. The weight function w is said to be polynomially bounded if there exists a constant k
such that w(e) ≤ O(nk) for every edge e in G. We use Gw to denote the weighted graph G
with respect to a weight function w. For a graph Gw, the weight of a path P denoted by
w(P ) is defined as the sum of weights of the edges in the path. A shortest path from u to v
in Gw is a path from u to v with minimum weight. Let Piw(u, v) denote the set of shortest
paths from u to v of length at most i in Gw. Thus in particular, the set of shortest paths
from u to v in Gw, Pw(u, v) = Pnw(u, v).

We define the distance function with respect to a weight function and a nonnegative
integer i as

distiw(u, v) =
{
w(P ) for P ∈ Piw(u, v)
∞ if Piw(u, v) = ∅

Correspondingly we define the function l which represents the minimum length of such
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10:4 Trading Determinism for Time in Space Bounded Computations

paths as

liw(u, v) =
{

minP∈Pi
w(u,v){len(P )} if Piw(u, v) 6= ∅

∞ otherwise

A graph Gw is said to be min-unique for paths of length at most i, if for any pair of
vertices u and v, the shortest path from u to v with length at most i, is unique. Gw is said
to be min-unique if Gw is min unique for paths of arbitrary length. Define weight function

w0(ei) := 2i−1, where i ∈ [m].

It is straightforward to see that for any graph G, w0 is an n bit weight function and Gw0 is
min-unique. Wherever it is clear from the context that there is only one weight function w,
we will drop the subscript w in our notations.

For a graph Gw, vertex u in G, length i and weight value k, we define the quantities cik(u)
and Di

k(u) as the number of vertices at a distance at most k from u, using paths of length at
most i and the sum of the distances to all such vertices respectively. Formally,

cik(u) = |{v | distiw(u, v) ≤ k}|

Di
k(u) =

∑
v|disti

w(u,v)≤k

distiw(u, v).

An unambiguous Turing machine is a nondeterministic Turing machine that has at
most one accepting computation path on every input [25]. We shall consider unambiguous
computations in the context of space bounded computations. USPACE(s(n)) denotes the
class of languages decided by an unambiguous machine using O(s(n)) space. In particular,
UL = USPACE(logn). TIME−USPACE(t(n), s(n)) denotes the class of languages decided by
an unambiguous machine using O(s(n)) space and O(t(n)) time simultaneously. In particular,
when t(n) is a polynomial, we define

poly−USPACE(s(n)) =
⋃
k≥0

TIME−USPACE(nk, s(n)).

For graphs having polynomially many paths, we use the well known hashing technique
due to Fredman, Komlós and Szemerédi [14] to compute a weight function that assigns
distinct weights to all such paths. We state the result below in a form that will be useful for
our purpose.

I Theorem 2. [14, 19] For every constant c there is a constant c′ so that for every set
S of n bit integers with |S| ≤ nc there is a c′ logn bit prime number p so that for all
x 6= y ∈ S, x 6≡ y mod p.

Henceforth we will refer to Theorem 2 as the FKS hashing lemma.

3 Min-unique Weight Assignment

Reinhardt and Allender [21] showed that for every n there is a sequence of n2 O(logn) bit
weight functions such that every graph G on n vertices is min-unique with respect to at
least one of them. For each weight function they construct an unweighted graph (say Gw)
by replacing every edge with a path of length equal to the weight of that edge. Since the
weights are O(logn) bit values therefore Gw is polynomially large in n. Next they show



V. Kallampally and R. Tewari 10:5

Algorithm 1: Computes a min-unique weight function and checks for an s− t path in
G

Input: (G, s, t)
Output: weight function W := Wq, true if there is a path from s to t and false

otherwise
1 begin
2 q := logn; W0 := 0
3 for j ← 1 to q do
4 i := 2j ; p := 2
5 repeat

/* By the FKS hashing lemma p is bounded by a polynomial in n,
say nc

′
. We define B := nc

′+2. */
6 Wj := B ·Wj−1 + (w0 mod p)
7 Check whether (G,Wj , i) is min-unique using Algorithm 2
8 p := next prime
9 until (G,Wj , i) is min-unique

10 endfor
11 if distnWq

(s, t) ≤ Bq then return (Wq, true)
12 else return (Wq, false)
13 end

that using the double inductive counting technique one can check unambiguously using a
logspace algorithm if Gw is min-unique, and if so then check if there is a path from s to t
as well. They iterate over all weight functions until they obtain one with respect to which
Gw is min-unique and use the corresponding graph Gw to check reachability. Since we use
an O(log2 n) bit weight function with respect to which the input graph is min-unique, we
cannot construct an unweighted graph by replacing every edge with a directed path of length
equal to the corresponding edge weight.

In Section 3.1 we give an algorithm that computes an O(log2 n) bit, min-unique weight
function and decides reachability in directed graphs. In Section 3.2 we check if a graph is min-
unique. Although we use ω(logn) bit weight functions, our algorithm still runs in polynomial
time. In Section 3.3 we show how to compute the distiw(u, v) function unambiguously.

3.1 Construction of the weight function
Theorem 3 shows how to construct the desired weight function.

I Theorem 3. There is a nondeterministic algorithm that takes as input a directed graph G
and outputs along a unique computation path, an O(log2 n) bit weight function W such that
GW is min-unique, while all other computation paths halt and reject. For any two vertices s
and t the algorithm also checks whether there is a path from s to t in G. The algorithm uses
O(log2 n) space and runs in polynomial time.

Since directed graph reachability is complete for NL, Theorem 1 follows from Theorem 3.

Proof of Theorem 3. To prove Theorem 3 we design an algorithm that outputs the desired
weight function. The formal description of the construction is given in Algorithm 1. The
algorithm works in an iterative manner for logn number of rounds. Initially we consider all
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10:6 Trading Determinism for Time in Space Bounded Computations

paths in G of length at most l where l = 21. The number of such paths is bounded by nl
and therefore by the FKS hashing lemma there exist a c′ logn bit prime p1 such that with
respect to the weight function W1 := w0 mod p1, Gw1 is min-unique for paths of length at
most l. To find the right prime p1 we iterate over all c′ logn bit primes and use Lemma 7 to
check whether Gw1 is min-unique for paths of length at most l.

We prove this by induction on the number of rounds, say j. Assume that GWj−1 is
min-unique for paths of length at most 2j−1. In the j-th round, the algorithm considers all
paths of length at most 2j . By applying Lemma 4 we get a weight function Wj from Wj−1
which uses O(j · logn) bits and GWj

is min-unique for paths of length at most 2j . Hence in
logn many rounds we get a weight function W := Wlogn such that GW is min-unique. Note
that the inner repeat-until loop runs for at most nc′ iterations due to the FKS hashing
lemma.

Let pj be the prime used in the j-th round of Algorithm 1. Define p′ := max{pj | j ∈
[logn]}. By the FKS hashing lemma p′ is bounded by a polynomial in n, say nc′ . We set
B := nc

′+2. This implies that for any weight function of the form w = w0 mod pj and any
path P in G, w(P ) < B. Observe that with respect to the final weight function W , for any
path P in G, W (P ) < Bq.

Once we compute an O(log2 n) bit weight function W such that GW is min-unique, there
exist a path from s to t if and only if distnW (s, t) ≤ Bq. This can be checked using Algorithm
5 in O(log2 n) space and polynomial time. Also Algorithm 5 is a nondeterministic algorithm
which returns true or false along a unique computation path while all other computation
paths halt and reject.

In each round the size of Wj increases by O(logn) bits and after logn rounds Wlogn is
an O(log2 n) bit weight function. By Lemma 7 checking whether a graph is min-unique with
respect to an O(log2 n) bit weight function requires O(log2 n) space. Thus the total space
complexity of Algorithm 1 is O(log2 n).

The FKS hashing lemma guarantees that in each round only a polynomial number of
primes need to be tested to find a weight function which is min-unique for paths of length at
most 2j . By Lemma 7 checking whether a graph is min-unique for paths of length at most
2j can be done in polynomial time. Thus each round runs in polynomial time. There are
only logn many round and hence Algorithm 1 runs in polynomial time.

By Lemma 7, Algorithm 2 is a nondeterministic algorithm which outputs its answer
along a unique computation path, while all other computation paths halt and reject. All
other steps in Algorithm 1 are deterministic. This shows the unambiguity requirement of the
theorem. J

I Lemma 4. There is a nondeterministic algorithm A, that takes as inputs (G,w) where
G is a graph on n vertices and w is a k bit weight function such that Gw is min-unique for
paths of length at most l. A outputs a (k +O(logn)) bit weight function w′ such that Gw′ is
min-unique for paths of length at most 2l, along a unique computation path while all other
computation paths halt and reject. A uses O(k + O(logn)) space and runs in polynomial
time.

I Remark. The encoding of the output weight function w′ is the concatenation of the k bit
representation of the input weight function w and an O(logn) bit prime number p. The
output weight function w′ is calculated as w′ := B · w + w0 mod p, where B is the number
defined in Algorithm 1. Multiplication using B is used just to left shift w and make room
for the new function w0 mod p.
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Lemma 4 proves the correctness of each iteration of the outer for loop of Algorithm 1.
Before proving the lemma, we will show that if Gw is min-unique for paths of length at
most l, then the number of minimum weight paths with respect to w of length at most 2l
is bounded by a polynomial independent of l. Hence it allows us to use the FKS hashing
lemma to isolate such paths.

I Lemma 5. Let G be a graph with n vertices and w be a weight function such the graph Gw
is min-unique for paths of length at most l. Then for any pair of vertices u and v,

∣∣P2l
w (u, v)

∣∣
is at most n.

Proof. Let P be a shortest path from u to v in Gw with length at most 2l with center vertex
x. That is P ∈ P2l

w (u, v). Let P1 and P2 be the subpaths from u to x and x to v. Since x is
the center of P , P1 has length at most l. Note that P1 is the unique shortest path of length
at most l from u to x in Gw. This is because if there exists another path of length at most l
with a smaller weight than P1 from u to x then replacing P1 with this path in P will result
in a path of length at most 2l from u to v with a lower weight than P . But this cannot
happen since P is a shortest path from u to v.

I Claim 6. There is only one shortest path of length at most 2l from u to v with x as its
center.

Proof. Assume there is another shortest path P ′ of length at most 2l from u to v with x
as its center. Let P ′1 be the subpath of P ′ from u to x. Since x is the center of P ′, P ′1 is of
length at most l. Similar to P1, P ′1 is a shortest path of length at most l from u to x. This
means there are two shortest paths of length at most l from u to x. This is a contradiction
since G is min-unique for paths of length at most l. J

Therefore each vertex can be the center of at most one path of length at most 2l from u to v.
Thus the total number of shortest paths of length at most 2l from u to v in Gw is at most n.
Hence

∣∣P2l
w (u, v)

∣∣ ≤ n. This completes the proof of Lemma 5. J

When we sum over all possible pairs of u and v, the total number of shortest paths of length
at most 2l in Gw is at most n3.

Proof of Lemma 4. Gw is min-unique for paths of length at most l. Therefore by Lemma 5
the number of shortest paths between all pairs of vertices with at most 2l edges in G is at
most n3. Let S be the set of these n3 shortest paths. With respect to the weight function w0
(see Section 2) each element of S gets a distinct weight. So by using the FKS hashing lemma
we get a constant c′ and a c′ logn bit prime number p such that with respect to the weight
function ŵ such that ŵ := w0 mod p, each element of S gets a distinct weight. Moreover, in
G between any pair of vertices the shortest path in S is unique.

Let B be the number as defined in Algorithm 1. Now consider the weight function
w′ := B · w + ŵ. Since w is a k bit weight function and ŵ is an O(logn) bit weight
function therefore w′ is a (k+O(logn)) bit weight function. Clearly w has higher precedence
than ŵ in w′. So for any two paths P1 and P2 in G , we have if w′(P1) < w′(P2) then
either w(P1) < w(P2) or both the predicates w(P1) = w(P2) and ŵ(P1) < ŵ(P2) are true.
Additionally if w′(P1) = w′(P2) then w(P1) = w(P2) and ŵ(P1) = ŵ(P2).

All the unique shortest paths of length at most 2l in Gw, will be unique shortest paths
of length at most 2l in Gw′ also. If there are multiple shortest paths of length at most 2l
from u to v in Gw, ŵ gives a unique weight to each of these paths. So Gw′ is min-unique for
paths of length at most 2l.
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10:8 Trading Determinism for Time in Space Bounded Computations

Algorithm 2: Check whether G is min-unique for paths of length at most i
Input: (G,w, i)
Output: true if Gw is not min-unique for paths of length at most i and false otherwise

1 begin
2 BAD.WEIGHT := false

/* BAD.WEIGHT is set to true whenever the weight function does not
make the graph min-unique. Otherwise it remains false. It is a
boolean variable shared between Algorithms 4 and 2 */

3 for each vertex v do
4 ci0(v) := 1; Di

0(v) := 0; k′ := 0
5 repeat
6 k := k′; cik(v) := cik′(v); Di

k(v) := Di
k′(v)

7 Find next k′ from (G,w, v, i, k, cik(v), Di
k(v)) using Algorithm 3

8 if k′ =∞ then break
9 Compute (cik′(v), Di

k′(v)) from (G,w, v, i, k, cik(v), Di
k(v), k′) using

Algorithm 4
10 until BAD.WEIGHT = true
11 if BAD.WEIGHT = true then break
12 endfor
13 return BAD.WEIGHT
14 end

We can check whether a graph Gw′ is min-unique for paths of length at most 2l using
Lemma 7. Since p is an c′ logn bit prime number, we can iterate over all the c′ logn bit
primes and find p. J

3.2 Checking for min-uniqueness
The next lemma shows how to check whether Gw is min-unique for paths of length at most l
in an unambiguous manner.

I Lemma 7. There is a nondeterministic algorithm that takes as input a directed graph G, a
k bit weight function w and a length i and outputs along a unique computation path whether
or not the graph Gw is min-unique for paths of length at most i, while all other computation
paths halt and reject. The algorithm uses O(k + logn) space and runs in polynomial time.

For every vertex v in the Gw we check whether there are two minimum weight paths of
length at most i to some other vertex in G. Algorithm 2 gives a formal description of this
process. The algorithm iterates over all shortest path weight values that can be achieved by
some path of length at most i.

In the k-th stage of the algorithm it considers a ball of radius k consisting of vertices
which have a shortest path of weight at most k from v and length at most i. cik(v) denotes
the number of vertices in this ball and Di

k(v) denotes the sum of the weights of the shortest
paths to all such vertices. Initially k = 0, ci0(v) = 1 (consisting of only the vertex v) and
Di

0(v) = 0.
A direct implementation of the double inductive counting technique of Reinhardt and

Allender [21] does not work since this would imply that we cycle over all possible weight
values, which we cannot afford. We bypass this hurdle by considering only the relevant
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Algorithm 3: Find the next smallest weight value k′ > k among all paths of length at
most i from u

Input: (G,w, u, i, k, cik(u), Di
k(u))

Output: k′ := min{distiw(u, v) | distiw(u, v) > k, v ∈ V }
1 begin
2 k′ :=∞
3 for each vertex v do
4 if ¬(distiw(u, v) ≤ k) then
5 min.distiw(u, v) :=∞
6 for each x such that (x, v) is an edge do
7 if distiw(u, x) ≤ k and liw(u, x) + 1 ≤ i then
8 if min.distiw(u, v) > distiw(u, x) + w(x, v) then
9 min.distiw(u, v) := distiw(u, x) + w(x, v)

10 endif
11 endif
12 endfor
13 if k′ > min.distiw(u, v) then k′ := min.distiw(u, v)
14 endif
15 endfor
16 return k′

17 end

weight values. We compute the immediate next shortest path weight value k′, and use k′
as the weight value for the next stage of the algorithm. This computation is implemented
in Algorithm 3). Lemma 8 proves the correctness of this process. Note that the number
of shortest path weight values from a fixed vertex is bounded by the number of vertices
in the graph. This ensure that the number of iterations of the inner repeat-until loop of
Algorithm 2 is bounded by n.

I Lemma 8. Given (G,w, u, i, k, cik(u), Di
k(u)), Algorithm 3 correctly computes the value

min{distiw(u, v) | distiw(u, v) > k, v ∈ V }.

To see the correctness of Lemma 8 observe that for every vertex v such that distiw(u, v) > k,
the algorithm cycles through all vertices x such that there is an edge from x to v and the
length of the path from u to x is at most i− 1. It computes the minimum weight of such a
path and store it in the variable min.distiw(u, v). It then computes the minimum value of
min.distiw(u, v) over all possible vertices v and outputs it as k′, as required.

After we get the appropriate weight value k′, we then compute the values of cik′(v) and
Di
k′(v) by using a technique similar to Reinhardt and Allender (implemented in Algorithm 4).

Additionally we also maintain a shared flag value BAD.WEIGHT between Algorithms 2 and
4, which is set to true if Gw is not min-unique for paths of length at most i, else it is false.

3.3 Computing the disti
w(u, v) function

In Algorithms 3 and 4, an important step is to check whether distiw(u, v) ≤ k and if so,
get the values of distiw(u, v) and liw(u, v). These values are obtained from Algorithm 5.
Algorithm 5 describes a nondeterministic procedure that takes as input a weighted graph
Gw, which is min-unique for paths of length at most i and weight at most k from a source
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Algorithm 4: Compute cik′(u) and Di
k′(u) and check whether Gw is min-unique for

paths with length at most i and weight at most k′ from u

Input: (G,w, u, i, k, cik(u), Di
k(u), k′)

Output: (cik′(u), Di
k′(u)) and also flag BAD.WEIGHT

1 begin
2 cik′(u) := cik(u); Di

k′(u) := Di
k(u)

3 for each vertex v do
4 if ¬(distiw(u, v) ≤ k) then
5 for each x such that (x, v) is an edge do
6 if distiw(u, x) ≤ k and distiw(u, x) + w(x, v) = k′ and liw(u, x) + 1 ≤ i

then
7 cik′(u) := cik′(u) + 1; Di

k′(u) := Di
k′(u) + k′

8 for each x′ 6= x such that (x′, v) is an edge do
9 if distiw(u, x′) ≤ k and distiw(u, x′) + w(x′, v) = k′ and

liw(u, x′) + 1 ≤ i then
10 BAD.WEIGHT := true
11 endif
12 endfor
13 endif
14 endfor
15 endif
16 endfor
17 return (cik′(u), Di

k′(u))
18 end

vertex u and the values cik(u) and Di
k(u). For any vertex v, if distiw(u, v) ≤ k then it outputs

true and the values of distiw(u, v) and liw(u, v) along a unique computation path. Otherwise
it outputs false along a unique computation path with ∞ as the values of distiw(u, v) and
liw(u, v). All other computation paths halt and reject. As a result we can compute the
predicate ¬(distiw(u, v) ≤ k) along a unique path as well.

Note that Algorithm 5 is the only algorithm where we use non-determinism. The
algorithm is similar to the unambiguous subroutine of Reinhardt and Allender [21] with the
only difference being that here we consider weight of a path instead of length of a path. The
algorithm assumes that the subgraph induced by all the paths of length at most i and weight
at most k from u is min-unique.

In Line 5 of Algorithm 5, for each vertex x the routine non-deterministically guesses
whether distiw(u, x) ≤ k and if the guess is ‘true’, it then guesses a path of length at most
k from u to x. If the algorithm incorrectly guesses for some vertex x that distiw(u, x) > k,
then the variable count will never reach cik(u) and the routine will reject. If it guesses
incorrectly that distiw(u, x) ≤ k it will fail to guess a correct path in Line 7 and again reject
that computation. Thus the only computation paths that exit the for loop in Line 16 and
satisfy the first condition of the if statement in Line 17, are the ones that correctly guess
exactly the set {x | distiw(u, x) ≤ k}. If the algorithm ever guesses incorrectly the weight d
of the shortest path to x, then if distiw(u, x) > d no path of weight d will be found, and if
distiw(u, x) < d then the variable sum will be incremented by a value greater than distiw(u, x).
In the latter case, at the end of the algorithm, sum will be greater than Di

k(u), and the
routine will reject.
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Algorithm 5: An unambiguous routine to determine if distiw(u, v) ≤ k and find
distiw(u, v) and liw(u, v)

Input: (G,w, u, i, k, cik(u), Di
k(u), v)

Output: (true or false), distiw(u, v), liw(u, v)
1 begin
2 count := 0; sum := 0; path.to.v := false
3 distiw(u, v) :=∞; liw(u, v) :=∞
4 for each x ∈ V do
5 Guess non deterministically if distiw(u, x) ≤ k in Gw
6 if the guess is distiw(u, x) ≤ k then
7 Guess a path of weight d ≤ k and length l ≤ i from u to x
8 (If this fails then halt and reject)
9 count := count+ 1; sum := sum+ d

10 if x = v then
11 path.to.v := true
12 distiw(u, v) := d

13 liw(u, v) := l

14 endif
15 endif
16 endfor
17 if count = cik(u) and sum = Di

k(u) then
18 return (path.to.v, distiw(u, v), liw(u, v))
19 else
20 halt and reject
21 endif
22 end

Since Gw is min-unique for paths of length at most i and weight at most k from u, only
for exactly one computation path sum and count will match with cik(u) and Di

k(u). So
except one computation path which made all the guesses correct, all other paths halt and
reject. If distiw(u, v) ≤ k then even though the algorithm uses non-deterministic choices, it
outputs ‘true’ along a single computation path while all other paths halt and reject. Also if
distiw(u, v) > k, the algorithm outputs ‘false’ along a single computation path while all other
paths halt and reject. The space complexity of the algorithm is bounded by the size of the
weight function w.

As a corollary of Theorem 1 we get the following result.

I Corollary 9. For s(n) ≥ logn, NSPACE(s(n)) ⊆ TIME−USPACE(2O(s(n)), s2(n)).
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