
How Do FOSS Communities Decide to Accept Pull Requests?
Adam Alami

IT University of Copenhagen
Copenhagen, Denmark

Marisa Leavitt Cohn
IT University of Copenhagen

Copenhagen, Denmark

Andrzej Wąsowski
IT University of Copenhagen

Copenhagen, Denmark

ABSTRACT
Pull requests are amethod to facilitate review andmanagement of
contribution in distributed software development .Software de-
velopers author commits ,and present them in apull request to be
inspected by maintainers and reviewers .The success and sus -
tainability of communities depends on ongoing contributions ,but
rejections decrease motivation of contributors .We carried out aa
qualitative studytounderstand themechanisms ofevaluating PRsin
open source software (FOSS ) communities from developers and
maintainers perspective .We interviewed 30 participants from five
different FOSS communities .The data shows that acceptance of
contributions depends not only on technical criteria , but also
significantly on social and strategic aspects .This paper identifies
three PR governance styles found in the studied communities : (1)
protective , (2)equitable and (3) lenient .Each one of these styles has its
particularities .While the protective style values trustworthiness and
reliability of the contributor , the lenient style believes in creat - ing a
positive and welcoming environment where contributors are
mentored to evolve contributions until they meet the community
standards .Despite the differences , these governance styles have a
commonality,theyallsafeguardthequalityofthesoftware.

CCS CONCEPTS
• Software and its engineering→Open sourcemodel; •Human-
centered computing →Collaborative and social computing.

KEYWORDS
Open source software, code review, pull request, decision making,
FOSS governance, community management
ACM Reference Format:
Adam Alami ,Marisa Leavitt Cohn ,and Andrzej Wąsowski .2020 .How Do
FOSS Communities Decide to Accept Pull Requests ?. In Evaluation and
Assessment in Software Engineering (EASE 2020 ),April 15–17,2020 ,Trond -
heim ,Norway .ACM ,New York ,NY,USA ,10 pages .https ://doi .org/10.1145 /
3383219.3383242

1 INTRODUCTION
FOSS projects are collaborative ventures organized as communities
thatproducesoftwareusingspecificcodingprocessesandtoolssuch
asGitHub .Contributors submit code changes ,such as abug fixor a
newfeature,informofapullrequestwhichundergoesan

evaluation for appropriateness and quality. The evaluation process
is not simple; it involves specific technical and social rituals. Various
evaluation patterns (governance styles) emerge in communities.
Only 13% of pull requests are rejected due to technical reasons [15]
and “the toughest and most frequent challenges encountered by
contributors are social in nature.” [16]. We attempted to determine
the factors affecting pull requests being accepted or rejected by
asking the following questions:

RQ1: How do FOSS communities decide to accept pull requests?

RQ2:What are the principles of evaluating pull requests?

We define PR governance as the system of rules, practices, and
norms by which a community directs and control assessment of
PRs. It ensures management of the interests of the community and
the integrity of its products. Because of the importance of PRs and
the effect the governance of FOSS communities has on PRs, this
study was designed to investigate PR evaluation governance styles
in FOSS communities, using a qualitative approach. We determine
the decision-making mechanisms in evaluating PRs based on ex-
tensive data transcribed from interviewing 30 FOSS contributors
and maintainers from five communities.

The PR evaluation process is a socially loaded practice. Intervie-
wee 25 explains: “... how contributions are rejected is a major factor
in a project’s success. The structure of PRs acceptance process is such
that it can easily be used to bully people, assert dominance, engage in
various forms of emotionally abusive behavior”. If project’s success
depends greatly on how PRs are evaluated; then, it is important to
understand how communities evaluate PRs.

In this work we identify existing PR governance styles and their
underlying believes and norms. We also extract lessons for com-
munity leaders and maintainers. For example, our interviewees
prefer a governance style that values technical merits over social
connections. We highlight the main contributions below.

(1) In response to RQ1 we propose to distinguish the following
three governance models:

(a) Protective: A defensive style of governance where the
project leader and his subordinates have absolute power
over what is merged into the code. This is known in the
FOSS circles as “no by default.” This attitude requires prior
commitment and trust from the contributor to win the
approval of the gatekeeper before the evaluation can take
place.

(b) Equitable: A style of governance based on fairness and the
ascendancy of evaluation principles. It focuses on a bal-
anced and technically grounded decision. The community
principles overrule any leniency toward contributors.

(c) Lenient: A style of governance based on creating a positive
and welcoming environment for contributors. This style
tolerates some errors and mediocrity. The foundational
belief here is that a contribution is an asset that should

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/344890567?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3383219.3383242
https://doi.org/10.1145/3383219.3383242
https://doi.org/10.1145/3383219.3383242


Alami, et al.

not be taken lightly. A contributor carries an enthusiasm
that should be leveraged for the benefit of the community.
In order not to compromise on quality, the contributor
is guided to evolve his or her PR to mergeable quality
through mentoring. Our data shows, despite their funda-
mental differences in governing code changes, these style
of governance have one thing in common, safeguarding
code quality and ensuring the evolution of the software
as per the community roadmap.

(2) In response to RQ2, we identified criteria that fit into three
categories: (1) Software engineering practices and require-
ments, (2) social norms, and (3) strategic vision for the prod-
uct. First, the software engineering criteria include specific
rules and recommendations, which contributors need to ad-
here to in order for their PRs to be of “mergeable” quality.
Atomicity is an example. The studied communities require
that a PR addresses a single atomic concern. Second, social
community norms, like trustworthiness, guide behavior of
developers. A contribution from a trustworthy community
member, who demonstrated prior commitment, might be
prioritized. Third, the product vision must be met, or at least
not contradicted, by the intent of the contribution.

FOSS communities are unique social systems and their PRs gov-
ernance models will reflect this uniqueness. Understanding the
values, norms and rituals that are taken into consideration in the
PRs evaluation governance, enhances our insight into the evolution,
growth, and lifecycle of open source software communities.

To best of our knowledge, all key contributions of this paper
(the governance models and the analysis of social and technical
interactions in pull request evaluations) are entirely new. We re-
vealed how communities collectively judge and decide on the fate
of a code change submission; while previous work focused on
chances of acceptance and the factors affecting acceptance and
rejections [16, 17, 23, 33, 34, 40].

The paper proceeds by introducing the studied communities in
Sect. 2. In Sect. 3, we define our research method and discuss the
rationale behind it. Section 4 presents the key findings, and Sect. 5
interprets them. Related work is discussed in Sect. 6. We conclude
in Sect. 7.

2 SUBJECT COMMUNITIES
We now present the studied communities. We intentionally sought
diversity in our selection. Our subjects build different products, have
different participation demographics and history. Each community
was selected for a particular reason. FOSSASIA was selected for
having a predominately southeast Asian contributors and having
an agenda beyond software development. Odoo and DuckDuckGo
were selected because both of them are a blend of a community
and a commercial enterprise. The Coala community is relatively
young (5 years old at the time of the study), but has shown strong
signs of growth. While the above communities are rarely studied,
many have investigated the Linux Kernel community. Previous
studies of the community [2, 20] have shown that the community
has its own particularities. Being different culturally and socially
from other communities, inspired us to include the Linux Kernel

in our selection of communities. Table 1 summarizes the selected
communities and the dimensions used for the selection.

FOSSASIA. FOSSASIA was founded in 2009, as a community com-
mitted to creating “social change” by using a wide range of tech-
nologies. The community projects range from free and open source
software, to design, graphics and hardware. Amongst its successful
projects, SUSI.AI and EventYaY. SUSI.AI is an artificial intelligent
application that provides functionality for personal assistance, Help
Desks and Chatbots. EventYaY offers features for organizers to cre-
ate and manage events.

FOSSASIA welcomes developers to contribute using Github. The
PRs management process uses the default Github features of man-
aging PRs. Changes, new features and bug fixes are raised as “issues”
and discussed by the community. Contributors voluntarily select
and work on issues. Once the code and its companion artifacts (i.e.
Test, documentation, etc.) are available, the contributor raise a PR
to resolve the issue. The PR is assessed using a set of technical and
non-technical criteria.

Odoo. Founded in 2005, Odoo is both a company and a commu-
nity. The community develops software to manage and record sales,
inventory, procurement, and accounting functions: a business in-
telligence engine with an all-in-one business suite program. The
company markets an “enterprise” version of the community plat-
form. The Community version is the open source version. The
company version supplements the community version with ad-
ditional features and services. The community attract developers
worldwide.

DuckDuckGo. Similarly to Odoo, DuckDuckGo is a company and
a community. Developing an independent search engine and web
browser. The company opened source the software to attract a
community around it; but their indexing algorithm remains closed
source. DuckDuckGo was founded in February 2008. By 2013, there
were over 3 million users on DuckDuckGo. In 2014, DuckDuckGo
was included in Safari, and it was built into Mozilla.

Coala. Coala is a tool for developersmade by developers, a language-
independent Linter and analysis toolkit. The primary goal of coala
is to make it easier for developers to create rules for a project’s
code. Coala emphasizes reusing code and the ability to use plugins.
Coala provides a unified interface for linting and fixing code with
a single configuration file. The software was first released in July
2015. Six additional releases were made in 2016, and two additional
versions were released in 2017. The community positions itself as a
beginner friendly environment. Coala outlines exactly how to get
started as a member of the community, and the first step to meet
the community.

Linux Kernel. The Linux Kernel is a free and open source operating
system. Now, Linux is the most popular and versatile operating
system kernel. It is used on super computers and web-servers,
powering up cloud infrastructure, and controlling lots of mobile
and embedded devices including all Android devices.



How Do FOSS Communities Decide to Accept Pull Requests?

Communities Dimensions

Product(s)
Size

(estimated # of
contributors in GitHub)

Age
(years) Leadership

FOSSASIA
The Open Event Organizer,
SUSI.AI, PSLab Android App,
and NeuroLab Android

1500 10 Meritocratic system

Odoo Enterprise resource planning (ERP) 1000 15 Meritocratic system
DuckDuckGo Search engine 186 11 Meritocratic system
Linux Kernel Operating system kernel 15,600 [13] 25 "Benevolent dictator" [2]
Coala Language independent linter 437 contributors 5 Meritocratic system

Table 1: Selected Communities and the Dimensions used for Selection

3 METHODS
We want to understand the process that takes place in the assess-
ment of PRs in FOSS communities; the what and how of a PR evalu-
ation and decisions are taken to merge or reject PRs. We wanted to
explore the human and social aspects of the PR evaluation process.
For this reason, we choose a qualitative research method, suitable
for exposing and gaining participants’ experiences and perspec-
tives, giving rich data. This allows us to gain breadth and depth
of understanding. We conducted interviews with contributors and
maintainers from five communities, (see section 2).

Interviews. We opted to use semi-structured interviews as they
allow the researcher to add questions arising during the interview.
A semi-structured interview is suitable for assembling rich data for
a qualitative study, as qualitative studies explore topics with a goal
of gaining insights into individual beliefs and behaviors.

The questions (Tbl. 2) in our interview fall into three categories:
introductory, core, and probing questions. The introductory ques-
tions were used to set the tone for the interview and make the
interviewee comfortable. The core questions are directly related to
the research questions. The probing questions are aimed at exposing
details and concrete facts.

in
tr
o Can you talk to me about your community?

What first motivated you to participate in this community?

co
re

Can you describe the PR evaluation process in your community?
Can you talk to us about the experience of having a PR rejected?
Can you talk to us about the experience of having a PR accepted?
When you evaluate a PR, how do you go about it?
What is your community attitude and philosophy regarding evaluating
PRs?

pr
ob

in
g What were the reasons for rejecting your PR?

How did you feel about the rejection?
What were the reasons for accepting your PR?
How did you feel about the acceptance?
What is the maintainer role in the process?

Table 2: Key parts of the interview framework

Subject Selection. We selected five FOSS communities that we felt
would give us a deep understanding of the phenomena under
study. Section 2 summarizes the choice and the selection process of
the communities. We interviewed 30 participants from FOSSASIA,
Odoo, DuckDuckGo, Linux and Coala communities. We searched

Interviewee Community Role Experience [Y] Country

1 FOSSASIA Maintainer 4 India
2 FOSSASIA Maintainer 5 India
3 FOSSASIA Maintainer 4 India
4 FOSSASIA Contributor 3 India
5 FOSSASIA Maintainer 4 India

6 Odoo Contributor 10 India
7 Odoo Contributor 10 Greece
8 Odoo Contributor 12 Belgium
9 Odoo Contributor 3 Italy
10 Odoo Contributor 5 India
11 Odoo Contributor 8 USA
12 Odoo Contributor 15 Belgium

13 DuckDuckGo Contributor 6 USA
14 DuckDuckGo Contributor 8 UK
15 DuckDuckGo Contributor 5 North Macedonia
16 DuckDuckGo Contributor 11 India
17 DuckDuckGo Maintainer 12 USA
18 DuckDuckGo Contributor 9 Finland
19 DuckDuckGo Contributor 3 India

20 Linux Kernel Contributor 12 Finland
21 Linux Kernel Contributor 10 USA
22 Linux Kernel Contributor 5 Ukraine
23 Linux Kernel Contributor 6 India
24 Linux Kernel Maintainer 8 North Macedonia
25 Linux Kernel Contributor 30 USA

26 Coala Contributor 5 India
27 Coala Contributor 4 South Korea
28 Coala Contributor 6 India
29 Coala Maintainer 4 India
30 Coala Maintainer 6 India

Table 3: The population of the interviewees

for participants on GitHub repositories with the exception of the
Linux and FOSSASIA communities. We randomly (indiscriminately,
without a method, or conscious decision) searched for contributors
and maintainers with valid emails in their GitHub profiles. Then,
we sent them an invite to participate in the study. For the Linux and
FOSSASIA communities, we used our contacts in the community
to recruit participants. A snowball sampling effect took place in the
recruitment of participants. We asked our contacts to introduce us
to contributors and maintainers for the purpose of this study. Table
3 summarizes the demographics of the population of the intervie-
wees. The experience is the number of years the interviewee spent
in contributing to open source. Maintainers have final responsibil-
ity to merge the code and ensure an adequate review has occurred
before the merge. They also direct the contributors and reviewers,



Alami, et al.

making sure that they connect to each other appropriately, often
serving as dispatcher. Contributors are developers and sometimes
volunteer to review other developers’ code.

Data Collection. As the subjects were distributed geographically,
all interviews were conducted using Google Meet (a video confer-
encing tool). The interviews lasted from 40 minutes to an hour, and
they generated, in average, 12 pages of verbatim. All interviews
were transcribed from recorded interviews.

Analysis. We used thematic coding [6, 14] to analyze the data, fol-
lowing the guidelines of Robson and McCartan [30] and of Miles
and coauthors [24]. The iterative analysis begun in the early stages
of the data collection and continued throughout the study. The
responses were coded by examining the data line-by-line through
the lens of the following questions: what is this saying? What does
it represent? What is happening here? What are they trying to
convey? What is the process being described? Once the responses
were coded, we could find patterns in statements and ideas that
were then suggestive of a theme (i.e. a concept or implied topic
that organizes a group of repeating ideas that help to understand
the responses related to the research question). After identifying
and giving names to the basic meaning units, we grouped them in
categories by similarity. Table 4 shows examples of our codes and
their categories.

We stopped conducting interviews, when we attained saturation
so when (1) all the data are accounted for, with no outlying codes
or categories; (2) every category is sufficiently explained in depth
by the data that support it; and (3) there is enough data to ensure
the research questions can be answered.

4 FINDINGS
4.1 RQ1: Decision Making in PR Evaluation
We identify three styles of governance for pull requests in our data:
(1) protective, (2) equitable, and (3) lenient. Each of these styles has
certain characteristics and qualities. Table 5 represents the studied
communities governance styles.

4.1.1 Protective. This style is defensive; it values trust, relation-
ships and reliability of the contributor. The Linux Kernel community
describe this style of pull request evaluation as “no, by default.” In
this community, the contributions are often either not thoroughly
evaluated or rejected without due diligence. Interviewee 24 stated,
“I communicate with the maintainer a lot. In general, he says no, unless
he cannot say no. You know that is kind of his philosophy. I saw this
view elsewhere in the Linux community”. Winning the approval of
the gatekeeper is critical. It requires persistence and accumulated
trust (reputation). Interviewee 20 said, “It’s easy for me to get patches
in because people in this community trust me and know who I am.
Basic patches just go in easily because the maintainer trusts me. He
knows that I will be around. If I submit a big chunk of code, and he
does not know me, I may just disappear. Maintainers are very con-
scious about whether I know this guy ... the maintainer has to trust
that the person will be around”.

This attitude appears to be a gate that signals specific beliefs,
such as the fact that commitment to the community must be demon-
strated by the potential contributor, and winning the approval of

the gatekeeper is critical. This necessary trust between contributor
and gatekeeper comes from an ongoing relationship between the
two individuals that exhibits trustworthiness. Once the contributor
succeeds in dealing with the “no”, then, the contribution is evalu-
ated for its technical merits as explained by this interviewee, “On
some parts of the kernel building trust is essential, and there is a clear
social entry barrier. It has some downsides for beginners. Yet it’s un-
derstandable, as changes in the kernel always come with some kind of
maintenance overhead, and maintainers want people that have proven
to take ownership of their contributions ... However, once a patch is
considered, then it goes through thorough vetting.” (interviewee 24)

Protective is the PR governance style that relies on trust, rela-
tionship building and the contributor’s reliability.

The interviews data shows that the Linux Kernel community PRs
evaluation process exhibits the characteristics of a protective style.
It appears that the protective style of governance is distinctive to
the Linux kernel community that prioritize trust, reliability, and
the contributor-maintainer relationship.

4.1.2 Equitable. The equitable governance style is about being fair
and impartial regardless of who is the contributor. It is transac-
tional in nature. The PRs submission evaluation is concerned with
technicalities and less with social aspects. Interviewee 3 stated, “We
try to be very impartial, we try not to make interactions very personal
because code change isn’t about friends it’s not about being friendly
it’s about managing a technology. And so there is a very straightfor-
ward mechanism of submitting code changes”. This was echoed by
many interviewees in several communities. Another interviewee
stated, “It’s very transactional, and that’s just one way of doing it
and it’s a way that we like because it keeps personalities out of it and
it makes rejections not personal ... Yes we tend to keep personalities to
minimum” (Interviewee 9).

In this style, the community principles overrule any leniency
toward contributors. Rejection is not loosely applied, but it is a social
responsibility. Interviewee 7 stated, “Rejections of pull requests are
a social responsibility and are taken with a fairness in mind”. The
community exhibiting an equitable style applies a set of principles
seriously during the evaluation process. Interviewee 8 stated, “There
are principles for evaluating pull requests, and we religiously obey
them...and we will usually reject a pull request if it doesn’t hold up to
these principles”. FOSSASIA and Odoo communities appear to be
equitable.

Equitable is the PR governance styles that values fairness and
rigorous application of community principles.

4.1.3 Lenient. The lenient style of pull request reviews is a tol-
erant and compassionate style of governance prioritizing growth
and openness of the community. The lenient governance style was
prominent in the data collected from the Coala community. Intervie-
wee 27 explained, “We accept errors. Instead of rejection, we embrace
the enthusiasm of the contribution”. “My first PR was reviewed 65
times but not rejected” (Interviewee 26). The community is willing
to invest in the contributors abilities by mentoring them to learn
how to submit PRs that meet the community standards. This in-
vestment has to pay off at one stage, as this interviewee explains,



How Do FOSS Communities Decide to Accept Pull Requests?

Category Code or Theme Definition Example of verbatim

Software Engi-
neering Princi-
ples

Quality Quality is a subjective concept to FOSS contributors.
This subjectivity is offsetted by reaching a consen-
sus about when a piece of code make a “quality”
contribution.

I am not sure there is a specific way to assess quality. We can
read through the code and we know good code from bad code.
It is quite subjective. However, in our community, there is a
requirement for a minimum 3 reviewers to approve code. That
makes it objective. Interviewee 28

Avoid Technical Debt Technical debt is the owing inherited from a con-
tribution when it doesn’t meet certain quality and
design requirements.

I will not add something that increases my maintenance burden
unless it’s very compelling functionality or an obvious bugfix.
I can’t maintain a system I don’t fully understand, so I like
keeping things lighter and cutting off edge cases rather than
adding technical debt I don’t have time to pay off. Interviewee 8.

Social Norms Trust Trust is the unyielding belief that the person is
truthful and reliable.

There are obviously criteria that have to do with the contributor,
I would mainly look for reliability and trustworthiness of the
contributor. Interviewee 9.

Mentoring Mentoring is establishing a support relationship
between a mentor and a newcomer. A mentor is
someone who partners with a newcomer during
his or her early period of engagement with the
community. The mentor offers advice and guidance
to help foster and promote the development of a
newcomer. The mentor knows the community, its
products and processes, and can be an effective
source of advice and encouragement.

I had a mentor for 3 years. He helped me to become a better
developer and an effective member of the community Intervie-
wee 27

Product Vision Feature within the commu-
nity vision for the product

Some FOSS communities set a vision for their prod-
ucts. Contributions have to fit within the defined
vision and goals.

My pull request have been rejected because generally, the main-
tainer does not find the feature aligned with the goals of the
project. Interviewee 16

PR Governance Protective Protective means designed or intended to guard or
shield the code base from undesired and low quality
contributions. It operates based on trust, relation-
ship building and the contributor’s reliability.

It’s easy for me to get patches in because people in this commu-
nity trust me and know who I am. Interviewee 20

Equitable Equitable means fair and impartial, all contribu-
tions are judged for their technical merits and suit-
ability for the community product’s vision.

Contributions are assessed fairly and based on their quality not
the contributor. Sometimes, it feels transactional and unsup-
portive. Interviewee 9

Lenient Lenient means tolerant for errors but at the same
time it does not compromise quality. Contributors
are mentored to elevate the quality of their contri-
bution to mergeable standards.

When I joined the community, my pull requests were not re-
jected. Instead, I was shown by the mentor how to improve them
and make them mergeable. Now, I produce high quality code,
because I learned. Interviewee 27

Table 4: Examples of Categories and Themes with definitions

Communities Protective Equitable Lenient

FOSSASIA ✓

Odoo ✓

DuckDuckGo ✓

Linux Kernel ✓

Coala ✓

Table 5: The studied communities PR governance styles

“You can’t spoon-feed the developers all the time either. They have to
demonstrate their abilities” (Interviewee 27).

The lenient governance is based on the belief that any contribu-
tion is an asset that should not be ignored. A contribution carries an
enthusiasm that should be leveraged for the benefit of the commu-
nity. Interviewee 26 stated, “We have a rule in our community that
we never, ever reject a PR. Instead, we manage the contribution and
improve it. We make every PR mergeable”. Another said, “Rejections

kill motivation and, it is a rude thing. We instead steer the contribution
to a positive direction by making it better, and get it merged” (Inter-
viewee 18). However, this is not a compromise of quality. Lenient
communities ensure quality by mentoring contributors to elevate
their contributions to mergeable standards. We observed that the
DuckDuckGo and Coala communities appear to be lenient.

Lenient is the PR governance style that reduces social barri-
ers and assumes that every contribution can be elevated to a
mergeable state.

The literature suggests that socio-technical factors interfere with
these perceived strategic styles of governance. FOSS reviewers re-
view social signals more than they reported they did [12]. Ford,
et al. report that, while reviewers reviewed code most (64%), they
also reviewed technical (28%) and social signals (17%). Even when
they do not realize it, reviewers consider social signals. Developers



Alami, et al.

should stay aware of their image on various social networks. Shar-
ing one’s image on social networks makes one trust that a person
is who they say they are. If one feels unsure about revealing their
own identity, they should use a pseudonym frequently enough to
make it recognized. Completing the online profile is also impor-
tant. In summary, identity is very important in today’s open source
communities [12].

The protective and lenient PR governance styles show that in
some instances, the person and the code matter, while, the equitable
style focuses on the code quality. Interviewee 6 stated “the quality is
more important than the person”. The commonality across these PR
governance styles is safeguarding quality. Interviewee 25 explains,
“the willingness to insist on quality is key to the success of PRs processes
in FOSS projects”. “The process in place seeks the best. The best code
quality possible” (Interviewee 20). PR governance delivers good
outcomes. It is achieved by both the creation and use of systems
that ensure consistency and repeatability of processes.

Each PR governance reduces the threat of poor code. Consis-
tency and governance create a culture of excellence. “The quality is
the main driver that drive our decision to either accept or reject a PR.
The processes are there to support and control the decision-making”
(Interviewee 2). This perspective contribute to the sustainability
of software quality in FOSS. Interviewee 2 further explains, “first
reliability of the code. Open source is ever changing, people come and
go. High quality code and the ability to read the code and understand
it is critical”. This belief was echoed across the various PR gov-
ernance styles. A voice from a lenient community said, “We keep
contribution’s code quality in the check, but at the same time we are
trying to be lenient towards contributors to really help them out to
get the codes to the level where it can be merged” (Interviewee 29).
These beliefs and behavior create a sustainable culture for quality.

4.2 RQ2: Principles of Evaluating Pull Requests
4.2.1 Software Engineering Principles. In the three styles of gov-
ernance, once the PR is considered, it goes through an evaluation
against a set of software engineering principles. The proposed
change must also add clear value to the project. As this interviewee
explained, “We measure the success of a pull request by its ability to
add value to the application or the community. It could be for example
a legitimate feature, a payment of technical debts, etc.” (Interviewee
27).

There is a strong belief among the studied communities that
quality is supreme, and quality is seen as a necessary quality of
pull requests. Interviewee 15 stated, “In open source projects, we like
to achieve higher code quality because it is open source and we will
need to get good quality code”. Another one asked how he evaluates
PRs, he replied, “quality, quality, quality ... it always comes first”
(Interviewee 3). Interviewee 20 went so far as to claim that “there
are people who give up; not everybody can write the required quality
of code.”

In the studied communities, quality is constructed of seven prin-
ciples: (1) PR atomicity, (2) maintainability, (3) avoiding technical
debt, (4) passing peer code review, (5) Compliance with best prac-
tices, (6) documentation, and (7) passing tests. These principles are
not always documented and communicated. However, reviewers
are aware of them and claim to rigorously apply them. Interviewee

8 stated, “we have a well-established set of principles by which we
evaluate PRs and we say ’no’ when a PR doesn’t meet our standards”
(Interviewee 8).

PR Atomicity. Atomicity is a requirement that the PR should be
composed from relatively independent parts that can be understood
separately and (possibly) reused. Our interviewees were aware of
the evaluation criteria for PR atomicity, and they made it clear
that atomicity is a key aspect of quality. Interviewee 27 stated, “a
pull request should be addressing one atomic concern and not more”.
The concept of atomicity is a common belief. Interviewee 9 stated,
“messy and bulky code is no good in open source”. That it seems
atomicity is ingrained in FOSS contributors’ behavior. “Anything
more than 50 lines of changes, and my brain doesn’t have the capacity
to do a good code review” (Interviewee 8).

Maintainability. Coleman, et al. [5] define maintainability as “the
ease with which a software system of component can be modified
to correct faults, improve performance or other attribute, or adapt
to a change environment”. The interviewees strive to achieve code
maintainability. Interviewee 8 states “this is open source, we have to
keep maintainability in mind all the time. The code must be neat and
tidy and caters for long term changes”. Maintainability also includes
looking after the long-term of the project. Interviewee 24 states
“so many projects get derailed by accepting too many new features
without evaluating them for long-term maintainability, and it is a
problem that is avoided by a simple two-letter word - no.”

Technical Debt. The term “technical debt” describes a universal
problem that software engineers face, which is the problem of how
to balance immediate value with long-term quality. The term refers
to a shortcut made for expediency, bad code, or inadequate code.
This “debt” accumulates and causes increasing costs, or interest,
to system quality in maintenance and evolution. This debt can be
taken on deliberately, and then monitored and managed as principal
repaid in order to achieve business value. Architectural choices are
the major source of technical debt and often occur as a result of
emphasis on fast delivery of features and limited budget [11].

Some interviewees in this study indicate an awareness of tech-
nical debt and its effects. They actively look at avoiding it. “I will
not accept something that increases my maintenance burden ... I can’t
maintain a system that I don’t fully understand, so I like keeping
things lighter and cutting edge. I strive to avoid technical debt, which
we do not have time to pay off” (Interviewee 17). Our data shows that
maintainability and avoiding technical debts are tightly connected.
Avoiding technical debts enhances maintainability and assuring
maintainability encompass avoiding technical debt. Technical debt
is a contingent liability with impact on the internal software quali-
ties, primarily, maintainability and the evolution of the software.

Peer review. Before a code contribution can be added to the code
repository, it must receive a positive review by a pre-determined
number of reviewers, usually three to five. “We have a definite prin-
ciple that we have five reviewers that must approve the pull request”
(Interviewee 4). Each reviewer examines the code visually and sub-
jectively to assess its quality. Reviewers provide necessary feedback
concerning the code review. If they submitted code that does not
meet the reviewers’ judgment of quality code, then the code goes
through cycles of iterative improvements until it is deemed good



How Do FOSS Communities Decide to Accept Pull Requests?

enough for the code repository [1]. The studied FOSS communi-
ties believe that peer review is the mechanism that assures quality,
that it is a valuable quality assurance practice. Peer code review
is religiously adopted in the studied FOSS communities. “There is
no PR assessment without code review obviously. We have this non-
negotiable rule that every PR must pass code review” (Interviewee 1).

Best practices. The studied communities have agreed on best prac-
tices for the programming languages they use. During the evalua-
tion of PRs, reviewersmake sure that these best practices are applied.
“Pull requests reviews must follow the community best practices” (In-
terviewee 4). In some communities, best practices go beyond the
coding conventions and guidelines. For example, in FOSSASIA, the
contributors’ conduct is also covered with a best practice evaluation.
“First thing is when we sign up for FOSSASIA contributing, there is
a list of rules that we have to follow, and these include being nice to
people who are around you, and secondly is the code and standards
for the code. The next thing is that we do not merge anything and
everything that comes to the repositories” (Interviewee 5).

Documentation. In FOSS, the documentation usually explains how
the code operates, how decisions are made during the program-
ming, and how to use and amend the code. “We really focus on
documentation because we believe a project can strive in a community
with knowledge being documented” (Interviewee 3).

Tests. The communities that we studied use various types of testing,
such as unit testing, continuous integration, and integration testing.
During pull request reviews, reviewers look to see if the PR has
passed the necessary tests. “We make sure there are proper tests to
verify that a pull request works as expected. Pull requests will not be
accepted without the proper tests” (Interviewee 27).

Once a PR is considered for a review, a set of software engineer-
ing principles are applied to assess its eligibility to be merged.

4.2.2 Social Norms. “Norms are properties of a group, they de-
scribe the typical or desirable behavior of a certain social group.”
Individuals know what behaviors are expected of them because
social norms are communicated through verbal messages and mod-
eled behaviors. Those not abiding by social norms are identified
informally by social cues such as being isolated or rejected. So-
cial norms are powerful and effective, and they are less resource
intensive than incentive based or punishment systems [26]. We
identified three social norms:

Trust. Trust is defined as the willingness of the community to rely
on the contributor, the principle of trusting the contributor as a
precondition for considering his or her code change. We observed
this in the Linux Kernel community. This principle is unique to the
protective governance style. Interviewee 24 stated, “Changes to the
kernel can be complex! I need to be able to trust the contributor to the
point that I know he will be around to take ownership of the code”.

Establishing trust requires time. This time element makes it
an entry barrier for newcomers. Other communities seem to have
addressed this type of barrier and aligned the process to work solely
with community principles. Interviewee 30 stated, “We don’t have
entry barriers, but we ask the newcomers to obey our principles”.

Contributor-Maintainer Relationship. Having a relationship with
the maintainer is an advantage in the process of getting a pull
request accepted. Interviewee 21 stated, “What helped is that I meet
these people in person. It’s a basic human thing. When you meet a
person, it’s not like a mailing list. Actually, it’s a physical thing; you
release a chemical called oxytocin”.

Mentoring. Mentoring is a practice put in place by some communi-
ties to help less experienced contributors to meet the community
standards. Experienced contributors and evaluators take the time
to work with the contributor to improve her submission. This ac-
tion encourages additional submissions by that person and other
observers as well.

Mentoring was observed in FOSSASIA, Coala, and DuckDuckGo
among others. Interviewee 13 described mentoring, “Pull requests
that cannot be merged require mentoring. We have enough patience to
work with the contributor to get it into a mergeable state. We mentor
the contributor to do so” (Interviewee 13).

Trust, the contributor-maintainer relationship and mentoring
are norms that take place during the evaluation process of PRs.

4.2.3 Product Vision. Some communities define a roadmap for
their product and document it. During the evaluation of PRs, the
proposed change is assessed whether it fits within the defined
roadmap. “We do not like to say no but we do to protect the evolution
of the project” (Interviewee 9).

Pull requests proposed changes must adhere to the community
roadmap for its products, in order to increase their chances of
being accepted.

4.3 Trustworthiness and Limitations
Qualitative researchers pursuit trustworthiness for validity and
credibility [31]. Trustworthiness is ensured by the establishment
of these four traits: credibility, transferability, confirmability and
dependability. Credibility refers to the confidence that the qualita-
tive researcher includes the truth in the research study’s findings.
Transferability is the quality of the research demonstrating how
the qualitative research can be applied to other contexts, that is
similar situations, similar populations, and similar phenomena. Con-
firmability refers to how neutral the findings of the research study
are, or how true the premise is that the responses are neutral and
do not show any potential bias or personal motivations of the re-
searcher. Dependability refers to the assurance that the study could
be repeated by other researchers and that the findings would be
consistent [18].

To establish credibility we used peer debriefing and member
checking. One author conducted the coding and the other two
authors validated the emerging codes and categories against the
raw data. Six debriefing sessions were organized. We also used
members checks to enhance the validity. We used it for narrative
accuracy checks, and interpretive validity. We sent the interviews
transcripts and description of the findings to the participants for
validation. We collected data from five communities. This should
strengthen the transferability of the findings.



Alami, et al.

We also used an audit trail to document and track the decisions
we made throughout the study. This allowed us to meet confirma-
bility requirements. An audit trail is the details of the process of
data collection, data analysis, and interpretation of the data. To
ensure dependability we compiled a research method that is s log-
ical, traceable, and clearly documented [38]. When the research
process is described thoroughly, the research audience is in a better
position to judge the dependability of the research. If the process of
the research can be audited, then it can ensure dependability [18].

Limitations. Linux and FOSSASIA intervieweeswere recruited through
our contacts in the community. This make the Linux and FOSSA-
SIA participants sample convenient. Convenience sampling has its
criticism; it may not be representative of the targeted population.

5 DISCUSSION
The pull request governance styles have a reason to exist. Some
are legacy, a result of years of ingrained culture and practice. Some
are well crafted strategies put in place after years of trial and er-
ror learning. In all cases, these governance styles impacts their
respective communities.

5.1 Protective
The protective governance style may create a “clique” culture diffi-
cult to access for newcomers. Newcomers may feel less important
than the established core members of the community. Yet the com-
munity always needs newcomers, as creativity requires fresh minds
and an ongoing flow of ideas and new contributions. Ostracizing
those who are not inside the community may hinder its evolution
and sustainability.

However, the protective style remains a good fit in some circum-
stances, such as when the FOSS project requires tight control over
its code. It may be the appropriate style for a community to choose
when they have an ongoing project where an influx of newcom-
ers is not important, or when it is high anyways. Tsay et al. write
that well-established and mature projects are more conservative
in accepting pull requests [39]. The Linux community is a success-
ful and mature project. Berger and coauthors note that the Linux
community is a “closed platform” using heavy-weight processes.
They also describe it as being a “centralized” structure; patches
have to pass thorough reviews through the maintainer hierarchy
[3]. They find it a justified practice when the project is developing
a highly technical system, with a high barrier of entry, and high
risk of introducing critical problems.

The protective style assigns relatively higher importance to com-
mitment, relationships, and trust. Dabbish et al. report that both
the contributor and the community look for signals of commit-
ment. Frequency of recent submissions and the volume of activity
by developers is a useful signal to the maintainer, while historical
activity allows potential contributors to infer how well the project
was managed. Visible actions on artifacts indicate the intentions,
competence, and experience of the developers. Community support
is inferred from the attention given, such as following, watching,
and comment activity [7, 8, 23].

Relationships were shown to influence the evaluation of PRs.
A chance of acceptance is higher for submitters already known
to the core members of a project [40]. Also, maintainers interact

more politely in discussions with core members than with new
submitters [40]. The social connections between members of each
of these groups can be measured on social distance and prior in-
teraction values. Strong social connections increase the likelihood
of acceptance, as they are markers of trust and allow to lower the
assessment and coordination costs [33, 39].

5.2 Equitable
Although an equitable style of governance focuses on fair assess-
ment, it does remain quite rigid. It is not a suitable style for commu-
nities that want to grow fast and attract new contributors, especially
those with limited programming experience. Yet, this is the most
preferred style of governance among the respondents overall.

The equitable style is suitable for communities aiming to attract
experienced developers who are able to understand and incorporate
advanced software engineering principles into their contributions.
However, it does entry barriers for newcomers. Steinmacher et
al. identified a list of barriers for newcomers, amongst them the
need for orientation and technical hurdles [35, 36]. Communities
which opt for this style of governance should communicate their
evaluation principles clearly to contributors. They should educate
contributors about their software engineering principles in their
documentation.

5.3 Lenient
Mentoring contributors is a key part of the lenient governance style.
This style is particularly well suited to communities with contribu-
tors with varied but limited experience in software development.
An acceptance of the first contribution is an important step in a
newcomer’s socialization. She or he can learn the conventions and
contribution rules through observation, lurking, and direct men-
toring from more experienced members. Successful socialization
allows potential contributors to learn the project norms and to iden-
tify the core members, where newcomers need to recruit allies [40].
After an initial period of observation, lurking, newcomers can as-
similate the norms and values of the community. Then they begin
to build an identity and become more visible to the core members,
enrolling allies in the community. Once they demonstrate that they
have the technical expertise, they are accepted by a community.
Then they become an insider, not simply crafting material arti-
facts, but maintaining social relationships as well. They become
a maintainer of the project, coaching and mentoring newcomers
[10].

Attracting newcomers to communities is a major challenge. Fear
of rejection that may harm reputation hinders some from contribut-
ing [16]. Lenient communities are aware of this issue and employ a
strategy that minimizes rejections. Project members should show
empathy toward new contributors, be engaged, and demonstrate
fairness and positive attitude as mentors. Responsiveness and clear
roadmap have also been identified by others as important factors
encouraging newcomers [16, 17]. Berger et al. define variability
encouragement as an open attitude to contributions from a broader
ecosystem [3], and observed that some very fast growing ecosys-
tems have openly and actively designed their processes and archi-
tectures to encourage external innovation.



How Do FOSS Communities Decide to Accept Pull Requests?

Sim and Holt explain that a major downside of mentoring is
that it is very time consuming for the senior developers in the
community [32]. To some extent, the time required is compensated
by attracting newcomers more easily.

5.4 Community Governance Vs. PR
Governance

“Every development organization makes decisions and has some
form of governance – this may be done explicitly or implicitly” [4].
FOSS projects are characterized by a specific framework through
the lens of transactional cost economics called “bazaar” governance.
This mode of governance is neither market nor hierarchy nor net-
work, but is a governance system in its own right [9, 19].

FOSS governance is seen as the means of achieving the direction,
control and coordination of autonomous individuals or organiza-
tions [22]. Community managed governance features are indepen-
dence, pluralism, representation, decentralized decision making,
and autonomous participation. The communities have a diverse
group of participants that rests with the members of the community
itself. An independent community allows decisions to be made at
the lowest levels of the hierarchy, volunteers who may not be paid
for their work. An independent community is deemed independent
by its basis of material support, decision making structure, and
independence from authority. A pluralistic community has a geo-
graphically diverse base of developers, community members who
use a variety of ways to manage conflict, and leaders that emerge.
Decision making occurs at the code level, the sub-project level, and
the community wide level. Examining how members gain code
level access rights, decision making rights, and the degree to which
project communications and activities are publicly available lets
one determine the mode of decision making [25].

PR governance is a process governance. Richardson [28] charac-
terizes process governance as “consists of the set of guidelines and
resources that an organization uses to facilitate collaboration and
communication when it undertakes enterprise process initiatives.”
PR governance is the set of rules and controls that take place during
the process of pull requests evaluations. It is doing what is required
to assure that quality is produced by the process in themost efficient
and effective manner possible. This is governance at the operational
level of the community. Whether there is a link between community
level governance and operational level governance is not something
we explored.

6 RELATEDWORK
The topic of PR-based collaboration has attracted some attention
recently [16, 17, 21, 23, 27, 33, 34, 41–44]. To our best knowledge, no
prior work attempts to conceptualize and distinguish the different
governance styles in PR-based collaboration.

Soares and coauthors [33] find that the chance of a merge is 32%
lower for first time contributions, supporting our intuition that
the protective and equitable styles of governance are unfriendly to
newcomers. In general, the chance of acceptance for a PR is 17%
higher when tests are included, and 26.2% lower whenmany lines of
code are changed [39]. This is inline with our findings, that passing
tests and modularity of contributions are key criteria applied in
evaluating PRs. The study has also shown that social distance and

prior interaction with the maintainer are key influencers on ac-
ceptance chances [39]. This is consistent with our observation that
social connections, trust, relationship building and commitment to
the community, are considered in the PR evaluation processes.

Tsay et al. [40] note that maintainers were particularly concerned
with the appropriateness of the contribution’s actual content and
direction. Appropriateness in this study is defined as fitting the
product vision set by the community. We concur that adhering to
the product vision is one of the evaluation criteria for PRs in the
studied communities.

Marlow, et al. [23] study examines how interpersonal impres-
sions influence evaluations of others’ contributions. The analysis
identified three scenarios where users sought out more information
about each other. These scenarios are discovery, informing inter-
action, and skill assessment. Individuals form impressions about
specific areas of expertise so that they can assess ways the coder
can assist the project. They also make judgments about individual’s
personality. Arguments or rudeness in posting often are seen as in-
dicators of uncooperativeness or arrogance [23]. This study concurs
and complement our findings. It confirms that social inferences are
part of the PR evaluation process. It complements our findings by
suggesting that GitHub social signals are leveraged to make social
inferences about contributors.

In FOSS communities, proper evaluation is seen as more im-
portant than addition of a feature. Developers prefer to postpone
reviews rather than rush through them [29]. We observed similar
attitude amongst our interviewees. They prefer investing great care
and attention to detail rather than following a pre-defined check-
list. This rigour coupled with the passion for the project lead to
excellence in the evaluation process.

7 CONCLUSION
Modern software engineering heavily relies on open-source soft-
ware. FOSS communities mostly emerges and organizes organ-
ically [37]. Measuring and tracking the organizational structure
type and characteristics of an observable community is critical
to achieve quality because identification of these systems provide
organization problems that recur, such as motivation or trust, iso-
morphism, software failures, lack of centralized management of
leadership, and stagnation. Software engineering research still lacks
reference quality and models, but measuring community quality
models can improve quality of software [37].

The PR governance styles foster a productive development and
ensures high code quality. The controls and rules aim to improve
the quality of source code changes made by developers, and it is a
transparent process.

The PR evaluation process has a significant impact on contrib-
utor’s motivation, so it is important to understand it. There is
much more to learn from contribution evaluation than just sim-
ply whether the contribution is accepted or rejected, for instance
we can understand better how to behave as community managers,
reviewers, members, and how to enter communities more effec-
tively. PR governance styles can be protective, with tight control
of contributions; equitable, with a focus on technical fairness; and
lenient, prioritizing community growth and retention by means of
mentorship. Clearly, software engineering principles are not the



Alami, et al.

only criteria applied in PR evaluation; social and strategic criteria
are also of high importance.

ACKNOWLEDGMENTS
Work supported by the ROSIN programme EU’sH2020, grant No 732287.
We thank the interviewees for making this research possible.

REFERENCES
[1] Adam Alami, Marisa Leavitt Cohn, and Andrzej Wasowski. 2019. Why does code

review work for open source software communities?. In Proceedings of the 41st
International Conference on Software Engineering. IEEE Press, 1073–1083.

[2] Maria Antikainen, Timo Aaltonen, and Jaani Väisänen. 2007. The role of trust in
OSS communities—case Linux Kernel community. In IFIP International Conference
on Open Source Systems. Springer, 223–228.

[3] Thorsten Berger, Rolf-Helge Pfeiffer, Reinhard Tartler, Steffen Dienst, Krzysztof
Czarnecki, Andrzej Wąsowski, and Steven She. 2014. Variability mechanisms
in software ecosystems. Information and Software Technology 56, 11 (2014),
1520–1535.

[4] Sunita Chulani, Clay Williams, and Avi Yaeli. 2008. Software development
governance and its concerns. In Proceedings of the 1st international workshop on
Software development governance. ACM, 3–6.

[5] Don Coleman, Dan Ash, Bruce Lowther, and Paul Oman. 1994. Using metrics to
evaluate software system maintainability. Computer 27, 8 (1994), 44–49.

[6] Daniela S Cruzes and Tore Dyba. 2011. Recommended steps for thematic synthesis
in software engineering. In 2011 International Symposium on Empirical Software
Engineering and Measurement. IEEE, 275–284.

[7] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social coding
in GitHub: transparency and collaboration in an open software repository. In
Proceedings of the ACM 2012 conference on computer supported cooperative work.
ACM, 1277–1286.

[8] Paul B De Laat. 2010. How can contributors to open-source communities be
trusted? On the assumption, inference, and substitution of trust. Ethics and
information technology 12, 4 (2010), 327–341.

[9] Benoit Demil and Xavier Lecocq. 2006. Neither market nor hierarchy nor network:
The emergence of bazaar governance. Organization studies 27, 10 (2006), 1447–
1466.

[10] Nicolas Ducheneaut. 2005. Socialization in an open source software community:
A socio-technical analysis. Computer Supported Cooperative Work (CSCW) 14, 4
(2005), 323–368.

[11] Neil A Ernst, Stephany Bellomo, Ipek Ozkaya, Robert L Nord, and Ian Gorton.
2015. Measure it? manage it? ignore it? software practitioners and technical
debt. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. ACM, 50–60.

[12] Denae Ford, Mahnaz Behroozi, Alexander Serebrenik, and Chris Parnin. 2019.
Beyond the code itself: how programmers really look at pull requests. In Pro-
ceedings of the 41st International Conference on Software Engineering: Software
Engineering in Society. IEEE Press, 51–60.

[13] Linux Foundation. [n. d.]. 2017 Linux Kernel Report
Highlights Developers’ Roles and Accelerating Pace of
Change. https://www.linuxfoundation.org/blog/2017/10/
2017-linux-kernel-report-highlights-developers-roles-accelerating-pace-change/

[14] Graham R Gibbs. 2007. Thematic coding and categorizing. Analyzing qualitative
data 703 (2007), 38–56.

[15] Georgios Gousios, Martin Pinzger, and Arie van Deursen. 2014. An exploratory
study of the pull-based software development model. In Proceedings of the 36th
International Conference on Software Engineering. ACM, 345–355.

[16] Georgios Gousios, Margaret-Anne Storey, and Alberto Bacchelli. 2016. Work
practices and challenges in pull-based development: the contributor’s perspective.
In 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE).
IEEE, 285–296.

[17] Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie Van Deursen.
2015. Work practices and challenges in pull-based development: the integra-
tor’s perspective. In Proceedings of the 37th International Conference on Software
Engineering-Volume 1. IEEE Press, 358–368.

[18] E. G. Guba and Y. S. Lincoln. 1985. Naturalistic inquiry (Vol. 75). Beverly Hills,
CA: Sage (1985).

[19] Kieran Healy and Alan Schussman. 2003. The ecology of open-source software
development. Technical Report. Technical report, University of Arizona, USA.

[20] Guido Hertel, Sven Niedner, and Stefanie Herrmann. 2003. Motivation of software
developers in Open Source projects: an Internet-based survey of contributors to
the Linux kernel. Research policy 32, 7 (2003).

[21] Jing Jiang, Yun Yang, Jiahuan He, Xavier Blanc, and Li Zhang. 2017. Who should
comment on this pull request? analyzing attributes for more accurate commenter
recommendation in pull-based development. Information and Software Technology
84 (2017), 48–62.

[22] M. Lynne Markus. 2007. The governance of free/open source software projects:
monolithic, multidimensional, or configurational? Journal of Management &
Governance 11, 2 (2007).

[23] Jennifer Marlow, Laura Dabbish, and Jim Herbsleb. 2013. Impression formation
in online peer production: activity traces and personal profiles in github. In
Proceedings of the 2013 conference on Computer supported cooperative work. ACM,
117–128.

[24] Matthew B Miles, A Michael Huberman, and Johnny Saldana. 2014. Qualitative
data analysis: A methods sourcebook. 3rd. Thousand Oaks, CA: Sage.

[25] Siobhán O’Mahony. 2007. The governance of open source initiatives: what does
it mean to be community managed? Journal of Management & Governance 11, 2
(2007), 139–150.

[26] Elizabeth Levy Paluck and Laurie Ball. 2010. Social Norms Marketing to Reduce
Gender Based Violence. IRC Policy Briefcase (2010).

[27] Mohammad Masudur Rahman and Chanchal K Roy. 2014. An insight into the
pull requests of github. In Proceedings of the 11th Working Conference on Mining
Software Repositories. ACM, 364–367.

[28] Clay Richardson. 2006. Process governance best practices: Building a BPM center
of excellence. Business Process Trends (2006).

[29] Peter C Rigby and Margaret-Anne Storey. 2011. Understanding broadcast based
peer review on open source software projects. In 2011 33rd International Confer-
ence on Software Engineering (ICSE). IEEE, 541–550.

[30] Colin Robson and Kieran McCartan. 2016. Real world research. John Wiley &
Sons.

[31] Andrew K. Shenton. 2004. Strategies for ensuring trustworthiness in qualitative
research projects. Education for information 22, 2 (2004).

[32] Susan Elliott Sim and Richard C Holt. 1998. The ramp-up problem in software
projects: A case study of how software immigrants naturalize. In Proceedings of
the 20th international conference on Software engineering. IEEE, 361–370.

[33] Daricélio Moreira Soares, Manoel Limeira de Lima Júnior, Leonardo Murta, and
Alexandre Plastino. 2015. Acceptance factors of pull requests in open-source
projects. In Proceedings of the 30th Annual ACM Symposium on Applied Computing.
ACM, 1541–1546.

[34] Daricélio Moreira Soares, Manoel L de Lima Júnior, Leonardo Murta, and Alexan-
dre Plastino. 2015. Rejection factors of pull requests filed by core team developers
in software projects with high acceptance rates. In 2015 IEEE 14th International
Conference on Machine Learning and Applications (ICMLA). IEEE, 960–965.

[35] Igor Steinmacher, Tayana Conte, Marco Aurélio Gerosa, and David Redmiles.
2015. Social barriers faced by newcomers placing their first contribution in open
source software projects. In Proceedings of the 18th ACM conference on Computer
supported cooperative work & social computing. ACM, 1379–1392.

[36] Igor Steinmacher, Gustavo Pinto, Igor Scaliante Wiese, and Marco Aurélio Gerosa.
2018. Almost there: A study on quasi-contributors in open-source software
projects. In 2018 IEEE/ACM 40th International Conference on Software Engineering
(ICSE). IEEE, 256–266.

[37] Damian A Tamburri, Fabio Palomba, Alexander Serebrenik, and Andy Zaidman.
2019. Discovering community patterns in open-source: A systematic approach
and its evaluation. Empirical Software Engineering 24, 3 (2019), 1369–1417.

[38] Sarah J Tracy. 2010. Qualitative quality: Eight “big-tent” criteria for excellent
qualitative research. Qualitative inquiry 16, 10 (2010), 837–851.

[39] Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. Influence of social and
technical factors for evaluating contribution in GitHub. In Proceedings of the 36th
international conference on Software engineering. ACM, 356–366.

[40] Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. Let’s talk about it: evaluat-
ing contributions through discussion in GitHub. In Proceedings of the 22nd ACM
SIGSOFT international symposium on foundations of software engineering. ACM,
144–154.

[41] Yue Yu, Huaimin Wang, Vladimir Filkov, Premkumar Devanbu, and Bogdan
Vasilescu. 2015. Wait for it: determinants of pull request evaluation latency on
GitHub. In 2015 IEEE/ACM 12th Working Conference on Mining Software Reposito-
ries. IEEE, 367–371.

[42] Yue Yu, Huaimin Wang, Gang Yin, and Charles X Ling. 2014. Who should review
this pull-request: Reviewer recommendation to expedite crowd collaboration. In
2014 21st Asia-Pacific Software Engineering Conference, Vol. 1. IEEE, 335–342.

[43] Yue Yu, Huaimin Wang, Gang Yin, and Tao Wang. 2016. Reviewer recommenda-
tion for pull-requests in GitHub: What can we learn from code review and bug
assignment? Information and Software Technology 74 (2016), 204–218.

[44] Jiaxin Zhu, Minghui Zhou, and Audris Mockus. 2016. Effectiveness of code
contribution: From patch-based to pull-request-based tools. In Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, 871–882.

https://www.linuxfoundation.org/blog/2017/10/2017-linux-kernel-report-highlights-developers-roles-accelerating-pace-change/
https://www.linuxfoundation.org/blog/2017/10/2017-linux-kernel-report-highlights-developers-roles-accelerating-pace-change/

	Abstract
	1 Introduction
	2 Subject Communities
	3 Methods
	4 Findings
	4.1 RQ1: Decision Making in PR Evaluation
	4.2 RQ2: Principles of Evaluating Pull Requests
	4.3 Trustworthiness and Limitations

	5 Discussion
	5.1 Protective
	5.2 Equitable
	5.3 Lenient
	5.4 Community Governance Vs. PR Governance

	6 Related Work
	7 Conclusion 
	Acknowledgments
	References



