1,377 research outputs found

    Ontology mapping: the state of the art

    No full text
    Ontology mapping is seen as a solution provider in today's landscape of ontology research. As the number of ontologies that are made publicly available and accessible on the Web increases steadily, so does the need for applications to use them. A single ontology is no longer enough to support the tasks envisaged by a distributed environment like the Semantic Web. Multiple ontologies need to be accessed from several applications. Mapping could provide a common layer from which several ontologies could be accessed and hence could exchange information in semantically sound manners. Developing such mapping has beeb the focus of a variety of works originating from diverse communities over a number of years. In this article we comprehensively review and present these works. We also provide insights on the pragmatics of ontology mapping and elaborate on a theoretical approach for defining ontology mapping

    Institutionalising Ontology-Based Semantic Integration

    No full text
    We address what is still a scarcity of general mathematical foundations for ontology-based semantic integration underlying current knowledge engineering methodologies in decentralised and distributed environments. After recalling the first-order ontology-based approach to semantic integration and a formalisation of ontological commitment, we propose a general theory that uses a syntax-and interpretation-independent formulation of language, ontology, and ontological commitment in terms of institutions. We claim that our formalisation generalises the intuitive notion of ontology-based semantic integration while retaining its basic insight, and we apply it for eliciting and hence comparing various increasingly complex notions of semantic integration and ontological commitment based on differing understandings of semantics

    Context-Based Entity Matching for Big Data

    Get PDF
    In the Big Data era, where variety is the most dominant dimension, the RDF data model enables the creation and integration of actionable knowledge from heterogeneous data sources. However, the RDF data model allows for describing entities under various contexts, e.g., people can be described from its demographic context, but as well from their professional contexts. Context-aware description poses challenges during entity matching of RDF datasets—the match might not be valid in every context. To perform a contextually relevant entity matching, the specific context under which a data-driven task, e.g., data integration is performed, must be taken into account. However, existing approaches only consider inter-schema and properties mapping of different data sources and prevent users from selecting contexts and conditions during a data integration process. We devise COMET, an entity matching technique that relies on both the knowledge stated in RDF vocabularies and a context-based similarity metric to map contextually equivalent RDF graphs. COMET follows a two-fold approach to solve the problem of entity matching in RDF graphs in a context-aware manner. In the first step, COMET computes the similarity measures across RDF entities and resorts to the Formal Concept Analysis algorithm to map contextually equivalent RDF entities. Finally, COMET combines the results of the first step and executes a 1-1 perfect matching algorithm for matching RDF entities based on the combined scores. We empirically evaluate the performance of COMET on testbed from DBpedia. The experimental results suggest that COMET accurately matches equivalent RDF graphs in a context-dependent manner

    Unified and Conceptual Context Analysis in Ubiquitous Environments

    No full text
    International audienceThis article presents an original approach for the analysis of context information in ubiquitous environments. Large volumes of heterogeneous data are now collected, such as location, temperature, etc. This "environmental" context may be enriched by data related to users, e.g., their activities or applications. We propose a unified analysis and correlation of all these dimensions of context in order to measure their impact on user activities. Formal Concept Analysis and association rules are used to discover non-trivial relationships between context elements and activities, which, otherwise, could seem independent. Our goal is to make an optimal use of available data in order to understand user behavior and eventually make recommendations. In this paper, we describe our general methodology for context analysis and we illustrate it on an experiment conducted on real data collected by a capture system. Thanks to this methodology, it is possible to identify correlation between context elements and user applications, making possible to recommend such applications for user in similar situations

    Ontology Mapping: The State of the Art

    Get PDF
    Ontology mapping is seen as a solution provider in today\u27s landscape of ontology research. As the number of ontologies that are made publicly available and accessible on the Web increases steadily, so does the need for applications to use them. A single ontology is no longer enough to support the tasks envisaged by a distributed environment like the Semantic Web. Multiple ontologies need to be accessed from several applications. Mapping could provide a common layer from which several ontologies could be accessed and hence could exchange information in semantically sound manners. Developing such mapping has beeb the focus of a variety of works originating from diverse communities over a number of years. In this article we comprehensively review and present these works. We also provide insights on the pragmatics of ontology mapping and elaborate on a theoretical approach for defining ontology mapping

    Characterizing One-Sided Formal Concept Analysis by Multi-Adjoint Concept Lattices

    Get PDF
    Managing and extracting information from databases is one of the main goals in several fields, as in Formal Concept Analysis (FCA). One-sided concept lattices and multi-adjoint concept lattices are two frameworks in FCA that have been developed in parallel. This paper shows that one-sided concept lattices are particular cases of multi-adjoint concept lattices. As a first consequence of this characterization, a new attribute reduction mechanism has been introduced in the one-side framework.This research was partially supported by the 2014-2020 ERDF Operational Programme in collaboration with the State Research Agency (AEI) in Project PID2019-108991GB-I00 and with the Department of Economy, Knowledge, Business and University of the Regional Government of Andalusia in Project FEDER-UCA18-108612 and by the European Cooperation in Science & Technology (COST) Action CA17124

    FCA modelling for CPS interoperability optimization in Industry 4.0

    Get PDF
    International audienceCyber-Physical Systems (CPS) lead to the 4-th Industrial Revolution (Industry 4.0) that will have benefits of high flexibility of production, easy and so more accessible participation of all involved parties of business processes. The Industry 4.0 production paradigm is characterized by autonomous behaviour and intercommunicating properties of its production elements across all levels of manufacturing processes so one of the key concept in this domain will be the semantic interoperability of systems. This goal can benefit of formal methods well known various scientific domains like artificial intelligence, machine learning and algebra. So the current investigation is on the promising approach named Formal Concept Analysis (FCA) to structure the knowledge and to optimize the CPS interoperability

    Using a hybrid approach for the development of an ontology in the hydrographical domain

    Get PDF
    This work presents a hybrid approach for domain ontology development, which merges top-down and bottom-up techniques. In the top-down approach the concepts in the ontology are derived from an analysis and study of relevant information sources about the domain (e.g., hydrographic features). In the bottom-up approach the concepts in the ontology are the result of applying formal methods on a analysis of the data instances on the repositories (e.g., repositories containing hydrographical features)
    corecore