45 research outputs found

    Relation-algebraic modeling and solution of chessboard independence and domination problems

    Get PDF
    AbstractWe describe a simple computing technique for solving independence and domination problems on rectangular chessboards. It rests upon relational modeling and uses the BDD-based specific purpose computer algebra system RelView for the evaluation of the relation-algebraic expressions that specify the problems’ solutions and the visualization of the computed results. The technique described in the paper is very flexible and especially appropriate for experimentation. It can easily be applied to other chessboard problems

    Abstractions and Analyses of Grid Games

    Get PDF
    In this paper, we define various combinatorial games derived from the NQueens Puzzle and scrutinize them, particularly the Knights Game, using combinatorial game theory and graph theory. The major result of the paper is an original method for determining who wins the Knights Game merely from the board\u27s dimensions. We also inspect the Knights Game\u27s structural similarities to the Knight\u27s Tour and the Bishops Game, and provide some historical background and real-world applications of the material

    Subject index volumes 1–92

    Get PDF

    Instructional strategies in explicating the discovery function of proof for lower secondary school students

    No full text
    In this paper, we report on the analysis of teaching episodes selected from our pedagogical and cognitive research on geometry teaching that illustrate how carefully-chosen instructional strategies can guide Grade 8 students to see and appreciate the discovery function of proof in geometr

    On location, domination and information retrieval

    Get PDF
    The thesis is divided into two main branches: identifying and locatingdominating codes, and information retrieval. The former topics are motivated by the aim to locate objects in sensor networks (or other similar applications) and the latter one by the need to retrieve information in memories such as DNA data storage systems. Albeit the underlying applications, the study on these topics mainly belongs to discrete mathematics; more specically, to the elds of coding and graph theory. The sensor networks are usually represented by graphs where vertices represent the monitored locations and edges the connections between the locations. Moreover, the locations of the sensors are determined by a code. Furthermore, the desired properties of the sensor network are deeply linked with the properties of the underlying code. The number of errors in reading the data is abundant in the DNA data storage systems. In particular, there can occur more errors than a reasonable error-correcting code can handle. However, this problem is somewhat oset by the possibility to obtain multiple approximations of the same information from the data storage. Hence, the information retrieval process can be modelled by the Levenshtein's channel model, where a message is sent through multiple noisy channels and multiple outputs are received. In the rst two papers of the thesis, we introduce and study the new concepts of self- and solid-locating-dominating codes as a natural analogy to self-identifying codes with respect to locating-dominating codes. The rst paper introduces these new codes and considers them in some graphs such as the Hamming graphs. Then, in the second paper, we broaden our view on the topic by considering graph theoretical questions. We give optimal codes in multiple dierent graph classes and some more general results using concepts such as the Dilworth number and graph complements. The third paper focuses on the q-ary Hamming spaces. In particular, we disprove a conjecture proposed by Goddard and Wash related to identifying codes. In the fourth paper, we return to self- and solid-locating-dominating codes and give optimal codes in some graph classes and consider their densities in innite graphs. In the fth paper, we consider information retrieval in memories; in particular, the Levenshtein's channel model. In the channel model, we transmit some codeword belonging to the binary Hamming space through multiple identical channels. With the help of multiple dierent outputs, we give a list of codewords which may have been sent. In the paper, we study the number of channels required to have a rather small (constant) list size when the properties of the channels, the code and the dimension of the Hamming space are xed. In particular, we give an exact relation between the number of channels and the asymptotic value of the maximum list size.VÀitöskirja kÀsittelee kahta aihetta: identioivia ja paikantavia peittokoodeja sekÀ tiedon noutamista muistista. EnsimmÀisen aiheen motivaationa on objektien paikantaminen sensoriverkoista (sekÀ muut samankaltaiset sovellukset) ja jÀlkimmÀisen tiedonnouto DNA-muisteista. NÀiden aiheiden tutkimus kuuluu diskreettiin matematiikkaan, tÀsmÀllisemmin koodaus- ja graa-teoriaan. Sensoriverkkoja kuvataan yleensÀ graafeilla, joissa solmut esittÀvÀt tarkkailtuja kohteita ja viivat yhteyksiÀ nÀiden kohteiden vÀlillÀ. Edelleen sensorien paikat mÀÀrÀytyvÀt annetun koodin perusteella. TÀstÀ johtuen sensoriverkon halutut ominaisuudet pohjautuvat vahvasti alla olevaan koodiin. Luettaessa tietoa DNA-muisteista tapahtuvien virheiden mÀÀrÀ saattaa olla erittÀin suuri; erityisesti suurempi kuin kiinnitetyn virheitÀ korjaavan koodin korjauskyky. Toisaalta tilanne ei ole aivan nÀin ongelmallinen, sillÀ DNA-muisteista voidaan saada useita eri arvioita muistiin tallennetusta tiedosta. NÀistÀ syistÀ johtuen tietojen noutamista DNA-muisteista voidaan mallintaa kÀyttÀen Levenshteinin kanavamallia. Kanavamallissa yksi viesti lÀhetetÀÀn useiden hÀiriöisten kanavien kautta ja nÀin vastaanotetaan useita viestejÀ (yksi jokaisesta kanavasta). VÀitöskirjan kahdessa ensimmÀisessÀ julkaisussa esitellÀÀn ja tutkitaan uusia paikantavien peittokoodien luokkia, jotka pohjautuvat aiemmin tutkittuihin itse-identioiviin koodeihin. EnsimmÀisessÀ julkaisussa on esitelty nÀmÀ koodiluokat sekÀ tutkittu niitÀ joissain graafeissa kuten Hammingin graafeissa. TÀmÀn jÀlkeen toisessa julkaisussa kÀsitellÀÀn yleisiÀ graa-teoreettisia kysymyksiÀ. Julkaisussa esitetÀÀn optimaaliset koodit useille graaperheille sekÀ joitain yleisempiÀ tuloksia kÀyttÀen mm. Dilworthin lukua sekÀ graakomplementteja. Kolmas julkaisu keskittyy q-arisiin Hammingin avaruuksiin. Erityisesti julkaisussa todistetaan vÀÀrÀksi Goddardin ja Washin aiemmin esittÀmÀ identioivia koodeja koskeva otaksuma. NeljÀs artikkeli kÀsittelee jo kahdessa ensimmÀisessÀ artikkelissa esiteltyjÀ paikantavien peittokoodien luokkia. Artikkeli esittÀÀ optimaalisia koodeja useille graaperheille sekÀ kÀsittelee ÀÀrettömiÀ graafeja. Viides artikkeli kÀsittelee tiedonnoutoa ja erityisesti Levenshteinin kanavamallia. Kanavamallissa binÀÀriseen Hammingin avaruuteen kuuluva koodisana lÀhetetÀÀn useiden identtisten kanavien lÀpi. NÀistÀ kanavista vastaanotetaan useita eri arvioita lÀhetetystÀ koodisanasta ja rakennetaan lista mahdollisesti lÀhetetyistÀ sanoista. Artikkelissa tutkitaan kuinka monta kanavaa tarvitaan, jotta tÀmÀn listan koko on pieni (vakio), kun kanavien ominaisuudet, koodi ja Hammingin avaruuden dimensio on kiinnitetty. Erityisesti löydetÀÀn tÀsmÀllinen suhde kanavien lukumÀÀrÀn ja asymptoottisesti maksimaalisen listan koon vÀlille

    Star-topology decoupled state-space search in AI planning and model checking

    Get PDF
    State-space search is a widely employed concept in many areas of computer science. The well-known state explosion problem, however, imposes a severe limitation to the effective implementation of search in state spaces that are exponential in the size of a compact system description, which captures the state-transition semantics. Decoupled state-space search, decoupled search for short, is a novel approach to tackle the state explosion. It decomposes the system such that the dependencies between components take the form of a star topology with a center and several leaf components. Decoupled search exploits that the leaves in that topology are conditionally independent. Such independence naturally arises in many kinds of factored model representations, where the overall state space results from the product of several system components. In this work, we introduce decoupled search in the context of artificial intelligence planning and formal verification using model checking. Building on common formalisms, we develop the concept of the decoupled state space and prove its correctness with respect to capturing reachability of the underlying model exactly. This allows us to connect decoupled search to any search algorithm, and, important for planning, adapt any heuristic function to the decoupled state representation. Such heuristics then guide the search towards states that satisfy a desired goal condition. In model checking, we address the problems of verifying safety properties, which express system states that must never occur, and liveness properties, that must hold in any infinite system execution. Many approaches have been proposed in the past to tackle the state explosion problem. Most prominently partial-order reduction, symmetry breaking, Petri-net unfolding, and symbolic state representations. Like decoupled search, all of these are capable of exponentially reducing the search effort, either by pruning part of the state space (the former two), or by representing large state sets compactly (the latter two). For all these techniques, we prove that decoupled search can be exponentially more efficient, confirming that it is indeed a novel concept that exploits model properties in a unique way. Given such orthogonality, we combine decoupled search with several complementary methods. Empirically, we show that decoupled search favourably compares to state-of-the-art planners in common algorithmic planning problems using standard benchmarks. In model checking, decoupled search outperforms well-established tools, both in the context of the verification of safety and liveness properties.Die Zustandsraumsuche ist ein weit verbreitetes Konzept in vielen Bereichen der Informatik, deren effektive Anwendung jedoch durch das Problem der Zustandsexplosion deutlich erschwert wird. Die Zustandsexplosion ist dadurch charakterisiert dass kompakte Systemmodelle exponentiell große ZustandsrĂ€ume beschreiben. Entkoppelte Zustandsraumsuche (entkoppelte Suche) beschreibt einen neuartigen Ansatz der Zustandsexplosion entgegenzuwirken indem die Struktur des Modells, insbesondere die bedingte UnabhĂ€ngigkeit von Systemkomponenten in einer Sterntopologie, ausgenutzt wird. Diese UnabhĂ€ngigkeit ergibt sich bei vielen faktorisierten Modellen deren Zustandsraum sich aus dem Produkt mehrerer Komponenten zusammensetzt. In dieser Arbeit wird die entkoppelte Suche in der Planung, als Teil der KĂŒnstlichen Intelligenz, und der Verifikation mittels ModellprĂŒfung eingefĂŒhrt. In etablierten Formalismen wird das Konzept des entkoppelten Zustandsraums entwickelt und dessen Korrektheit bezĂŒglich der exakten Erfassung der Erreichbarkeit von ModellzustĂ€nden bewiesen. Dies ermöglicht die Kombination der entkoppelten Suche mit beliebigen Suchalgorithmen. Wichtig fĂŒr die Planung ist zudem die Nutzung von Heuristiken, die die Suche zu ZustĂ€nden fĂŒhren, die eine gewĂŒnschte Zielbedingung erfĂŒllen, mit der entkoppelten Zustandsdarstellung. Im Teil zur ModellprĂŒfung wird die Verifikation von Sicherheits- sowie Lebendigkeitseigenschaften betrachtet, die unerwĂŒnschte ZustĂ€nde, bzw. Eigenschaften, die bei unendlicher SystemausfĂŒhrung gelten mĂŒssen, beschreiben. Es existieren diverse AnsĂ€tze um die Zustandsexplosion anzugehen. Am bekanntesten sind die Reduktion partieller Ordnung, Symmetriereduktion, Entfaltung von Petri-Netzen und symbolische Suche. Diese können, wie die entkoppelte Suche, den Suchaufwand exponentiell reduzieren. Dies geschieht durch Beschneidung eines Teils des Zustandsraums, oder durch die kompakte Darstellung großer Zustandsmengen. FĂŒr diese Verfahren wird bewiesen, dass die entkoppelte Suche exponentiell effizienter sein kann. Dies belegt dass es sich um ein neuartiges Konzept handelt, das sich auf eigene Art der Modelleigenschaften bedient. Auf Basis dieser Beobachtung werden, mit Ausnahme der Entfaltung, Kombinationen mit entkoppelter Suche entwickelt. Empirisch kann die entkoppelte Suche im Vergleich zu modernen Planern zu deutlichen Vorteilen fĂŒhren. In der ModellprĂŒfung werden, sowohl bei der ÜberprĂŒfung von Sicherheit-, als auch Lebendigkeitseigenschaften, etablierte Programme ĂŒbertroffen.Deutsche Forschungsgesellschaft; Star-Topology Decoupled State Space Searc

    Proceedings of the tenth international conference Models in developing mathematics education: September 11 - 17, 2009, Dresden, Saxony, Germany

    Get PDF
    This volume contains the papers presented at the International Conference on “Models in Developing Mathematics Education” held from September 11-17, 2009 at The University of Applied Sciences, Dresden, Germany. The Conference was organized jointly by The University of Applied Sciences and The Mathematics Education into the 21st Century Project - a non-commercial international educational project founded in 1986. The Mathematics Education into the 21st Century Project is dedicated to the improvement of mathematics education world-wide through the publication and dissemination of innovative ideas. Many prominent mathematics educators have supported and contributed to the project, including the late Hans Freudental, Andrejs Dunkels and Hilary Shuard, as well as Bruce Meserve and Marilyn Suydam, Alan Osborne and Margaret Kasten, Mogens Niss, Tibor Nemetz, Ubi D’Ambrosio, Brian Wilson, Tatsuro Miwa, Henry Pollack, Werner Blum, Roberto Baldino, Waclaw Zawadowski, and many others throughout the world. Information on our project and its future work can be found on Our Project Home Page http://math.unipa.it/~grim/21project.htm It has been our pleasure to edit all of the papers for these Proceedings. Not all papers are about research in mathematics education, a number of them report on innovative experiences in the classroom and on new technology. We believe that “mathematics education” is fundamentally a “practicum” and in order to be “successful” all new materials, new ideas and new research must be tested and implemented in the classroom, the real “chalk face” of our discipline, and of our profession as mathematics educators. These Proceedings begin with a Plenary Paper and then the contributions of the Principal Authors in alphabetical name order. We sincerely thank all of the contributors for their time and creative effort. It is clear from the variety and quality of the papers that the conference has attracted many innovative mathematics educators from around the world. These Proceedings will therefore be useful in reviewing past work and looking ahead to the future

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF
    corecore