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ABSTRACT

Vili Nikkola: Code quality in pull requests, an empirical study
Master of Science Thesis
Tampere University
Information Technology
August 2019

Pull requests are a common practice for contributing and reviewing contributions, and are em-
ployed both in open-source and industrial contexts. Compared to the traditional code review pro-
cess adopted in the 1970s and 1980s, pull requests allow a more lightweight reviewing approach.
One of the main goals of code reviews is to find defects in the code, allowing project maintainers
to easily integrate external contributions into a project and discuss the code contributions.

The goal of this work is to understand whether code quality is actually considered when pull
requests are accepted. Specifically, we aim at understanding whether code quality issues such
as code smells, antipatterns, and coding style violations in the pull request code affect the chance
of its acceptance when reviewed by a maintainer of the project.

We conducted a case study among 28 Java open-source projects, analyzing the presence
of 4.7 M code quality issues in 36 K pull requests. We analyzed further correlations by apply-
ing Logistic Regression and seven machine learning techniques (Decision Tree, Random Forest,
Extremely Randomized Trees, AdaBoost, Gradient Boosting, XGBoost).

Unexpectedly, code quality turned out not to affect the acceptance of a pull request at all.
As suggested by other works, other factors such as the reputation of the maintainer and the
importance of the feature delivered might be more important than code quality in terms of pull
request acceptance.

Keywords: Pull Request, Software Quality, Empirical Study

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.
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TIIVISTELMÄ

Vili Nikkola: Koodin laadukkuuden vaikutus pull requesteihin, empiirinen tutkimus
Diplomityö
Tampereen yliopisto
Tietotekniikka
Elokuu 2019

Pull requestit ovat yleinen mekanismi osallistua sovelluskehitykseen avoimen lähdekoodin pro-
jekteissa sekä työmaailmassa. Verrattuna perinteisempään koodin katselmointiprosessiin, pull
requestit tarjoavat kevyemmän vaihtoehdon suorittaa koodikatselmus. Koodikatselmoinnin yksi
tärkeimmistä tehtävistä on löytää lähdekoodista virheitä, joiden löytyminen helpoittaa uuden läh-
dekoodin integrointia projektiin.

Tämän työn tavoitteena on ymmärtää pull requestien laatutekijöiden vaikutus sen hyväksyn-
tään ja sitä kautta integrointiin projektiin. Työssä keskitytään erityisesti koodista löytyviin ongelmiin
kuten lähdekoodin suunnitteluvirheisiin, rakennevirheisiin ja tyylivirheisiin ja niiden vaikutukseen
hyväksymistuloksessa.

Työssä tutkittiin 28:aa avoimen lähdekoodin Java-projektia ja analysoitiin noin 4,7 miljoonaa
lähdekoodiriviä yhteensä 36 tuhannessa pull requestissa. Laatuongelmien korrelaatioita analy-
soitiin käyttäen hyväksi logistista regressiota sekä seitsemää eri koneoppimisen menetelmää
(Decision trees, Random Forest, Extremely Randomized Trees, AdaBoost, Gradient Boosting,
XGBoost).

Työn tekijän yllätykseksi laatuongelmien esiintyminen pull requestien lähdekoodissa ei näytä
vaikuttavan sen hyväksyntään ja sitä kautta sisällyttämiseen kohdeprojektin lähdekoodiin. Aikai-
sempi tutkimus osoittaa, muut tekijät kuten pull requestin luojan maine ohjelmoijana sekä lähde-
koodilisäyksen tuottaman lisäominaisuuden tärkeys saattavat olla tärkeämpiä tekijöitä pull reques-
tien hyväksymisprosessissa.

Avainsanat: Pull Request, Ohjelmistojen laatu, Empiirinen tutkimus

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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1 INTRODUCTION

1.1 Introduction

Different code review techniques have been proposed in the past and widely adopted by
open-source and commercial projects. Code reviews involve the manual inspection of the
code by different developers and help companies to reduce the number of defects and
improve the quality of software [2][1].

Nowadays, code reviews are generally no longer conducted as they were in the past,
when developers organized review meetings to inspect the code line by line [24].

The industry and researchers are in agreement today that code inspection helps to re-
duce the number of defects, but that in some cases, the effort required to perform code
inspections hinders their adoption in practice [63]. However, the boon of new tools and
practices has enabled companies to adopt more lightweight code review practices. In
particular, several companies, including Facebook [25], Google [53], and Microsoft [6],
perform code reviews by means of tools such as Gerrit1 or the pull request mechanism
provided by Git2 [58].

In the context of this thesis, we focus on pull requests. Pull requests provide developers
a convenient way of contributing to projects, and many popular projects, including both
open-source and commercial ones, are using pull requests as a way of reviewing the
contributions of different developers.

Researchers have focused their attention on pull request mechanisms, investigating dif-
ferent aspects, including the review process [32], [31] and [68], the influence of code
reviews on continuous integration builds [74], how pull requests are assigned to different
reviewers [73], and in which conditions they are accepted process [32],[56],[65],[39].

Only a few works have investigated whether developers consider quality aspects in order
to accept pull requests [32],[31].

Different works report that the reputation of the developer who submitted the pull request
is one of the most important acceptance factors [31],[16].

However, to the best of our knowledge, no studies have investigated whether the quality
of the code submitted in a pull request has an impact on the acceptance of this pull

1https://www.gerritcodereview.com
2https://help.github.com/en/articles/about-pull-requests
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request. As code reviews are a fundamental aspect of pull requests, we strongly expect
that pull requests containing low-quality code should generally not be accepted.

In order to understand whether code quality is one of the acceptance drivers of pull re-
quests, we designed and conducted a case study involving 28 well-known Java projects
to analyze the quality of more than 36K pull requests. We analyzed the quality of pull re-
quests using PMD3, one of the four tools used most frequently for software analysis [43],
[8]. PMD evaluates the code quality against a standard rule set available for the major
languages, allowing the detection of different quality aspects generally considered harm-
ful, including code smells [27] such as ”long methods”, ”large class”, ”duplicated code”;
anti-patterns [15] such as ”high coupling”; design issues such as ”god class” [40]; and
various coding style violations4. Whenever a rule is violated, PMD raises an issue that is
counted as part of the Technical Debt [20]. In the remainder of this work, we will refer to
all the issues raised by PMD as ”TD items” (Technical Debt items).

Previous work confirmed that the presence of several code smells and anti-patterns, in-
cluding those collected by PMD, significantly increases the risk of faults on the one hand
and maintenance effort on the other hand [37], [50], [21], [26].

Unexpectedly, our results show that the presence of TD items of all types does not in-
fluence the acceptance or rejection of a pull request at all. To prove this statement, we
analyzed all the data not only using basic statistical techniques, but also applying seven
machine learning algorithms (Logistic Regression, Decision Tree, Random Forest, Ex-
tremely Randomized Trees, AdaBoost, Gradient Boosting, XGBoost), analyzing 36,986
pull requests and over 4.6 million TD items present in the pull requests.

Structure of the thesis. Section 2 describes the basic concepts underlying this work,
while Section 3 presents some related work done by researchers in recent years. In
Section 4, we describe the design of our case study, defining the research questions,
metrics, and hypotheses, and describing the study context, including the data collection
and data analysis protocol. In section 5 the implementation details of the software used
are presented. In Section 6, we present the achieved results and discuss them in Sec-
tion 7. Section 8 identifies the threats to the validity of our study, and in Section 9, we
draw conclusions from the information gathered in the study.

3https://pmd.github.io
4https://pmd.github.io/latest/pmd_rules_java.html
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2 BACKGROUND

In this Section, we will first introduce code quality aspects and PMD, the tool we used
to analyze the code quality of the pull requests. Then we will describe the pull request
mechanism and finally provide a brief introduction and motivation for the usage of the
machine learning techniques we applied.

2.1 Measuring code quality

Code quality is a loose approximation of the long-term usefulness and the long-term
maintainability of code. ISO25010 identifies 8 main aspects of software quality in re-
lation to quality evaluation: Functional Suitability, Performance efficiency, Compatibility,
Usability, Reliability, Security, Maintainability, Portability [34]. While measuring functional
suitability and usability would be hard to measure just be examining the source of a cho-
sen project, other aspects of software quality can be measured through the use of source
code analysis. Code analysis software can find patterns or behaviour in the source code
that is associated with an increased risk of issues i.e. in the maintainability of the project.

2.1.1 Software program analysis

In order to gain an insight into the quality of the software program, a suitable approach
to analysis must be decided. Software program analysis can be broadly divided into
two categories: static code analysis for when the program is analyzed without executing
it and dynamic program analysis for when the program’s behaviour is monitored during
execution. The analyzer can also employ a combination of these to categories.

As we are interested in analyzing pull requests of Java projects and dynamic program
analysis requires the program to be compiled and executed, we can rule out the possi-
bility of using dynamic analysis to measure the the quality of the source code. As pull
requests are proposed changes to the existing project rather than a whole program and
the compilation process for each project might have variations, we decided to use a static
analyzer to gain knowledge about source code added or modified in the pull requests.
Static analysis of have been found to be effective and complementary to dynamic soft-
ware analysis via testing the program during its execution[69].
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2.1.2 PMD

Different tools on the market can be used to evaluate code quality through program anal-
ysis. PMD is one of the most frequently used static code analysis tools for Java on the
market, along with Checkstyle, Findbugs, and SonarQube [43]. All these tools aim to
analyze the source code and provide users with insights into the quality of their code.

PMD is an open-source tool that aims to identify issues that can lead to technical debt
accumulating during development. The specified source files are analyzed and the code
is checked with the help of predefined rule sets. PMD provides a standard rule set for
major languages, which the user can customize if needed. The default Java rule set
encompasses all available Java rules in the PMD project and is used throughout this
study.

Issues found by PMD have five priority values (P). Rule priority guidelines for default and
custom-made rules can be found in the PMD project documentation 4.

P1 Change absolutely required. Behavior is critically broken/buggy.

P2 Change highly recommended. Behavior is quite likely to be broken/buggy.

P3 Change recommended. Behavior is confusing, perhaps buggy, and/or against stan-
dards/best practices.

P4 Change optional. Behavior is not likely to be buggy, but more just flies in the face of
standards/style/good taste.

P5 Change highly optional. Nice to have, such as a consistent naming policy for pack-
age/class/fields. . .

These priorities are used in this study to help determine whether more severe issues
affect the rate of acceptance in pull requests.

PMD is a static code analyzer which does not require compiling the code to be ana-
lyzed. As the aim of our work was to analyze only the code of pull requests instead
of the whole project code, we decided to adopt it. PMD defines more than 300 rules
for Java, classified in eight categories (coding style, design, error prone, documentation,
multithreading, performance, security). Several rules have also been confirmed harmful
by different empirical studies. In Table 2.1 we highlight a subset of rules and the related
empirical studies that confirmed their harmfulness. The complete set of rules is available
on the PMD official documentation4.

2.2 Version Control

Version control system (VCS) tracks changes to data in computer systems, in the context
of this study the source code of the projects. VCS installed on to the user’s computer
can be used to create, organize and switch between the changed states of the codebase,
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Table 2.1. Example of PMD rules and their related harmfulness

PMD Rule Defined By Impacted Characteristic
Avoid Using Hard-
Coded IP

Brown et al [14] Maintainability [14]

Loose Coupling Chidamber and Ke-
merer [18]

Maintainability [3]

Base Class Should be
Abstract

Brown et al [14] Maintainability [37]

Coupling Between Ob-
jects

Chidamber and Ke-
merer [18]

Maintainability [3]

Cyclomatic Complex-
ity

Mc Cabe [45] Maintainability [3]

Data Class Fowler [27] Maintainability [44], Faulti-
ness [64][70]

Excessive Class
Length

Fowler (Large Class) [27] Change Proneness [51][38]

Excessive Method
Length

Fowler (Large Method) [27] Change Proneness [35][38]
Fault Proneness[51]

Excessive Parameter
List

Fowler (Long Parameter
List) [27]

Change Proneness [35]

God Class Marinescu and Lanza [40] Change Proneness [49][62][76],
Comprehensibility [23], Faulti-
ness [49][76]

Law of Demeter Fowler (Inappropriate Inti-
macy) [27]

Change Proneness [51]

Loose Package Cou-
pling

Chidamber and Ke-
merer [18]

Maintainability [3]

Comment Size Fowler (Comments) [27] Faultiness [5][4]

often called "revisions". These revisions can be further organized into branches that
divert from the main timeline of the repository enabling the developer to work on multiple
different versions of the same project at the same time and merge the different timelines
back to the main timeline. The general process of branching and merging is illustrated
in Figure 2.1. Revisions can be stored locally on the user’s computer but this poses a
problem when there are multiple developers working on the same project. To distribute
the source code and keep all the developers’ revisions available to others, client-server
model can be utilized in the form of a centralized version control system (CVCS).

With CVCS the developer’s version control system acts as the client and connects to
a central code repository that provides the wanted revisions of the source code for the
client to download. This centralized code repository provided a way for developers to
commit their contributions to the project easily and access other developers’ work at
will. The main problem with a CVCS structure is that the entire code repository only
exists in the designated code server, which has a risk of outages and failures. A failure
in the CVCS server could halt development entirely or in the worst case scenario, the
whole repository could be lost due to a failed hard drive. A centralized version control
system also requires a connection to the server if a wants to commit a changeset to the
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repository. The requirement of connecting to the server each time a commit is made can
make remote and distributed development significantly harder.

As project became bigger and software development as a whole became increasingly
distributed and centralized version control systems began showing these problems, many
notable open source projects started switching to distributed version control systems[22]
and distributed version controls have become the norm in the industry going forward.

2.2.1 Distributed Version Control

Distributed Version Control tries to alleviate the problems described before by having the
source of the project available for download on the server, but instead of a single revision
the user is given a local copy of the whole repository with all the known revisions to date.
Having the whole repository distributed to all developers inherently provides resistance
to data loss due to hardware problems or malicious tampering of the repository server. A
local repository also enables the developer to commit a changeset into the repository and
change branches of code without needing to connect to the server, allowing easier code
management and faster operation because existing branches are fetched from the hard
drive rather than downloaded from a remote source. Although many distributed version
control systems exists today, in this study we focused on Git, which was found to be a
popular choice among open source projects.

2.2.2 Git

Git1 is a distributed version control system that enables users to collaborate on a coding
project by offering a robust set of features to track changes to the code. Git was initially
developed as a replacement to BitKeeper, a distributed version control system used in the
development of the Linux kernel project since 2002. In 2005, the relationship between the
Linux developer community and BitKeeper had turned sour and Torvalds with the whole
Linux development community started the work on their own version control software that
used the lessons learned from the time spent using BitKeeper2.

Features include “committing” a change to a local repository, “pushing” that piece of code
to a remote server for others to see and use, “pulling” other developers’ change sets
onto the user’s workstation, and merging the changes into their own version of the code
base. Changes can be organized into branches, which are used in conjunction with
pull requests. Git provides the user a "diff" between two branches, which compares the
branches and provides an easy method to analyze what kind of additions the pull request
will bring to the project if accepted and merged into the master branch of the project.

1https://git-scm.com/
2https://git-scm.com/book/en/v2/Getting-Started-A-Short-History-of-Git
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With advanced features, continued development and the lack of licensing fees, Git has
become the most preferred version control software among developers in the developer
survey conducted by Stack Overflow by a large margin3.

2.2.3 GitHub

With the popularity of Git increasing, many companies such as GitHub4, Atlassian5 and
GitLab6 started providing developers with remote version control services using Git.
These service providers would handle the setup and maintenance of the Git server and
also provide clients with additional services such as automation, communication and
project management tools. These are among the reasons why Apache Software Founda-
tion, the largest open source foundation made the decision to migrate their code projects
to GitHub in early 20197. Aside from Apache Software Foundation, GitHub provides
code hosting to many notable entities, such as Google8 and Microsoft9, making it a good
source of open source projects for this study.

2.2.4 Pull Requests

Pull requests are a code reviewing mechanism that is compatible with Git and are pro-
vided by GitHub. The goal is for code changes to be reviewed before they are inserted
into the mainline branch. A developer can take these changes and push them to a remote
repository on GitHub. Before merging or rebasing a new feature in, project maintainers
in GitHub can review, accept, or reject a change based on the diff of the “master” code
branch and the branch of the incoming change. Reviewers can comment and vote on
the change in the GitHub web user interface. If the pull request is approved, it can be
included in the master branch. A rejected pull request can be abandoned by closing
it or the creator can further refine it based on the comments given and submit it again
for review. A pull request can contain commits from the same repository as the target
branch, but the pull request submitter could also have cloned the repository and stored
their work on their own GitHub account before submitting the final result. This is also illus-
trated in Figure 2.1. The possibility of sharing work between repositories easily with pull
requests provides developers more tools to organize their work and contribute to open
source projects.

3https://insights.stackoverflow.com/survey/2018#work-_-version-control
4https://github.com/
5https://bitbucket.org/product
6https://about.gitlab.com/
7https://blogs.apache.org/foundation/entry/the-apache-software-foundation-expands
8https://github.com/google
9https://github.com/microsoft
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Figure 2.1. Git branching and pull requests visualized

2.3 Machine Learning

Measuring code quality in the code found in pull requests and the pull requests’ accep-
tance generates a large dataset. In order to transform this dataset into something that can
reveal something about about the relation of code quality and pull request acceptance,
machine learning could be utilized. Tom M. Mitchell defines machine learning algorithms
with: "A computer program is said to learn from experience E with respect to some class
of tasks T and performance measure P if its performance at tasks in T, as measured by
P, improves with experience E"[46]. In other words, a software that follows a some kind
machine learning algorithm would be given a task that is evaluated based on some per-
formance measurement and based on that measurement, the software can modify the
execution of the task to achieve better performance. Tasks in machine learning can be
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grouped into several general categories. In Foundations of Machine Learning, authors list
7 different common scenarios in machine learning with some common problems related
to a scenario[47].

2.3.1 Machine Learning Scenarios

Supervised Learning is defined as "The learner receives a set of labeled examples as
training data and makes predictions for all unseen points. This is the most common
scenario associated with classification, regression, and ranking problems." In supervised
learning, the software is given a pairs of data consisting a sample of the input that the
algorithm will receive along with the observed outcome for those specific inputs. These
pairs of data make up the training portion of the dataset which will result in a function,
that can take in unseen data and provide the user with an output based on the learning
that has happened in training the function.

Classifiers try to help the user to put a specific known label to a new data point. For
example, a classifier can receive an image and estimate that the picture depicts a dog
because it is similar to pictures in the training data that are labeled as dogs. Regression
algorithms tries to give a numerical value to the data presented. It could be used to come
up with a model that gives a price estimate on a product when comparing it to other
similar products. A ranking algorithm can be used to fit a predetermined list of ranks to a
group of things. For example, this years batch of produce could be automatically ranked
based on the looks, weight and the color of the item. Figure 2.2 shows an example of
labeled input data, where the dependant variable "Has heart disease" could be predicted
with the help of independent variables, in this case other questions about the health of
the patient.

Figure 2.2. Example supervised learning input data

Unsupervised Learning differs from supervised learning in that the training data isn’t la-
beled. Without the explicit help of labels in the data, the algorithm performing unsu-
pervised learning can try to find relationships between datapoints to group them in a
meaningful way. This is referred to as clustering and is used for many practical purposes.
Depicted in Figure 2.3 is an example of a clustered dataset. For example, image data can
be fed into an image recognition algorithm which can use clustering to group the unseen
image data with similar previously seen data, thus giving its own estimation on what the
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image actually represents.

Figure 2.3. Example of a clustering algorithm result

In Semi-supervised Learning model receives training data consisting of both labeled and
unlabeled data, and makes predictions for all new unseen datapoints [47]. This approach
can help in situations, where collecting labeled data is expensive, such as in medical
research. Transductive Inference is similar to semi-supervised learning, but rather than
predicting labels for unseen data, transductive inference tries to label all the unlabeled
datapoints in the training data.

In On-line learning the training is done in multiple instances, rather than with the whole
dataset in one operation. After each instance of training, the model is tested with an
unlabeled datapoint and the predictor is adjusted depending on the correctness of the
prediction. On-line learning can be helpful when the dataset is too large to be trained
with in one operation or using all of the data is not feasible. In Active learning, the learner
adaptively or interactively collects training examples, typically by quering an oracle to
request labels for new points. The goal in active learning is to achieve a performance
comparable to standard supervised learning scenario, but with fewer labeled examples
[47].

Reinforcement Learning also mixes training and testing phases but instead of giving the
model a ready-made training set, the model is given an environment that it can affect with
actions and those actions can lead to a reward. The aim of the training is to accumu-
late knowledge of what actions are needed to increase the chances of getting a reward.
The challenge of this type of an approach to learning is the explorations versus exploita-
tion dilemma, where the model must choose between exploring unknown actions to gain
more information versus exploiting the information already collected. As an example of
reinforcement learning, a computer program could be taught to play a game by giving it
the possibility of playing the game through actions and providing the program feedback
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for those actions taken in the form of points or other metrics. The program would then
experiment with actions that are within the rules of the game and try to collect as many
points as possible and effectively learning to play the game.

As both the input (code quality of the pull request) and the output (pull request accep-
tance) for a pull request can be observed, machine learning classifiers that use the prin-
ciples of supervised learning can be used to analyzed the correlations between code
quality and pull request acceptance.

2.3.2 Machine Learning Techniques

In this section, we will describe the machine learning classifiers adopted in this work. We
used eight different classifiers: a generalized linear model (Logistic Regression), a tree-
based classifier (Decision Tree), and six ensemble classifiers (Bagging, Random Forest,
ExtraTrees, AdaBoost, GradientBoost, and XGBoost).

Ensemble type classifiers use a collection of simpler models to improve performance
or solve problems that the models forming the collection might have. Classifiers using
boosting [61] use a collection of weaker classifiers to create a stronger classifier. These
weaker classifiers are created in sequence and modified or "grown" based on the results
of the previous round of boosting.

In the next sub-sections, we will briefly introduce the eight adopted classifiers and give
the rationale for choosing them for this study.

Logistic Regression

Logistic Regression [19] is one of the most frequently used algorithms in Machine Learn-
ing. In logistic regression, a collection of measurements (the counts of a particular issue)
and their binary classification (pull request acceptance) can be turned into a function that
outputs the probability of an input being classified as 1, or in our case, the probability of
it being accepted.

To calculate the probability, logistic regression uses the sigmoid function, which is defined
as

σ(x) =
1

1 + e−x

The coefficients for this function are calculated using maximum likelihood estimation,
which aims to maximize the probability of finding the input measurements with the func-
tion. Logistic regression was chosen for this study because its wide adoption and ease
of implementation.
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DecisionTree

Decision Tree [10] is a model that takes learning data and constructs a tree-like graph of
decisions that can be used to classify new input. The learning data is split into subsets
based on how the split from the chosen variable improves the accuracy of the tree at the
time. The decisions connecting the subsets of data form a flowchart-like structure that
the model can use to tell the user how it would classify the input and how certain the
prediction is perceived to be.

We considered two methods for determining how to split the learning data: GINI impurity
and information gain. GINI tells the probability of an incorrect classification of a random
element from the subset that has been assigned a random class within the subset. Infor-
mation gain tells how much more accuracy a new decision node would add to the tree if
chosen. GINI was chosen because of its popularity and its resource efficiency.

Decision Tree as a classifier was chosen because it is easy to implement and human-
readable; also, decision trees can handle noisy data well because subsets without sig-
nificance can be ignored by the algorithm that builds the tree. The classifier can be
susceptible to overfitting, where the model becomes too specific to the data used to train
it and provides poor results when used with new input data. Overfitting can become a
problem when trying to apply the model to a mode-generalized dataset.

Random Forest

Random Forest [13] is an ensemble classifier, which tries to reduce the risk of overfitting
a decision tree by constructing a collection of decision trees from random subsets in the
data. The resulting collection of decision trees is smaller in depth, has a reduced degree
of correlation between the subset’s attributes, and thus has a lower risk of overfitting.

When given input data to label, the model utilizes all the generated trees, feeds the input
data into all of them, and uses the average of the individual labels of the trees as the final
label given to the input.

Extremely Randomized Trees

Extremely Randomized Trees [30] builds upon the Random Forest introduced above by
taking the same principle of splitting the data into random subsets and building a collec-
tion of decision trees from these. In order to further randomize the decision trees, the
attributes by which the splitting of the subsets is done are also randomized, resulting
in a more computationally efficient model than Random Forest while still alleviating the
negative effects of overfitting.
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Bagging

Bagging [11] is an ensemble classification technique that tries to reduce the effects of
overfitting a model by creating multiple smaller training sets from the initial set; in our
study, it creates multiple decision trees from these sets. The sets are created by sampling
the initial set uniformly and with replacements, which means that individual data points
can appear in multiple training sets. The resulting trees can be used in labeling new input
through a voting process by the trees.

AdaBoost

AdaBoost [28] is a classifier based on the concept of boosting. The implementation of the
algorithm in this study uses a collection of decision trees, but new trees are created with
the intent of correctly labeling instances of data that were misclassified by previous trees.
For each round of training, a weight is assigned to each sample in the data. After the
round, all misclassified samples are given higher priority in the subsequent rounds. When
the number of trees reaches a predetermined limit or the accuracy cannot be improved
further, the model is finished. When predicting the label of a new sample with the finished
model, the final label is calculated from the weighted decisions of all the constructed
trees. As Adaboost is based on decision trees, it can be resistant to overfitting and be
more useful with generalized data. However, Adaboost is susceptible to noise data and
outliers.

Gradient Boost

Gradient Boost [29] is similar to the other boosting methods. The algorithms for gradient
boosting were developed by Jerome H. Friedman by expanding upon the ideas on arcing
by Leo Breiman[12]. It uses a collection of weaker classifiers, which are created sequen-
tially according to an algorithm. In the case of Gradient Boost as used in this study, the
determining factor in building the new decision trees is the use of a loss function. The
algorithm tries to minimize the loss function and, similarly to Adaboost, stops when the
model has been fully optimized or the number of trees reaches the predetermined limit.

XGboost

XGBoost [17] is a scalable implementation of Gradient Boost. It was introduced by Tianqi
Chen and Carlos Guestrin of University of Washington as a more resource efficient ap-
proach to boosting algorithm for large scale machine learning systems. The use of XG-
Boost could be seen to achieve performance resource improvements when constructing
a model especially when building a model with large datasets. Since its introduction and
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distribution as an open source package, XGBoost has been observed to affect the ma-
chine learning industry greatly. In the paper, Cien and Guestrin detail how XGBoost has
been used in numerous winning solutions developed for machine learning competitions
and challenges. Although the scale of this study isn’t large enough to take advantage of
XGBoost’s scalability features, using it may provide good results.
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3 RELATED WORK

3.1 Related Work

In this Section, we report on the most relevant works on pull requests.

3.1.1 Pull Request Process

Pull requests have been studied from different points of view, such as pull-based devel-
opment [32], [31] and [68], usage of real online resources [74], pull requests reviewer
assignment [73], and acceptance process [32], [56], [65], [39]. Another issue regarding
pull requests that have been investigated is latency. Yu et al. [72] define latency as a
complex issue related to many independent variables such as the number of comments
and the size of a pull request.

Zampetti et al. [74] investigated how, why, and when developers refer to online resources
in their pull requests. They focused on the context and real usage of online resources
and how these resources have evolved during time. Moreover, they investigated the
browsing purpose of online resources in pull request systems. Instead of investigating
commit messages, they evaluated only the pull request descriptions, since generally the
documentation of a change aims at reviewing and possibly accepting the pull request [32].

Yu et al. [73] worked on pull requests reviewer assignment in order to provide an auto-
matic organization in GitHub that leads to an effort waste. They proposed a reviewer rec-
ommender, who should predict highly relevant reviewers of incoming pull requests based
on the textual semantics of each pull request and the social relations of the developers.
They found several factors that influence pull requests latency such as size, project age,
and team size. The importance of social relationship between the pull request submitter
and its reviewer is also supported by [66]

This approach reached a precision rate of 74% for top-1 recommendations, and a recall
rate of 71% for top-10 recommendations. However, the authors did not consider the
aspect of code quality. The results are confirmed also by [65].

Recent studies investigated the factors that influence the acceptance and rejection of a
pull request.
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There is no difference in treatment of pull-requests coming from the core team and
from the community. Generally merging decision is postponed based on technical fac-
tors [33],[57]. Generally, pull requests that passed the build phase are generally merged
more frequently [75]

Integrators decide to accept a contribution after analysing source code quality, code style,
documentation, granularity, and adherence to project conventions [32]. Pull request’s pro-
gramming language had a significant influence on acceptance [56]. Higher acceptance
was mostly found for Scala, C, C#, and R programming languages. Factors regarding de-
velopers are related to acceptance process, such as the number and experience level of
developers [55], and the developers reputation who submitted the pull request [16]. More-
over, social connection between the pull-request submitter and project manager concerns
the acceptance when the core team member is evaluating the pull-request [67].

Zhang et al. [77] studied how project maintainers and contributors handle multiple pull
requests that compete with each other by proposing to change the same part of the
source code simultaneously. They found that the majority of the studied Java projects, 45
out of 60, contained overlapping pull requests but concluded that the competition doesn’t
seem to affect the integration of the pull requests.

Rejection of pull requests can increase when technical problems are not properly solving
and if the number of forks increase too [55]. Other most important rejection factors are
inexperience with pull requests; the complexity of contributions; the locality of the artifacts
modified; and the project’s policy contribution [65].

From the integrator’s perspective, social challenges that needed to be addressed, for
example, how to motivate contributors to keep working on the project and how to explain
the reasons of rejection without discouraging them. From the contributor’s perspective,
they found that it is important to reduce response time, maintain awareness, and improve
communication [32].

Legay et al. [41] studied the impact of past contributions to the subsequent submitted
pull requests. The preliminary results show that continued contribution to a project is
correlated with higher pull request acceptance rates. The study also concluded that a de-
veloper whose pull request is rejected is less likely to try to contribute to the project again.
Project maintainers should especially avoid alienating new contributors from contributing
to the project.

3.1.2 Software Quality of Pull Requests

To the best of our knowledge, only few studies have focused on the quality aspect of pull
request acceptance [32], [31], [39].

Gousios et al. [32] investigated the pull-based development process focusing on the fac-
tors that affect the efficiency of the process and contribute to the acceptance of a pull



17

request, and the related acceptance time. They analyzed the GHTorrent corpus and an-
other 291 projects. The results showed that the number of pull requests increases over
time. However, the proportion of repositories using them is relatively stable. They also
identified common driving factors that affect the lifetime of pull requests and the merging
process. Based on their study, code reviews did not seem to increase the probability of
acceptance, since 84% of the reviewed pull requests were merged.

Gousios et al. [31] also conducted a survey aimed at characterizing the key factors con-
sidered in the decision-making process of pull request acceptance. Quality was revealed
as one of the top priorities for developers. The most important acceptance factors they
identified are: targeted area importance, test cases, and code quality. However, the re-
spondents specified quality differently from their respective perception, as conformance,
good available documentation, and contributor reputation.

Kononenko et al. [39] investigated the pull request acceptance process in a commercial
project addressing the quality of pull request reviews from the point of view of developers’
perception. They applied data mining techniques on the project’s GitHub repository in or-
der to understand the merge nature and then conducted a manual inspection of the pull
requests. They also investigated the factors that influence the merge time and outcome
of pull requests such as pull request size and the number of people involved in the dis-
cussion of each pull request. Developers’ experience and affiliation were two significant
factors in both models. Moreover, they report that developers generally associate the
quality of a pull request with the quality of its description, its complexity, and its reverta-
bility. However, they did not evaluate the reason for a pull request being rejected. These
studies investigated the software quality of pull requests focusing on the trustworthiness
of developers’ experience and affiliation [39]. Moreover, these studies did not measure
the quality of pull requests against a set of rules, but based on their acceptance rate
and developers’ perception. Our work complements these works by analyzing the code
quality of pull requests in popular open-source projects and how the quality, specifically
issues in the source code, affect the chance of a pull request being accepted when it is
reviewed by a project maintainer. We measured code quality against a set of rules pro-
vided by PMD, one of the most frequently used open-source software tools for analyzing
source code.
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4 CASE STUDY DESIGN

4.1 Case Study Design

We designed our empirical study as a case study based on the guidelines defined by
Runeson and Höst [59]. In this Section, we describe the case study design, including
the goal and the research questions, the study context, the data collection, and the data
analysis procedure.

4.1.1 Goal and Research Questions

The goal of this work is to investigate the role of code quality in pull request acceptance.

Accordingly, to meet our expectations, we formulated the goal as follows, using the
Goal/Question/Metric (GQM) template [7]:

Purpose Analyze

Object the acceptance of pull requests

Quality with respect to their code quality

Viewpoint from the point of view of developers

Context in the context of Java projects

Based on the defined goal, we derived the following Research Questions (RQs):

RQ1 What is the distribution of TD items violated by the pull requests
in the analyzed software systems?

RQ2 Does code quality affect pull request acceptance?

RQ3 Does code quality affect pull request acceptance considering dif-
ferent types and levels of severity of TD items?

RQ1 aims at assessing the distribution TD items violated by pull requests in the analyzed
software systems. We also took into account the distribution of TD items with respect to
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their priority level as assigned by PMD (P1-P5). These results will also help us to better
understand the context of our study.

RQ2 aims at finding out whether the project maintainers in open-source Java projects
consider quality issues in the pull request source code when they are reviewing it. If code
quality issues affect the acceptance of pull requests, the question is what kind of TD items
errors generally lead to the rejection of a pull request.

RQ3 aims at finding out if a severe code quality issue is more likely to result in the project
maintainer rejecting the pull request. This will allow us to see whether project maintainers
should pay more attention to specific issues in the code and make code reviews more
efficient.

4.1.2 Context

The projects for this study were selected using "criterion sampling" [52]. The criteria for
selecting projects were as follows:

• Uses Java as its primary programming language

• Older than two years

• Had active development in last year

• Code is hosted on GitHub

• Uses pull requests as a means of contributing to the code base

• Has more than 100 closed pull requests

Moreover, we tried to maximize diversity and representativeness considering a compara-
ble number of projects with respect to project age, size, and domain, as recommended
by Nagappan et al. [48].

We selected 28 projects according to these criteria. The majority, 22 projects, were se-
lected from the Apache Software Foundation repository1. The repository proved to be
an excellent source of projects that meet the criteria described above. This repository
includes some of the most widely used software solutions, considered industrial and ma-
ture, due to the strict review and inclusion process required by the ASF. Moreover, the
included projects have to keep on reviewing their code and follow a strict quality pro-
cess2.

The remaining six projects were selected with the help of the Trending Java repositories
list that GitHub provides3. GitHub provides a valuable source of data for the study of code
reviews [36].

1http://apache.org
2https://incubator.apache.org/policy/process.html
3https://github.com/trending/java
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Table 4.1. Selected projects

Project Owner/Name #PR Time Frame #LOC

apache/any23 129 2013/12-2018/11 78.351

apache/dubbo 1,270 2012/02-2019/01 133.633

apache/calcite 873 2014/07-2018/12 337.436

apache/cassandra 182 2018/10-2011/09 411.248

apache/cxf 455 2014/03-2018/12 807.517

apache/flume 180 2012/10-2018/12 103.706

apache/groovy 833 2015/10-2019/01 396.433

apache/guacamole-
client

331 2016/03-2018/12 65.928

apache/helix 284 2014/08-2018/11 191.832

apache/incubator-heron 2,191 2015/12-2019/01 207.364

hibernate/hibernate-orm 2,573 2010/10-2019/01 797.303

apache/kafka 5,522 2013/01-2018/12 376.683

apache/lucene-solr 264 2016/01-2018/12 1.416.200

apache/maven 166 2013/03-2018/12 107.802

apache/metamodel 198 2014/09-2018/12 64.805

mockito/mockito 726 2012/11-2019/01 57.405

apache/netbeans 1,026 2017/09-2019/01 6.115.974

netty/netty 4,129 2010/12-2019/01 275.970

apache/opennlp 330 2016/04-2018/12 136.545

apache/phoenix 203 2014/07-2018/12 366.588

apache/samza 1,475 2014/10-2018/10 129.282

spring-projects/spring-
framework

1,850 2011/09-2019/01 717.962

spring-projects/spring-
boot

3,076 2013/06-2019/01 348.091

apache/storm 2,863 2013/12-2018/12 359.906

apache/tajo 1,020 2014/03-2018/07 264.790

apache/vxquery 169 2015/04-2017/08 264.790

apache/zeppelin 3,194 2015/03-2018/12 218.956

openzipkin/zipkin 1,474 2012/06-2019/01 121.507

Total 36,344 14.683.977

In the selection, we manually selected popular Java projects using the criteria mentioned
before.

In Table 4.1, we report the list of the 28 projects that were analyzed along with the number
of pull requests (”#PR”), the time frame of the analysis, and the size of each project
(”#LOC”).
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Table 4.2. Example of data structure used for the analysis

Dependent Variable Independent Variables

Project ID PR ID Accepted PR Rule1 ... Rule n

Cassandra ahkji 1 0 3

Cassandra avfjo 0 0 2

4.1.3 Data Collection

We first extracted all pull requests from each of the selected projects using the GitHub
REST API v3 4.

For each pull request, we fetched the code from the pull request’s branch and analyzed
the code using PMD. The default Java rule set for PMD was used for the static analysis.
We filtered the TD items added in the main branch to only include items introduced in the
pull request. The filtering was done with the aid of a diff-file provided by GitHub API and
compared the pull request branch against the master branch.

We identified whether a pull request was accepted or not by checking whether the pull
request had been marked as merged into the master branch or whether the pull request
had been closed by an event that committed the changes to the master branch. Other
ways of handling pull requests within a project were not considered.

4.1.4 Data Analysis

The result of the data collection process was a csv file reporting the dependent variable
(pull request accepted or not) and the independent variables (number of TD items in-
troduced in each pull request). Table 4.2 provides an example of the data structure we
adopted in the remainder of this work.

For RQ1, we first calculated the total number of pull requests and the number of TD items
present in each project. Moreover, we calculated the number of accepted and rejected
pull requests. For each TD item, we calculated the number of occurrences, the number
of pull requests, and the number of projects where it was found. Moreover, we calculated
descriptive statistics (average, maximum, minimum, and standard deviation) for each TD
item.

In order to understand if TD items affect pull request acceptance (RQ2), we first deter-
mined whether there is a significant difference between the expected frequencies and the
observed frequencies in one or more categories. First, we computed the χ2 test.

Then, we selected eight Machine Learning techniques and compared their accuracy. To
overcome to the limitation of the different techniques, we selected and compared eight

4https://developer.github.com/v3/
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Table 4.3. Accuracy measures

Accuracy Measure Formula

Precision TP
FP+TP

Recall TP
FN+TP

MCC TP∗TN−FP∗FN√
(FP+TP )(FN−TP )(FP+TN)(FN+TN)

F-measure 2 ∗ precision∗recall
precision+recall

TP: True Positive; TN: True Negative; FP: False Positive; FN: False Negative

of them. The description of the different techniques, and the rationale adopted to select
each of them is reported in Section 2.

χ2 test could be enough to answer our RQs. However, in order to support possible follow-
up of the work, considering other factors such as LOC as independent variable, Machine
Learning techniques can provide much more accuracy results.

We examined whether considering the priority value of an issue affects the accuracy
metrics of the prediction models (RQ3). We used the same techniques as before but
grouped all the TD items in each project into groups according to their priorities. The
analysis was run separately for each project and each priority level (28 projects * 5 priority
level groups) and the results were compared to the ones we obtained for RQ2. To further
analyze the effect of issue priority, we combined the TD items of each priority level into
one data set and created models based on all available items with one priority.

Once a model was trained, we confirmed that the predictions about pull request accep-
tance made by the model were accurate (Accuracy Comparison). To determine the
accuracy of a model, 5-fold cross-validation was used. The data set was randomly split
into five parts. A model was trained five times, each time using four parts for training and
the remaining part for testing the model. We calculated accuracy measures (Precision,
Recall, Matthews Correlation Coefficient, and F-Measure) for each model (see Table 4.3)
and then combined the accuracy metrics from each fold to produce an estimate of how
well the model would perform.

We started by calculating the commonly used metrics, including F-measure, precision,
recall, and the harmonic average of the latter two. Precision and recall are metrics that
focus on the true positives produced by the model. Powers [54] argues that these met-
rics can be biased and suggests that a contingency matrix should be used to calculate
additional metrics to help understand how negative predictions affect the accuracy of the
constructed model. Using the contingency matrix, we calculated the model’s Matthew
Correlation Coefficient (MCC), which suggests as the best way to reduce the information
provided by the matrix into a single probability describing the model’s accuracy [54].

For each classifier to easily gauge the overall accuracy of the machine learning algo-
rithm in a model [9], we calculated the Area Under The Receiver Operating Characteris-
tic (AUC). For the AUC measurement, we calculated Receiver Operating Characteristics
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(ROC) and used these to find out the AUC ratio of the classifier, which is the probability of
the classifier ranking a randomly chosen positive higher than a randomly chosen negative
one.

4.1.5 Replicability

In order to allow our study to be replicated, we have published the complete raw data in
the replication package5.

5https://figshare.com/s/d47b6f238b5c92430dd7
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5 IMPLEMENTATION

In this Section the implementation of the program used to collect the data for this study
is discussed. First the reader is given some background information about the solutions
used and then a detailed overview of the whole process is presented.

5.1 Software structure and design decisions

The data collection and analysis script used in this study is built as a Node.js application
with Typescript running inside a docker container that uses external Java and Python
programs to extract data from GitHub Pull Requests and analyze that data with machine
learning techniques to create results for the study described in this thesis.

5.1.1 Docker

Docker is a software used to manage and run container images inside the host system.
A container is a standard unit of software that packages up code and all its dependencies
so the application runs quickly and reliably from one computing environment to another1.
The use of containers is made possible by Linux Containers project (and later Windows
Containers) which aims to allow the user to run an isolated process environment that
can access computer’s resources without needing to run a fully fledged virtual machine.
This process allows more resource-efficient virtualization and is quickly becoming an
industry standard in running software with its dependencies in a standard environment
independent of the host machine’s configuration or operating system.

Docker was chosen as the environment to run the software in because of the multiple
operating system specific dependencies required to run all the parts of the analysis se-
quence. With a standardized environment in which to run the analysis, the software could
be used in multiple different machines simultaneously. This ensured that the analysis
could be done in a more reasonable time frame and that the software could be distributed
to and used by other researchers without extensive setup of dependencies.

1https://www.docker.com/resources/what-container
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5.1.2 Node.js

Node.js is a Javascript runtime solution that uses a popular V8 Javascript engine to run
user code in various different operating systems2. Traditionally interpreting Javascript
code was thought to be the web browser’s task, but Javascript runtimes for desktop and
server applications have become popular with due to their ease of use and the ability to
use a single programming language for both websites and the server applications serving
them.

Node.js was chosen as the basis of the software primarily because the author is familiar
with Javascript language and the node ecosystem. Potential performance issues com-
monly associated with Javascript and other interpreted languages were not taken into
account because the bulk of the running time of the application is taken by the GitHub
API network requests and the external analysis software

5.1.3 Typescript

Typescript3 is a superset of Javascript designed by Microsoft to aid in software develop-
ment by giving the user access to strong type definitions while still remaining compatible
with Javascript based runtimes and engines due to the Typescript compiler compiling
source code written in Typescript back to Javascript. It was first introduced in 2012 and
matured into a stable release by April 2014 4. Since then, Typescript’s popularity has
risen sharply among javascript developers in recent years5 with the most important rea-
sons being "Robust, less error-prone code", "Elegant programming style & patterns" and
"Powerful developer tooling".

Typescript was chosen because it helps to improve code quality through a strong typing
system, provides new features compared to using plain Javascript and has good code
editor support to provide faster development time thanks to the additional information
that the typing system can provide to the tooling.

5.1.4 Machine Learning with Python

The machine learning was implemented using Python programming language and with
the help of established machine learning libraries such as scikit-learn and XGBoost.
Python provides the user with easy tools to handle the large datasets that machine learn-
ing tasks can require through the use of NumPy-library. In order to speed up the opera-
tion of building the machine learning models, multiprocessing capabilities of Python were

2https://nodejs.org/en/about/
3https://www.typescriptlang.org/
4https://devblogs.microsoft.com/typescript/announcing-typescript-1-0/
5https://2018.stateofjs.com/javascript-flavors/typescript/
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FROM node : 1 1 . 2 . 0

# i n s t a l l dependencies
RUN apt−get update
RUN apt−get −y i n s t a l l bash gcc g i t g f o r t r a n python3 \

python3−pip bu i ld−e s s e n t i a l unzip z ip wget l ibpng−dev \
openjdk−8− j r e l ibopenb las−dev s q l i t e python3−dev

RUN pip3 i n s t a l l −−upgrade se tup too l s
RUN pip3 i n s t a l l numpy sc ipy pandas m a t p l o t l i b \

s c i k i t −l ea rn xgboost j o b l i b

RUN g i t con f i g −−system core . longpaths t rue
ENV LC_ALL=C.UTF−8

WORKDIR / app

# fe t ch PMD, unzip i t , l i n k the r u n s c r i p t
RUN wget h t t ps : / / g i thub . com/pmd/pmd/ re leases / download / \

pmd_releases%2F6 . 9 . 0 / pmd−bin −6.9 .0 . z ip

RUN unzip pmd−bin −6.9 .0 . z ip
RUN l n −s / app /pmd−bin −6.9 .0 / b in / run . sh / usr / l o c a l / b in /

# i n s t a l l the npm packages and copy the sources
COPY / package ∗ . j son . /
RUN npm i n s t a l l −−no−package−l ock
COPY . . /

CMD [ " / b in / bash " ]
Listing 5.1. Docker container definition

used. This allowed the analysis script to take full advantage of the machine’s processing
cores and do data operations concurrently.

5.2 Software structure and considerations

The structure of the software implementation is shown in figure 5.1. The figure also
depicts the flow of control within the process starting with the "Entry point" to the docker
container. The docker container image definition is shown in listing 5.1. The container
created from that image will have all the necessary dependencies installed and can be
reused for each of the project in the study. When the actual data processing is started, the
script starts to download the given project’s pull request data through the GitHub API and
starts to parse the data to determine whether a pull request was accepted or rejected.

The pull requests and the customizable nature of their use in GitHub posed an interesting
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challenge where there is no one simple way of determining the acceptance of a pull
request. However, two main ways of accepting a pull request and adding the code in to
the master branch of a project were detected:

1. Accepting the pull request through the GitHub web interface

2. Accepting the pull request with a pull request closing commit event

The first method is straightforward. The GitHub API will provide the user with a timestamp
of the merging and the code is merged as it appears in the original pull request. Unfortu-
nately this method of accepting pull requests is seldom used as maintainers might prefer
to have more control over the merging process such as using rebasing instead of merg-
ing.

In the projects analyzed in this study a far more common method was the second method,
which consist of the maintainer manually applying the new source code in to the master
branch of the repository and then submitting the change in a closing event to the pull
request. This type of an event can then be parsed from the pull request data. However,
a closing event with a commit doesn’t guarantee that the code added is just as the pull
request creator submitted it. In order to verify that in the event of an accepted closing
commit the code is unchanged by the maintainer, the script also checks if the exact
commits in the pull request are present in the master branch or if the author of the closing
commit is indeed the author of the pull request.

Once the pull request details are gathered and saved into the database, the script uses
Git to fetch the external pull request branch using the pull request id and changes the
current active branch to that one. This allows PMD the access to the source code files.
Before the static code analysis can take place, a list of changed files in the pull request
branch is compiled with the help of a diff file that Git provides. A diff file lists the the
additions and deletions of code between two branches, in this case the master branch
and the pull request branch. The changed files are sent to PMD for analysis and the
resulting lists of issues are filtered to only include the issues that are introduced by the
code in the pull request. This step of the process is shown in abbreviated form in Listing
5.3

The stored issues in the database are then linked to the parsed pull requests by counting
the occurrences of a particular type of issue. This gives us a table that can be exported
into a comma separated file that the machine learning script can use. Before the creation
of machine learning models, the list of pull requests is further filtered to exclude pull
requests that don’t have any PMD detected issues in them. The filtering is done to reduce
the amount of noise in the dataset and help produce more accurate results.

The last step in the process is to construct the machine learning models with the test
data and then test their accuracies with the test data. The machine learning script takes
the whole dataset and creates a predetermined amount of training and testing sets from
it using scikit-learn package’s StratifiedKFold. A model is trained and tested for each fold
and the key metrics are recorded into memory. When all of the folds have been used,
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Figure 5.1. The structure of the software implemented

an avarage of all individual metric types are calculated and saved into a CSV file. This
process of training, testing and logging of metrics is repeated for each of the eight clas-
sifiers used in this study. Once all of the data is collected and calculated, the final results
are exported out of the docker container into a mounted folder on the host computer’s
filesystem. The main function in Listing 5.2 shows the scripts overall execution process
and exporting of the results into a mounted result-folder.
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1 impor t ch i ld_process from ’ ch i ld_process ’ ;
2 / / execSync spawns a c h i l d process w i t h i n the s c r i p t
3 / / t h a t i s run synchronously so the s c r i p t
4 / / wa i ts f o r these opera t ions to complete
5 / / before con t i nu ing
6 const execSync = ch i ld_process . execSync ;
7
8 async f u n c t i o n main ( ) {
9 awai t fetchAndProcessPR ( ) ;

10 awai t analyzePRs ( ) ;
11 awai t syncIssuesToPRTable ( ) ;
12 awai t count Issues ( ) ;
13 / / expor t the p u l l request data
14 execSync (
15 ’ s q l i t e 3 −header −csv database . s q l i t e \
16 " s e l e c t ∗ from p u l l r e q u e s t where analyzed = 1 ; " \
17 > p u l l r e q u e s t . csv ’
18 ) ;
19 / / run python ana lys i s and expor t the r e s u l t s
20 logger . i n f o ( " Running ana lys i s on issue counts " ) ;
21 execSync ( " python3 a n a l y s i s _ s c r i p t . py " , { s t d i o : [ ] } ) ;
22 execSync ( ‘ z ip $ { projectName } _ r e s u l t \
23 . / added_removed_total_comparisons / ∗ ‘ ) ;
24 execSync ( ‘mv $ { projectName } _ r e s u l t . z i p . / r e s u l t ‘ ) ;
25 execSync ( ‘ z ip $ { projectName } _data \
26 p u l l r e q u e s t . csv issue . csv commit . csv ‘ ) ;
27 execSync ( ‘mv $ { projectName } _data . z ip . / r e s u l t ‘ ) ;
28 logger . i n f o ( ‘ Process f i n i shed , r e s u l t copied to the volume ‘ ) ;
29 }

Listing 5.2. Example of the main function
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1 async f u n c t i o n analyzePRs ( ) {
2 l e t e r r o r C o l l e c t i o n = [ ] ;
3 l e t pmdResult = n u l l ;
4 f o r ( const one of p u l l r eq ues t s ) {
5 / / parsed
6 const d i f f j s o n = JSON. parse ( one . d i f f a n a l y s i s ) ;
7 / / go over the d i f f one f i l e a t a t ime
8 f o r ( const f i l e d i f f o f d i f f j s o n ) {
9 i f ( ! f i l e d i f f | | ! f i l e d i f f . to | | ! f i l e d i f f . chunks ) {

10 cont inue ;
11 }
12 / / check t h a t the f i l e conta ins java code
13 const name = l a s t ( f i l e d i f f . to . s p l i t ( " / " ) ) ;
14 i f ( ! name | | l a s t (name . s p l i t ( " . " ) ) !== " java " ) {
15 cont inue ;
16 }
17 / / f i n d the f u l l path i n the f i l e s y s t e m
18 const f i l e p a t h = execSync (
19 ‘ f i n d $ { __dirname } / p r o j e c t s / $ { projectName } \
20 −path ∗$ { f i l e d i f f . to } ‘ ,
21 {
22 s t d i o : [ 2 ]
23 }
24 ) . t o S t r i n g ( " u t f 8 " ) . t r i m ( ) ;
25 i f ( ! f i l e p a t h ) { cont inue ; }
26 / / run PMD on the f i l e
27 pmdResult = execSync (
28 ‘ run . sh pmd −d $ { f i l e p a t h } − f csv −R r u l e s e t . xml \
29 − f a i l O n V i o l a t i o n f a l s e −no−cache − l java ‘ , { s t d i o : [ 2 ] }
30 ) ;
31 const f i l e i s s u e s = parse ( pmdResult , {
32 columns : t rue ,
33 relax_column_count : t r ue
34 } ) ;
35 l e t addedLines = [ ] ;
36 / / add a l l new l i n e s in t roduces i n the f i l e
37 / / chunks i n t o an ar ray
38 f i l e d i f f . chunks . forEach ( c => {
39 const chunkAddedLines = c . changes
40 . f i l t e r ( x => x . type === " add " )
41 .map( y => y . l n . t o S t r i n g ( ) ) ;
42 addedLines = addedLines . concat ( chunkAddedLines ) ;
43 } ) ;
44 / / take only issues in t roduced i n the p u l l request code
45 const matchedErrors =
46 f i l e i s s u e s . f i l t e r ( x => addedLines . inc ludes ( x . Line ) ) ;
47 e r r o r C o l l e c t i o n = e r r o r C o l l e c t i o n . concat ( matchedErrors ) ;
48 }
49 }
50 }

Listing 5.3. Example of PMD analysis
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6 RESULTS

RQ1. What is the distribution of TD items violated by the pull
requests in the analyzed software systems?

For this study, we analyzed 36,344 pull requests violating 253 TD items and contained
more than 4.7 million times (Table 6.1) in the 28 analyzed projects. We found that 19,293
pull requests (53.08%) were accepted and 17,051 pull requests (46.92%) were rejected.
Eleven projects contained the vast majority of the pull requests (80%) and TD items
(74%). The distribution of the TD items differs greatly among the pull requests. For
example, the projects Cassandra and Phoenix contain a relatively large number of TD
items compared to the number of pull requests, while Groovy, Guacamole, and Maven
have a relatively small number of TD items.

Taking into account the priority level of each rule, the vast majority of TD items (77.86%)
are classified with priority level 3, while the remaining ones (22.14%) are equally dis-
tributed among levels 1, 2, and 4. None of the projects we analyzed had any issues rated
as priority level 5.

Table 6.2 reports the number of TD items (”#TD item”) and their number of occurrences
(”#occurrences”) grouped by priority level (”Priority ”).

Table 6.2. Distribution of TD items in pull requests - (RQ1)

Priority #TD
Items

#occurrences % PR Acc. % PR Rej.

All 253 4,703,146 96.05 100.00

4 18 85,688 77.78 100.00

3 197 4,488,326 96.95 100.00

2 22 37,492 95.45 95.45

1 16 91,640 100.00 100.00

Looking at the TD items that could play a role in pull request acceptance or rejection, 243
of the 253 TD items (96%) are present in both cases, while the remaining 10 are found
only in cases of rejection (Table 6.2).
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Table 6.1. Distribution of pull requests (PR) and technical debt items (TD items) in the
selected projects - (RQ1)

Project Name #PR #TD Items % Acc. % Rej.

apache/any23 129 11,573 90.70 9.30

apache/dubbo 1,270 169,751 52.28 47.72

apache/calcite 873 104,533 79.50 20.50

apache/cassandra 182 153,621 19.78 80.22

apache/cxf 455 62,564 75.82 24.18

apache/flume 180 67,880 60.00 40.00

apache/groovy 833 25,801 81.39 18.61

apache/guacamole-
client

331 6,226 92.15 7.85

apache/helix 284 58,586 90.85 9.15

apache/incubator-
heron

2,191 138,706 90.32 9.68

hibrenate/hibernate-
orm

2,573 490,905 16.27 83.73

apache/kafka 5,522 507,423 73.51 26.49

apache/lucene-solr 264 72,782 28.41 71.59

apache/maven 166 4,445 32.53 67.47

apache/metamodel 198 25,549 78.28 21.72

mockito/mockito 726 57,345 77.41 22.59

apache/netbeans 1,026 52,817 83.14 16.86

netty/netty 4,129 597,183 15.84 84.16

apache/opennlp 330 21,921 82.73 17.27

apache/phoenix 203 214,997 9.85 90.15

apache/samza 1,475 96,915 69.52 30.48

spring-
projects/spring-
framework

1,850 487,197 15.68 84.32

spring-
projects/spring-boot

3,076 156,455 8.03 91.97

apache/storm 2,863 379,583 77.96 22.04

apache/tajo 1,020 232,374 67.94 32.06

apache/vxquery 169 19,033 30.77 69.23

apache/zeppelin 3,194 408,444 56.92 43.08

openzipkin/zipkin 1,474 78,537 73.00 27.00

Focusing on TD items that have with a ”double role”, we analyzed the distribution in each
case. We discovered that 88 TD items have a diffusion rate of more than 60% in the case
of acceptance and 127 have a diffusion rate of more than 60% in the case of rejection.
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The remaining 38 are equally distributed.

Table 6.3 presents preliminary information related to the twenty most recurrent TD items.
We report descriptive statistics by means of Average (”Avg.”), Maximum (”Max”), Mini-
mum (”Min”), and Standard Deviation (”Std. dev.”). Moreover, we include the priority of
each TD item (”Priority ”), the sum of issue rows of that rule type found in the issues mas-
ter table (”# Total occurrences”), and the number of projects in which the specific TD item
has been violated (”#Project” ).

The complete list is available in the replication package (Section 4.1.5).

Table 6.3. Descriptive statistics (the 20 most recurrent TD items) - (RQ1)

TD Item Prio. #occur. #PR #prj. Avg Max Min Std. dev.
LawOfDemeter 4 1,089,110 15,809 28 38,896.78 140,870 767 40,680.62
MethodArgumentCouldBeFinal 4 627,688 12,822 28 22,417.42 105,544 224 25,936.63
CommentRequired 4 584,889 15,345 28 20,888.89 66,79 39 21,979.94
LocalVariableCouldBeFinal 4 578,760 14,920 28 20,670 67394 547 20,461.61
CommentSize 4 253,447 11,026 28 9,051.67 57,074 313 13,818.66
JUnitAssertionsShould-
IncludeMessage

4 196,619 6,738 26 7,562.26 38,557 58 10822.38

BeanMembersShouldSerialize 4 139,793 8,865 28 4,992.60 22,738 71 5,597.45
LongVariable 4 122,881 8,805 28 4,388.60 19,958 204 5,096.23
ShortVariable 4 112,333 7,421 28 4,011.89 21,900 26 5,240.06
OnlyOneReturn 4 92,166 7,111 28 3,291.64 14,163 42 3,950.45
CommentDefaultAccessModifier 4 58,684 5,252 28 2,095.85 12,535 6 2,605.75
DefaultPackage 4 42,396 4,201 28 1,514.14 9,212 2 1,890.76
ControlStatementBraces 4 39,910 2,689 27 1,478.14 11,130 1 2,534.29
JUnitTestContainsTooMany-
Asserts

4 3,6022 4,954 26 1,385.46 7,888 7 1,986.52

AtLeastOneConstructor 4 29,516 5,561 28 1,054.14 6,514 21 1,423.12
UnnecessaryFullyQualifiedName 4 27,402 1,393 27 1,014.88 7469 5 1,742.19
AvoidDuplicateLiterals 4 27,224 3,748 28 972.28 3,595 15 1,053.63
SignatureDeclareThrows-
Exception

4 26,188 3,049 27 969.92 5,734 5 1,512.59

AvoidInstantiating-
ObjectsInLoops

3 25,344 3,626 28 905.14 5,338 30 1,219.46

FieldNamingConventions 3 25,062 2,724 28 895.07 4,505 6 1,035.85

Summary of RQ1
Among the 36,344 analyzed pull requests, we discovered 253 different type of TD items
(PMD Rules) violated more that 4.7 million times. Nearly half of the pull requests had
been accepted and the other half had been rejected. 243 of the 253 TD items were found
to be present in both cases. The vast majority of these TD items (197) have priority level
3.

RQ2. Does code quality affect pull request acceptance?

To answer this question, we trained machine learning models for each project using all
possible pull requests at the time and using all the different classifiers introduced in Sec-
tion 2. A pull request was used if it contained Java that could be analyzed with PMD.
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There are some projects in this study that are multilingual, so filtering of the analyzable
pull requests was done out of necessity.

Once we had all the models trained, we tested them and calculated the accuracy mea-
sures described in Table 4.3 for each model. We then averaged each of the metrics
from the classifiers for the different techniques. The results are presented in Table 6.4.
The averaging provided us with an estimate of how accurately we could predict whether
maintainers accepted the pull request based on the number of different TD items it has.

Table 6.4. Model reliability - (RQ2)

Average between 5-fold validation models
Accuracy Mea-
sure

Logistic
Regres-
sion

Decision
Tree

Bagging Random
Forest

ExtraTrees AdaBoost Gradient
Boosting

XGBoost

AUC 50.91 50.12 49.83 50.75 50.54 51.30 50.64 50.92
Precision 49.53 48.40 48.56 49.33 49.20 48.74 49.30 49.20
RECALL 62.46 47.45 47.74 48.07 47.74 51.82 41.80 41.91
MCC 0.0235 -0.0020 0.0002 0.0135 0.0121 0.0045 0.0020 -0.0002
F-Measure 0.5514 0.4785 0.4795 0.4846 0.4826 0.4994 0.4416 0.4403

Figure 6.1. ROC Curves of Adaboost and Bagging - (RQ2)

(a) AdaBoost (b) Bagging

The results of this analysis are presented in Table 6.5. For reasons of space, we report
only the most frequent 20 TD items. The table also contains the number of distinct PMD
rules that the issues of the project contained. The rule count can be interpreted as the
number of different types of issues found.

With almost all of the models’ AUC for every method of prediction hovering around 50%,
overall code quality does not appear to be a factor in determining whether a pull request
is accepted or rejected.

There were some projects that showed some moderate success, but these can be dis-
missed as outliers.

We computed the χ2 test on the contingency matrix (Table 6.6), obtaining a value of
0.12. This confirms the above results that the presence of TD items does not affect
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Table 6.5. Summary of the quality rules related to pull request acceptance - (RQ2 and
RQ3)

Rule ID

P
riority

#projects

#occur. Importance (%)

Ada
boost

Bagging Deci-
sion
Tree

Extra
Trees

Gradient
Boost

Logistic
Re-
gres-
sion

Random
Forest

XG
Boost

LawOfDemeter 4 28 1089110 0.12 -0.51 0.77 -0.74 -0.29 -0.09 -0.66 0.02
MethodArgument-
CouldBeFinal

4 28 627688 -0.31 0.38 0.14 0.03 -0.71 -0.25 0.24 0.07

CommentRequired 4 28 584889 -0.25 -0.11 0.07 -0.30 -0.47 -0.17 0.58 -0.31
LocalVariable-
CouldBeFinal

4 28 578760 -0.13 -0.20 0.55 0.28 0.08 -0.05 0.61 -0.05

CommentSize 4 28 253447 -0.24 -0.15 0.49 -0.08 -0.17 -0.05 -0.10 0.05
JUnitAssertions-
ShouldInclude-
Message

4 26 196619 -0.41 -0.84 0.22 -0.28 -0.19 -0.10 -0.75 0.14

BeanMembers-
ShouldSerialize

4 28 139793 -0.33 -0.09 -0.03 -0.38 -0.37 0.17 0.26 0.07

LongVariable 4 28 122881 0.08 -0.19 -0.02 -0.25 -0.28 0.08 0.24 0.02
ShortVariable 4 28 112333 -0.51 -0.24 0.09 -0.04 -0.04 0.07 -0.25 -0.54
OnlyOneReturn 4 28 92166 -0.69 -0.03 0.02 -0.25 -0.08 -0.06 0.06 -0.13
CommentDefault-
AccessModifier

4 28 58684 -0.17 -0.07 0.30 -0.41 -0.25 0.23 0.18 -0.10

DefaultPackage 4 28 42396 -0.37 -0.05 0.20 -0.23 -0.93 0.10 -0.01 -0.54
ControlStatement-
Braces

4 27 39910 -0.89 0.09 0.58 0.29 -0.37 -0.03 0.08 0.25

JUnitTestContains-
TooManyAsserts

4 26 36022 0.40 0.22 -0.25 -0.33 0.01 0.16 0.10 -0.17

AtLeastOne-
Constructor

4 28 29516 0.00 -0.29 -0.06 -0.18 -0.19 -0.07 0.15 -0.22

UnnecessaryFully-
QualifiedName

4 27 27402 0.00 0.08 0.25 -0.05 0.00 0.00 0.26 -0.11

AvoidDuplicate-
Literals

4 28 27224 -0.20 0.05 0.33 -0.28 0.12 0.20 0.09 0.07

SignatureDeclare-
ThrowsException

4 27 26188 -0.18 -0.10 0.04 -0.13 -0.05 0.11 0.33 -0.17

AvoidInstantiating-
ObjectsInLoops

3 28 25344 -0.05 0.07 0.43 -0.14 -0.27 -0.13 0.52 -0.07

FieldNaming-
Conventions

3 28 25062 0.09 0.00 0.16 -0.21 -0.10 -0.01 0.07 0.19

Table 6.6. Contingency matrix

TD items No TD items

PR accepted 10.563 8.558

PR rejected 11.228 5.528
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Figure 6.2. ROC Curves of DecitionTrees and ExtraTrees - (RQ2)

(a) DecisionTrees (b) ExtraTrees

Figure 6.3. ROC Curves of GradientBoost and LogisticRegression - (RQ2)

(a) GradientBoost (b) LogisticRegression

Figure 6.4. ROC Curves of RandomForest and XGBoost - (RQ2)

(a) RandomForest (b) XGBoost

pull request acceptance (which means that TD items and pull request acceptance are
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mutually independent).

RQ3. Does code quality affect pull request acceptance
considering different types and levels of severity of TD items?

To answer this research question, we introduced PMD priority values assigned to each
TD item. By taking these priorities into consideration, we grouped all issues by their
priority value and trained the models using data composed of only issues of a certain
priority level.

Once we had run the training and tested the models with the data grouped by issue
priority, we calculated the accuracy metrics mentioned above. These results enabled
us to determine whether the prevalence of higher-priority issues affects the accuracy of
the models. The affect on model accuracy or importance is determined with the use of
drop-column importance -mechanism1. After training our baseline model with P amount
of features, we trained P amount of new models and compared each of the new models’
tested accuracy against the baseline model. Should a feature affect the accuracy of the
model, the model trained with that feature dropped from the dataset would have a lower
accuracy score than the baseline model. The more the accuracy of the model drops with
a feature removed, the more important that feature is to the model when classifying pull-
requests as accepted or rejected. In table 6.5 we show the importance of the 20 most
common quality rules when comparing the baseline model accuracy with a model that
has the specific quality rule dropped from the feature set.

Summary of RQ2 and RQ3
Looking at the results we obtained from the analysis using statistical and machine learn-
ing techniques (χ2 0.12 and AUC 50% on average), code quality does not appear to
influence pull request acceptance.

1https://explained.ai/rf-importance/
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7 DISCUSSION

In this Section, we will discuss the results obtained according to the RQs and present
possible practical implications from our research.

The analysis of the pull requests in 28 well-known Java projects shows that code quality,
calculated by means of PMD rules, is not a driver for the acceptance or the rejection
of pull requests. PMD recommends manual customization of the set of rules instead of
using the out-of-the-box rule set and selecting the rules that developers should consider
in order to maintain a certain level of quality. However, since we analyzed all the rules
detected by PMD, no rule would be helpful and any customization would be useless in
terms of being able to predict the software quality in code submitted to a pull request.
The result cannot be generalized to all the open source and commercial projects, as
we expect some project could enforce quality checks to accept pull requests. Some
tools, such as SonarQube (one of the main PMD competitor), recently launched a new
feature to allow developers to check the TD Issues before submitting the pull requests.
Even if maintainers are not sensible to the quality of the code to be integrated in their
projects, at least based on the rules detected by PMD, the adoption of pull request quality
analysis tools such as SonarQube or the usage of PMD before submitting a pull request
will increase the quality of their code, increasing the overall software maintainability and
decreasing the fault proneness that could be increased from the injection of some TD
Items (see Table I).

The results complement those obtained by Soares et al. [65] and Calefato et al. [16],
namely, that the reputation of the developer might be more important than the quality
of the code developed. The main implication for practitioners, and especially for those
maintaining open-source projects, is the realization that they should pay more attention to
software quality. Pull requests are a very powerful instrument, which could provide great
benefits if they were used for code reviews as well. Researchers should also investigate
whether other quality aspects might influence the acceptance of pull requests.
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8 THREATS TO VALIDITY

In this Section, we will introduce the threats to validity following the structure suggested by
Yin [71] and discussing construct validity, internal validity, external validity, and conclusion
validity. Moreover, we will also present the different tactics adopted to mitigate them.

Construct Validity. This threat concerns the relationship between theory and observa-
tion due to possible measurement erorrs. Above all, we relied on PMD, one of the most
used software quality analysis tool for Java. However, beside PMD is largely used in
industry, we did not find any evidence or empirical study assessing its detection accu-
racy. Therefore, we cannot exclude the presence of false positive and false negative in
the detected TD Items. We extracted the code submitted in pull requests by means of
the GitHub API10. However, we identified whether a pull request was accepted or not by
checking whether the pull request had been marked as merged into the master branch or
whether the pull request had been closed by an event that committed the changes to the
master branch. Other ways of handling pull requests within a project were not considered
and, therefore, we are aware that there could be the limited possibility that some main-
tainer could have integrated the pull request code into their projects manually, without
marking the pull request as accepted. Also, we found a few pull requests that contained
sweeping refactoring to the whole project folder layout, resulting in Git marking the major-
ity of the codebase as changed when in reality no new functionality was introduced. This
could have resulted in increased number of false positive code quality issues found in the
projects.

Internal Validity. This threat concerns internal factors related to the study that might have
affected the results. In order to evaluate the code quality of pull requests, we applied the
rules provided by PMD, which is one of the most widely used static code analysis tools
for Java on the market, also considering the different severity levels of each rule provided
by PMD. We are aware that the presence or the absence of a PMD issue cannot be the
perfect predictor for software quality, and other rules or metrics detected by other tools
could have brought to different results.

External Validity. This threat concerns the generalizability of the results. We selected 28
projects. 21 of them were from the Apache Software Foundation, which incubates only
certain systems that follow specific and strict quality rules. The remaining six projects
were selected with the help of the trending Java repositories list provided by GitHub. In
the selection, we preferred projects that are considered ready for production environ-
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ments and are using pull requests as the main way of taking in contributions. Our case
study was not based only on one application domain. This was avoided since we aimed
to find general mathematical models for the prediction of the number of bugs in a system.
Choosing only one domain or a very small number of application domains could have
been an indication of the non-generality of our study, as only prediction models from the
selected application domain would have been chosen. The selected projects stem from
a very large set of application domains, ranging from external libraries, frameworks, and
web utilities to large computational infrastructures. The application domain was not an
important criterion for the selection of the projects to be analyzed, but at any rate we tried
to balance the selection and pick systems from as many contexts as possible. However,
we are aware that other projects could have enforced different quality standards, and
could use different quality check before accepting pull requests. Furthermore, we are
considering only open source projects, and we cannot speculate on industrial projects,
as different companies could have different internal practices. Moreover, we also consid-
ered only Java projects. The replication of this work on different languages and different
projects may bring to different results.

Conclusion Validity. This threat concerns the relationship between the treatment and
the outcome. In our case, this threat could be represented by the analysis method applied
in our study. We reported the results considering descriptive statistics. Moreover, instead
of using only Logistic Regression, we compared the prediction power of different classifier
to reduce the bias of the low prediction power that one single classifier could have. We
do not exclude the possibility that other statistical or machine learning approaches such
as Deep Learning or others might have yielded similar or even better accuracy than our
modeling approach. However, considering the extremely low importance of each TD
Issue and its statistical significance, we do not expect to find big differences applying
other type of classifiers.
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9 CONCLUSION

In this study, we looked at the background of pull requests, code quality and machine
learning. Then we looked at the previous works on the matter and they reported that 84%
of pull requests to be accepted based on the trustworthiness of the developers [31][16].
However, no works studying the effects of code quality on pull requests were found. We
believed that the maintainers of open-source projects would consider code quality as a
factor when deciding whether to accept of reject an incoming pull request to their project.

In order to verify this belief, a script to gather data and analyze it was created. The code
quality of pull requests in 28 different open-source projects were analyzed with the help
of PMD, which is one of the most widely used static code analysis tools available. PMD
can detect different types of flaws in the source code, including design flaws, code smells,
security vulnerabilities, patterns that can lead to potential bugs emerging and many other
issues. PMD was able to detect a good number of code quality issues in the analyzed
pull requests that have been empirically considered as harmful by several works. Of the
36,344 pull requests analyzed nearly half had been accepted and the other half rejected.
Nearly all of the different code quality issues types encountered were present in both
accepted and rejected pull requests.

By applying basic statistical techniques and eight machine learning classifiers, we created
models that could take in previously unseen examples of code quality measurements and
predict whether the pull request would be accepted or rejected by the maintainers of the
project. The accuracy measures from the created models indicate that contrary to our
assumption, code quality issues present in the pull request’s source code do not affect
the rate of acceptance by the maintainers.

Results complement the conclusions derived by Gausios et al. [31] and Calefato et al. [16],
who report that the reputation of the developer submitting the pull request is one of the
most important acceptance factors.

Future works include the replication of this work on a larger dataset, such as [42] and the
comparison of our results with other works such as [60].
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