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Abstract 
This paper reports a multi-national, multi-institutional study to investigate Computer 
Science students’ understanding of software design and software design criteria. Students 
were recruited at two levels:  those termed ‘first competency’ programmers, and those 
completing their Bachelor degrees.  The study, including participants from 21 institutions 
over the academic year 2003/4, aimed to examine students’ ability to generate software 
designs, to elicit students’ understanding and valuation of key design activities, and to 
examine whether students at different stages in their undergraduate education display 
different understanding of software design. Differences were found in particpants’ 
recognition of ambiguity in requirements; in their use of formal (and semi-formal) design 
representation and in their prioritisation of design criteria. 
 
1. Background 
Software design requires a variety of skills and knowledge:  within the domain, in 
software and computing (Soloway & Ehrlich, 1984), and in design (McCracken, 2004).  
It requires the ability to map both between problems and solutions, and between domain 
and software/computation.    
Software design is difficult:  dealing with ill-defined and ill-structured problems; having 
complex and often conflicting constraints; producing large, complex, dynamic, intangible 
artefacts; and being deeply embedded in a domain (cf. Goel and Pirolli’s characteristics 
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of the design task, (Goel & Pirolli, 1992)).  Marshalling resources, applying knowledge, 
prioritising sub-tasks, managing constraints, evaluating proposed solutions, and managing 
the design process are constituent and interacting skills—and potential sources of 
breakdown even in professional design behaviour (Guindon, Krasner, & Curtis, 1987) 
(Curtis, 1990).  These characteristics make software design elusive to characterise and 
difficult to teach.  
Models of software design involve decomposition and management of the design process 
(Détienne, 2001). This management includes tracking the relationships among sub-
problems, and integrating sub-problems into a coherent structure.  Jeffries et al. noted that 
novices differ from experts in their ability to decompose a problem effectively, to solve 
sub-problems, and to integrate solutions (e.g., (Jeffries, Turner, Polson, & Atwood 
1981)).  Experts organise information differently from novices, producing different and 
larger “chunks” (summarised in (Kaplan, Gruppen, Levanthal, & Board, 1986)).  
Examining how software designers decompose problems has the potential to provide 
insight into the cognitive process of “chunking” and hence into how software designers 
structure their solutions.  
 
2. Research Questions 
Many of the studies cited above have examined the processes that software designers, 
whether novice or expert, employ in producing software.  Few studies, however, have 
examined and characterised design artefacts, especially those of novices. Many open 
questions remain:  Do novice designs exhibit characteristics associated with software 
design expertise, such as loose coupling and tight cohesion (Yourdon & Constantine, 
1978)? How do novices conceptualise what constitutes a software component and how 
components interrelate? Will their conceptualisation reflect the initial programming 
language paradigm to which they have been exposed?  Do novices generate software 
designs using standard design representations such as UML (Rumbaugh, Jacobson, & 
Booch, 1998), or natural language descriptions, code, and ad-hoc representations? 
What criteria do novice designers employ when doing software design? Have novices 
internalised any heuristics or principles that expert designers have codified ((Mayer, 
1997), (Riel, 1996))? Do they view their design criteria as relatively task- and context-
invariant, or do they use different criteria in different situations?   
The study has an enveloping framework that compares data from first-competency and 
completing students (Atman, Chimka, Bursic, & Nachtmann, 1999) and from educators.  
This supports comparative questions. Do students’ problem decompositions, and their 
ability to describe and represent a solution change during the course of their education?  
Are students’ decompositions and descriptions significantly different from educators’? 
Do students’ relative prioritisation of design criteria alter over time, and how closely does 
their prioritisation approximate educators’ prioritisation at each stage? 
 
3. The Study 
This study used two tasks to explore students’ understanding of the software design 
process: 

• a decomposition task, to examine students’ ability to analyse a problem and 
then design an appropriate solution structure, and to elicit students’ 
understanding-in-action of fundamental software design concepts, and  

 
Page 2 of 46   



• a design criteria prioritisation task, to elicit which criteria students consider 
most and least important for different design scenarios. 

 
Decomposition Task 
Participants were given a design brief, specifying a “super alarm clock” to help students 
manage their sleep patterns (see the Design Brief in Appendix A). The design brief 
stated: 

In doing this you should (1) produce an initial solution that someone (not 
necessarily you) could work from (2) divide your solution into not less than 
two and not more than ten parts, giving each a name and adding a short 
description of what it is and what it does – in short, why it is a part. If 
important to your design, you may indicate an order to the parts, or add some 
additional detail as to how the parts fit together. 

Participants were prompted with generic language (e.g., part rather than object or 
function), to elicit their concept of what constitutes a part, and how to describe and 
represent parts. On completion of their designs, participants were asked to “talk through” 
their design, and to name and describe the function of each part. 
 
Design Criteria Prioritisation Task 
After completing the decomposition task, participants were given 16 cards, each 
describing a single design criterion. Participants were asked to indicate the five most 
important and the five least important criteria for each of four scenarios: 

• for the design they had just completed (current task),  
• for the current task, but in a team (task in team),  
• for the current task—on their own—but delivering a fully-functional result at 

the same time tomorrow (extreme time pressure), and 
• for the current task, but designing the system as the basis of a product line that 

would have a 5-year lifespan (longevity). 
The sixteen criteria are further described and included in Appendix B. 
 
Participants 
Participants recruited from 21 institutions of post-secondary education from the USA, 
UK, Sweden and New Zealand completed the same tasks. Three types of participant were 
represented from each institution: 

• First competency students. (FC) To ensure comparability across institutions, 
students were selected at the point in their education where they could be 
expected to program at least one problem from the set proposed by McCracken 
((McCracken et al., 2001)). These problems involve the simulation of a simple 
calculator for arithmetic expressions. The McCracken problem set was used 
because it references levels of competence, irrespective of curriculum and was 
devised for use in one of the first multi-national, multi-institutional CS 
Education Research studies. Not all of the FC participants were Computer 
Science majors, but all had taken, or were taking, a Computer Science course. 

• Graduating students. (GS) Graduating students were defined as being those 
within the last eighth of a Bachelor degree program, or equivalent (e.g., the last 
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6 months of a four-year, full-time program) in Computer Science or a 
software-intensive degree. 

• Educators. (E) Educators were defined to be those holding faculty positions, 
and teaching in the undergraduate program. 

The total cohort consisted of 314 participants from 21 institutions representing 28 
educators, 136 first-competency and 150 graduating students. 
For each participant the following material was collected: their representation of the 
design (i.e. the marks they made on paper), the time they took to make it, and a record of 
their prioritisation of the design criteria. Full transcriptions of verbalisation during the 
task were made for a proportion of the students; researcher notes were made for all. For 
analysis purposes, student participants were allocated to one of five “performance 
buckets”. In the same way as the study employed the McCracken problem set as a 
discriminator, allowing selection of participants with similar aptitude from different 
institutions, “performance buckets” were devised to help group students meaningfully 
across institutions without having to consider, for example, whether an “A” grade in the 
US means the same thing, for example, as a “90%” in the UK. The five categories appear 
in table 1.  
 

Identifier Descriptor 
1. Picasso Exceptional students. You would only expect to see one or two per 

year 
2. Top Excellent students.  
3. High Side Students who have done everything they should, but who did not, 

perhaps, do it as well as they could have. 
4. Low Side These students have passed the course, but on minimum criteria 
5. Fail Below the pass mark. 

Table 1: Identification and Description of "performance buckets" 

 

The categories were accompanied by a protocol, determining allocation of students. On a 
four point (4.0) scale (used in the USA), the divisions would occur at: 4, 3.7, 2.7,  1.7  
and 0 where these numbers represent the bottom of the category in question. A Picasso 
has a 4.0; a 3.7 or higher falls into the Top category. In terms of percentages, these would 
mean: 100%, 93%, 67%, 42% and 0. In terms of letter grades, this roughly maps to: A+, 
A, B-, C- and F. Here, a “D” was considered to be synonymous with failure (although 
this is considered a pass in some contexts).  
Excluding educators and six FC students for whom no grade data was available, the 
cohort divided between the performance buckets are shown in table 2. 
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 1 (Picasso) 2 (Top) 3 (High Side) 4 (Low Side) 5 (Fail) 

FC 15 24 56 26 9 

GS 9 34 87 19 1 

Table 2: Division of the cohort between “performance buckets” 

 
4. Results 
Analysis was conducted on three aspects of the data: participants’ recognition of 
ambiguity in requirements, how the design artefacts are characterised in terms of such 
things as the grouping structures and interactions between parts, and how subjects value 
different design criteria in different design contexts.  
 
4.1 Recognizing Ambiguity in Requirements 

4.1.1. Question 
This analysis was conducted to investigate participants’ recognition of ambiguous aspects 
of the design brief requirements.  A related interest was a comparison of participants who 
recognize ambiguity to those participants who don’t with respect to how fully the 
requirements were addressed.  Recognition of ambiguity was defined by these observable 
events within the study: asking a question about ambiguities or omissions in the 
specification, or making explicit assumptions in writing or in speech.  

4.1.2. Motivation 
In comparing the design processes of freshman and senior engineering students, Atman et 
al. found that seniors made more requests for additional information and made more than 
three times as many assumptions (Atman et al., 1999). It is suggested in Are Your Lights 
On? that a designer’s “lights aren’t on” if he fails to raise several questions when 
understanding a problem specification (Gause & Weinberg, 1982).  Christiaans and Dorst 
(Christiaans & Dorst, 1992) found that novice industrial design engineers tend to scope 
out a problem less and seek less information than experienced designers. Similarly, 
Bogusch et al. also found that freshmen engineers tend to define problems narrowly 
while more experienced seniors tend to define problems more broadly (Bogush, Turns, & 
Atman, 2000).  Rowland found that novices made few requests for clarifications relative 
to a design problem (Rowland, 1992). 
Recognizing and addressing ambiguity is important because ambiguities in requirements 
can propagate to errors in the design solution. It is cheaper to recognize and resolve 
ambiguities early, rather than after the design is completed (Boehm, 1981).  Thus, 
recognizing ambiguity in the design phase is less costly in terms of time completion and 
number of bugs.  Observed differences between participant groups and patterns among 
other participant characteristics can give insight into the maturity of software designers.  
Understanding patterns of these subpopulations with regard to ambiguity could provide 
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clues for ways to enhance the education of future software designers.  For example, if 
ambiguity is not commonly part of homework assignment specifications, then students 
may not have practice in recognizing it. 

4.1.3. Data Analysis 
To study the question regarding participants’ recognition of ambiguity and the level to 
which they address requirements the following questions are asked of the corpus: 

1. Did the participant ask questions about ambiguities and omissions in the 
specification (as distinct from questions about word meanings or procedural 
questions)?  (Yes or No) 

2. Did the participant make explicit assumptions in the description, representation 
or other recorded responses about ambiguities and/or omissions in the 
specification)?  (Yes or No) 

3. Did the subject attempt to address the requirements of the specification? (Yes, 
Partially, Hardly, No) 

 
A list of nine requirements was generated to assist in answering question 3. They are 
detailed in Appendix C. 
Each participant was then categorized (see Table 3) on whether they addressed each of 
these requirements at all, with no valuation of the quality of the result.   
 

Categories Number of Requirements Addressed 
Yes 9 (100%) 
Partially 5-8 (>= 50%) 
Hardly 1-4 (< 50%) 
No 0 (0%) 

Table 3: Categorisation of participants’ addressing of requirements 

In this survey of the corpus there is data from all study institutions and the counts of each 
participant grouping are as follows: FC = 136, GS= 150 and E=28. The data for the 
separate analyses excludes participants for which the question associated with the 
analysis could not be answered based on observable behaviour. 

Recognizers and Non-Recognizers of Ambiguity 
A participant recognizes ambiguity if they are observed doing one or both of the 
following: asking a question or making an assumption.  The observed question or 
assumption could be made in the written representation or verbally during the 
decomposition task or interview.  The participants who recognize ambiguity define a new 
subpopulation termed recognizers.  Those who did not recognize ambiguity are termed 
non-recognizers. 
The recognizers and non-recognizers were analyzed with respect to participant group, 
performance bucket, time taken to perform the decomposition task, and institution. 
Additionally, the prioritization task data of recognizers and non-recognizers are analyzed 
to determine if any particular design criteria is more often identified as important to either 
subpopulation.   
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Information Gatherers 
As noted above, information gathering about an under-specified task is a characteristic of 
more experienced designers.  The information gatherer subpopulation represents a 
subset of the recognizers.  This subpopulation asks questions, and may or may not make 
observable assumptions. 
Analysis of information gatherers includes looking for patterns among participant groups 
and comparing those to similar patterns for recognizers.   Additional comparisons 
between information gatherers and recognizers are made with regards to performance 
bucket, time to complete the decomposition task, and institution.  
 

Recognizers

Non-Questioning Assumers

Information
Gatherers 

 

Studying Thoroughness of Addressing Requirements 
Additionally, data regarding how thoroughly each participant addressed the requirements 
listed in the specification is used for analyzing differences between recognizers and non-
recognizers. An analysis to compare design criteria chosen during the prioritization task 
between recognizers and non-recognizers is also performed. 

Introduction of Bias 
One introduction of bias occurs in the creation of definitions for recognizer, non-
recognizer, information gatherer, and non information gatherer. These definitions are 
based on observable behavior (asking questions and making explicit assumptions). 
Participants could have made assumptions about the specifications without externalizing 
these assumptions in written or verbal form. These participants are coded as not making 
assumptions in our analysis. The number of participants making assumptions could be 
larger than the number created in our analysis. 
A second source of bias is introduced when answering the questions about participants 
asking questions about ambiguities/omissions in the specification, making explicit 
assumptions, and addressing requirements. In a few cases, it is difficult to tell if a 
participant makes an explicit assumption. For these cases, the participant is coded as 
“Don’t Know” in terms of making assumptions. The answer to the question involving the 
level to which the requirements are addressed was operationalized into four categories: 
Yes, Partially, Hardly, No. The small number of answer choices helps to increase 
consistency across coders and reliability within coders. 
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4.1.4. Results 
How many participants recognized ambiguity? 
Figure 1 indicates the percentage of participants who recognized ambiguity versus those 
who did not recognize ambiguity with respect to participant group. The figure shows that 
of the first competency students, 63% (82 of 131) recognized ambiguity. 76% (110 of 
145) of graduating seniors and 89% (24 of 27) of educators recognized ambiguity. 216 
participants are recognizers and 87 are non-recognizers. 11 participants could not be 
classified as recognizers or not recognizers, for a total of 303 participants included in the 
analysis. 
 

Percentage of Recognizers and Non-
Recognizers By Participant Group

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Non-Recognizers 49 35 3

Recognizers 82 110 24

FC GS E

 
Figure 1 

 
How many participants gathered information? 
Figure 2 shows the breakdown of information gatherers by participant group. 33% (43 of 
131) of first competency students, 50% (73 of 145) of graduating seniors, and 81% (22 of 
27) of educators gathered information during the decomposition task. Of the participants 
recognizing ambiguity, 48% (39 of 82) of first competency students, 34% (34 of 110) of 
graduating seniors, and 8% (2 of 24) of educators made assumptions without requesting 
information. There are 138 information gatherers and 165 non information gatherers, with 
no data for 11 participants.  
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Percentage of Information Gatherers and Non 
Information Gatherers By Participant Group

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Non Information
Gatherers

88 72 5

Information Gatherers 43 73 22

FC GS E

 
Figure 2 

 
What is the breakdown of recognizers versus non-recognizers with respect to how many 
requirements were addressed? 
Figures 3 and 4 show the relationship between recognizers/non-recognizers and 
requirements groups. The requirement groups include Yes, Partially, Hardly, and No. The 
general trend is that as the number of requirements addressed decreases, the percentage of 
recognizers decreases. Yes includes 120 participants, Partially has 151 participants, 
Hardly has 26, and No has 4. Of the participants classified as recognizers and non-
recognizers, 2 did not have data pertaining to the requirements addressed. 
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Breakdown of Recognizers and Non-Recognizers 
by Addressing Requirements Groups

0%
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90%

100%

Non-Recognizer 23 50 12 2 0

Recognizer 97 101 14 2 2

Yes Partially Hardly No No Data

 
Figure 3 
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Breakdown of Addressing Requirements Groups 
by Recognizers and Non-Recognizers
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100%

No Data 2 0

No 2 2

Hardly 14 12
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Yes 97 23

Recognizer Non-Recognizer

 
Figure 4 

 
What is the breakdown of information gatherers versus non information gatherers with 
respect to how many requirements were addressed? 
Figures 5 and 6 show the relationship between information gatherers/non information 
gatherers and requirements groups. The general trend is that as the requirement groups go 
from Yes to No, the percentage of information gatherers decreases.  
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Breakdown of Information Gatherers and Non 
Information Gatherers by Addressing Requirements 

Groups
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Non Information Gatherer 57 84 21 3 0

Information Gatherer 63 67 5 1 2

Yes Partially Hardly No No Data

 
Figure 5 
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Breakdown of Addressing Requirements Groups by 
Information Gatherers and Non Information 

Gatherers

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

No Data 2 0
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Yes 63 57

Information Gatherer Non Information Gatherer

 
Figure 6 

What is the relationship between recognizers and non-recognizers and information 
gatherers and non information gatherers with respect to performance bucket? 
Figures 7 and 8 show the FC and GS student populations and performance buckets with 
respect to recognition of ambiguity and information gathering behaviour, respectively. Of 
the FC recognizers and non-recognizers, 15 were in bucket 1, 24 were in bucket 2, 54 
were in bucket 3, 24 were in bucket 4, 8 were in bucket 5, and 6 had no performance 
bucket data. Of the GS recognizers and non-recognizers, 9 were in bucket 1, 34 were in 
bucket 2, 85 were in bucket 3, 17 were in bucket 4, and 1 was in bucket 5. One might 
expect that participants in bucket 1 would tend to recognize ambiguity. The trend 
indicates that in the GS group, as performance bucket decreases, the percentage of 
recognizers decreases and then increases. For the FC group, as performance bucket 
decreases, the percentage of recognizers increases and then decreases. About half of the 
GS participants in buckets 1 through 4 gathered information. None of the GS participants 
in bucket 5 gathered information. The highest percentage of information gatherers in the 
FC group were in bucket 2, at 46%. 
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Recognizers per Performance Bucket
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Figure 7 

Information Gatherers per Performance Bucket
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Figure 8 

 
How long did recognizers/non-recognizers and information gatherers/non information 
gatherers take for the decomposition task? 
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The average amount of time taken for the recognizers is 41.2 minutes and 31.7 minutes 

Figure 9A 

 

for the non-recognizers. The trend for information gatherers is similar with information 
gatherers taking an average of 44.0 minutes and non information gatherers taking an 
average of 33.8 minutes. Figures 9A and 9B show the distributions of these groups 
according to distinct 10-minute time intervals. 
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Distribution of Decomposition Task Time for 
Information Gatherers Versus Non-Information 

Gatherers
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Figure 9B 

 
What are the percentages of recognizers and information gatherers per institution? 
Figure 10 shows percentages of recognizers and information gatherers per institution. L, 
S, T, and V had over 60% of study participants gathering information. C, I, N, V, and Y 
were institutions in which all participants recognized ambiguity. 
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Breakdown of Recognizers and Information 
Gatherers by Institution
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Figure 10 

 
How do institutions compare with respect to the breakdown of participant groups into 
requirements groups? 
Figures 11, 12, and 13 show the breakdowns by institution of the FC, GS, and all 
participants, respectively, according to the requirements groups for the complete set of 
314 participants. 
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FC Participants Addressing Requirements
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Figure 11 
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GS Participants Addressing Requirements
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Figure 12 
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Participants Per Institution Addressing Requirements
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Figure 13 

 
Are there any differences between recognizers and non-recognizers with respect to design 
criteria selected for the current task? 
No. The percentages weighted by the size of each subpopulation for each design criterion 
selected as most important for the design criteria prioritization task of current task varied 
from 46% to 57%. There is little difference between the design criteria selected as 
important by recognizers versus the design criteria selected as important by non-
recognizers. There is also no difference between the information gatherers and non 
information gatherers. 
 

4.1.5 Discussion 
The percentage of recognizers increases from first competency students to graduating 
seniors to educators. Likewise, the percentage of information gatherers increases with 
respect to the same order. Information gatherers are a subset of recognizers, so the trend 
is not surprising. Proportionally more seniors recognize ambiguity and seek information 
than first competency students. This result is consistent with Atman et al. in that more 
seniors request information than freshmen (Atman et al., 1999). Figure 2 indicates that 
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almost half of the first competency group made assumptions without requesting 
additional information while this figure is only 8% for educators. Making assumptions 
without gathering information is a characteristic of less experienced designers. 
With respect to addressing requirements, the percentage of recognizers decreases as the 
requirements groups move from Yes to No. This indicates that those who recognized 
ambiguity had a higher success rate in addressing all requirements than those who did not 
recognize ambiguity. Participants who gathered information also had a higher success 
rate in addressing all requirements than those who did not gather information. This trend 
indicates that there is an association between recognizing ambiguity and successfully 
fulfilling requirements. 
Recognizers took more time, on average, than the non-recognizers for the decomposition 
task. Similarly, information gatherers took more time than non information gatherers for 
the decomposition task. This is not surprising since it takes time to ask questions during 
the task. 
Recognizers and non-recognizers of ambiguity did not differ with respect to selecting the 
five most important design criteria for the current task.  

4.1.6 Conclusions/Implications/Limitations 
The results from analyzing participants’ information-gathering, assumption-making, and 
requirements-addressing indicate that as students go from first-competency to graduating 
seniors, they tend to recognize ambiguities in under-specified problems. Additionally, 
participants who recognized ambiguity (and the subset who gathered information) had a 
higher success rate in addressing all requirements. These results imply that with 
experience, students will become more aware of ambiguous specifications and by 
realizing that ambiguities exist, they can design software that meets requirements. This 
may imply that educators should be more explicit in teaching students how to recognize 
ambiguities in specifications. 

4.1.7. Future Work 
The data will be analyzed further to classify participants’ detailed questions and 
assumptions. Questions 3 and 4 below will provide information as to how broadly 
computer science students define design problems. A classification scheme similar to that 
in (Bogush et al., 2000)could be used. 

1. Did participants add features or enhancements beyond the requirements? 
2. How many requirements (number of the total) do the students address in their 

design? 
3. Did participants ask questions about the user population (students, sleep 

researchers, mothers)? 
4. Did participants mention ethical or social impacts of the alarm clock system?  

 
4.2 Design Characteristics in Software Design 

4.2.1. Motivation 
Studies have compared expert and novice behaviour in many domains (e.g. chess (Chase 
& Simon, 1973), physics ((Maloney, 1994)) or programming ((Wiedenbeck, 1985)). The 
current study generated a large and rich population of case studies of software design that 
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is relevant to this literature.  This section presents a preliminary analysis of our FC, GS 
and E designs, which correspond to various points within the novice – expert continuum. 
No attempt was made to assess the overall “quality” of the participant’s software designs, 
but they can be compared on a number of more specific dimensions.  These dimensions 
include obvious indicators such as the times taken to produce each design and the number 
of parts in each design.  The use of formal notation, the amount of grouping and 
interaction, the communication between parts and the level of hierarchical organisation 
are all potential indicators of design richness. These latter factors were chosen based on a 
set of potential criteria elicited from a variety of international CS educators (see 
Appendix B).  

4.2.2 Question 
This section of the study investigated a number of different areas that might highlight 
differences in the software design between the different participant groups. Where 
appropriate, the investigation considered differences between participating institutions. 
The particular questions addressed were to what extent did the participant groups vary in 
their: 

• number of parts identified in their software design? 
• utilisation of formalized software design representation techniques? 
• time required to produce a software design?  
• use of hierarchical, nested or grouping structures? 
• indication of interaction between its parts? 

4.2.3 Data Analysis 

Number of Parts 
The design task protocol was specified so as to capture the number of parts for each 
design, and the name of each part.  One of the most basic ways to characterize the designs 
is to examine the number of parts.  Table 5 shows a breakdown of this information (each 
row of the table represents the participants at a single institution by institution letter 
code).  From Table 5 we can derive, for any specified subpopulation, information about 
the distribution of the number of parts.  For one subject (F01 at institution Q) it was not 
possible to identify the number of parts in their software design: they were subsequently 
excluded from all calculations. Table 4 shows such an analysis for the participant  
subpopulations FC, GS and E, and for the participants from each institution.  The 
columns of the table are N (the number of participants in the subpopulation) and the 
minimum, maximum, mean, median, mode and standard deviation of the number of parts. 
A one way analysis of variance shows that the variation in the mean number of parts for 
FC (5.1), GS (4.6) and E (6.2) participant groups were highly significant (p = 0.001), 
although there is no clear trend over the educational level of these subgroups (note that 
GS have the lowest mean). Variation in mean number of parts by institution was also 
significant (p < 0.01), but variation by performance bucket (over FC and GS) was not. 
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SUBPOPULATION N MIN MAX MEAN MEDN MODE SD 

Educators 28 3 14 6.2 5.5 4 2.9
First competency 135 2 11 5.1 5 3 2.2
Graduating students 150 2 12 4.6 4 4 1.9
Institution A 17 2 9 4.529 4 2 2.09
Institution C 7 3 12 6 5 3 3.251
Institution D 20 2 10 4.8 4 3 2.227
Institution E 12 2 7 4.667 4 4 1.434
Institution F 21 2 10 4.238 4 3 1.875
Institution H 12 3 9 4.333 4 4 1.546
Institution I 13 2 14 5.615 5 5 2.975
Institution J 17 3 9 4.765 4 3 1.699
Institution K 14 2 10 5.143 5 5 2.1
Institution L 21 2 10 4.952 6 6 2.214
Institution M 20 2 10 5.65 5.5 7 2.056
Institution N 21 3 10 5.667 5 4 1.984
Institution O 21 3 9 4.619 4 4 1.704
Institution P 21 2 9 4.333 4 4 1.643
Institution Q 7 3 10 6.857 6   6,10 2.416
Institution R 10 2 6 3.6 3.5 4 1.2
Institution S 17 2 10 5.647 5 5 1.969
Institution T 22 2 7 4.364 4 3 1.639
Institution V 6 3 13 7.167 6.5 5 3.287
Institution W 11 3 11 4.545 4 3 2.463
Institution Y 3 7 9 7.667 7 7 0.943
 

Table 4:  Distributions of numbers of parts, by Institution 
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 E01 E02 F01 F02F03F04F05F06F07F08F09F10G01G02 G03G04G05G06G07G08G09G10G11G12
A 6  4 8 3 2 3 5     5     4 6 5 7 2 4 9 2 2   
C                        9 5 7 3 3 3 12
D                         8 3 10 3 7 3 4 7 3 7 6 2 3 4 7 3 2 3 5 6
E 3                        7 4 6 2 4 4 6 6 4 6 4
F 3                       4 4 3 3 6 2 4 10 6 6 3 3 2 4 5 6 3 2 6 4
H 4                        4 5 5 4 4 4 3 9 3 4 3
I 8                        14 5 6 8 4 5 6 5 2 3 3 4
J 7                        4 3 6 9 3 3 4 5 6 5 3 5 3 4 4 7
K 4                       3 2 7 8 7 5 3 5 5 4 4 10 5
L 7                       6 4 6 3 2 8 3 6 6 4 4 6 2 2 3 2 6 7 10 7
M 3                       7 4 10 6 4 7 5 5 2 9 7 7 6 3 7 8 5 4 4
N 8                      9 4 4 3 5 6 10 10 5 4 6 5 5 5 4 6 4 5 4 7
O 5                        4 5 4 4 9 5 5 3 4 7 3 4 4 3 4 5 3 4 9 3
P 9                        4 6 6 3 5 3 3 7 3 5 5 5 2 4 4 3 4 4 4 2
Q 5                      X 10 3 10 8 6 6
R                         5 6 2 4 3 2 3 4 4 3
S 10                        7 3 5 7 5 5 3 9 5 5 7 2 6 5 6 6
T 5                        7 3 3 7 3 7 5 3 5 3 4 7 2 4 2 6 3 4 6 4 3
V 8                        13 3 5 5 9
W 3                       4 3 4 8 3 11 3 3 4 4
Y   7 7 9                    

Note:  X = not possible to identify 

Table 5:  Number of parts in software design for each participant 
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Design Representations 
All designs were analysed irrespective of their size and ordering to determine the richness 
of the software designs. Each was categorised according to their visual predominance in 
one of the following five different groupings, namely: 

1. Standard Graphical Representation (S): This was used to include recognised 
notations of software design. Ten different types were represented in the corpus: 
Architecture Diagram, Class Diagram, Class-Responsibility-Collaborator (CRC) 
Cards, Data Flow Diagram (DFD), Entity-Relationship Diagram (ER), Flow 
Chart, Graphical User Interface (GUI), Sequence Diagram, State Transition 
Diagram (STD) and Use Case Diagram. 

2. Graphical (G): This category included diagrams of any form that were not 
recognised as standard notations of software design. Large sections of text were 
accepted in this category providing that they were considered refinements of items 
identified in the diagram. In some cases it was difficult to differentiate between ad 
hoc diagrams and standardized graphical representations. In order to characterise 
the latter category, detailed syntax was ignored and benchmarks defined. For 
example in order to be recognized as a Class Diagram, it was agreed that a 
representation should consist of a box conceptualising both data and functions. 

3. Code or pseudo-code (C): This was used for any software design that included 
code segments such as assignments, iteration and selection. 

4. Predominantly textual (T): This category was used for free text descriptions but 
allowed an occasional diagram if used for illustration: for example, graphical 
interface or report layout.  

5. Mixed (M): This was used when there was no clear dominance between different 
styles. For example a participant might start with a textual description then 
proceed with a Class Diagram. If there was no connection between the 
descriptions and the identified classes then the category was Mixed (Text and 
Class Diagrams). 

To ensure consistency the designs were all categorised by three of the authors and 
required consensus.  

4.2.4 Results 
Figure 14 and Table 6 show the results of this analysis; table 7 displays the data by 
institution. (Figure 14 and Table 6 include data from all 314 participants.  However, 
although we were able to make a determination that the representation participant 01 
from institution Q used was textual, that participant did not complete the design. 
Consequently, we were unable to answer any of the other questions under consideration:  
number of parts, hierarchy between parts, and interaction among parts.  All tables relating 
to that data include only 313 participants). 
In general, there is a progression in the formalisation of techniques that are applied by the 
participant groupings. First competency students tend to rely much more on textual 
representations (47%) compared with more formalised techniques (15%). At the other 
end of the scale, diagrammatic representation (50%) was the most frequent technique 
employed by educators. Graduating students were more evenly distributed among textual, 
graphical and standard representations. Only 11% of all participants chose to represent 
their software designs using code. The categorisations of software designs produced by 
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subject groups shows considerable variability across institutions. However small sample 
sizes at some of the institutions precludes meaningful statistical analysis. 
Using the characterization data, two null hypotheses concerning the three participant 
groups FC, GS, and E were tested. Firstly, that there is no association between the three 
participant groups and their design representation. Using the chi-square test, the data 
supported the rejection of this null hypothesis at the alpha = .001 significance level. 
A single combination student group (S) consisting of all student subjects (i.e., the union 
of FC and GS) was also considered. The second null hypothesis was that there was no 
association between groups S and E in their design representation. Using the chi-square 
test, the data supported the rejection of this null hypothesis at the alpha = .025 
significance level. 
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Figure 14: Design Representations According to Design 
 
  Design Categorisation 

Participant Group Standard Graphical Code Textual Mixed 

  Count Percent Count Percent Count Percent Count Percent Count Percent 

FC  20 14.71% 26 19.12% 19 13.97% 64 47.06% 7 5.15%

GS 43 28.67% 34 22.6 28.00% 20 13.33%7% 11 7.33% 42 

E  1 4 14.29% 6 21.43% 1 %4 50.00% 3 10.71%  3.57

Total 77 24.52% 63 20.06% 34 10.83% 112 35.67% 28 8.92%

 
Tabl re ate 6: Design Rep sent ions 
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  Design Categorisation 

Institution Standard Graphical Code Textual Mixed 

  Count Percent Count Percent Count Percent Count Percent Count Percent 

A  1 5.88% 2 11.76% 5 29.41% 5 29.41% 4 23.53%

C  1 14.29% 1 14.29% 0 0.00% 5 71.43% 0 0.00%

D  10 50.00% 2 10.00% 2 10.00% 4 20.00% 2 10.00%

E  2 16.67% 5 41.67% 2 16.67% 2 16.67% 1 8.33%

F  1 4.76% 4 19.05% 5 23.81% 11 52.38% 0 0.00%

H  7 58.33% 0 0.00% 1 8.33% 4 33.33% 0 0.00%

I  3 23.08% 4 30.77% 2 15.38% 4 30.77% 0 0.00%

J  4 23.53% 4 23.53% 3 17.65% 5 29.41% 1 5.88%

K  7 50.00% 2 14.29% 1 7.14% 4 28.57% 0 0.00%

L  9 42.86% 5 23.81% 1 4.76% 3 14.29% 3 14.29%

M  0 0.00% 3 15.00% 3 15.00% 11 55.00% 3 15.00%

N  6 28.57% 8 38.10% 1 4.76% 5 23.81% 1 4.76%

O  4 19.05% 4 19.05% 0 0.00% 9 42.86% 4 19.05%

P  6 28.57% 4 19.05% 1 4.76% 6 28.57% 4 19.05%

Q  0 0.00% 1 12.50% 0 0.00% 5 62.50% 2 25.00%

R  2 20.00% 3 30.00% 0 0.00% 5 50.00% 0 0.00%

S  9 52.94% 1 5.88% 0 0.00% 5 29.41% 2 11.76%

T  4 18.18% 6 27.27% 5 22.73% 7 31.82% 0 0.00%

V  1 16.67% 1 16.67% 0 0.00% 4 66.67% 0 0.00%

W  0 0.00% 2 18.18% 2 18.18% 7 63.64% 0 0.00%

Y  0 0.00% 1 33.33% 0 0.00% 1 33.33% 1 33.33%

Total 77 24.52% 63 20.06% 34 10.83% 112 35.67% 28 8.92%

  
Table 7: Design Representation by Institution 

 
The use of hierarchical, nested, or grouping structures among parts, or even components 
in the design that were not labeled specifically as parts, was examined. Each researcher 
analysed the designs from their own institution in terms of grouping by answering the 
question “Did the design include any hierarchical, nested, or grouping structure of any 
kind: Yes (Y), No (N), Don’t Know (D)?”  For example, a diagram with boxes labeled 
“Pocket PC,” “Alarm Handler,” and “User Interface,” all of which are labeled 
collectively as “User/Front End” would count as grouping. Table 8 shows that in the E 
group 46% of the participants included grouping in their designs, while 24% of the FC 
group and 27% of the GS group included grouping in their designs. 
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 Hierarchical Representation? 

Participant Group Yes No Don’t Know 

 Count Per t Count Percent cent Count Percen

FC 70% 74.07% 2.22% 32 23. 100  3 

 41 27.33% 108 72. 0% 1 0.67% 

1 46.43%  53.5 % 0 0 0%

27.48%  71.2 % 4 1.28% 

Hierarchy  th sign by Pa Groups 
n in ble 9, th  is onsiderab  dif ence amo  in tions; it ge m 

he parti an f instituti  F  included grou g in thei esi to 
he icipants o on Q wh did

 Hiera hic epresen tion

tut  Yes o Don’t K w 

 Count Per C t nt Co e nt cent oun Perce unt P rce

2 76% 15 88.24  0 

1 29% 5 71.43  1 14.29% 

7 00% 13 65.00  0 

5 67% 7 58.33  0 

1 6% 20 95.24  0 

1 3% 11 91.67  0 

5 6% 7 53.85  1 

9 94% 8 47.06  0 

4 57% 10 71.43  0 

5 81% 15 71.43  1 

5 00% 15 75.00  0 

4 1 05% 17 80.95  0 

GS 0

E  3  15 7 .0  

Total 86  223 5

Table 8: Inclusion of  in e De rticipant 
As show  Ta ere  a c le fer ng stitu ran s fro
a low of 5% of t cip ts o on who  pin r d gns, 
86% of t part f instituti o  so. 
 

rc al R ta ? 

Insti ion  N no

A  11. % 0.00% 

C  14. %

D  35. % 0.00% 

E  41. % 0.00% 

F  4.7 % 0.00% 

H  8.3 % 0.00% 

I  38.4 % 7.69% 

J  52. % 0.00% 

K  28. % 0.00% 

L  23. % 4.76% 

M  25. % 0.00% 

N  9. % 0.00% 

O  7 33.33% 14 66.67% 0 0.00% 

P 4 0 0.00% 19.05% 17 80.95% 

Q  6 85.71% 0 0.00% 1 14.29% 

R  1 10.00% 9 90.00% 0 0.00% 

S  8 47.06% 9 52.94% 0 0.00% 

T  7 31.82% 15 68.18% 0 0.00% 

V  2 33.33% 4 66.67% 0 0.00% 

W  1 9.09% 10 90.91% 0 0.00% 

Y  1 33.33% 2 66.67% 0 0.00% 

Table 9: Inclusion of Hierarchy in the Design by Institution 
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Two null hyp hesis were considered.  F between the three 
participant groups and the use of grouping in their designs.  Using the chi-square test, 
there is no significant difference among the participant groups and their use of grouping 
in their design .  Second, ri e a n (S s no 
asso ion between groups d us ro heir sign  the 
chi- re test, the data sup ed on s n esi t the .025 
significance level. 
Also examined was whether the de  in f in actio  the 
parts.  In a similar way me ed ic of n w anal each 
researcher by rts indicated, 

 their designs, while only 66% of the 
C group and 81% of the GS group did so.  Again, there is a noticeable difference among 

institutions, as shown in Table 11; f the participants of 
institution M who indicated interaction in their designs, to 100% of the participants of 
institutions C, V, and Y who did so. 
The null hypothesis for this analysis was that there is no association between the three 
pa pant groups an n ind  inter n in ns.  T re is a statistically 
significant difference among all three participant groups.  Using the chi-square test, the 
da pported the re tion l hyp sis at the alpha = .001 significance level.  
Furthermore considering the combined student group (S), the data supported the 
rejection, at the alpha - .025 significance level, of the null hypothesis that there is no 
association between groups S and E and an indication of interaction i eir d
 
  eract ted? 

ot irst that there is no association 

s conside ng a singl  combin tion stude t group ), there i
ciat  S an E in their e of g uping in t  de s.  Using
squa port the rejecti  of thi ull hypoth s a  alpha = 

sign contained an dication o ter n among
ntion  above, ind ation  interactio as ysed by 

answering the question, "Are interaction between ay of the pa
Yes(Y), No (N), Don't Know (D)?"  For example, a diagram with two boxes, an arrow 
linking the two boxes, and an explanation that one box is providing information to the 
other box would count as interaction.  Table 10 shows that in the E group 93% of the 

articipants indicated interaction among the parts inp
F

it ranges from a low of 40% o

rtici d a ication of actio their desig he

ta su jec of the nul othe

n th esigns. 

Int ion Indica

rtic Yes No 't Know 

nt Perc C  Perce Co Percen

65 32.5 1.4

81 15.3 3.3

 92 7.1 0.0

75 22.0 2.2

: In n of Intera n th n by Part

Pa ipant Group Don

  Cou ent ount nt unt t 

FC 89 .93% 44 9% 2 8%

GS 122 .33% 23 3% 5 3%

E  26 .86% 2 4% 0 0%

Total 237 .72% 69 4% 7 4%

 
Table 10 clusio ction i e Desig icipant Groups 
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 Interaction Indicated? 

Institution Yes No Don't Know 

 Count Percent Count Percent Count Percent 

A 16 94.12% 1 5.88% 0 0.00% 

C 7 100.00% 0 0.00% 0 0.00% 

D 17 85.00% 3 15.00% 0 0.00% 

E 11 91.67% 1 8.33% 0 0.00% 

F 14 66.67% 7 33.33% 0 0.00% 

H 10 83.33% 1 8.33% 1 8.33% 

I 9 69.23% 4 30.77% 0 0.00% 

J 14 82.35% 1 5.88% 2 11.76% 

K 12 85.71% 2 14.29% 0 0.00% 

L 20 95.24% 0 0.00% 1 4.76% 

M 8 40.00% 10 50.00% 2 10.00% 

N 14 66.67% 7 33.33% 0 0.00% 

O 12 57.14% 9 42.86% 0 0.00% 

P 10 47.62% 11 52.38% 0 0.00% 

Q 6 85.71% 0 0.00% 1 14.29% 

R 7 70.00% 3 30.00% 0 0.00% 

S 13 76.47% 0 0.00% 4 23.53% 

T 20 90.91% 2 9.09% 0 0.00% 

V 6 .00 0 0.100 %  00% 0 0.00% 

W 8 2.73%  27.27% 0 0.00% 7  3

Y 3 0.00% 0 0.00% 10  0 0.00% 

7  6

 
Table 11: Inclusion of Interaction in the Design by Institution 

 
The result from the study indicates that the ability to use grouping and interaction in 
software design increases with programming experience and exposure to these concepts 
in the curriculum. The data also indicates the degree to which these abilities are 
manifested in student software design. 
The final aspect of systematic differences considered the time participants took to 
produce software designs. The results showed that graduating students on average take 
longer (38 minutes) to complete their software designs than do first competence students 
(37 minutes). Whilst the difference between those groups was not significant, educators 
took on average 48 minutes. 
 

Total 237 5.72% 9 22.04% 7 2.24% 
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4.3 Design criteria prioritisation 
ne of this study’s focal questions is whether students recognize different criteria within 

the design process. This was motivated ators and papers such as 
(CMM Correspondence Group, 1997), that suggest that there are particular criteria that 
should be considered when doing software design. The particular focus here is on the 
relative importa iffer a—w the s ( atio e 

e for various ent gr ther th  are th s educators, and whether 
y vary over diff nt task xts.   

By examining these prioritizations across participant groups, it could be possible to see 
 (or whether) se are through the curriculum—do the rankings of first 

mpetency stude differ e of g uating , and  the r of 
duating senior ferent se of cator  rank s were collected 
mediately after,  are se ntext o he dec on tas  Appe

3.1. Question
pecifically, the wing questions were a ressed ta coll n an : 

• What are the differences, if any, among the prioritisations done by different 
particip roups

• How closely do the selection patterns co th va s dis g 
characte cs wit articip  group

• To wha ree d s of ea partic p (FC, GS, and E) agree 
among themselves on how they rank the criteria in each scenario? 

• How do each group’s criteria rank  vary nario
 

.2. Data col ion a surem t sc
ta were collect y pres  subje

phrase describing a design criterion (Appendix C).   They were asked to partition the set 
cards into three roups: most important  least portan he 
ers.  They partitioned the is way four tim r each  four s  

1. creating the design individually (cu nt task
erform he tas f a tea ask i

3. performing the task by themselves in 24 hours (time pressure), and  
4. designi

hese were done in sequence, without knowing what the successive scenarios were going 

f analyses might be applicable, it is necessary to 

on of the criteria into three sets: 5 most, 5 least, and 6 other.  

O
by discussion with educ

nce of d ent criteri hether se ranking prioritiz ns) are th
sam stud oups, whe ey e same a
the ere s and conte

how  the  learned 
co nts from thos rad  seniors are ankings 
gra s dif  from tho edu s.  These ing
im  and t in the co f, t ompositi k in ndix A.  

4. s 
.  S  follo dd in the da ectio d analysis

ant g ? 
rrelate wi riou tinguishin

risti hin each p ant ? 
t deg o member ch ipant grou

ings  across sce s? 

4.3 lect nd mea en ales 
Da ed b enting the ct with a set of 16 cards, each with a short 

of  g   the five , the five  im t, and t
oth cards in th es, one fo  of cenarios:

rre ), 
2. p ing t k as part o m (t n team),  

ng software with a long expected lifetime (longevity). 
T
to be.   
Each partition is considered as one observation.  For example, one observation might be 
most important ={1,3,6,7,9}, least important ={2,4,5,10,16}, (other={8,11,12,13,14,15} 
by default).  To understand what sort o
understand the measurement scales involved.  The criteria (card numbers 1-16, or 
category names) are nominal scaled data: the card numbers are only identifiers, and have 
no other significance.  The importance chosen for an individual criterion (most, least, 
other) is ordinal scaled data: most is greater than other, which is greater than least.  An 
observation is simply a partiti
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Participants’ questions and comments during the prioritisation task were also collected.  

ifferent scenarios.  These suggest that each 

ere done to evaluate whether there were differences between the 

and on h
The first series of tests are Chi-square tests for differences in probabilities (Conover, 
1971), h
contin n
number o mber of times that criterion was 
picked y
annotation e probability 
of cell i,j 
criterion j in the most important group.  The null hypothesis is that all probabilities in the 
same column are equal: that is, each group has the same preference for each criterion. 

These qualitative data were used in interpreting the results of the statistical analysis of 
numerical data. 

4.3.3. Data analysis 
The data collected for each prioritisation were collected into frequency counts for each 
participant group and scenario. These data are shown as a set of bar charts in Appendix 
D, and show each group’s rankings for the d
group prefers certain criteria over others within a given scenario, and that these 
preferences are not identical across participant groups, and not identical across scenarios.  
To examine whether these suggested differences are significant, we ran a series of 
comparisons, with associated significance tests where appropriate. 

Between-group agreement 
Two series of tests w
groups on how criteria were ranked: one series that examined all of the criteria at once, 

e t at looked at the criteria one at a time.   

 w ere the data (for either most or least important) are arranged into a g by 16 
ge cy table, where g is the number of participant groups being tested, 16 is the 

f criteria, and the value in each cell is the nu
 b  that group.  The layout of such a table for most important, with marginal 

s, is given in Table 12.   The test is based on cell probabilities: th
is the probability that a randomly chosen observation from group i includes 

 
 Criterion1 Criterion2 … Criterion16 Totals 

FC OFC,1 OFC,2 … OFC,16 nFC 
GS OGS,1 OGS,2 … OGS,16 nGS 
E OE,16 nE  OE,1 OE,2 … 

Tot C16 N als C1 C2 … 

Table 12 ions from 
group n j, ni is the sum of 

sts were run on five sets of data (each scenario, plus pooled scenarios) for both 

Clarity.  Considering the least important criteria, pooled scenarios, we found significant 
differences for Coupling (chosen less by GS, more by FC), and eight of the criteria for E: 

 Arrangement of data in 3x16 contingency table.  Oi,j is the number of observat
i that have Criterionj rated most important, Ci is the sum of cells in colum

the cells in row i. Under the null hypothesis, the expected value in celli,j is ni cj/N. 

These te
most and least important criteria, with a alpha = 0.05.  We found significant differences 
among the groups for both the most and least important criteria, for the pooled scenarios 
and the longevity scenarios (no difference when looking at current, team, and time 
pressure scenarios individually).  As further post hoc analysis, we looked at the residual 
cell differences.  Considering the most important criteria, pooled scenarios, we found 
significant differences (residual > 2.0) for Coupling (chosen less by FC, more by GS and 
E), Engineering (chosen more by GS, less by E), and Clarity (chosen less by E).  Under 
the longevity scenario, we saw similar significant residual differences for Coupling and 
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Intelligibility, Explainability, Recognition of structure, Input re-use, and Clear 
functionality were chosen less often, and Re-usability, Maintainability, and Engineering 
were chosen more often. Under the longevity scenario, the only significant residuals were 
for Maintainability and Engineering (chosen more often by E).  

t differences were for group E, and our primary interests are 

x3 contingency table, 
 the classification (most, other, least), and rows 
.  These comparisons were run with an alpha of 0.05 for 

ngevity), Input re-use (for current task, 

 in 
team and longevity scenarios).   
Across all groups, E was significantly diffe  the others for many of the 
individual criteria under a one scenari

Agreement under distinguishing characteristic 
One of the hypotheses was that students in different “performance buckets” would have 
different criteria preferences.  We t  this for the GS participant group (where the 
pe f 
s  
and 2 (G   0-2.7), 
then ran comparisons using a 3x16 contingency table as above (replacing groups by 

As most of the significan
differences between groups FC and GS, we ran the same set of tests on FC and GS data 
only.  These results were consistent with the others: we found significant differences for 
most important under pooled scenarios, least important under pooled scenarios, and most 
important under longevity; in each of these, the only significant residual difference was 
found for Coupling: GS rated it relatively more important than FC in these three cases. 
We also performed an alternative set of tests for each individual criterion, comparing the 
participant groups under each scenario.  For these tests, we used a 3
with columns corresponding to
corresponding to groups as before
each test. 
The results of these tests showed significant differences in 16 of the 64 comparisons:  
Coupling (for task in team, time pressure, and lo
task in team, and time pressure), Re-usability (for task in team and time pressure), 
Recognition of structure (for task in team and longevity), Clarity (for current task and 
longevity), and Cohesion, Intelligibility, Maintainability, and Engineering (for longevity).  
To try to isolate the differences between the two student groups, we ran these tests on 
those data alone, and found significant differences for Coupling and Recognition of 
structure (for the task in team and longevity scenarios).   
Summarizing the between group test results: 

• Between FC and GS, the only differences were found for Coupling (both sets 
of tests) and Recognition of structure (using individual criterion tests, task

• rent from
t least o. 

ested
rformance bucket classification should be most reliable).  Due to the low numbers o

ubjects in the top and bottom performance bucket, we divided the pool into buckets 1
PA = 3.7-4.0), bucket 3 (GPA = 2.7-3.7), and buckets 4 and 5 (GPA =

performance class), for pooled scenarios plus individual scenarios.  We found no 
significant differences between these groups. 

Within-group agreement 
There are a number of possible ways to measure within-group agreement—proportion of 
the observations that are the same as the most popular answer, proportion of observations 
that agree on the classification of the most popular (or key) criteria, etc.    Table 13 shows 
the percent of all observed classifications that are in the top five chosen by a group: the 
number of choices (for most or least important) that were in the top five answers divided 
by the total number of choices.  This number can range from 30.25% (all criteria chosen 
in equal proportion) to 100% (all observations agree completely). 
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 Pooled Current task Task in team Time pressure Longevity 
FC 55 48 53 60 57 
GS 56 48 54 66 57 
E 59 56 57 65 56 

Table 13  Percent of all observed classifications that are in the top five chosen, by group and scenario. 

These data suggest that while there is a good deal of agreement, it is not complete 
(although the choices are clearly not random, as the percentages are all well over the 

n of the residuals confirms what the above table suggests: the proportion of 

 adapt the way they approach 

groups o
differe s  
The measu

erwise.  This value assignment 
ant). 

These responses were compared among the groups by running a one-way analysis of 
ey were significantly different across groups at an alpha 

). 

minimum possible).  If we run a Chi-square test for difference of probabilities on the 
underlying count data, we reject (at alpha = 0.05) the hypothesis that there are no 
differences across groups and scenarios, that is, the probability of a chosen criterion being 
one of the top five chosen is not independent of scenario and participant group.  A closer 
examinatio
choices in the top five are significantly greater than expected under the time pressure 
scenario, and the proportion of choices in the top five are significantly less than expected 
in the current scenario for the FC and GS groups. 

Individual variation across scenarios (by group) 
One of the things we wanted to assess is the degree to which individuals adjust the 
rankings of their design criteria when faced by different situations. It has been observed 
(Adams, Turns, & Atman, 2003) that expert designers
problems to match task constraints; we decided to test whether our observations across 

 w uld also exhibit this behavior. The data consist of prioritizations across four 
nt cenarios, grouped by individual, so individual responses can be examined.  

re used for these responses was calculated as follows: 
1. Each observation was expressed as a 16-element vector (positions 

corresponding to criteria); each element was given the value –1 if the criterion 
was in least, 1 if it was in most, and 0 oth
respects the order of least < other < most (import

2. The mean of the four scenario vectors is calculated. 
3. We calculate the squared Euclidian distances between the mean vector and 

each observation. 
4. We calculate the response as the sum of these 4 distances. 

This is equivalent (within a multiplicative constant) to calculating the covariance matrix 
of the four vectors and summing the diagonal terms, or summing the variances of each 
criterion values.  

variance.  The result was that th
of 0.05 (calculated significance p<.0005).  Examining closer, the average responses for 
the three groups are FC = 23.3, GS = 23.5, and E = 17.9: the significance of the 
difference here is due to the lower value for E (this result was verified by running t-tests 
on FC vs. GS (not significant) and E vs. FC and GS (significant)). 
The result: there is no difference in the amount that groups FC and GS (the students) 
changed their prioritisations over these four scenarios, and the amount of change is 
significantly greater than that observed with group E (the educators
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Applicability of the statistical tests   
The sta stical  assu in e e 
assump  are no ctly met.  For the Chi-squ  tests based ed 
that the ent scale is at least nominal, each observation is counted in one cell, 
and that the observations are independent.  In al unts 
across criteria (where we are counting the number of times a criterion is named as most 
or least important), we violate the independence assumption: each observation is treated 

 lot of ties: 5 tied for most, 5 tied for 
ties be quite rare for the tests 

o the context of the task 
to a gr
 Few stati
only diffe
statisticall nd low-performing GS 
students.  
We no
software engineering concept or principle. The way each was phrased may have lent 
subtle 

s.  Specifically, it will be examined whether other factors make a 

ti tests used me that certa  things are tru  about the data; some of thes
tions
 measurem

t stri are on counts, it is assum

l of the tests where we use total co

like 5 observations, and since any criterion can only be counted once in that group of 5, 
they are not independent.  If the number of observations is large relative to 5, this should 
not have much of an effect. 
The tests done on individual criteria (counting as most, least, or other) do not violate the 
independence assumption.  There is a problem, however, in running a series of individual 
tests for the criteria: while the alpha value (probability of rejecting the null hypothesis if 
it is true) holds for each criterion, the likelihood of rejecting some null hypothesis that is 
true goes up with the number of criteria tested.  
There are a number of statistical tests available that use ranks of ordinal data.  The 
problem with the data collected here is that the criteria within an observation have only 
three possible values, so the ranks end up with a
least, and 6 tied for other; ranked tests generally require that 
to apply. 

4.3.5. Conclusions 
Analyses were done of students’ and educators’ selection patterns in the criteria 
prioritisation.  Each group changed its prioritizations in response to changing design 
contexts.  The size of that response, as measured by the individual variation across 
contexts, showed a significant difference between students and educators.  Surprisingly, 
students were more flexible, and adapted their criteria rankings t

eater degree than did educators. 
stically significant differences were found between FC and GS students—the 
rences detected were relative to Coupling and Recognition of structure.  No 
y significant difference was found between high- a

te a potential source of bias. The design criteria were each meant to represent a 

shades of meaning that differ with other phrasing.  

4.3.6. Future work 
Future work involves the study of the prioritisation data for some subgroups of the FG, 
GS, and E group
significant difference with respect to the results, factors including gender, age, number of 
computer science classes taken, time to perform the decomposition task, number of 
programming languages known, and institution.  
 
Summary 
Research on student software design was undertaken over 21 institutions in the academic 
year 2003/4. The study generated large sets of both qualitative and quantitative data. The 
corpus was analysed to investigate three interests: did students perceive and respond to 
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ambiguity in the requirements, were there differences in their description and 

dation. 

003) 

on, to Gary Marston for assistance with image scanning and to Jennifer Burley 
for student GPA data-gathering. 

K. M., & Nachtmann, H. L. (1999). A comparison 

, L. L., Turns, J., & Atman, C. J. (2000). Engineering design factors: how 

hess. Cognitive Psychology, 4, 
55-81. 

., & Dorst, K. H. (1992). Cognitive models in industrial design 

Curtis, B. (1990). Empirical Studies of the Software Design Process. Paper presented 
man-Computer Interaction - INTERACT '90. 
2001). Software Design - Cognitive Aspects (F. Bott, Trans.): Springer 

representation of their solutions and were there differences in the relative priority they 
gave different design criteria. In all cases, the questions included comparison between 
sub-populations of “first competency” students, graduating students and educators. 
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Getting People to Sleep  
In 
anothe
pride, a deprivation has historical 
roo
people
As Sta rivation is one of the leading health 
pro
have m tive. 
Th
sleep d
Your b ign a "super alarm clock" for University students to help them to 
ma project 
int
ea
to a ne
Yo

• 
• 

• 

• nt needs to go to sleep. This should 

• 
o trigger the yellow/red alerts) will be 

ate in 

• angerously sleep-deprived to someone who 

identify clusters of 

 

In uld 

ppendix A: Design Brief 

some circles sleep deprivation has become a status symbol. Statements like “I pulled 
r all-nighter” and “I’ve slept only three hours in the last two days” are shared with 
s listeners nod in admiration. Although celebrating self-

ts and is not likely to go away soon, it’s troubling when an educated culture rewards 
 for hurting themselves, and that includes missing sleep. 
nford sleep experts have stated, sleep dep

blems in the modern world. People with high levels of sleep debt get sick more often, 
ore difficulties in personal relationships, and are less productive and crea

e negative effects of sleep debt go on and on. In short, when you have too much 
ebt, you simply can’t enjoy life fully. 
rief is to des

nage their own sleep patterns, and also to provide data to support a research 
o the extent of the problem in this community. You may assume that, for the prototype, 
ch student will have a Pocket PC (or similar device) which is permanently connected 

twork. 
ur system will need to: 

Allow a student to set an alarm to wake themselves up. 
Allow a student to set an alarm to remind themselves to go to sleep. 

• Record when a student tells the system that they are about to go to sleep. 
Record when a student tells the system that they have woken up, and whether it 
is due to an alarm or not (within 2 minutes of an alarm going off). 
Make recommendations as to when a stude
include "yellow alerts" when the student will need sleep soon, and "red alerts" 
when they need to sleep now. 
Store the collected data in a server or database for later analysis by researchers. 
The server/database system (which will als
designed and implemented by another team. You should, however, indic
your design the behaviour you expect from the back-end system. 
Report students who are becoming d
cares about them (their mother?). This is indicated by a student being given three 
“red alerts" in a row. 

• Provide reports to a student showing their sleep patterns over time, allowing 
them to see how often they have ignored alarms, and to 
dangerous, or beneficial, sleep behaviour.  

doing this you should (1) produce an initial solution that someone (not necessarily you) co
work from (2) divide your solution into not less than two and not more than ten parts, giving each 
a name and adding a short description of what it is and what it does – in short, why it is a part. If 
important to your design, you may indicate an order to the parts, or add some additional detail as 
to how the parts fit together. 
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Appendix B: Design Criteria 
Petre interviewed a number of eminent CS 

ction of software design criteria identified by 

rms, and so the researchers expressed each of the criteria as a descriptive 
descriptors with three CS educators, presenting them with both 
iginal terms and asking them to match the two—which they 

wer a with just the phrases and 
ask  h  this, and his 
term lowing 
eac e
 
1. H i
with a 
2. Kno on could be implemented. [Implementability] 
3. M k
4. Mak
[Coupl
5. Mak unking] 
6. B n
[Intelli
7. B n
[Ex i
8. Cons at gets the job done. [Parsimony] 

. Working to achieve a solution of maximum generality. [Re-usability] 
10. Ensuring that the parts which make up the solution map onto the structure of the 

13. Designing a system that can be easily maintained. [Maintainability] 

At SIGCSE 2003, Sally Fincher and Marian 
educators, asking them what they would like to know about: 

• what their students know, understand, or experience about software design 
• what criteria they would apply to determine these things 
• what criteria they would like their students to apply in assessing alternative 

software designs;  
• on what dimensions they would vary alternatives if they were presenting 

alternative software designs for comparison and critique. 
 
From these the researchers identified a colle
educators as being of interest or importance and extracted the 16 most prominent.  Most 
were expressed by the educators using single-word, often technical terms, such as 
coupling, encapsulation, and intelligibility.  Fincher and Petre’s experience with a 
previous study (Petre et al, 2003) was that students were often unable to ‘unpack’ such 
professional te
phrase.  They checked the 
the descriptors and the or

e ble to do accurately.  They also presented one educator 
ed im to express them as single or double word terms. He was able to do
s matched theirs. Here, the “short-form” phrases appear in square brackets, fol

h d scriptive phrase. 

id ng the internal workings of each part of the solution from the user, presenting them 
simple interface to its functionality. [Encapsulation] 
wing how each part of the soluti

a ing sure related things appear together. [Cohesion] 
ing sure that un-related things are linked via a narrow (internal) interface. 

ing] 
ing sure the design is made up of appropriately-sized “chunks”. [Ch

ei g able to explain what each part of the solution is, and what it does, to yourself. 
gibility] 

ei g able to explain what each part of the solution is, and what it does, to others. 
pla nability] 

tructing a solution using the simplest thing th
9

problem. [Recognition of structure] 
11. Designing so that someone else can implement the solution with little (or no) 
additional information or domain expertise. [Clarity] 
12. “Sanity-checking” the solution, by checking back to the specification. [Design-phase 
testing] 
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14. Considering the technological implementation (target platform or device) and 

16. p

designing for efficient use of that resource. [Engineering] 
15. Using ideas that I know work. [Input re-use] 

 Ex ressing the functionality clearly. [Clear functionality] 
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Appendix C:  requirements generated to identify 
expression of ambiguity 
 
1. Allow a student to set an alarm to wake them up. 
2. Allow a student to set an alarm to remind them to go to sleep. 
3. Record when a student tells the system that they are about to go to sleep. 
4. Record when a student tells the system that they have woken up, and whether it is due 
to an alarm or not (within 2 minutes of an alarm going off) 
5. Make recommendations as to when a student needs to go to sleep.  This should include 
“yellow alerts” when the student will need to sleep soon, and “red alerts” when they need 
to sleep now. 
6. Store the collected data in a server or database for later analysis by researchers.  The 
server/database system (which will also trigger the yellow/red alerts) will be designed 
and implemented by another team.  You should, however, indicate in your design the 
behaviour you expect from the back-end system. 
7. Report students who are becoming dangerously sleep-deprived to someone who cares 
about them (their mother?).  This is indicated by a student being given three “red alerts” 
in a row. 
8. Provide reports to a student showing their sleep patterns over time, allowing them to 
see how often they have ignored alarms, and to identify clusters of dangerous, or 
beneficial, sleep behaviour. 
9. Wake the student up.  
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Appendix D: Design criteria selection within participant 
groups 
For every figure in this appendix, the Y axis is % of sub-population i.e. FC, Grad and 

 in appendix B. So, for figure 15 the 
riterion one in the “most 

Educator. The X axis is the critieria number as given
left-most bar represents that 50% of the graduating students put c
important” category for the first task. 
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Figure 15. The most important design criteria selected by each group for the original task 
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Figure 16. The least important design criteria selected by each group for the original task 
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In a Team: Most Important
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Figure 17. The most important design criteria selected by each group for the team scenario 
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Figure 18  The least important design criteria selected by each group for the team scenario 
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Time Pressure: Most Important

0

10
20

30

40
50

60

70

80
90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Grad

FC

Educ

 

Figure 19. The most important design criteria selected by each group for the time pressure scenario 
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Figure 20 The least important design criteria selected by each group for the time pressure scenario 
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Figure 21. The most important design criteria selected by each group for the longevity scenario 
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Figure 22. The least important design criteria selected by each group for the longevity scenario 
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Most important by scenario, GS
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Figure 23. The GS students’ most important design criteria, by different scenarios 
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Figure 24. The FC students’ most important design criteria, by different scenarios 
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