21 research outputs found

    Arithmetic Circuits and the Hadamard Product of Polynomials

    Get PDF
    Motivated by the Hadamard product of matrices we define the Hadamard product of multivariate polynomials and study its arithmetic circuit and branching program complexity. We also give applications and connections to polynomial identity testing. Our main results are the following. 1. We show that noncommutative polynomial identity testing for algebraic branching programs over rationals is complete for the logspace counting class \ceql, and over fields of characteristic pp the problem is in \ModpL/\Poly. 2.We show an exponential lower bound for expressing the Raz-Yehudayoff polynomial as the Hadamard product of two monotone multilinear polynomials. In contrast the Permanent can be expressed as the Hadamard product of two monotone multilinear formulas of quadratic size.Comment: 20 page

    On the complexity of solving linear congruences and computing nullspaces modulo a constant

    Full text link
    We consider the problems of determining the feasibility of a linear congruence, producing a solution to a linear congruence, and finding a spanning set for the nullspace of an integer matrix, where each problem is considered modulo an arbitrary constant k>1. These problems are known to be complete for the logspace modular counting classes {Mod_k L} = {coMod_k L} in special case that k is prime (Buntrock et al, 1992). By considering variants of standard logspace function classes --- related to #L and functions computable by UL machines, but which only characterize the number of accepting paths modulo k --- we show that these problems of linear algebra are also complete for {coMod_k L} for any constant k>1. Our results are obtained by defining a class of functions FUL_k which are low for {Mod_k L} and {coMod_k L} for k>1, using ideas similar to those used in the case of k prime in (Buntrock et al, 1992) to show closure of Mod_k L under NC^1 reductions (including {Mod_k L} oracle reductions). In addition to the results above, we briefly consider the relationship of the class FUL_k for arbitrary moduli k to the class {F.coMod_k L} of functions whose output symbols are verifiable by {coMod_k L} algorithms; and consider what consequences such a comparison may have for oracle closure results of the form {Mod_k L}^{Mod_k L} = {Mod_k L} for composite k.Comment: 17 pages, one Appendix; minor corrections and revisions to presentation, new observations regarding the prospect of oracle closures. Comments welcom

    Some derivations among Logarithmic Space Bounded Counting Classes

    Full text link
    In this paper we show derivations among logarithmic space bounded counting classes based on closure properties of #L\#L that leads us to the result that NL=C=L⊆PLNL=C_=L\subseteq PL.Comment: 3 page

    Perturbation analysis in verification of discrete-time Markov chains

    Get PDF
    Perturbation analysis in probabilistic verification addresses the robustness and sensitivity problem for verification of stochastic models against qualitative and quantitative properties. We identify two types of perturbation bounds, namely non-asymptotic bounds and asymptotic bounds. Non-asymptotic bounds are exact, pointwise bounds that quantify the upper and lower bounds of the verification result subject to a given perturbation of the model, whereas asymptotic bounds are closed-form bounds that approximate non-asymptotic bounds by assuming that the given perturbation is sufficiently small. We perform perturbation analysis in the setting of Discrete-time Markov Chains. We consider three basic matrix norms to capture the perturbation distance, and focus on the computational aspect. Our main contributions include algorithms and tight complexity bounds for calculating both non-asymptotic bounds and asymptotic bounds with respect to the three perturbation distances. © 2014 Springer-Verlag

    Emptiness Problems for Integer Circuits

    Get PDF

    A Formal Theory for the Complexity Class Associated with the Stable Marriage Problem

    Get PDF
    Subramanian defined the complexity class CC as the set of problems log-space reducible to the comparator circuit value problem. He proved that several other problems are complete for CC, including the stable marriage problem, and finding the lexicographical first maximal matching in a bipartite graph. We suggest alternative definitions of CC based on different reducibilities and introduce a two-sorted theory VCC* based on one of them. We sharpen and simplify Subramanian\u27s completeness proofs for the above two problems and formalize them in VCC*

    Formal Theories for Linear Algebra

    Full text link
    We introduce two-sorted theories in the style of [CN10] for the complexity classes \oplusL and DET, whose complete problems include determinants over Z2 and Z, respectively. We then describe interpretations of Soltys' linear algebra theory LAp over arbitrary integral domains, into each of our new theories. The result shows equivalences of standard theorems of linear algebra over Z2 and Z can be proved in the corresponding theory, but leaves open the interesting question of whether the theorems themselves can be proved.Comment: This is a revised journal version of the paper "Formal Theories for Linear Algebra" (Computer Science Logic) for the journal Logical Methods in Computer Scienc
    corecore