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Abstract
Subramanian defined the complexity class CC as the set of problems log-space reducible to the
comparator circuit value problem. He proved that several other problems are complete for CC,
including the stable marriage problem, and finding the lexicographical first maximal matching in
a bipartite graph. We suggest alternative definitions of CC based on different reducibilities and in-
troduce a two-sorted theory VCC∗ based on one of them. We sharpen and simplify Subramanian’s
completeness proofs for the above two problems and formalize them in VCC∗.
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1 Introduction

Comparator networks were originally introduced as a method of sorting numbers (as in
Batcher’s even-odd merge sort [2]), but they are still interesting when the numbers are
restricted to the Boolean values {0, 1}. A comparator gate has two inputs p, q and two
outputs p′, q′, where p′ = min{p, q} and q′ = max{p, q}. In the Boolean case (which is the
one we consider) p′ = p ∧ q and q′ = p ∨ q. A comparator circuit (i.e. network) is presented
as a set of m horizontal lines in which the m inputs are presented at the left ends of the
lines and the m outputs are presented at the right ends of the lines, and in between there
is a sequence of comparator gates, each represented as a vertical arrow connecting some
wire wi with some wire wj as shown in Fig. 1. These arrows divide each wire into segments,
each of which gets a Boolean value. The values of wires wi and wj after the arrow are the
comparator outputs of the values of wires wi and wj right before the arrow, with the tip of
the arrow representing the maximum.

1 w0 • 0 • 0 0
1 w1 • 0 N 1
1 w2 1
0 w3 H 1 • 0
0 w4 H 1 1
0 w5 H 0 0

Figure 1

The comparator circuit value problem (Ccv)
is: given a comparator circuit with specified
Boolean inputs, determine the output value of a
designated wire. To turn this into a complexity
class it seems natural to use a reducibility notion
that is weak but fairly robust. Thus we define
CC to consist of those problems (uniform) AC0

many-one-reducible to Ccv. However Subramanian [9] studied the complexity of Ccv using
a stronger notion of reducibility. Thus his class, which we denote CCSubr, consists of those
problems log-space (many-one)-reducible to Ccv. It turns out that a generalization of
AC0 many-one reducibility which we will call AC0 oracle reducibility (called simply AC0

reducibility in [3]), is also useful. Standard complexity classes such as AC0, L (log space), NL
(nondeterministic log space), NC, and P are all closed under this AC0 oracle reducibility. We
denote the closure of Ccv under this reducibility by CC∗.
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We will show that

NL ⊆ CC ⊆ CCSubr ⊆ CC∗ ⊆ P (1.1)

The last inclusion is obvious because Ccv is a special case of the monotone circuit value
problem, which is clearly in P. The inclusion CC ⊆ CCSubr follows because AC0 functions are
also log-space functions. The inclusion CCSubr ⊆ CC∗ follows from the first inclusion, which
in turn is a strengthening of a result in [6] (attributed to Feder) showing that NL ⊆ CCSubr.
Of course all three comparator classes coincide if it turns out that CC is closed under AC0

oracle reductions, but we do not know how to show this.
Note that comparator circuits are more restricted than monotone Boolean circuits because

each comparator output has fan-out one. This leads to the open question of whether CC∗ ( P.
A second open question is whether CC∗ and NC are incomparable. (Here NC is the class of
problems computed by uniform circuit families of polynomial size and polylog depth, and
satisfies NL ⊆ NC ⊆ P.) The answers could be different if we replaced CC∗ by CCSubr or CC,
although CC ⊆ NC iff CC∗ ⊆ NC because NC is closed under AC0 oracle reductions.

The above classes associated with Ccv are also interesting because they have several
disparate complete problems. As shown in [6, 9] both the lexicographical first maximal
matching problem (Lfmm) and the stable marriage problem (Sm) are complete for CCSubr

under log-space reductions1. The Sm problem is especially interesting: Introduced by Gale
and Shapley in 1962 [4], it has since been used to pair medical interns with hospital residencies
jobs in the USA. Sm can be stated as follows: Given n men and n women, each with a
complete ranking according to preference of all n members of the opposite sex, find a complete
matching of the men and women such that there are no two people of opposite sex who
would both rather have each other than their current partners. Gale and Shapley proved
that such a ‘stable’ matching always exists, although it may not be unique. Subramanian [9]
showed that Sm treated as a search problem (i.e. find any stable marriage) is complete for
CC under log-space reducibility.

Strangely the CC classes have received very little attention since Subramanian’s papers
[8, 9]. The present paper contributes to their complexity theory by sharpening these early
results and simplifying their proofs. For example we prove that the three problems Ccv,
Lfmm, and Sm are inter-reducible under AC0 many-one reductions as opposed to log-space
reductions. Also we introduce a three-valued logic version of Ccv to facilitate its reduction to
Sm. Our paper contributes to the proof complexity of the classes by introducing a two-sorted
formal theory VCC∗ which captures the class CC∗ and which can formalize the proofs of the
above results.

Our theory VCC∗ is a two-sorted theory developed in the way described in [3, Chapter
9]. In general this method associates a theory VC with a suitable complexity class C in
such a way that a function is in FC, the function class associated with C, if and only if it is
provably total in VC. (A string-valued function is in FC iff it is polynomially bounded and
its bit-graph is in C.) This poses a problem for us because the provably-total functions in
a theory are always closed under composition, but it is quite possible that neither of the
function classes FCC and FCCSubr is closed under composition. That is why we define the
class CC∗ to consist of the problems AC0-oracle-reducible (see Definition 3 below) to Ccv,
rather than the problems AC0 many-one reducible to Ccv, which comprise CC. It is easy to

1 The second author outlined a proof that Lfmm is complete under NC1 reductions in unpublished notes
from 1983.
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see that the functions in FCC∗ are closed under composition, and these are the functions
that are provably total in our theory VCC∗.

The above paragraph illustrates one way that studying proof complexity can contribute
to main-stream complexity theory, namely by mandating the introduction of the more robust
version CC∗ of CC and CCSubr. Another way is by using the simple two-sorted syntax of
our theories to demonstrate AC0 reductions. Thus Theorem 1 below states that a simple
syntactic class of formulas represents precisely the AC0 relations. In general it is much easier
to write down an appropriate such formula than to describe a uniform circuit family or
alternating Turing machine program.

Once we describe our theory VCC∗ in Sections 2.1 and 2.2, the technical part of our proofs
involve high-level descriptions of comparator circuits and algorithms. We do not say much
about formalizing the proofs in VCC∗ since this part is relatively straightforward.

2 Preliminaries

2.1 Two-sorted vocabularies
We use two-sorted vocabularies for our theories as described by Cook and Nguyen [3]. Two-
sorted languages have variables x, y, z, . . . ranging over N and variables X,Y, Z, . . . ranging
over finite subsets of N, interpreted as bit strings. Two sorted vocabulary L2

A includes the
usual symbols 0, 1,+, ·,=,≤ for arithmetic over N, the length function |X| for strings (|X|
is zero if X is empty, otherwise 1 + max(X)), the set membership relation ∈, and string
equality =2 (subscript 2 is usually omitted). We will use the notation X(t) for t ∈ X, and
think of X(t) as the tth bit in the string X.

The number terms in the base language L2
A are built from the constants 0, 1, variables

x, y, z, . . . and length terms |X| using + and ·. The only string terms are string variables,
but when we extend L2

A by adding string-valued functions, other string terms will be built as
usual. The atomic formulas are t = u, X = Y , t ≤ u, t ∈ X for any number terms x, y and
string variables X,Y . Formulas are built from atomic formulas using ∧,∨,¬ and ∃x, ∃X,
∀x, ∀X. Bounded number quantifiers are defined as usual, and bounded string quantifier
∃X ≤ t, ϕ stands for ∃X(|X| ≤ t ∧ ϕ) and ∀X ≤ t, ϕ stands for ∀X(|X| ≤ t→ ϕ), where X
does not appear in term t.

The class ΣB
0 consists of all L2

A-formulas with no string quantifiers and only bounded
number quantifiers. The class ΣB

1 consists of formulas of the form ∃ ~X < ~tϕ, where ϕ ∈ ΣB
0

and the prefix of the bounded quantifiers might be empty. These classes are extended to ΣB
i

(and ΠB
i ) for all i ≥ 0, in the usual way. More generally we write ΣB

i (L) to denote the class
of ΣB

i -formulas which may have function and predicate symbols from L ∪ L2
A.

Two-sorted complexity classes contain relations R(~x, ~X), where ~x are number arguments
and ~X are string arguments. In defining complexity classes using machines or circuits,
the number arguments are represented in unary notation and the string arguments are
represented in binary. The string arguments are the main inputs, and the number arguments
are auxiliary inputs that can be used to index the bits of strings.

In the two-sorted setting, we can define AC0 to be the class of relations R(~x, ~X) such
that some alternating Turing machine accepts R in time O(logn) with a constant number
of alternations. Then the descriptive complexity characterization of AC0 gives rise to the
following theorem [3, Chapter 4].

I Theorem 1. A relation R(~x, ~X) is in AC0 iff it is represented by some ΣB
0 -formula ϕ(~x, ~X).

CSL’11
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Given a class of relations C, we associate a class FC of string-valued functions F (~x, ~X)
and number functions f(~x, ~X) with C as follows. We require these functions to be p-bounded,
i.e., |F (~x, ~X)| and f(~x, ~X) are bounded by a polynomial in ~x and | ~X|. Then we define FC to
consist of all p-bounded number functions whose graphs are in C and all p-bounded string
functions whose bit graphs are in C.

I Definition 2. Let C be a complexity class. A relation R1(~x, ~X) is C-many-one-reducible
to a relation R2(~y, ~Y ) (written R1 ≤C

m R2) if there are functions ~f, ~F in FC such that

R1(~x, ~X)↔ R2(~f(~x, ~X), ~F (~x, ~X)).

A function H1(~x, ~X) is C-many-one-reducible to a function H2(~y, ~Y ) if there are functions
G, ~f, ~F in FC such that

H1(~x, ~X) = G(H2(~f(~x, ~X), ~F (~x, ~X))).

Here we are mainly interested in the cases that C is either AC0 or L (log space). We
also need a generalization of AC0 many-one reducibility called simply AC0 reducibility in [3,
Definition IX.1.1], which we will call AC0 oracle reducibility. Roughly speaking a function
or relation is AC0-oracle-reducible to a collection L of functions and relations if it can
be computed by a uniform polynomial size constant depth family of circuits which have
unbounded fan-in gates computing functions and relations from L (i.e. ‘oracle gates’), in
addition to Boolean gates. Formally:

I Definition 3. A string function F is AC0-oracle-reducible to a collection L of relations and
functions (written F ≤AC0

o L) if there is a sequence of string functions F1, . . . , Fn = F such
that each Fi is p-bounded and its bit graph is represented by a ΣB

0 (L, F1, . . . , Fi−1)-formula.
A number function f is AC0-oracle-reducible to L if f = |F | for some string function F

which is AC0-reducible to L. A relation R is AC0-oracle-reducible to L if its characteristic
function is AC0-oracle-reducible to L.

We note that standard small complexity classes including AC0, TC0, NC1, NL and P (as
well as their corresponding function classes) are closed under AC0 oracle reductions.

2.2 Two-sorted theories
The theory V0 for AC0 is the basis for developing theories for small complexity classes within
P in [3]. V0 has the vocabulary L2

A and is axiomatized by the set of 2-BASIC axioms, which
express basic properties of symbols in L2

A, together with the comprehension axiom schema

ΣB
0 -COMP : ∃X ≤ y ∀z < y

(
X(z)↔ ϕ(z)

)
,

where ϕ ∈ ΣB
0 (L2

A) and X does not occur free in ϕ. Although V0 has no explicit induction
axiom, nevertheless, using ΣB

0 -COMP and the fact that |X| produces the maximum element
of the finite set X, the following schemes are provable in V0 for every formula ϕ ∈ ΣB

0 (L2
A)

ΣB
0 -IND :

[
ϕ(0) ∧ ∀x

(
ϕ(x)→ ϕ(x+ 1)

)]
→ ∀xϕ(x),

ΣB
0 -MIN : ϕ(y)→ ∃x

(
ϕ(x) ∧ ¬∃z < xϕ(z)

)
.

In general, we say that a string function F (~x, ~X) is ΣB
1 -definable (or provably total) in a

two-sorted theory T if there is a ΣB
1 formula ϕ(~x, ~X, Y ) representing the graph Y = F (~x, ~X)

of F such that T ` ∀~x ∀ ~X∃!Y ϕ(~x, ~X, Y ). Similarly for a number function f(~x, ~X).
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It was shown in [3, Chapter 5] that V0 is finitely axiomatizable, and a function is provably
total in V0 if and only if it is in FAC0.

In [3, Chapter 9], Cook and Nguyen develop a general method for associating a theory
VC with certain complexity classes C ⊆ P, where VC extends V0 with an additional axiom
asserting the existence of a solution to a complete problem for C. In order for this method to
work, the class C must be closed under AC0-oracle-reducibility (Definition 3). The method
shows how to define a universal conservative extension VC of VC, where VC has string
function symbols for precisely the string functions of FC, and terms for precisely the number
functions of FC. Further, VC proves the ΣB

0 (L)-IND and ΣB
0 (L)-MIN schemes, where L

is the vocabulary of V C. It follows from the Herbrand Theorem that the provably total
functions of both VC and VC are precisely those in FC.

Using this framework Cook and Nguyen define specific theories for several complexity
classes and give examples of theorems formalizable in each theory. The theories of interest
to us in this paper are VTC0, VNC1, VNL and VP for the complexity classes TC0, NC1, NL
and P respectively. All of these theories have vocabulary L2

A. Let 〈x, y〉 denote the pairing
function, which is the L2

A term (x+ y)(x+ y + 1) + 2y. The theory VTC0 is axiomatized by
the axioms of V0 and the axiom:

NUMONES : ∃Z ≤ 1 + 〈n, n〉, δNUM(n,X,Z), (2.1)

where the formula δNUM(n,X,Z) asserts that Z is a matrix consisting of n rows such that
for every y ≤ n, the yth row of Z encodes the number of ones in the prefix of length y of
the binary string X. Thus, the nth row of Z essentially “counts” the number of ones in X.
Because of this counting ability, VTC0 can prove the pigeonhole principle PHP(n, F ) saying
that if F maps a set of n+ 1 elements to a set of n elements, then F is not an injection.

The theory VNC1 is axiomatized by the axioms of V0 and the axiom:

MFV : ∃Y ≤ 2n+ 1, δMFV(n, F, I, Y ), (2.2)

where F and I encode a monotone Boolean formula with n literals and its input respectively,
and the formula δMFV(n,G, I, Y ) holds iff Y correctly encodes the evaluation of the formula
encoded in F on input I. Recall that the monotone Boolean formula value problem is
complete for NC1.

The theory VP is axiomatized by the axioms of V0 and the axiom MCV, which is defined
very similarly to MFV, but the monotone circuit value problem is used instead.

The theory VNL is axiomatized by the axioms of V0 and the axiom:

CONN : ∃U ≤ 〈n, n〉+ 1, δCONN(n,E,U), (2.3)

where E encodes the edge relation of a directed graph G with n vertices v0, . . . , vn−1, and
the formula δCONN(n,E,U) holds iff U is a matrix of n rows, where the dth row encodes the
set of all vertices in G that are reachable from v0 using a path of length at most d.

Similar to what is currently known about complexity classes, it was shown in [3, Chapter
9] that V0 ( VTC0 ⊆ VNC1 ⊆ VNL ⊆ VP.

2.3 The Ccv problem and its complexity classes
A comparator gate is a function C : {0, 1}2 → {0, 1}2, that takes an input pair (p, q) and
outputs a pair (p ∧ q, p ∨ q). Intuitively, the first output in the pair is the smaller bit among
the two input bits p, q, and the second output is the larger bit.

CSL’11
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p x • p ∧ q
q y H p ∨ q

Figure 2

We will use the graphical notation in Fig. 2 to denote a
comparator gate, where x and y denote the names of the wires,
and the direction of the arrow denotes the direction to which
we move the larger bit as shown in the picture.

A comparator circuit is a directed acyclic graph consisting of: input nodes with in-degree
zero and out-degree one, output nodes with in-degree one and out-degree zero, and internal
nodes with in-degree two and out-degree two, where each internal node is labelled with a
comparator gate. We also require each output computed by a comparator gate has fan-out
exactly one. Under this definition, each comparator circuit can be seen as consisting of
the wires that carry the bit values and are arranged in parallel, and each comparator gate
connects exactly two wires as previously shown in Fig. 1.

The comparator circuit value problem (Ccv) is the task of deciding, on a given input
assignment, if a designated wire of a comparator circuit outputs one.

I Definition 4. The complexity class CC (resp. CCSubr, CC∗) is the class of decision
problems (i.e. relations) that are AC0 many-one-reducible (resp. log space-reducible, AC0

oracle-reducible) to Ccv. A decision problem R is CC-complete (resp. CCSubr-complete,
CC∗-complete) if the respective class is the closure of R under the corresponding reducibility.
We say that R is CCall-complete if it is complete in all three senses.

The next result is a straightforward consequence of (1.1) and the definitions involved.

I Lemma 5. If a decision problem is CC-complete then is is CCall-complete.

In the above definition of comparator circuit, each comparator gate can point in either
direction, upward or downward (see Fig. 1). However, it is not hard to show the following.

I Proposition 1. The Ccv problem with the restriction that all comparator gates point in
the same direction is CC-complete.

2.4 The stable marriage problem
An instance of the stable marriage problem (Sm) is given by a number n (specifying the
number of men and the number of women), together with a preference list for each man and
each woman specifying a total ordering on all people of the opposite sex. The goal of Sm
is to produce a perfect matching between men and women, i.e., a bijection from the set of
men to the set of women, such that the following stability condition is satisfied: there are no
two people of the opposite sex who like each other more than their current partners. Such
a stable solution always exists, but it may not be unique. Under this formulation Sm is a
search problem, rather than a function problem.

However there is always a unique man-optimal and a unique woman-optimal solution. In
the man-optimal solution each man is matched with a woman whom he likes at least as well
as any woman that he is matched with in any stable solution. Dually for the woman-optimal
solution. Thus both the man-optimal and the woman-optimal versions are function problems
(and hence equivalent to decision problems.)

We show here that the search version and the decision versions are computationally
equivalent, and each is complete for CC. Section 6.1 shows how to reduce the lexicographical
first maximal matching problem (a decision problem complete for CC) to the search version
of Sm, and Section 6.2 shows how to reduce both the man-optimal and the woman-optimal
function problems of Sm to Ccv.
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2.5 Notation
We write the notation “(T `)” in front of the statement of a theorem to indicate that the
statement is formulated and proved within the theory T .

3 The new theory VCC∗

We encode a comparator circuit as a sequence of pairs 〈i, j〉, where each pair 〈i, j〉 encodes a
comparator gate that swaps the values of the wires i and j if and only if the value on wire i
is greater than the value of wire j. We also allow “dummy” gates of the form 〈i, i〉, which do
nothing. We want to define a formula δCCV(m,n,X, Y, Z), where

X encodes a comparator circuit with m wires and n gates as a sequence of n pairs 〈i, j〉
with i, j < m, and we write (X)i to denote the ith comparator gate of the circuit.
Y (i) encodes the input value for the ith wire as a truth value, and
Z is an (n+ 1)×m matrix, where Z(i, j) is the value of wire j at layer i, where each layer
is simply a sequence of the values carried by all the wires right after a comparator gate.

Although X encodes a circuit with only n gates, Z actually encodes n+ 1 layers since we use
the first layer to encode the input values of the circuit. The formula δCCV(m,n,X, Y, Z) holds
iff Z encodes the correct values of the layers computed by the comparator circuit encoded by
X with input Y , and thus is defined as the following ΣB

0 -formula:

∀i < m
(
Y (i)↔ Z(0, i)

)
∧ ∀i < n∀x < m∀y < m,

(X)i = 〈x, y〉 →

 Z(i+ 1, x)↔
(
Z(i, x) ∧ Z(i, y)

)
∧ Z(i+ 1, y)↔

(
Z(i, x) ∨ Z(i, y)

)
∧ ∀j < m

[
(j 6= x ∧ j 6= y)→

(
Z(i+ 1, j)↔ Z(i, j)

)]
 (3.1)

Note that in this paper we index the entries of matrices starting from 0 instead of 1.

I Definition 6. The theory VCC∗ has vocabulary L2
A and is axiomatized by the axioms of

V0 and the following axiom (the formula δCCV(m,n,X, Y, Z) is defined as in (3.1)):

CCV : ∃Z ≤ 〈m,n+ 1〉+ 1, δCCV(m,n,X, Y, Z) (3.2)

There is a technical lemma required to show that VCC∗ fits the framework described in
[3, Chapter 9]. Define FCCV(m,n,X, Y ) to be the Z satisfying δCCV(m,n.X, Y, Z) (with each
Z(i) set false when it is not determined). We need to show that the aggregate F ∗CCV of FCCV
is ΣB

1 -definable in VCC∗, where (roughly speaking) F ∗CCV is the string function that gathers
the values of FCCV for a polynomially long sequence of arguments. The nature of CC circuits
makes this easy: The sequence of outputs for a sequence of circuits can be obtained from a
single circuit which computes them all in parallel: the lines of the composite circuit comprise
the union of the lines of each component circuit. Thus the framework of [3, Chapter 9] does
apply to VCC∗, and in particular the theory VCC∗ is a universal conservative extension of
VCC∗ whose function symbols are precisely those in the function class FCC.

It is hard to work with VCC∗ up to this point since we have not shown whether VCC∗

can prove the definability of basic counting functions (as in VTC0). However, we have the
following theorem.

I Theorem 7 (VNC1 ⊆ VCC∗). The theory VCC∗ proves the axiom MFV defined in (2.2).

Proof. Observe that each comparator gate can produce simultaneously an AND gate and an
OR gate with the only restriction that each of these gates must have fan-out one. However,

CSL’11



388 A Formal Theory Associated with the Stable Marriage Problem

since all AND and OR gates of a monotone Boolean formula also have fan-out one, each
instance of the Boolean formula value problem is a special case of Ccv. J

A corollary of this theorem is that VTC0 ⊆ VCC∗, and thus we can use the counting
ability of VTC0 freely in VCC∗ proofs.

I Theorem 8 (VCC∗ ⊆ VP). The theory VP proves the axiom CCV defined in (3.2).

Proof. This follows since Ccv is a special case of the monotone circuit value problem. J

4 Lexicographical first maximal matching problem is CC-complete

Let G = (V,W,E) be a bipartite graph, where V = {vi}m−1
i=0 , W = {wi}n−1

i=0 and E ⊆ V ×W .
The lexicographical first maximal matching (lfm-matching) is the matching produced by
successively matching each vertex v0, . . . , vm−1 to the least vertex available in W . The
lexicographical first maximal matching problem (Lfmm) is to decide if a designated edge
belongs to the lfm-matching of G, and 3Lfmm is the restriction of Lfmm to graphs of
degree at most three. In this section we give simplified constructions showing that Ccv is
AC0-many-one-reducible to 3Lfmm and Lfmm is AC0-many-one-reducible to Ccv.

Formally, let Em×n be a matrix encoding the edge relation of a bipartite graph with
m bottom nodes and n top nodes, where E(i, j) = 1 iff the bottom node vi is adjacent
to the top node wj . Let L be a matrix of the same size as E with the following intended
interpretation: L(i, j) = 1 iff the edge (vi, wj) is in the lfm-matching. We can define a
ΣB

0 -formula δLFMM(m,n,X,L), which holds iff L properly encodes the lfm-matching of the
bipartite graph represented by X as follows:

∀i < m∀j < n, L(i, j)↔
[
E(i, j) ∧ ∀k < j ∀` < i

(
¬L(i, k) ∧ ¬L(`, j)

)
∧ ∀k < j

(
¬E(i, k) ∨ ∃i′ < iL(i′, k)

) ] . (4.1)

4.1 Ccv ≤AC0

m 3Lfmm
By Proposition 1, it suffices to consider only instance of Ccv, where all comparator gates
point upward. We will show that these instances of Ccv are AC0-many-one-reducible to
instances of 3Lfmm, which consist of bipartite graphs with degree at most three.

The key observation is that a comparator gate on the left below closely relates to an
instance of 3Lfmm on the right. We use the top nodes p0 and q0 to represent the values p0
and q0 carried by the wires x and y respectively before the comparator gate, and the nodes
p1 and q1 to represent the values of x and y after the comparator gate, where a top node is
matched iff its respective value is one.

p0 x N p1 = p0 ∨ q0

q0 y • q1 = p0 ∧ q0

p0 q0 p1 q1

x y

If nodes p0 and q0 are not previously matched, i.e. p0 = q0 = 0 in the comparator circuit,
then edges 〈x, p0〉 and 〈y, q0〉 are added to the lfm-matching. So the nodes p1 and q1 are not
matched. If p0 is previously matched, but q0 is not, then edges 〈x, p1〉 and 〈y, q0〉 are added
to the lfm-matching. So the node p1 will be matched but q1 will remain unmatched. The
other two cases are similar.

Thus, we can reduce a comparator circuit to the bipartite graph of an 3Lfmm instance
by converting each comparator gate into a “gadget” described above. We will describe our
method through an example, where we are given the comparator circuit in Fig. 3.
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0 a N 1
1 b • N 1
1 c • 0

0 1 2

Figure 3

We divide the comparator circuit into vertical layers 0, 1,
and 2 as shown in Fig. 3. Since the circuit has three wires a,
b and c, for each layer i, we use six nodes, including three top
nodes ai, bi and ci representing the values of the wires a, b
and c respectively, and three bottom nodes a′i, b′i, c′i, which are
auxiliary nodes used to simulate the effect of the comparator
gate at layer i.
Layer 0: This is the input layer, so we add an edge {xi, x

′
i} iff the wire x takes input 1. In

this example, since b and c are wires taking input 1, we add the edges {b0, b
′
0} and {c0, c

′
0}.

a0 b0 c0

a′0 b′0 c′0

a1 b1 c1

a′1 b′1 c′1

a2 b2 c2

a′2 b′2 c′2

Layer 1: We then add the gadget simulating the comparator gate from wire b to wire a.
a0 b0 c0

a′0 b′0 c′0

a1 b1 c1

a′1 b′1 c′1

a2 b2 c2

a′2 b′2 c′2

Since the value of wire c does not change when going from layer 0 to layer 1, we can simply
propagate the value of c0 to c1 using the pair of dotted edges in the picture.
Layer 2: We proceed very similarly to layer 1 to get the following bipartite graph.

a0 b0 c0

a′0 b′0 c′0

a1 b1 c1

a′1 b′1 c′1

a2 b2 c2

a′2 b′2 c′2

Finally, we can get the output values of the comparator circuit by looking at the “output”
nodes a2, b2, c2 of this bipartite graph. We can easily check that a2 is the only node that
remains unmatched, which corresponds exactly to the only zero produced by wire a of the
comparator circuit above.

The construction above is an AC0 many-one reduction since each gate in the comparator
circuit can be reduced to exactly one gadget in the bipartite graph that simulates the effect
of the comparator gate. Note that since it can be tedious and unintuitive to work with
AC0-circuits, it might seem hard to justify that our reduction is an AC0-function. However,
thanks to Theorem 1, we do not have to work with AC0-circuits directly; instead, it is not
hard to construct a ΣB

0 -formula that defines the above reduction. The correctness of our
construction can be proved in VCC∗ by using ΣB

0 induction on the layers of the circuits and
arguing that the matching information of the nodes in the bipartite graph can be correctly
translated to the values carried by the wires at each layer.

4.2 Lfmm ≤AC0

m Ccv
Consider an instance of Lfmm consisting of a bipartite graph on the left of Fig. 4. Recall
that we find the lfm-matching by matching the bottom nodes x, y, . . . successively to the first
available node on the top. Hence we can simulate the matching of the bottom nodes to the
top nodes using comparator circuit on the right of Fig. 4, where we can think of the moving
of a one, say from wire x to wire a, as the matching of node x to node a in the original
bipartite graph. Note that we draw bullets without any arrows going out from them in the
circuit to denote dummy gates, which do nothing. These dummy gates are introduced for
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a b c d

x y z

1 x • • • • 0
1 y • • • • 0
1 z • • • • 0
0 a H H 1
0 b H H 1
0 c H H 1
0 d H 0

Figure 4

the following technical reason. Since the bottom nodes might not have the same degree, the
position of a comparator gate really depends on the number of edges that do not appear
in the bipartite graph, which makes it harder to give a direct AC0-reduction. By using
dummy gates, we can treat the graph as if it is a complete bipartite graph, where the missing
edges are represented by dummy gates. This can easily be shown to be an AC0-reduction
from Lfmm to Ccv, and its correctness can be carried out in VCC∗. This together with the
reduction from Section 4.1 gives us the following theorem.

I Theorem 9. (VCC∗ `) The Lfmm problem is CC-complete.

Since the reduction from Ccv to Lfmm in Section 4.1 only produces bipartite graphs
with degree at most three, we have the following corollary.

I Corollary 10. (VCC∗ `) The 3Lfmm problem is CC-complete.

5 The theory VCC∗ contains VNL

Each instance of the Reachability problem consists of a directed acyclic graph G = (V,E),
where V = {v0, . . . , vn−1}, and we want to decide if there is a path from v0 to vn−1. It is
well-known that Reachability is NL-complete. It is also well-known that the Reachability
problem still remains NL-complete under the following restriction:

The graph G only has directed edges of the from (vi, vj), where i < j. (5.1)

We will show how to use comparator circuits to solve the above restricted instances of
Reachability. We believe that our new construction is more intuitive than the one in
[8, 6]. Moreover, we reduce Reachability to Ccv directly without going through some
intermediate complete problem, and this was stated as an open problem in [8, Chapter 7.8.1].

We will demonstrate our construction through a simple example, where we have the
directed graph in Fig. 5 satisfying the assumption (5.1). We will build a comparator circuit
as in Fig. 6, where the wires ν0, . . . , ν4 represent the vertices v0, . . . , v4 of the preceding
graph and the wires ι0, . . . , ι4 are used to feed 1-bits into the wire v0, and from there to
the other wires vi reachable from v0. We let every wire ιi take input one and every wire
νi take input zero. We next show how to construct the gadget in the boxes. For a graph
with n vertices (n = 5 in our example), the gadget in the `th box is constructed as follows:

v0

v1

v2

v3

v4

Figure 5

1: Add a comparator gate from wire ι` to wire ν0

2: for i = 0, . . . , n− 1 do
3: for j = i+ 1, . . . , n− 1 do
4: Add a comparator gate from νi to νj if (vi, vj) ∈ E,

or a dummy gate on νi otherwise.
5: end for
6: end for

Note that we only use the loop structure to clarify the order the gates are added. The
construction can easily be done in AC0 since the position of each gate can be calculated
exactly, and thus all gates can be added independently from one another. Note that for a
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graph with n vertices, we have at most n vertices reachable from a single vertex, and thus we
need n gadgets described above. In our example, there are at most 5 wires reachable from
wire ν0, and thus we utilize the gadget 5 times.

1 ι0 • 0
1 ι1 • 0
1 ι2 • 0
1 ι3 • 0
1 ι4 • 0
0 ν0 H • • H • • H • • H • • H • • 1
0 ν1 H H H H H 1
0 ν2 H • • H • • H • • H • • H • • 1
0 ν3 H H H H H 1
0 ν4 H H H H H 1

Figure 6 A comparator circuit that solves Reachability. (The dummy gates are omitted.)

Intuitively, the construction works since each gadget from a box looks for the lexicographical
first maximal path starting from v0 (with respect to the natural lexicographical ordering
induced by the vertex ordering v0, . . . , vn), and then the vertex at the end of the path will be
marked (i.e. its wire will now carry one) and thus excluded from the search of the gadgets
that follow. For example, the gadget from the left-most dashed box in Fig. 6 will move a
one from wire ι0 to wire ν0 and from wire ν0 to wire ν1. This essentially “marks” the wire
ν1 since we cannot move the one away from ν1, and thus ν1 can no longer receive any new
incoming ones. Hence, the gadget from the second box in Fig. 6 will repeat the process of
finding the lex-first maximal path from v0 to the remaining (unmarked) vertices. These
searches end when all vertices reachable from v0 are marked. Note that this has the same
effect as applying the depth-first search algorithm to find all the vertices reachable from v0.
Thus, we can prove the following theorem.

I Theorem 11 (VNL ⊆ VCC∗). The theory VCC∗ proves the axiom CONN defined in (2.3).

As a of consequence of Theorem 11, we have the following result.

I Theorem 12. CC∗ is closed under many-one NL-reductions, and hence CCSubr ⊆ CC∗.

Proof. This follows from the following three facts: The function class FCC∗ is closed under
composition, FNL ⊆ FCC, and a decision problem is in CC∗ if and only if its characteristic
function is in FCC∗. J

6 The Sm problem is CC-complete

6.1 3Lfmm ≤AC0

m Sm
Let G = (V,W,E) be a bipartite graph from an instance of 3Lfmm, where V is the set of
bottom nodes, W is the set of top nodes, and E is the edge relation such that the degree
of each node is at most three (see the example in the figure on the left below). Without
loss of generality, we can assume that |V | = |W | = n. To reduce it to an instance of Sm, we
double the number of nodes in each partition, where the new nodes are enumerated after
the original nodes and the original nodes are enumerated using the ordering of the original
bipartite graph, as shown in the diagram on the right below. We also let the bottom nodes
and top nodes represent the men and women respectively.

w0

m0

w1

m1

w2

m2

w3

m3

w4

m4

w5

m5
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It remains to define a preference list for each person in this Sm instance. The preference
list of each man mi, who represents a bottom node in the original graph, starts with all
the woman wj (at most three of them) adjacent to mi in the order that these women are
enumerated, followed by all the women wn, . . . , w2n−1; the list ends with all women wj not
adjacent to mi also in the order that they are enumerated. For example, the preference list
of m2 in our example is w2, w3, w4, w5, w0, w1. The preference list of each newly introduced
man mn+i simply consists of w0, . . . , wn−1, wn, . . . , w2n−1, i.e., in the order that the top
nodes are listed. Preference lists for the women are defined dually.

Intuitively, the preference lists are constructed so that any stable marriage (not necessarily
man-optimal) of the new Sm instance must contain the lfm-matching of G. Furthermore, if a
bottom node u from the original graph is not matched to any top node in the lfm-matching
of G, then the man mi representing u will marry some top node wn+j , which is a dummy
node that does not correspond to any node of G. Thus we have the following theorem.

I Theorem 13. (VCC∗ `) The 3Lfmm problem is AC0-many-one-reducible to Sm.

6.2 Sm ≤AC0

m Ccv
In this section, we formalize a reduction from Sm to Ccv due to Subramanian [8, 9].
Subramanian did not reduce Sm to Ccv directly, but to the network stability problem
built from the less standard X gate, which takes two inputs p and q and produces two
outputs p′ = p ∧ ¬q and q′ = ¬p ∧ q. It is important to note that the “network” notion
in Subramanian’s work denotes the generalization of circuits by allowing connection from
output of a gate to input of any gate including itself, and thus a network in his definition
might contain cycles. An X-network is a network consisting only of X gates under the
important restriction that each X gate has fan-out exactly one for each output it computes.
The network stability problem for X gate (Xns) is then to decide if an X-network has a
stable configuration, i.e., a way to assign Boolean values to the wires of the network so that
the values are compatible with all the X gates of the network. Subramanian showed in his
dissertation [8] that Sm, Xns and Ccv are all equivalent under log space reduction.

We do not work with Xns in this paper since networks are less intuitive and do not have
a nice graphical representation as do comparator circuits. By utilizing Subramanian’s idea,
we give a more direct AC0-reduction from Sm to Ccv. For this goal, it turns out to be
conceptually simpler to go through a new variant of Ccv, where the comparator gates are
three-valued instead of Boolean.

6.2.1 Three-valued Ccv is CC-complete
We define the Three-valued Ccv problem similarly to Ccv, except each wire can now
take any of the values 0, 1 or ∗. A wire takes value ∗ when its value is not known to be 0 or
1. The two outputs of a three-valued comparator gate on inputs p and q is defined as follows.

p ∧ q =


0 if p = 0 or q = 0
1 if p = q = 1
∗ otherwise.

p ∨ q =


0 if p = q = 0
1 if p = 1 or q = 1
∗ otherwise.

Every instance of Ccv is also an instance of Three-valued Ccv. It is also not hard to show
that every instance of Three-valued Ccv is AC0-reducible to an instance of Ccv by using
a pair of Boolean wires to represent each three-valued wire and adding comparator gates
appropriately to simulate three-valued comparator gates. Thus, the Three-valued Ccv
problem is CC-complete.
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6.2.2 A fixed-point method for Sm

We formalize a reduction from Sm to Three-valued Ccv based on [8, 9]. Consider an
instance of Sm, where preference matrices for men a, b and women x, y are given in Fig. 7.
From this instance of Sm, we construct a three-valued comparator circuit in Fig. 7 as follows.

Men: a x y

b y x

Women: x a b

y a b

1 ai
0 • •

0 xi
0 H •

∗ ai
1 •

0 yi
0 H •

∗ bi
1 •

∗ xi
1 H

1 bi
0 • •

∗ yi
1 H

I0 1 ao
0

0 xo
0

0 ao
1 H

0 yo
0

0 bo
1 H

0 xo
1 H

1 bo
0

0 yo
1 H

Figure 7

First, since we have two men a, b and two women x, y, we start with four pairs of wires
(ai

0, x
i
0), (ai

1, y
i
0), (bi

0, y
i
1), and (bi

1, x
i
1), connected by four gates 〈ai

0, x
i
0〉, 〈ai

1, y
i
0〉, 〈bi

0, y
i
1〉 and

〈bi
1, x

i
1〉 respectively, which represent four possible ways of pairing men a, b to women x, y.

The subscripts are important in our construction since the subscript of a person p within a
pair indicates the preference of a person about his or her partner in the pair; the superscripts
i are less important, and used to indicate that all of these wires are the ‘input wires’ of
this construction. For example, the subscript of b in the pair (bi

0, y
i
1) indicates that y is a’s

first choice, and the subscript of y in this pair indicates that b is y’s second choice. For
convenience, let Pair be a binary predicate such that Pair(mi

j , w
i
k) holds iff m is a man and w

is a woman and wires mi
j and wi

k are paired up, i.e., w is at the jth position of m’s preference
list and m is at the kth position of w’s preference list.

Second, we will introduce four more pairs of ‘output wires’ (ao
0, x

o
0), (ao

1, y
o
0), (bo

0, y
o
1), and

(bo
1, x

o
1), which are arranged in exactly the same order as input wires, where the subscripts

follow the same preference rules as with the input wires. We also define Pair(mo
j , w

o
k) to hold

iff m is man and w is woman and mo
j and wo

k are paired up. Since all subscripts of the wires
encode the preference information, they can be used in our construction as follows. Assume
that preference lists are of size n, then for every person p, we add a gate from wire pi

j to
po

j+1 for every j < n− 1. In our example, we add four gates 〈ai
0, a

o
1〉, 〈bi

0, b
o
1〉, 〈xi

0, x
o
1〉, and

〈yi
0, y

o
1〉 as shown in Fig. 7. Note that these gates can be added in any order. It remains to

show how to feed inputs to the ‘output wires’. We let output wire mo
0 take input one for

every man m, and let the rest of output wires have zero inputs.
Given an instance of Sm with n men and n women, defineM : {0, 1, ∗}2n2 → {0, 1, ∗}2n2

to be the function computed by the preceding circuit construction, where the inputs ofM
are those fed into the input wires, and the outputs ofM are those produced by the output
wires. We will use the following notation. Any sequence I ∈ {0, 1, ∗}2n2 can be seen as an
input of function M, and thus we write I(pi

j) to denote the input value of wire pi
j with

respect to I. Similarly, if a sequence J ∈ {0, 1, ∗}2n2 is an output ofM, then we write J(po
j)
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to denote the output value of wire po
j .

Let sequence I0 ∈ {0, 1, ∗}2n2 be an input ofM defined as follows: I0(mi
0) = 1 for every

man m, and I0(wi
0) = 0 for every woman w, and I0(pi

j) = ∗ for every person p and every j,
1 ≤ j < n. Note that the number of ∗’s in the sequence I0 is

c(n) = 2n2 − 2n. (6.1)

Our version of Subramanian’s method [8, 9] consists of computing

Ic(n) =Mc(n)(I0),

whereMd simply denotes the dth power ofM, i.e. the function we get by composingM
with itself d times. It turns out that Ic(n) is a fixed point ofM, i.e. Ic(n) =M(Ic(n)). To
show this, we define a sequence I ′ to be an extension of a sequence I if I(p) = I ′(p) for every
person p such that I(p) ∈ {0, 1}. We can show thatM(I) is an extension of I for every I
which extends I0, and henceMd(I0) extends I0 for all d. It follows thatMc(n)(I0) is a fixed
point because there are at most c(n) ∗’s to convert to 0 or 1.

Now we can extract a stable marriage from the fixed point Ic(n) by letting B be the
sequence obtained by substituting zeros for all remaining ∗-values in Ic(n). Then B is also
a fixed point of M. A stable marriage can then be extracted from B by announcing the
marriage of a man m and a woman w if and only if Pair(mo

j , w
o
k) and B(mo

j) = 1 and
B(wo

k) = 0. Our goal is to formalize the correctness of this method.
In the example in Fig. 7, we can check that the fixed point I4 = M4(I0) in this case

simply consists of Boolean values, where (I4(ao
0), I4(xo

0)) = (1, 0) and (I4(bo
0), I4(yo

1)) = (1, 0).
Thus, women x, y are married to men a, b respectively, which is a stable marriage.

More formally, given a three-valued sequence I, let I[∗ → v] denote the sequence we get
by substituting v for all the ∗-values in I. Define G to be an AC0-function, which takes as
input a Boolean fixed point B ofM, and returns a marriage M in the way explained above.
(Note that since B =M(B), we have B(pi

k) = B(po
k) for every person p and every k < n;

however, the superscripts o and i are useful for distinguishing between input and output
values of the comparator circuit computingM.) We can prove the following theorem.

I Theorem 14. (VCC∗ `) Let M be a stable marriage of the Sm instance I. We let
M0 = G(Ic(n)[∗ → 0]) and M1 = G(Ic(n)[∗ → 1]). Then M0 and M1 are stable marriages,
and every man gets a partner in M0 no worse than the one he gets in M , and every woman
gets a partner in M1 no worse than the one she gets in M . In other words, M0 and M1 are
the man-optimal and woman-optimal solutions respectively.

Corollary 10 and Theorems 13 and 14 give us the following corollary.

I Corollary 15. (VCC∗ `) The Sm problem is CC-complete.

Proof. Following the above construction, we can write a ΣB
0 -formula defining an AC0 function

that takes as input an instance of Sm with preference lists for all the men and women, and
produces a three-valued comparator circuit that computes the three-valued fixed point
Ic(n) = Mc(n)(I0), and then extracts the man-optimal stable marriage from Ic(n)[∗ → 0].
Thus the man-optimal (and similarly the woman-optimal) decision versions of Sm are AC0-
many-one-reducible to Three-valued Ccv, and hence also to Ccv. Corollary 10 shows
that 3Lfmm is CC-complete, and Theorem 13 shows that 3Lfmm is AC0-many-one-reducible
to Sm. Hence, Sm is CC-complete under AC0 many-one reductions. J
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7 Conclusion and future work

Our correctness proof of the reduction from Sm to Ccv is a nice example showing the utility
of three-valued logic for reasoning about uncertainty. Since an instance of Sm might not have
a unique solution, the fact that the fixed point Ic(n) =Mc(n)(I0) is three-valued indicates
that the construction cannot fully determine how all the men and women can be matched.
Thus, different Boolean fixed-point extensions of Ic(n) give us different stable marriages.

It is worth noting that Subramanian’s method is not the “textbook” method for solving
Sm. The most well-known is the Gale-Shapley algorithm [4]. In fact, our original motivation
was to formalize the correctness of the Gale-Shapley algorithm, but we do not know how to
talk about the computation of the Gale-Shapley algorithm in VCC∗. Thus, we leave open
the question whether VCC∗ proves the correctness of the Gale-Shapley algorithm.

We believe that CC deserves more attention, since on the one hand it contains interesting
complete problems, but on the other hand we have no real evidence (for example based
on relativized inclusions) concerning whether Ccv is complete for P, and if not, whether
it is comparable to NC. The perfect matching problem (for bipartite graphs or general
undirected graphs) shares these same open questions with Ccv. However several randomized
NC2 algorithms are known for perfect matching [5, 7], but no randomized NC algorithm is
known for any CC-complete problem.

Another open question is whether the three Ccv complexity classes mentioned in (1.1)
coincide, which is equivalent to asking whether CC (the closure of Ccv under AC0 many-one
reductions) is closed under AC0 oracle reductions, or equivalently whether the function class
FCC is closed under composition. A possible way to show this would be to show the existence
of universal comparator circuits, but we do not know whether such circuits exist.

The analogous question for standard complexity classes such as TC0, L, NL, NC, P has
an affirmative answer. That is, each class can be defined as the AC0 many-one closure of a
complete problem, and the result turns out to be also closed under AC0 oracle reducibilities.
(A possible exception is the function class #L, whose AC0 oracle closure is the #L hierarchy
[1]. This contains the integer determinant as a complete problem.)
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