24,093 research outputs found

    Introductory programming: a systematic literature review

    Get PDF
    As computing becomes a mainstream discipline embedded in the school curriculum and acts as an enabler for an increasing range of academic disciplines in higher education, the literature on introductory programming is growing. Although there have been several reviews that focus on specific aspects of introductory programming, there has been no broad overview of the literature exploring recent trends across the breadth of introductory programming. This paper is the report of an ITiCSE working group that conducted a systematic review in order to gain an overview of the introductory programming literature. Partitioning the literature into papers addressing the student, teaching, the curriculum, and assessment, we explore trends, highlight advances in knowledge over the past 15 years, and indicate possible directions for future research

    Learning Dimensions: Lessons from Field Studies

    Get PDF
    In this paper, we describe work to investigate the creation of engaging programming learning experiences. Background research informed the design of four fieldwork studies involving a range of age groups to explore how programming tasks could best be framed to motivate learners. Our empirical findings from these four studies, described here, contributed to the design of a set of programming "Learning Dimensions" (LDs). The LDs provide educators with insights to support key design decisions for the creation of engaging programming learning experiences. This paper describes the background to the identification of these LDs and how they could address the design and delivery of highly engaging programming learning tasks. A web application has been authored to support educators in the application of the LDs to their lesson design

    A review of Australasian investigations into problem solving and the novice programmer

    Get PDF
    This Australasian focused review compares a number of recent studies that have identified difficulties encountered by novices while learning programming and problem solving. These studies have shown that novices are not performing at expected levels and many novices have only a fragile knowledge of programming, which may prevent them from learning and applying problem solving strategies. The review goes on to explore proposals for explicitly incorporating problem solving strategy instruction into introductory programming curricula and assessment, in an attempt to produce improved learning outcomes for novices. Finally, directions suggested by the reviewed studies are gathered and some unanswered questions are raised

    Applying a User-centred Approach to Interactive Visualization Design

    Get PDF
    Analysing users in their context of work and finding out how and why they use different information resources is essential to provide interactive visualisation systems that match their goals and needs. Designers should actively involve the intended users throughout the whole process. This chapter presents a user-centered approach for the design of interactive visualisation systems. We describe three phases of the iterative visualisation design process: the early envisioning phase, the global specification hase, and the detailed specification phase. The whole design cycle is repeated until some criterion of success is reached. We discuss different techniques for the analysis of users, their tasks and domain. Subsequently, the design of prototypes and evaluation methods in visualisation practice are presented. Finally, we discuss the practical challenges in design and evaluation of collaborative visualisation environments. Our own case studies and those of others are used throughout the whole chapter to illustrate various approaches

    Cause for alarm?: A multi-national, multi-institutional study of student-generated software designs

    Get PDF
    This paper reports a multi-national, multi-institutional study to investigate Computer Science students' understanding of software design and software design criteria. Students were recruited at two levels: those termed 'first competency' programmers, and those completing their Bachelor degrees. The study, including participants from 21 institutions over the academic year 2003/4, aimed to examine students' ability to generate software designs, to elicit students' understanding and valuation of key design activities, and to examine whether students at different stages in their undergraduate education display different understanding of software design. Differences were found in participants' recognition of ambiguity in requirements; in their use of formal (and semi-formal) design representation and in their prioritisation of design criteria

    A rapid prototyping/artificial intelligence approach to space station-era information management and access

    Get PDF
    Applications of rapid prototyping and Artificial Intelligence techniques to problems associated with Space Station-era information management systems are described. In particular, the work is centered on issues related to: (1) intelligent man-machine interfaces applied to scientific data user support, and (2) the requirement that intelligent information management systems (IIMS) be able to efficiently process metadata updates concerning types of data handled. The advanced IIMS represents functional capabilities driven almost entirely by the needs of potential users. Space Station-era scientific data projected to be generated is likely to be significantly greater than data currently processed and analyzed. Information about scientific data must be presented clearly, concisely, and with support features to allow users at all levels of expertise efficient and cost-effective data access. Additionally, mechanisms for allowing more efficient IIMS metadata update processes must be addressed. The work reported covers the following IIMS design aspects: IIMS data and metadata modeling, including the automatic updating of IIMS-contained metadata, IIMS user-system interface considerations, including significant problems associated with remote access, user profiles, and on-line tutorial capabilities, and development of an IIMS query and browse facility, including the capability to deal with spatial information. A working prototype has been developed and is being enhanced

    Using theory to inform capacity-building: Bootstrapping communities of practice in computer science education research

    Get PDF
    In this paper, we describe our efforts in the deliberate creation of a community of practice of researchers in computer science education (CSEd). We understand community of practice in the sense in which Wenger describes it, whereby the community is characterized by mutual engagement in a joint enterprise that gives rise to a shared repertoire of knowledge, artefacts, and practices. We first identify CSEd as a research field in which no shared paradigm exists, and then we describe the Bootstrapping project, its metaphor, structure, rationale, and delivery, as designed to create a community of practice of CSEd researchers. Features of other projects are also outlined that have similar aims of capacity building in disciplinary-specific pedagogic enquiry. A theoretically derived framework for evaluating the success of endeavours of this type is then presented, and we report the results from an empirical study. We conclude with four open questions for our project and others like it: Where is the locus of a community of practice? Who are the core members? Do capacity-building models transfer to other disciplines? Can our theoretically motivated measures of success apply to other projects of the same nature
    corecore