1,602 research outputs found

    How Do FOSS Communities Decide to Accept Pull Requests?

    Get PDF

    Pull Request Governance In Open Source Communities

    Get PDF

    Pull request latency explained:an empirical overview

    Get PDF
    Pull request latency evaluation is an essential application of effort evaluation in the pull-based development scenario. It can help the reviewers sort the pull request queue, remind developers about the review processing time, speed up the review process and accelerate software development. There is a lack of work that systematically organizes the factors that affect pull request latency. Also, there is no related work discussing the differences and variations in characteristics in different scenarios and contexts. In this paper, we collected relevant factors through a literature review approach. Then we assessed their relative importance in five scenarios and six different contexts using the mixed-effects linear regression model. The most important factors differ in different scenarios. The length of the description is most important when pull requests are submitted. The existence of comments is most important when closing pull requests, using CI tools, and when the contributor and the integrator are different. When there exist comments, the latency of the first comment is the most important. Meanwhile, the influence of factors may change in different contexts. For example, the number of commits in a pull request has a more significant impact on pull request latency when closing than submitting due to changes in contributions brought about by the review process. Both human and bot comments are positively correlated with pull request latency. In contrast, the bot’s first comments are more strongly correlated with latency, but the number of comments is less correlated. Future research and tool implementation needs to consider the impact of different contexts. Researchers can conduct related studies based on our publicly available datasets and replication scripts

    Code quality in pull requests: an empirical study

    Get PDF
    Pull requests are a common practice for contributing and reviewing contributions, and are employed both in open-source and industrial contexts. Compared to the traditional code review process adopted in the 1970s and 1980s, pull requests allow a more lightweight reviewing approach. One of the main goals of code reviews is to find defects in the code, allowing project maintainers to easily integrate external contributions into a project and discuss the code contributions. The goal of this work is to understand whether code quality is actually considered when pull requests are accepted. Specifically, we aim at understanding whether code quality issues such as code smells, antipatterns, and coding style violations in the pull request code affect the chance of its acceptance when reviewed by a maintainer of the project. We conducted a case study among 28 Java open-source projects, analyzing the presence of 4.7 M code quality issues in 36 K pull requests. We analyzed further correlations by applying Logistic Regression and seven machine learning techniques (Decision Tree, Random Forest, Extremely Randomized Trees, AdaBoost, Gradient Boosting, XGBoost). Unexpectedly, code quality turned out not to affect the acceptance of a pull request at all. As suggested by other works, other factors such as the reputation of the maintainer and the importance of the feature delivered might be more important than code quality in terms of pull request acceptance

    Modeling User-Affected Software Properties for Open Source Software Supply Chains

    Get PDF
    Background: Open Source Software development community relies heavily on users of the software and contributors outside of the core developers to produce top-quality software and provide long-term support. However, the relationship between a software and its contributors in terms of exactly how they are related through dependencies and how the users of a software affect many of its properties are not very well understood. Aim: My research covers a number of aspects related to answering the overarching question of modeling the software properties affected by users and the supply chain structure of software ecosystems, viz. 1) Understanding how software usage affect its perceived quality; 2) Estimating the effects of indirect usage (e.g. dependent packages) on software popularity; 3) Investigating the patch submission and issue creation patterns of external contributors; 4) Examining how the patch acceptance probability is related to the contributors\u27 characteristics. 5) A related topic, the identification of bots that commit code, aimed at improving the accuracy of these and other similar studies was also investigated. Methodology: Most of the Research Questions are addressed by studying the NPM ecosystem, with data from various sources like the World of Code, GHTorrent, and the GiHub API. Different supervised and unsupervised machine learning models, including Regression, Random Forest, Bayesian Networks, and clustering, were used to answer appropriate questions. Results: 1) Software usage affects its perceived quality even after accounting for code complexity measures. 2) The number of dependents and dependencies of a software were observed to be able to predict the change in its popularity with good accuracy. 3) Users interact (contribute issues or patches) primarily with their direct dependencies, and rarely with transitive dependencies. 4) A user\u27s earlier interaction with the repository to which they are contributing a patch, and their familiarity with related topics were important predictors impacting the chance of a pull request getting accepted. 5) Developed BIMAN, a systematic methodology for identifying bots. Conclusion: Different aspects of how users and their characteristics affect different software properties were analyzed, which should lead to a better understanding of the complex interaction between software developers and users/ contributors

    Supporting Development Decisions with Software Analytics

    Get PDF
    Software practitioners make technical and business decisions based on the understanding they have of their software systems. This understanding is grounded in their own experiences, but can be augmented by studying various kinds of development artifacts, including source code, bug reports, version control meta-data, test cases, usage logs, etc. Unfortunately, the information contained in these artifacts is typically not organized in the way that is immediately useful to developers’ everyday decision making needs. To handle the large volumes of data, many practitioners and researchers have turned to analytics — that is, the use of analysis, data, and systematic reasoning for making decisions. The thesis of this dissertation is that by employing software analytics to various development tasks and activities, we can provide software practitioners better insights into their processes, systems, products, and users, to help them make more informed data-driven decisions. While quantitative analytics can help project managers understand the big picture of their systems, plan for its future, and monitor trends, qualitative analytics can enable developers to perform their daily tasks and activities more quickly by helping them better manage high volumes of information. To support this thesis, we provide three different examples of employing software analytics. First, we show how analysis of real-world usage data can be used to assess user dynamic behaviour and adoption trends of a software system by revealing valuable information on how software systems are used in practice. Second, we have created a lifecycle model that synthesizes knowledge from software development artifacts, such as reported issues, source code, discussions, community contributions, etc. Lifecycle models capture the dynamic nature of how various development artifacts change over time in an annotated graphical form that can be easily understood and communicated. We demonstrate how lifecycle models can be generated and present industrial case studies where we apply these models to assess the code review process of three different projects. Third, we present a developer-centric approach to issue tracking that aims to reduce information overload and improve developers’ situational awareness. Our approach is motivated by a grounded theory study of developer interviews, which suggests that customized views of a project’s repositories that are tailored to developer-specific tasks can help developers better track their progress and understand the surrounding technical context of their working environments. We have created a model of the kinds of information elements that developers feel are essential in completing their daily tasks, and from this model we have developed a prototype tool organized around developer-specific customized dashboards. The results of these three studies show that software analytics can inform evidence-based decisions related to user adoption of a software project, code review processes, and improved developers’ awareness on their daily tasks and activities
    • …
    corecore