
Ph.D. Thesis

The Social, Organizational and
Disciplinary Aspects of Quality in
Free and Open Source Software

Communities

Author: Adam Alami
Supervisors: Andrzej Wąsowski and Marisa Leavitt Cohn

A thesis submitted in fulfillment of the requirements for the degree of
Ph.D. in Computer Science.

August 2020

Abstract (English)

Free and Open Source Software (FOSS) is an innovation model that does
not rely on price or formal hierarchies nor alliance agreements. It may be
described by the term “collective invention.” A review of history reveals a
number of examples of private-collective inventions, but most of these has
not survive past the development of a dominant design, but FOSS has.

In FOSS, commitment to a community occurs because of the sense of
autonomy contributors have, feelings of competence that grow as a result
of successful contributions, and social relatedness. The FOSS production
is a highly successful innovation model, and it survives the emergence of a
dominant design, demonstrating it as a new innovation model. Collective
invention in FOSS survives because of motivational aspects of contributors.

Although FOSS has the unique characteristics of being an information
product, a user innovation, and the result of a highly modular design, these
factors do not fully explain why FOSS produces high quality products. It
is understood that quality assurance techniques, methods and tools are
deployed in FOSS development process to control quality. However, these
practices are not the only source of quality. For example, additional factors
that may explain this phenomenon are conditions that foster pro-social
intrinsic motivation. This dissertation asks how do social, organizational
and disciplinary factors contribute to maintaining software quality in FOSS
Communities?

I show that quality in FOSS communities is achieved when the environment
facilitates some social, organizational and disciplinary enablers and desired
features. I identified three enablers and two desired features. Enablers are
qualities or capabilities that contribute to quality in FOSS. Desired features
are intended capabilities, when achieved they created a desired effect which is
maintaining quality. The enablers are (1) personal motivation for quality, (2)

i

governance for quality and (3) the ability to improve. The desired features
are (1) active commercial participation and (2) retention of participants to
sustain quality.

This is a mixed methods study. Mixed methods research is a methodology
for conducting research that involves collecting, analysing and integrating
quantitative (e.g., surveys) and qualitative (e.g., field observations, interviews)
research. I conducted 82 interviews with FOSS contributors and maintainers.
I carried out a Participatory Action Research project in the he Robot Oper-
ating System (ROS) community. I also conducted a survey with participants
(N=387) from 15 FOSS communities.

Software quality is a difficult attribute to achieve. Software is produced with
bugs for more than 60 years now. New solutions to prevent bugs continue to be
developed in both research and commercial contexts. However, these solutions
tend to focus on the technical aspects of software development, while, software
development processes continue to produce bugs. This is, perhaps, caused
by neglecting of other aspects of software development processes (i.e. social,
organizational and disciplinary). It is time to broden the research attention
to the non-technical aspects of quality. This dissertation demonstrates that
quality has social, organizational and disciplinary dimensions that should be
acknowledged, nurtured and studied further.

Software quality is achieved by technical and non-technical instruments.
This implies that managing and implementing software quality necessitate also
managing and nurturing non-technical mechanisms. For example, passion
for developing software should be acknowledged, nurtured and rewarded.
Another example, software development projects should embrace quality and
pitch it as a fundamental believe rather than just merely a checklist.

Keywords: Software Quality, Free and Open Source Software, FOSS Com-
munities, FOSS Quality.

ii

Abstract (Danish)

Free and Open Source Software (FOSS) er en innovationsmodel, som er
uafhængig af pris, formelle hierarkier og allianceaftaler. Softwaren kan
beskrives som en “kollektiv opfindelse.” Historien viser, at FOSS er en af
de få kollektive opfindelser blandt privatpersoner, der er lykkedes med at
fortsætte som innovationsmodel efter, at modellen har opnået status som
dominerende design.

I FOSS opstår engagementet i et fællesskab, fordi bidragsyderne har en
følelse af selvstændighed. De føler sig kompetente, og denne følelse vokser
som følge af vellykkede bidrag og social samhørighed. FOSS er en yderst
vellykket innovationsmodel. Det kommer til udtryk ved, at den har overlevet
den dominerende designfase. Kollektive opfindelser i FOSS overlever på grund
af bidragydernes motivation.

Selvom FOSS har et informationsprodukts og en brugeropfindelses unikke
egenskaber, og er resultatet af et design opbygget af mange moduler, forklarer
disse faktorer ikke helt, hvorfor FOSS fremstiller produkter af høj kvalitet.

Hvor FOSS’ udviklingsprocesser bruger kvalitetssikringsteknikker, -metoder
og -værktøjer, er disse er dog ikke de eneste procedurer, der anvendes til at
sikre kvaliteten. Den høje kvalitet kan også forklares med andre faktorer som
fx betingelser, der fremmer indre prosocial motivation. Denne afhandling
undersøger, hvordan sociale, organisatoriske og faglige faktorer bidrager til
at opretholde softwarekvaliteten i FOSS-fællesskaber.

Jeg viser, hvordan der opnås kvalitet i FOSS-fællesskaber, når miljøet
fremmer nogle sociale, organisatoriske og faglige enablers (katalysatorer) og
desired features (ønskede egenskaber). Jeg har identificeret tre enablers og
to desired features. Enablers er kvaliteter eller egenskaber, der bidrager
til kvaliteten i FOSS. Desired features er tilsigtede egenskaber, der, når de
opnås, skaber en ønsket effekt, som er at opretholde kvaliteten. Enablers

iii

er (1) personlig motivation for kvalitet, (2) styring af kvalitet og (3) evnen
til at forbedre. Desired features er (1) aktiv kommerciel deltagelse og (2)
fastholdelse af deltagere for at opretholde kvaliteten.

Undersøgelsen er en mixed methods-undersøgelse. Mixed methods-forskning
er en metode til at gennemføre forskning, der omfatter indsamling, analyse
og integration af kvantitativ forskning (fx spørgeundersøgelser) og kvalitativ
forskning (fx feltobservationer og interviews).

Jeg gennemførte 82 interviews med personer, der bidrager til og vedlige-
holder FOSS. Derudover gennemførte jeg et Participatory Action Research
project (deltagende aktionsforskningsprojekt) i fællesskabet Robot Operating
System (ROS). Jeg gennemførte også en spørgeundersøgelse med deltagere
(N=387) fra 15 forskellige FOSS-fællesskaber.

Softwarekvalitet er vanskeligt at opnå. Der er blevet produceret software
med fejl i mere en 60 år. Der udvikles løbende nye løsninger, der skal forhindre
softwarefejl, både i forskningssammenhænge og i kommercielle sammenhænge.
Disse løsninger har dog en tendens til at fokusere på de tekniske aspekter af
softwareudviklingen, mens processen for udvikling af software fortsætter med
at producere fejl. Det kan muligvis skyldes en negligering af andre aspekter i
processen for udvikling af software (dvs. sociale, organisatoriske og faglige
aspekter).

Det er nu på tide, at forskningens fokus udvides til også at omfatte de
ikke-tekniske aspekter af kvalitet. Denne afhandling demonstrerer, at kvalitet
har sociale, organisatoriske og faglige dimensioner, der bør anerkendes, plejes
og undersøges nærmere.

Softwarekvalitet opnås ved hjælp af tekniske og ikke-tekniske midler. Det
betyder, at når man arbejder med styring og implementering af softwarek-
valitet, er det også nødvendigt at være opmærksom på og pleje ikke-tekniske
mekanismer. Glæden ved at udvikle software skal fx anerkendes, plejes og
belønnes. Softwareudviklingsprojekter bør desuden omfavne kvalitet ved at

iv

fremhæve det som et helt grundlæggende princip, frem for at det bare er
noget, der krydses af på en tjekliste.

Nøgleord: Software Quality, Free and Open Source Software, FOSS Com-
munities, FOSS Quality.

v

Acknowledgments

A very special gratitude goes out to the ROSIN Project (grant No 732287)
and the EU’s Horizon 2020 for helping and providing the funding for this
work.

I would like to thank my supervisors Andrzej Wąsowski and Marisa Leavitt
Cohn for their consistent support and guidance during the project. Further-
more I would like to thank Peter Axel Nielsen from Aalborg University for
his advise, during my stay abroad, and the collaboration on Paper D.

I wish to thank Raúl Pardo Jimenez for his help in conducting the quan-
titative data analysis for Chapter 10. I would like also to thank Yvonne
Dittrich for starting this work and offering me the opportunity to do this
Ph.D. at ITU.

I wish to acknowledge the support and great love of my family, my mother,
Fatima; my father, Ahmed; and all my siblings. They kept me going on and
this work would not have been possible without their emotional support.

vi

Contents

Abstract (English) ii

Abstract (Danish) v

Acknowledgments vi

Contents vii

List of figures xi

List of tables xii

1 Introduction 1
1.1 Context . 1
1.2 Background . 3
1.3 Terminology . 5
1.4 Contributions . 6
1.5 The Project Context . 8
1.6 Outline . 11

2 Problem Definition & Research Question 13
2.1 Motivation . 13
2.2 Defining Software Quality . 14
2.3 Problems . 19
2.4 Research Question . 23
2.5 Theses . 23

3 State of the Art 27
3.1 Introduction . 27

4 Quality in FOSS: The Case of the ROS Community (Paper
A) 33
4.1 Summary . 33

vii

Contents

4.2 Context and Motivation . 33
4.3 Methods . 34
4.4 Results . 36
4.5 Contributions . 39

5 Personal Motivation for Quality (Paper B) 40
5.1 Summary . 40
5.2 Motivation . 40
5.3 Methods . 41
5.4 Results . 42
5.5 Contributions . 44

6 Affiliated Participation (Paper C) 46
6.1 Summary . 46
6.2 Motivation . 46
6.3 Methods . 47
6.4 Results . 48
6.5 Contributions . 50

7 Continuous Improvement (Paper D) 52
7.1 Summary . 52
7.2 Motivation . 52
7.3 Methods . 53
7.4 Results . 54
7.5 Contributions . 57

8 Governance for Quality (Paper E) 58
8.1 Summary . 58
8.2 Motivation . 59
8.3 Methods . 59
8.4 Results . 60
8.5 Contributions . 62

9 Pull Requests Good Practices (Paper F) 64

viii

Contents

9.1 Summary . 64
9.2 Motivation . 64
9.3 Methods . 66
9.4 Results . 67
9.5 Contributions . 69

10 Governing Pull Requests in FOSS (Quantitative Study) 70
10.1 Introduction . 70
10.2 Methods . 71
10.3 Subject Communities . 76
10.4 Findings . 81
10.5 Discussion . 88
10.6 Conclusion . 92

11 Discussion 93
11.1 Personal Motivation for Quality 94
11.2 Active Commercial Participation 97
11.3 Ability to Improve . 99
11.4 Governance for Quality . 101
11.5 Retention to Sustain Quality 103
11.6 Chapter Summary . 109

12 Conclusion and Future Work 110
12.1 Future Work . 114

Bibliography 117

Appendices 130

A Appendix A: Paper A 131

B Appendix B: Paper B 140

C Appendix C: Paper C 152

D Appendix D: Paper D 164

ix

Contents

E Appendix E: Paper E 187

F Appendix F: Paper F 198

G Appendix G: Pull Request Survey 209

x

List of Figures

1.1 The Dissertation Outline . 11

2.1 Extended Definition of Quality 18

4.1 Paper A Research Methods 36

5.1 Paper B Research Methods 41

6.1 Paper C Research Methods 48

7.1 Paper D research Methods . 54
7.2 PAR4FOSS Framework . 55
7.3 PAR4FOSS Instantiation for ROS 56

8.1 Paper E research Methods . 60

9.1 Paper F research Methods . 66

10.1 The Distribution of the Answers V27-V30 in Linux Kernel
Community . 81

10.2 The Distribution of the Answers V31 in FOSSASIA Community 82
10.3 The Distribution of the Answers V32 in FOSSASIA Community 83
10.4 The Distribution of the Answers V33 in the Coala Community 85
10.5 Bar chart which showing the probability of a community being

protective, equitable and lenient. 86
10.6 Hypothesis 6 Test . 87
10.7 FOSS Communities Pull Request Governance Model 91

11.1 Achieving Quality in FOSS Communities 94

xi

List of Tables

1.1 List of my PhD Publications 9

2.1 Quality Definitions: Strengths & Weaknesses 16

2.2 Theses, Papers and Contributions 26

10.1 The survey questions relevant for this analysis 74

10.2 The PR Governance Styles as Defined in Paper E 75

11.1 PR evaluation practices and involved stakeholders 106

11.2 The problems and their corresponding solutions 108

xii

1
Introduction

1.1 Context

Free and Open Source Software (FOSS) has attracted the interest of economic
and social science fields as open source software is growing in importance
in the software industry. Researchers note that open source is a paradox
in economic theory applications. An examination of the history shows that
FOSS production shares similarities to other examples in the past and present
that can be summarized by the term “collective invention” [2]. In the nineteen
century, the collective inventions were a phenomenon where rival firms shared
pertinent information on non-trivial problems in development. The iron
industry and Cornish pumping engine are examples [81]. Both formal and
informal information was shared among firms. The cooperation was necessary
because there was no prior knowledge on how to build a blast furnace, and
the reputations of different engineers were viewed as useful to the effort. A
disclosure of information did not harm the economy in the iron industry.
The efforts were complementary, and added to the aggregate value of the
product [81].

However, historically most of “collective invention” did not survive past
the development of a dominant design, except in FOSS. Collective invention
in FOSS survived because of motivation of contributors and the licenses that
the communities follow. Commitment to a community occurs because of the
sense of autonomy the FOSS contributors have, feelings of competence that

1

Chapter 1. Introduction

grow as a result of successful contributions, and social relatedness. The open
source production is a highly successful innovation model, and it survives the
emergence of a dominant design. It established itself as a new innovation
model [85].

The occupational subculture of FOSS development is based on the shared
beliefs of free software, free choice of work assignments, and cooperative
work. Contributors are committed to contributing to the development and
improvement of software. They uphold the principles of freedom of work
assignments, freedom to use and modify software, and the goal of producing
free quality software [36].

The success of any social movement depends on social acceptance, ad-
vantages for people, the creation of new social policies, implementation of
new laws, and a shift in public policy. The open source software movement
exemplifies these qualities. The principles of the free software movement
are that anyone can run any software for any purpose, anyone is free to
study and adapt the software for their own use, anyone is free to redistribute
copies of the software, anyone can improve or alter existing software. The
free software community and the open source communities differ in their
views on licenses, but copyleft is an important element in both groups. Tra-
ditional copyrights do not fit with the computerization movement. The
foundation for the FOSS movement is the belief that software should be
free with all rights and developers should have free choice in assignments
without a timeline or roadmap. The goals of the FOSS movement include
the goal of building the FOSS community and immediate acceptance of new
members to engage in cooperative work. The communities are self-managed
informally self-management by the core developers and contributors using
social control. Another important value of FOSS development communities
is that of speaking the truth. Transparency and disclosure are important
tenets of the community [35].

The motivation of members to join a FOSS community is the desire
for control of their work. This “free choice” of assignments is important

2

Chapter 1. Introduction

to members of a FOSS community. The members identify with the work
they produce, and it is a source of pride for them. Being able to pursue
one’s own passions and interests is a great motivator for members of the
community [35,87]. Members of the FOSS occupational subculture identify
themselves as part of the community, as part of their self-image and their
shared social identity that extends into their non-work identity [34]. The
community members’ self-image includes the traits of desiring “geek fame,”
a desire to build trust and reputation within the community, generosity of
time, expertise, and source code, and the desire to create reliable and quality
software [87,97].

The “management” of a FOSS community is unique, but reflective of its
principles, values, beliefs, and norms. The roles of members in a FOSS
community have been described as an onion, with horizonal layers, rather
than a vertical hierarchy. At the center are the core of developers, with the
next layers consisting of the informal community managers, project managers,
developers, and passive users making up the outer layer. Individuals generally
move inward through merit and are nominated by another member of the
community. Because the FOSS community members are often volunteers, the
process of moving inward is through merit, such as facilitating others in their
work, mediating conflicts, and solving problems in the community [54,97].

FOSS is increasingly becoming a recognizable IT strategy [118]. Over
half of the companies in Europe and the US are using FOSS for critical
applications and 80% are using FOSS for application infrastructure [15].
Many FOSS projects have matured over the years to produce software of
considerable size, complexity and some have seen generational changes.

1.2 Background

Free and Open source project refers to any software made public and open for
others to modify. The idea of open source software began in the 1950s with

3

Chapter 1. Introduction

the release of SHARE, an IBM source code for IBM mainframes. In the 1970s,
AT &T gave the Unix code to government and academic institutions, which
basically made it free to interested parties. The modern open source software
movement began with Richard Stallman in 1976, when he wrote EMACS
and became a free software advocate. In 1983, Stallman developed the GNU
operating system, a Unix-like system meant to use all free software. In
1985, Stallman began the Free Software Foundation, a nonprofit organization
designed to develop, distribute, and modify free software. In 1998, the
Open Source Initiative was founded, after the release of Netscape, to provide
education, advocacy, and stewardship of free software. Open Source Initiative
maintains a list of licenses for open source software [4, 87].

Originally software was perceived as a marketing incentive used to sell
hardware. In 1964 with the IBM 360, the value of software was realized.
Software was written for specific uses for specific industries, and sales of
software grew. As software is capital intensive, a piece of software for a
mainframe could cost as much as a million dollars. By the late 1970’s as
personal computer use grew, a new software industry emerged with prices
being based on popularity rather than the power of the software. The code
still had to be developed in a physical location as networks were too slow
to share code development tasks. The personal computers were relatively
inexpensive, but the software remained expensive because of the high capital
required to develop it [10,87].

Source code was no longer shared in the 1980’s, but with the growth of
the Internet in the 1990’s, programmers in various locations could share the
tasks of software development, and the FOSS community was born. Many
developers shared code to create products. The cost of the code was only 10
to 15% of the total cost, and the rest of the cost of software was marketing,
packaging, and supporting the product. Free and Open source software
maintains nearly the same amount of expense on the code, but the support
and packaging costs are much lower in the FOSS community [10,87].

Understanding free and open source software (FOSS) includes knowing

4

Chapter 1. Introduction

what FOSS is not. It is not shareware, public domain software, freeware,
or software viewers and readers without code. FOSS is associated with the
hacker culture. Hackers are skilled professional programmers with norms for
the hacker community. One of these norms is that an individual or small
group controls the software, providing patches, fixes, and new releases. The
original creators control the product or approve of another person taking on
the role. They share the code in hosting platforms like Github and advertise
it in social media. Another norm is that the developers of a software discuss
the product on mailing lists and tracking issues systems. A final norm of
hackers is that documentation is included with the FOSS products [7, 87].

1.3 Terminology

The term “open source” was proposed by Christine Peterson and voted on in
a meeting of the Foresight Institute headed by Eric Raymond. The website
opensource.org was instituted at the same time in 1998. The definition of open
source is that it is software that has a non-restrictive license that does not allow
it to be sold or given away and must include source code in the distribution.
Open source software means software that allows modifications and derivatives
of the work, and it must include the source code for modifications. Open
source software cannot discriminate against any person, and it cannot restrict
anyone from using the software. Rights apply to every user of the software,
and area specific to the product [7, 61].

It is important to understand the terms “open source” and “free software”.
The legal implications of both terms are the same, but there are differences
in the meaning of each term. Free software, a term initiated by Richard
Stallman, is based on the personal ethic stance of an individual being free, as
in free speech. On the other hand, Eric Raymond, initiated the use of the
term Open Source, focuses on technical efficiency and neoliberalism, where
the issue of freedom is less important than the Open Source movement. In his
endorsement of the term Free Software, Stallman appeals to the pragmatist,

5

Chapter 1. Introduction

and the desires for growth of the Open Source Movement over the ethical
concerns of the free speech.

While some individuals are proponents of open source and others of free
software, only a few developers differentiate between these terms. I consider
open source as a development method while free software is viewed as a
political stance or social movement. However, open source project is a term
that does not fit the traditional management view of projects because it is not
a “temporary endeavor intended to create a unique service or product” [52], as
project is defined. Instead, an open source project is an open ended endeavor
and has a purpose of producing source code, especially for a software product.
I propose the following pragmatic definition of an open source project: a
group of people developing software collectively and making the final products
available under an open source license. Perhaps the term should more
appropriately be “open source collective” or “open source community” instead
of the familiar “open source project.” Throughout this dissertation, I use the
acronym FOSS to include both philosophies, open source and free software.
In addition, I tend to use the noun “community” instead of “project” to
emphasise the collective aspect of the phenomena being studied.

1.4 Contributions

In addition to the traditional techniques, tools and methods (e.g. code review,
testing) of achieving quality, quality in FOSS communities is achieved by
additional social, organizational and disciplinary traits. I identified three
quality enablers and two desired features that assist in achieving quality
in FOSS software. Quality enablers are traits that makes quality possible.
These are: (1) Personal Motivation for Quality, (2) Governance for Quality
and (3) Ability to improve.

• Personal Motivation for Quality: I concluded that motivation
allows FOSS contributors to excel in software development task (espe-

6

Chapter 1. Introduction

cially code review), which results in higher quality deliverables. High
motivation for quality amongst FOSS contributors is visible to a greater
extent. Achieving quality for FOSS contributor is internalized; it is an
attitude part of contributors’ behaviour by learning or assimilation.

• Governance for Quality: “without rules and controls, pull request
process would be chaos. Quality is in our mind at every step of the
process”, this is how a participant asserted the significance of governance
to achieve quality. I identified three styles of governance of the pull
request process taking place in FOSS communities. These governance
styles have in common is achieving quality and control.

• Ability to Improve: I have studied in depth the Robot Operating
System (ROS) community. ROS is an exceptional FOSS case (which
I explained in Chapter 4). Contributors in ROS have relatively little
motivation for quality. To help the community align its quality practices
with other FOSS communities, I implemented PAR4FOSS, a change
implementation method derived from participatory action research.
The endeavour showed that a FOSS community is able to improve its
quality practices when the resources to assist in the implementation
are available and motivated to do so.

The desired features are are intended capabilities, when achieved they
created a desired effect which is maintaining quality.

• Active Commercial Participation: Commercial participation in
FOSS is increasing. However, this participation sometimes is passive (i.e.
inbound only). When it is the case, the sustainability of the community
is impacted and consequently the quality deliverables. I advocate active
participation of commercial entities to ensure an equitable use of the
community resources and a sustainable growth.

• Retention of Participants to Sustain Quality: The pull request
process is the entry point to the community and the environment where

7

Chapter 1. Introduction

the most interaction with the community occurs. Hence, I sought to
understand what contributors perceive as fair treatment and judgement
of their work. I identified seven good practices for the pull request
process. When these practices are embraced in the process, they create
good experience for the contributor.

Table 1.1 lists the publications, developed during my PhD project. Note
that all these publications have been published, or in the process of being
reviewed, in peer-review software engineering venues and journals.

1.5 The Project Context

This PhD project was carried out within the ROSIN project. The Robot
Operating System (ROS) community, has attracted a worldwide community
of users and contributors. One branch of ROS is ROS-Industrial, with a
specific industrial application focus. Begun in 2012, ROS-Industrial Con-
sortium has been able to collaborate with key players in the industry, such
as ABB, Yaskawa, Siemens, John Deere, BMW, and Bosch. The goal of
ROS-Industrial is to become the worldwide open-source standard for indus-
trial robots. However, ROS-Industrial stakeholders have raised concerns
regarding the quality assurance practice in ROS. They fear that the quality
practices are not aligned with FOSS communities and software engineering
best practices. The community sought assistance with their quality assurance,
and the ROS-Industrial Consortium established the H2020 project ROSIN
to enhance the ROS quality assurance practices (Paper D) and to promote
ROS as a reliable robotic platform for industrial users. This work is one of
the results of this community inspired project.

8

Chapter 1. Introduction

Paper A Alami, Adam, Yvonne Dittrich, and Andrzej Wasowski. “In-
fluencers of quality assurance in an open source community.”
In 2018 IEEE/ACM 11th International Workshop on Cooper-
ative and Human Aspects of Software Engineering (CHASE),
pp. 61-68. IEEE, 2018.

Paper B Alami, Adam, Marisa Leavitt Cohn, and Andrzej Wasowski.
“Why does code review work for open source software commu-
nities?” In Proceedings of the 41st International Conference
on Software Engineering (ICSE), pp. 1073-1083. IEEE Press,
2019.

Paper C Alami, Adam and Andrzej Wasowski. “Affiliated participa-
tion in open source communities.” In ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and
Measurement (ESEM) (pp. 1-11). IEEE. 2019

Paper D “A Tailored Participatory Action Research for FOSS Com-
munities” (under review)

Paper E Alami, Adam, Marisa Leavitt Cohn, and Andrzej Wasowski.
"How Do FOSS Communities Decide to Accept Pull Re-
quests?" In Proceedings of the Evaluation and Assessment
on Software Engineering (EASE), pp. 252-258. 2020.

Paper F “The 7 Habits of Good Pull Request Evaluation” (under
submission)

Table 1.1: List of my PhD Publications

1.5.1 The ROS Community

Although I collected data from several communities, the ROS community
has the focus of this study. The ROS community is the result of a project
begun in 2000 at Stanford University to integrate artificial intelligence (AI)

9

Chapter 1. Introduction

into software. Examples of this AI software are the Stanford AI Robot and
the Personal Robots Programs. The ROS community created flexible, dy-
namic software systems for robotic use. In 2007, Willow Garage, a visionary
robotics incubator started by Scott Hassan to accelerate the advancement of
non-military robotics, gave significant resources to extend and create imple-
mentations of robotic software. Many researchers from various institutions
and labs began to contribute time and resources to core Robot Operating
System ideas and software, all under the open BSD license. Willow Garage
became a for-profit company, and ROS is now maintained by the Open Source
Robotics Foundation (OSRF). Over the years, the developed model has been
named one of the strengths of ROS. This model allows any group to start
their own ROS code repository that they maintain control and ownership of,
and if they make their code public, they can receive recognition and credit.
In this way, many can benefit from the open source software project.

ROS is an open-source meta-operating system that provides a flexible
framework for writing robot software. It is a collection of tools and libraries
that help to simplify creation of robotic platforms. The collaboration of
researchers enables robotic products to be more robust. ROS provides a
communications infrastructure as middleware. It offers asynchronous message
passing, recording and playback of messages, request and response remote
procedures, and a distributed parameter system. In addition to middleware
communication, ROS provides robot specific features, such as standard
message definitions, a robot geometry library, robot description language,
diagnostics, pose estimations, localization, mapping, and navigation. The
ROS toolset is one of its strongest features of the community, and this toolset
enables debugging, plotting, and visualizing the state of the system with rviz
and rqt tools.

There are over 3,000 ROS packages available for users and developers.
These packages cover everything from proof of concept implementations to
new algorithms for industrial drivers and capabilities. The ROS community
has over 1,500 participants on the mailing list and 3,300 users on the Q&A

10

Chapter 1. Introduction

forum, with 22,000 Wiki pages with over 30 edits per day.

Recently the ROS community has embarked in an overhaul project called
ROS 2 to reengineer and create a new architecture for the current software.
ROS 2 is under heavy development and has attracted the participation of
some major players such as Amazon and Intel. The ROS 2 project has
currently become the focus of the community.

1.6 Outline

Figure 1.1: The Dissertation Outline

This dissertation is segmented into twelve chapters, as illustrated in figure
1.1. Chapter 1 provides the context and the background necessary to
introduce the reader to the dissertation topic. The next chapter, Chapter 2 ,
is an depth discussion of the problems and the research question underpinning

11

Chapter 1. Introduction

the work of this dissertation. Chapter 3 summarises the current state of
the art for the research question topic. Chapters 4, 5, 6, 7, 8 and 9 are
summaries of my publications. In Chapter 10 , I discuss the findings of the
survey data analysis. The findings and the contributions of my dissertation are
discussed in Chapter 11 . The conclusion and further work are highlighted
in Chapter 12 .

12

2
Problem Definition & Research Question

2.1 Motivation

FOSS communities have demonstrated that they can deliver high quality
and popular software. For example, Apache, runs 67% of the world’s web
sites [113]. Linux has become the most popular and versatile operating
system kernel. It is used on super computers and web-servers, powering up
cloud infrastructure, and controlling lots of mobile and embedded devices
including all Android devices. The software were developed in a culturally
and geographically diverse environment. Many developers volunteer because
of need for pride, ambition, or sense of belonging to a community. In the
FOSS world, a person is her/his reputation. All that matters is how well
you do your job, how you write quality code. Once an individual earns her
reputation, she works hard to keep it. FOSS communities are meritocracies,
sometimes with a benevolent dictator at the top [113].

Typically, FOSS emerges and organizes organically [87, 110,113]. Through
the lens of transactional cost economics, FOSS communities are characterized
as “bazaar” governance. They do not rely on employment contracts and
no formal policy can enforce decisions. The difference between “bazaar”and
market systems is clear [28]. Given this distinction, how these communities
can sustain the quality of their software indefinitely is not yet understood.

13

Chapter 2. Problem Definition & Research Question

2.2 Defining Software Quality

The quality of software has been referred to as desired excellence, value,
conformance to specifications, conformance to requirements, fitness for use,
loss avoidance, and meeting or exceeding expectations. To adequately define
quality, it is important to trace the definition’s roots, analyze the strengths
and weaknesses of each definition, and describe the tradeoffs of accepting one
definition over another.

Quality is a difficult concept to define in the context of software [74,99,103].
Software developers intend to create quality software, but the complexity of
the effort makes it difficult to ascertain when the software is, in fact, a quality
product. Inspection of software often consists of a systematic examination of
the software program in detail, but “bugs” often still exist in software upon
release [86]. The question that arises as the effort and inspections are made
is exactly what quality software is, as well as how to achieve quality.

The five major views of quality are transcendent philosophical, product
based, user based, manufacturing based, and value based [38]. Transcendent
philosophical views of quality refer to innate excellence in the software. Prod-
uct based views of quality address the quality of specific software products.
The various customers have different perceptions of the software, but the
aggregate perception is critical. A manufacturing view of quality is concerned
with the supply side and conformance to specifications that fit the require-
ments of the software. Cost reduction is also important in a manufacturing
view. Value based views of quality view the cost and price issues, and they
are based on the belief that the higher the quality, the higher the price.
Important issues in perceived software quality are features of the software,
the bells and whistles; reliability; conformance, or how well the software
matches the expectations; durability, how much use in the software during
its life; serviceability, or repair issues; and aesthetics, how the software looks
and sounds [38]. Table 2.1 presents the strengths and weaknesses of the
definitions of quality. I conclude that the definition of quality is a continuum.

14

Chapter 2. Problem Definition & Research Question

Software defects cost 40 to 1,000 times more to correct after release of
the software [53]. Quality software is defined as without error, meets user
needs, receives customer approval, ease of expandability, and reusability of
code [20, 53,56]. Quality software has a totality of features that bear on the
ability to satisfy the stated and implied needs of customers. However, the
metric that most defines software quality is defect control. There are two
basic viewpoints about software quality. One of these is defines software
quality as the process by which the software is developed, and the other is
the evaluation of the software by assessing the end product, focusing more
on usability [58].

FOSS appears to operate in unconventional fashion that quality software
would appear to be difficult to create, and the lack of mechanisms to ensure
quality, along with little architecture planning and no management teams
contribute to this assumption. The quality of FOSS is attributed to its peer
review process, fewer constraints on developers, developers motivated to
create quality software, and collaborative communities [74]. Another reason
for the high quality of FOSS is the openness of the entire project, including
code and documentation, which allows for more feedback that can be used
for improvements of these artifacts [74].

Paper A revealed that software quality in FOSS is not a single, easily
definable entity, but a complex, interconnected concept fluctuating between
the stakeholders. The study concludes that quality cannot be defined in
isolation of its social and organizational environment. Quality is a difficult
concept to define and examine in software development [74]. Hence, I decide
to work with the assumption that the definition is subjective and an ever
evolving concept. The aim of my dissertation is not to revive the debate of the
definition of software quality, but to steer attention to the environment where
quality is created. Quality is more than correctness and meeting specification;
it is also achieved socially and organizationally, as this dissertation will argue.
My studies participants tend to agree. For example:

15

Chapter 2. Problem Definition & Research Question

Quality
Defini-
tions

Strengths Weaknesses

Value The concept of value incorpo-
rates multiple attributes, it fo-
cuses attention on a firm’s in-
ternal efficiency and external
effectiveness, and it allows for
comparisons.

Weaknesses include diffi-
culty extracting individual
components of value, and it
is questionable what is in-
cluded in value.

Conformance Strengths are the ability to
conduct precise measurement,
its relationship with increased
efficiency, and its ease in use
in global strategy.

Weaknesses are that con-
sumers do not know or
care about internal specifi-
cations, it is an inappropri-
ate definition for services,
it potentially reduces orga-
nizational adaptability, and
specifications may quickly
become obsolete in rapidly
changing markets.

Meeting ex-
pectations

It has the strengths of evalu-
ating from the customer’s per-
spective, it is applicable across
industries, it is responsive to
market changes, and it is an
all-encompassing definition.

Weaknesses are that it is
the most complex defini-
tion, it is difficult to mea-
sure, customers may not
know expectations, short-
term and long-term evalua-
tions may differ, and there
is confusion between cus-
tomer service and customer
satisfaction.

Table 2.1: Quality Definitions: Strengths & Weaknesses

“I’m not sure there is a specific way to assess quality. We can read through
the code and we know good code from bad code. It is quite subjective.
However, in our community, there is a requirement for a minimum 3

reviewers to approve code. That makes it objective.”

16

Chapter 2. Problem Definition & Research Question

(Participant 27, Coala Community, Paper E)

2.2.1 An Extended Definition of Quality

The strongest quotes from my data that resonated with me are these state-
ments from a project manager with over 30 years experience in FOSS software
development and adoption and a senior Linux engineer. They stated:

“You cannot talk about quality in open source in isolation of the environment
we work in. Quality in open source has a lot to do with the people, their
motivation and morals. It is also contributed to the nature of open source,

how it operates and controls the software development processes.”

(Participant 25, Linux Community, Paper E)

“We obviously have our tools and processes to assure quality. But quality is
more than that! Your code quality is your reputation and pride. We all strive

to deliver the best code possible and we learn from the best.”

(Participant 15, Linux Community, Paper B)

Based on this and other empirical evidence I encountered during my studies,
I argue that quality definition can be extended beyond the current debate.
Quality has other dimensions. I identified four non-technical dimensions of
quality, (1) a social contract, (2) disciplinary customs, (3) organizational
practices and (4) ethical obligations. This is illustrated by figure 2.1.

• A social contract is the implicit agreement in the community amongst
its members. Quality becomes a social obligation toward the community.
Members of the community collaborate to produce quality for the
benefit of the community. For example a participant stated, “... In

17

Chapter 2. Problem Definition & Research Question

Figure 2.1: Extended Definition of Quality

open source projects we like to achieve higher code quality. Because its
open source and we will need to get good quality code...” (Participant
15, DuckDuckGo Community, Paper E). This believe was echoed by
many of my participants. They talk about quality as if it was a duty
toward the community.

• Disciplinary customs: This is the set of measures taken by the
community to regulate and control every software development activity
to create order and direction. For example, the Coala community has
a rule that every pull request (PR) must obtain the consensus of three
reviewers prior to the PR being considered for merger.

• Organizational practices: Practices related to organizing the com-
munity and the activities related to software development. For example,
Paper E shows that the studied FOSS communities govern their PR
processes using a combination of social norms and software engineering
principles.

• Ethical obligation: In FOSS, quality becomes an ethical category,

18

Chapter 2. Problem Definition & Research Question

the “right” and “wrong”. Quality is “right” and mediocrity is “wrong” in
FOSS behavioral system. In some communities this is taught through
mentoring. Other communities (e.g. Linux) ingrain quality as a ethical
obligation through harsh feedback and rejections.

2.3 Problems

The software quality problem has been a leading issue for the software
industry for 40 or 60 years now. The problem persists not due to lack of
methods, tools and processes for quality. There is an exceptional amount of
knowledge on how to produce software of high quality. But this knowledge
has focused on techniques, tools and methods to assure the internal quality
of the software (i.e. the code) and the output of the software (i.e. fit for
purpose and meeting the business requirements). Testing merely verifies that
the software performs correctly under a wide range of operational conditions.
Focusing solely on testing ignores the major recognized source of errors: the
human in the process. With this dissertation, I want to attract attention to
the social and organizational aspects of quality. I claim that the emphasis
solely on the technical and control aspects of managing quality ignores the
social, and organizational aspects of quality. The human element is critical
to quality [91, 112]. Most quality concepts and standards come from the
manufacturing field, but software quality requires a multiperspective [24].
Quality includes the human aspect, as well as technical aspects, and the
culture must be appropriate to creating quality [84,91,111,112].

Problem I. There is a need to understand the social, organizational and
disciplinary aspects of quality in software engineering. However, this
direction received little attention in software engineering literature.

Although empirically it has not been proven yet that open source tends
to produce better quality software than its proprietary or alternative coun-
terparts, the success of FOSS product is a testimony to its quality. The

19

Chapter 2. Problem Definition & Research Question

“Coverity Scan Open Source” report, which measures the quality of FOSS
code, finds that the density of code defects (the number of bugs per 1,000
lines of code) is smaller for FOSS than for proprietary software [66]. Quality
in FOSS communities is definitely achieved by the combination of good
software engineering practices and non-technical aspects (i.e. social and
organizational). For example, in FOSS communities, a developer’s reputation
is important. Contributors who produce higher quality work are more likely
to be offered to work at higher positions in the community [33]. Cai and Zhu
show that a developer’s reputation is determined by the individual’s coding
quality, the commitment behavior, community experience, and collaboration
experience [8]. When a developer is known, he or she will work to make high
quality software so that he or she can build a reputation for high quality
software development. Many developers describe the job of programming
as “joy”. Part of the joy is that developers can pick the projects that they
wish to work on. In addition, the developer is not put on a tight schedule of
development, but he or she can work at his or her own pace. The developer
in open source software communities can decide what he wants to work on
and how long he will work on it. Another joy of programming is that the
typical programmer loves to learn, and open source development projects can
be an opportunity to learn from other developers. Linus Torvalds decided
that the best way to solve complex coding problems was to open them up to
many developers and let the best code win. Developers can enhance their
own skills by examining the code of the best developers. [87]

Open source motivations have a strong ethical component and allows
for greater transparency of process. Open source proponents claim that
passion about software development and producing software for personal
satisfaction result in highly productive environment and high-quality software
[106, 114]. Transparency of a development environment in an open source
projects provides visibility of popularity and proves liveness of the project.
Such transparency also enables evaluation of contributions and consequently
merits are attributed to those who deliver quality code. How these social
traits influence achieving and maintaining quality in FOSS is inadequately

20

Chapter 2. Problem Definition & Research Question

understood.

Problem II. There are anecdotal evidence that quality in FOSS commu-
nities is achieved by more than techniques, tools and processes. However,
how these social aspects interact with achieving quality is not demonstrated
empirically.

FOSS communities are informal virtual organizations, they do not rely
on explicit hierarchical organization and structural authority. Control is
exercised via a self-organized meritocracy that governs the community [35,36].
They challenge the established norms of the technical world. Part of the
challenge is economic, and part is methodology. With the code open to all,
revenue cannot be made from the protected code. A FOSS community is
usually created by a team outside of a corporation that was distributed all
over the world. The goal of the software is to provide a solution to a need
that has no mandated schedules, no predefined work plans, and no deadlines.
There is no bureaucratic governance in place that can veto new ideas and
projects. Many open source teams have a small core of developers. Another
distinction is the chain of command. The team leader is usually the one who
had the idea for the project, and the qualification for most team leaders is a
dedication to seeing the job completed. The final distinction is the review
process. Most work is done in the open, and test versions are made public,
where “many eyes” can provide feedback during the process [87].

“Various definitions and statements on quality lead to the fact that quality
depends essentially on people.” [84] Current challenges facing software devel-
opment performance improvement are largely organizational and not technical
in nature [84,91,111,112]. Identifying defects is one way to improve quality,
but improving the culture that exists is important [112]. How these unique
organizational traits influence maintaining quality in FOSS community is not
explored yet.

21

Chapter 2. Problem Definition & Research Question

Problem III. FOSS communities are recognizably different socially and
organizationally. However, how these social, organizational and disciplinary
aspects interact with achieving quality is not understood.

Not all FOSS communities have reached the same level of adopting quality
practices. Some luck enthusiasm and motivation for quality. These commu-
nities need to align their quality practices with other FOSS communities.
However, how to change a community from an “as is” state to a “to be”
state is not well understood. FOSS communities are culturally, socially and
organizationally distinctive organizations. Not all FOSS communities have a
governance mechanism process in place; and if they do, it is not understood
how these governance structures play a role in introducing change to the
community.

Problem IV. How can a community manager or leader steer the quality of
the community to a positive direction? Communities with immature quality
practices need to go through a change process to enhance their conditions.
However, the literature does not propose a change method tailored to FOSS
communities distinctive traits.

There appears to be a trend for more FOSS adoption in corporate settings
[109]. Reduced software acquisition costs and the ability to innovate and
resources are benefits that attract commercial organization to FOSS [47,105].
Assessing the quality of the software is a fundamental part of the software
acquisition process. However, the value system of FOSS development often
emphasizes different aspects of quality due to different underlying assumptions
and a different working method. The differences may be subtle in some cases
and more explicit in others. FOSS software quality cannot be assessed by a
checklist. It has a human, organizational and disciplinary dimensions that
should be examined as part of assessing FOSS quality.

22

Chapter 2. Problem Definition & Research Question

Problem V. What are the positive signs of quality in FOSS communities?
This is one of the questions that commercial adopters should ask when
selecting FOSS software. However, these positive signs are not known.

The adoption of FOSS software is not a simple transactional operation.
It binds the company to the FOSS community as the company becomes
dependent on software updates and future releases. Some companies choose
to participate passively (i.e. inbound only)

2.4 Research Question

This dissertation addresses the following question:

How do social, organizational and disciplinary factors contribute to
maintaining software quality in FOSS Communities?

“Social” in this context means the qualities and behavior of people. “or-
ganizational” is the act of organizing a FOSS community and the activities
relating to it. “Disciplinary” implies enforcing a particular discipline. In this
context, it’s the set of measures taken by the community to regulate and
control every software development activity to create order and direction.

2.5 Theses

Based on the above research question, I propose the following theses:

• T1 A number of human and social aspects create a psychological and
social environment that drives the contributors to excel and collabora-
tively produce high quality code. This drive to excel and investing care
during the review process contribute positively to the software quality
in FOSS communities.

23

Chapter 2. Problem Definition & Research Question

• T2 Active commercial participation in FOSS enhances the sustain-
ability of quality. The “free-riding” phenomenon is prevalent in some
FOSS communities. I argued that passive participation strains the com-
munity’s sustainability, it leads the community into regression which
hinders growth and ability to innovate. This consequently has impact
on the maintenance of software quality. Hence, I advocate for active par-
ticipation. Active participation strategy combines pecuniary (related to
competitive assets and producing rewards) and non-pecuniary (related
to non-competitive assets without immediate rewards) contributions.

• T3 Obviously, not all communities are equal. Some communities are
struggling to align their QA practices with similar FOSS communi-
ties. In this instance, the community should implement a continuous
improvement endeavor to develop its quality practices. I argue that
FOSS communities have the ability collaborate and invest effort in
implementing change. To be able to evolve and continuously improve
quality practices is a demonstration that FOSS communities can pursue
achieving software quality. I designed and executed a participatory
action research method (i.e. PAR4FOSS) tailored for FOSS tailored
for FOSS cultural, social and organizational distinctiveness.

• T4 Software engineering principles are not the only criteria applied
in pull requests (PR) evaluation; social and strategic criteria are also
of high importance. Software changes are not taken lightly in FOSS
communities. Each community adopts a governance style to oversee
the quality of the suggested changes to the code base. Having in
place a controlled form of behaviour or way of working contributes to
maintaining software quality.

• T5 FOSS software development is a highly social activity. The lit-
erature suggests that the PR process has an unpredictable outcome,
which deters contributors from further participation. I argued that
the contributor’s journey should be enhanced by good PR practices to
improve contributors retention. A critical task of sustaining commons

24

Chapter 2. Problem Definition & Research Question

is to ensure an adequate number of participants, which are the most
valuable resource. Hence, I suggest a set of good PR evaluation prac-
tices (e.g. engagement with the PR and communication) to encourage
participation.

In summary my Ph.D. demonstrates that software quality in FOSS com-
munities is maintained by additional social, organizational and disciplinary
values and qualities. I showed evidence of non-technical quality competency
in FOSS communities. I identified three enablers (i.e. motivation for quality,
PR governance and continuous improvement) and two desired attributes (i.e.
active participation and retention) to maintain software quality. They act
as catalysts for quality. Table 2.2 shows the argument how my publications
address the theses listed above.

25

Chapter 2. Problem Definition & Research Question

Theses Type Publication Contribution

T1 Social Paper B Quality is facilitated by motiva-
tion. Managers should create a
climate of enthusiasm and motiva-
tion. Management should recog-
nize merits of the individual and
the group.

T2 Organizational Paper C Paper C highlighted the need
for constructive participation in
FOSS by commercial organization.
Active participation sustains qual-
ity in FOSS. When passive com-
mercial participation is a domi-
nant behavior in a community,
quality suffers. The balance of
the FOSS ecosystem is compro-
mised as the exploitative practices
regress the community.

T3 Organizational Paper D FOSS communities should demon-
strate their ability to improve
when their quality practices are
not aligned with other FOSS com-
munities. This ability to change
is a desired feature for quality. It
is a testimony that FOSS culture
and work habits can be influence
to a positive direction.

T4 Disciplinary Paper E Paper E shows that process gov-
ernance enables quality. Al-
though communities choose differ-
ent ways to govern their pull re-
quest process, they have the same
aim, which is assuring quality.

T5 Social Paper F Paper F shows that quality needs
highly motivated resources. The
pull request process is a critical
venue for contributors’ experience.
It exposes them to the commu-
nity norms and rituals. Ensuring
a good contributor’ experience is
an investment in retaining con-
tributors.

Table 2.2: Theses, Papers and Contributions

26

3
State of the Art

3.1 Introduction

Software development can be considered as a fundamental social process
embedded within organizational and cultural structures [1,25,44]. These social
structures enable, constrain, and shape the behavior, knowledge, programming
techniques, and styles of software developers. Understanding how people
work together to build software is critical since software’s importance in our
society is matched by the difficulty encountered in its development.

Software engineering is concerned with developing software that has the
quality of satisfying both functional and non-functional needs, overcoming
internal and external constraints, while maintaining usability, compatibility,
portability, reusability, and adequate documentation. Doherty claims that
90% of software failures are non-technical problems, but they are related to
social and organizational features [32]. Therefore social, personal, and group
factors are as important to understand as are methodologies and automation.
Social dependencies and networks among developers allow them to interact
and coordinate with one another to create software.

The scope of this chapter is the review of the state of the art of the social,
organizational and disciplinary aspects of quality in FOSS communities.
However, my search shows the related work is almost nonexistent. Therefore,
I elevated the scope to cover software development instead of being restricted

27

Chapter 3. State of the Art

to the quality part of the whole process. The literature of this topic is
separated into two streams of work: (1) social aspects, and (2) organizational
aspects.

3.1.1 Social Aspects

Social aspects are the commonalities among people within a specific culture.
Social aspects may include the following: language, norms, rules, team
members interactions, and group behaviors. It also includes how developers
work together to produce software. Cain and colleagues explain that software
engineering too often pushes social concerns aside, perhaps dismissing them
as “unscientific” and therefore as being ill-suited to a so-called engineering
discipline [9].

Software development is a socio-technical process [9, 67,94,96]. There is
considerable evidence that software development processes are influenced by
social and psychological factors [25,44,70,94]. Programmers do not exist in
isolation. They are usually part of an organizational structure that embraces
believes, norms and values. Software development activities require coordina-
tion. Inevitably, during coordination and communication, the developers are
influenced by each others’ domain knowledge, programming techniques, and
styles. Such influence can be uncovered in software repositories and found in
the structure of the software artifact itself [27]. Therefore, software devel-
opment can be considered as a fundamental social process embedded within
organizational and cultural structures [25]. These social structures enable,
constrain, and shape the behavior, knowledge, programming techniques, and
styles of software developers [44].

Software development is a predominantly social activity. It is important to
view software development groups, departments, and corporations as social
bodies. The essentially human nature of customer interactions, programmer
creativity, and programming team dynamics demand that we deal with the
social side of software production enterprises [25,44].

28

Chapter 3. State of the Art

Software development is a labor intensive project, and the majority of
software is developed by teams. Therefore, the dynamics of their interactions
play a major role in the success or failure of a software project [94]. Rosen
concludes that individual behaviors affect the environment, and the environ-
ment influences the behavior of individuals. This is expressed as pride in the
product, a desire to produce the best product possible, and an anxiety about
defects in the product [94].

Chong, et al. examine the socio-cognitive factors of pair programming
[16]. Other studies have shown that pair programming gives better designs,
more compact code, and fewer defects. In addition, programmers exhibit
greater confidence and enjoyment when the product was the result of pair
programming [45,72]. In examining the pair programming technique, Chong,
et al. observed that work is split into two roles, one of the driver, the person
at the keyboard, and the navigator, the active observer and monitor of code.
They collaborate on all aspects of the development. They are in constant
communication, asking and answering questions of each other. They may
switch roles frequently. The simplest reason that this technique works is
that two people make better design decisions than one person can. Two
individuals will have overlapping, but not identical, sets of information; the
collaboration is a mutual apprenticeship, where each learns from the other;
the collaborative design requires the negotiation of a shared understanding
and mutual orientation; the negotiation process requires that programmers
share goals, plans, decisions, and actions, which leads to a more through
exploration of design options. This production, verification, and affirmation
leads to increased confidence in the programmers and vet flawed design ideas
by the pair. The navigator can look for missed cases and typographical errors,
as well as think ahead of the code being typed at that moment [16].

Marshall and Webber examines taboos that unconsciously influence soft-
ware developers. These taboos operate on the work of programmers in the
form of lore, which is the way programmers learn and communicate, and
magic, which is the process of implementation. Lore came about with the

29

Chapter 3. State of the Art

design pattern community, who by nature are classifiers and cataloguers.
Design patterns provide little templates for solutions that are common in
creating software. Many developers learn by watching and doing, and the
absorption of taboos occurs this way as well. Some bits of code get reused,
so these bits become “folk tales” [70].

Besides lore, magic is another taboo found in software development. Sym-
pathetic magic is the solving of problems in programming by simulations, by
constructing models. Programmers have their own styles, yet if they find a
way of doing something that works well, they stick with it, even if it seems
irrational. Sympathetic magic also takes the form of naming of functions,
that is calling them after what they want them to do rather than what they
actually do. They also see certain actions as a talisman that protects them
from errors, and this talisman becomes a superstition, or a charm. The
charm can become a reflex to developers [70]. From this analysis of lore and
magic in software development, the researchers state that encouraging the
spread of programmers’ lore could be a good thing. Secondly, there is more
to understanding programmers and programming than looking at processes
and outputs. Social interaction, which is where these taboos are acquired,
can play an important role in how programmers’ knowledge develops [70].

This literature focuses on the aspect of collaboration amongst software
developers. It is an interesting social aspect, but there is a need to expend
our research to cover other aspects and with paying more particular attention
to others facets of software engineering, e.g. achieving quality, requirements
engineering, etc. I asked, how do social, organizational and disciplinary
factors contribute to maintaining software quality in FOSS Communities? I
concluded that personal motivation play a important role in achieving quality
in FOSS.

30

Chapter 3. State of the Art

3.1.2 Organizational Aspects

Organizational (e.g., structure of organization, management strategy, business
model) aspects of a software development team follow Conway’s law [18],
which states that software reflects the organizational structure that produced
it. The division of labor and software architecture reflects the structure and
social climate of the software team that created it [18].

Research has been preoccupied with technical issues at the expense of
people and organizational issues. Organizational issues are any distinct area
of the interface between a technical system and either the characteristics
and requirements of the host organization or its employees, and organiza-
tional issues are more important than ever in the successful development of
information systems [32].

Doherty and King conducted a survey on the organizational issues affecting
software development. The majority of respondents perceived organizational
issues as being the most important issue in software development, but these
issues are rarely addressed in an organization. Senior IT managers coming
from larger and more sophisticated organizations are more likely to address
organizational issues. In addition, senior IT managers overseeing the im-
plementation of packages might be more likely to address the issues than
others [32].

Organizational issues are given low priority because respondents feel that
the solutions are intangible, ambiguous, and politically sensitive. Tight time
and cost constraints also come into effect. Solutions that have been suggested
are the need for integrated IT and user development teams, organizational
ownership of systems throughout the development process, formal change
management programs, and the need for both user and IT communities to
work more closely together [32].

There is limited attention to the organizational aspects. My dissertation
shows strong influence of these factors on the overall growth and sustainability

31

Chapter 3. State of the Art

of FOSS communities. I concluded that commercial participation influences
the sustainability of the ROS community which cascaded to affect quality
related tasks. I also showed that a FOSS community ability to implement
continuous improvements program are fundamental to sustaining quality.
We also need to distinguish between FOSS development and closed-source
development when studying organizational aspects. They both have different
organizational aspects. Their organizational structures and cultures are
fundamentally different.

This literature review shows limited work in the area of social, organi-
sational and disciplinary aspects of software development. This has been
explained by few authors. It’s either because the research community feels
that the subject is “unscientific” [9] or simply because there is an over empha-
sise on the engineering aspects [32]. This dissertation is a testimony in favor
of this topic. It shows that there is a profound correlation between achieving
quality in FOSS and social, organizational and disciplinary aspects.

32

4
Quality in FOSS: The Case of the ROS

Community (Paper A)

4.1 Summary

This research study was designed to investigate quality assurance practices
in the ROS community to identify factors affecting those practices and
recommend ways to overcome challenges and intensify positive practices in
the community. Six factors were found through mixed methods research
that affect quality practices. These are participation motives, priorities
of the community, the meritocratic culture, sustainability, complexity, and
adaptability.

4.2 Context and Motivation

The motivation behind this study came about when I joined the ROSIN
project. The project planned interventions activities to enhance the ROS
community quality practices. The ROS environment (e.g. culture, attitude
toward quality, social norms, etc.) was foreign to the project. To ensure
successful interventions design and execution, I suggested to expand a “prelim-
inary study” done by the project [31]. Although the study disclosed extensive
technical knowledge about achieving quality in an open robotic community,

33

Chapter 4. Quality in FOSS: The Case of the ROS Community (Paper A)

it lacked an understanding of the social and organizational aspects to ensure
successful execution of the envisaged interventions.

FOSS communities differ from traditional closed source teams. There exist
a vast amount of different norms and believes that facilitate the development
of open source software. These norms and believes impact the software quality.
This effect is not well understood yet. To meet this objective, I opted for
semi-structured interviews with ROS developers. Semi-structure interviews
are useful to obtain detailed information about personal feelings, perceptions
and opinions which was not sufficient by examining online resources [46,78].

The Robotic Operating System or ROS Community is a large community
that develops complex software for robotics. Many off the developers are not
software engineers. They are largely engineers from other disciplines (e.g.
electrical engineering, mechanical engineering). Because of the needs of the
collaboration of different technological capabilities to develop the software,
ROS attracted contributors from various disciplines. Its Wiki platform is a
busy site with 1.4 million visitors a year with nearly 7,000 registered users.
There have been over 13.4 million downloads of the software. Over ten
years, ROS has become one of robotics’ de facto standard operating systems.
The ROS community has different attributes than more commonly studied
communities, such as Linux and Mozilla. The ROS community is unique
in that it produces software components for robotic systems. It is a diverse
multidisciplinary community with developers from many fields who have
experience as package developers, students, chief technical officers, and other
fields.

4.3 Methods

This dissertation is a mixed methods study. As shown by Figure 4.1, Con-
structivism is the belief that we construct our view of the world based on
our perceptions of it. Positivism is the belief that science is seen as the way

34

Chapter 4. Quality in FOSS: The Case of the ROS Community (Paper A)

to get at truth, to understand the world well enough to predict and control
it. Positivism is the idea that observation and measurement is the core of
scientific endeavor and the scientific method is the way to learn about the
world [115]. A positivist approach to a research topic is usually related to
quantitative methodology, while a constructivist approach is related to a
qualitative methodology.

Positivism is often referred to as objectivism, and constructionism is
referred to as subjectivism. Positivism is based on the belief that the world
can be measured based on facts, while constructivism is based on the mind’s
interpretation of what is observed. The frame of reference is important to a
constructivist approach to research, while it is not important to a positivist
approach in research [115].

The research strategies of this dissertation are stemmed from these two
distinct philosophical stands, constructivism and positivism. This choice is
rooted in my believe that every research question has the correct corresponding
research method. One research strategy does not fit for every research question.
I selected my research strategies (i.e. Thematic analysis, participatory action
research, case study and survey) based on a particular need to address the
research questions, I asked.

This paper (Paper A) is a case study of the ROS community using semi-
structured interview for data collection and grounded theory (GT) for data
analysis [12, 13]. Ideally, grounded theory is applied throughout the research
process, that is, from conception of research questions to concurrent sampling
and data analysis. However, in this case, I used GT for coding procedures
after all of the data have been collected.

This research study implements a mixed methods research method con-
sisting of interviews, a virtual ethnography, and community participatory
observations. The interviews were semi-structured interviews with ten par-
ticipants, which, along with the other tools, were used to collect data that

35

Chapter 4. Quality in FOSS: The Case of the ROS Community (Paper A)

Figure 4.1: Paper A Research Methods

was organized and interpreted. The data was analyzed through open coding,
focus coding, and theoretical coding [12,13].

4.4 Results

During the data analysis, I identified six forces affecting the implementation
of quality practices in the ROS community, namely participation motives,
community priorities, meritocratic culture, sustainability, complexity, and
adaptability.

One of the forces affecting implementing quality measures in the ROS
community is FOSS ideology [108], or a mental model framework that is
used to interpret the environment and steer decisions. One aspect of this
ideology is openness [35, 36, 87]. The dedicated commitment of the ROS
community developers toward open-source products is well-known. Some
community members support and value this norm, while others place efficiency
and software quality over the need to use only FOSS tools. In one of the

36

Chapter 4. Quality in FOSS: The Case of the ROS Community (Paper A)

community events (ROSCon 2017), members discussed Slack as an online
communication tool adopted by a group of developers in the community
for discussions and collaboration. Several community members refused to
use it because it was not open source, while others were happy to continue
using it. One member got emotional when the item came up for discussion
and asserted, “I refuse to use it. It is not open source!” (Participant, ROS
Community, Paper A). Another community member joined the opposition: “It
is disappointing to see some people using a closed source product, but I refuse
to use it.” (Participant, ROS Community, Paper A). There was an awkward
silence before the discussion advanced to another subject. Apparently, not all
community members rank openness equally high. Some have a relaxed and
pragmatic attitude toward adopting closed source infrastructure and tooling
if it results in higher quality software products created more efficiently.

Another aspect of this ideology is enjoyment. While not enjoyable, non-
programming tasks are executed as part of the commitment to the community.
Thanks to the intrinsic enjoyment, other tasks in the software development
process, such as coding, provide motivation to participate in the community
and deliver high-quality code. The self-determination theory (SDT) [95, 108]
explains that enjoyment comes as the tasks allow individuals to feel competent,
provide a sense of belonging, and independence. Freedom of choice, the
presence of challenges, and the ability to overcome challenges stimulate
intrinsic motivation. Adding fun to non-coding tasks is a way, according to
SDT, to overcome the challenge of necessary, but mundane tasks.

Somewhat surprisingly, I found that quality is not a high priority in the
community. Innovation and functional depth and breadth are the priorities
of the ROS community, and quality practices and continuous improvement
are not a priority. I learned later during that other FOSS communities invest
their passion in producing high quality code [50]; while ROS prefers to shift
its passion to advance the cause of robotics. This difference is historic and
due to the post-war cultural entanglement of new technologies, and robotics
in particular. Robots became exemplars of a technological headway. This

37

Chapter 4. Quality in FOSS: The Case of the ROS Community (Paper A)

cultural background also perpetuates the ROS community views of what
their priorities should look like and how it should behave.

The third force influencing quality in the ROS community is meritocracy.
Fame and reputation are the rewards for superior technical knowledge, but
no reward is given to those who perform testing or documentation tasks. The
culture of ROS is features first and quality later.

The absence of a working sustainability strategy constrains quality assur-
ance activities, as well. Finding a balance between quality and stimulating
growth is a challenge for the community as well. There are few initiatives to
attract new maintainers, and even these have been unsuccessful. Therefore,
a large number of software packages end up being orphans (not being main-
tained and/or have no maintainer assigned to them). Documentation is not
updated either. Sustainability is healthy from an economic, environmental,
and social viewpoint, and one part of sustainability is resilience. Without
a strategy for improving sustainability, communities often vanish. However,
sustainability is difficult to achieve, and a project that can attract and retain
resources can produce more creative contributions.

The complexity of robotics systems adds additional challenges to the
implementation of quality assurance. Robots are complex, combining control,
AI, concurrency and mobility. These disciplines require additional quality
measures so that robots can operate without defects.

The ROS community demonstrates an ability to adapt, in that it prefers
an organic development of practices, rather than following prescribed prac-
tices. Trial-and-error strategy is used to develop the practices of the ROS
community’s quality. These are often managed informally through democrat-
ically agreed upon measures. These quality assurance measures are informal,
rather than top-down rules and regulations. The community members reflect,
deliberate, and vote on practices before adopting them.

Finally, the ROS community favors quality assurance measures that are

38

Chapter 4. Quality in FOSS: The Case of the ROS Community (Paper A)

easy to use. They should be effective and efficient, and they cannot delay
or constrain the developer’s focus on innovation. They cannot constrain the
creativity and participation of the developers.

4.5 Contributions

The results of this study demonstrate that quality cannot be investigated and
defined in isolation of its social and organizational environment. Therefore,
many of the traditional strategies used to increase quality, monetary incentives,
training, and sharing of best practices, for instance, have partial effect. I am
not suggesting that we should abandon tools; however, they should be used
to support rules-based quality measures, not as the underpinnings of a true
culture of quality.

Not all FOSS communities are equal. I learned in the course of my PhD
project that each community is influenced by external and internal strands.
For example, Linus Torvalds style of leadership has influenced the governance
of the code change process (Paper E) in the Linux Kernel community. It
reflects his personal values like trustworthiness and appraising relationships.
Other communities have been strongly influenced by the unarticulated tenets
of the hacker ethos, the desire to maintain pluralism, passion for quality and
coding, care for the community, etc.

The learning from this study has also influenced my approach to implement-
ing interventions in the ROS community. I had to be sensible and considerate
to the particularities of the ROS community (Paper D). Instead of applying
an action research method in a literal manner or sense, I decided to tailor
participatory action research to fit the ROS community particularities and
collaborative style of work.

39

5
Personal Motivation for Quality (Paper B)

5.1 Summary

This study collected data from five FOSS communities and analyzed the data
using qualitative methods to identify factors affecting the effectiveness of
code review. Qualities of individuals in FOSS communities were identified to
contribute to the success of code review in FOSS communities. These qualities
are passion for the project, caring about the project, concern with reputation
and status in the community, and learning from reviewing other’s code.
Intrinsic and extrinsic motivators were also identified to elevate efficiency
of code review. From this study, we were able to conclude that quality
is achieved by other means apart from tools and processes. These social
attributes when invested in the task of code review lead to a higher code
quality.

5.2 Motivation

Code review is an established practice, in FOSS communities, that ensures
quality of source code, lowers bug frequency, and enforces standards. Code
review has evolved to a formal technique that gives immediate feedback,
and has several forms, including pair programming, informal walkthrough,
and mandatory approvals before code is merged. Code review effectiveness

40

Chapter 5. Personal Motivation for Quality (Paper B)

Figure 5.1: Paper B Research Methods

depends on level of participation in code review, size of changes made, and
the reviewer experience and expertise.

FOSS is a gift economy, centered around reciprocity, sharing success, dis-
playing status and reputation, and continuous learning in lieu of monetary
rewards. Given this distinction, why does code review work for FOSS commu-
nities? Understanding the reasons and the motives would allow us to disclose
the other facets of quality.

5.3 Methods

For this paper, I investigated five FOSS community in this study; namely,
ROS, a middleware for robotics; Apache Allura, a hosting platform; The Com-
prehensive Knowledge Archive Network (CKAN), a storage and distribution
platform for data; FOSSASIA, a community producing software applications,
hardware, and design; and the Linux Kernel, the most popular operating

41

Chapter 5. Personal Motivation for Quality (Paper B)

system kernel.

The method used for this analysis was a qualitative method (Figure 5.1).
The data consisted of semi-structured interviews with 21 participants. The
data collected was analyzed using open coding [75,93] to organize the findings.

5.4 Results

Rejections are common in code review, and, in some instances, the default
initial position of code review is a rejection of code; therefore, a community
implementing code review should create an environment where rejections
are common, accepted, and normal. Mentoring and training of contributors
improves acceptance of this negative feedback. FOSS contributors develop a
remarkable ability to handle rejections. For example, this participant stated,
“my code was rejected multiple times. I learned not take it personally; instead
I learned from the rejections how to be a better programmer”(Participant 1,
Allura Community, Paper B).

Rejections. Contributors are subject to frequent rejections in code review.
Communities neither reduce nor eliminate the negative feedback, as they
believe it is core to the practice.

Code review is an iterative improvement cycle in the studied communities.
Each iteration strives for the best code quality. These cycles of improvement
turn negative feedback into a positive opportunity for learning and growth.
Despite the harshness of the process, our participants appear enthusiastic to
learn, leverage the process to build reputation and excel.

Learning. The iterative improvement cycle in code review turns negative
feedback into a positive opportunity for learning and technical-growth by
contributors. Receiving feedback may even become a reason for participation.

The success of code review can be also attributed to a phenomenon called

42

Chapter 5. Personal Motivation for Quality (Paper B)

hacker ethics, which is passion, caring, creativity, and joy in creating software.
The ethic of passion is a trait that contribute in reaching high achievement,
and creativity, but it also aids in coping with negative feedback. Passion can
be categorized as obsessive passion, which is tied to a person’s self-esteem,
and can be negative; or harmonious passion, which is more positive. The
passion of hackers is harmonious, and it can lead to better concentration,
flow, and persistence. Passion is a strong motivator in FOSS communities.
Code review is conducted with passion. Contributors invest their passion in
the review task; this leads to higher achievement and, consequently, to better
code quality. For example, this participant stated, “if I don’t review code at
least three times a week, I don’t feel good about it. In open source, our passion
drives us to be exceptionally good and proficient at what we do”(Participant 9,
FOSSASIA Community, Paper B).

Passion. The ethic of passion motivates FOSS contributors. Consequently,
they dedicate effort to code review, deliver high quality, and are more
resilient to rejection.

Hackers have been described as prizing self-determination, technological
expertise and freedom; but they also exhibit care values. Caring for the
community and the project is a part of the hacker ethic. There is a positive
correlation between caring and performance. Caring about quality is a
demonstration of care toward the community. When this care is exercised on
the task of code review, the performance of the review is high. This enhances
the quality of the review and assists in producing high quality code. This
quote from a participant interview illustrates this findings, “I personally care
about my community. When I review code, it is important to me that it is of
high quality”(Participant 13, FOSSASIA Community, Paper B).

Caring. The ethic of care drives our subjects. They use the gate of code
review to exercise care for quality. Care also helps them to control the
negative feedback.

Altruism and enjoyment are key intrinsic motivators to participate in

43

Chapter 5. Personal Motivation for Quality (Paper B)

FOSS communities. These qualities are put into execution during code review
which leads to higher quality of the review. Our participants described the
experience as “good feeling” and “it feels nice.”

Intrinsic Motivation. Altruism, and enjoyment are key intrinsic moti-
vators for our subjects. Open source reviewers are effectively volunteers
(even if paid) and can choose review tasks following intrinsic interests.

Extrinsic motivators include reciprocity, participation in successful projects,
status in the community, reputation enhancement, and learning opportunities.
Reputation is the most pronounced motivator we found in this study. It
drives contributors to participate and excel in code review in order to build
up reputation in the community. This desire to perform exceptionally well
produces high quality outcome, i.e. good reviews and consequently higher
quality of code. For example, this participant stated, “It is important to have a
reputation in the community. This is achieved through the respect expressed by
the community in the form of feedback to its members. Basically, you receive
good feedback when your code is of excellent quality and your contribution
impresses the reviewers”(Participant 21, Linux Community, Paper B).

Extrinsic Motivation. An established reciprocal gift culture, sharing in
the fame of success, reputation, public visibility of status for employers,
learning opportunities, and punishment for not performing ultimately the
best are the key extrinsic motivators behind work and code review of our
subjects. These are all non-monetary motivators that can be used to improve
code review.

5.5 Contributions

I identified a set of social qualities (e.g. Passion, care and extrinsic motives)
that lead to excellence in performing the task of code review. These social
traits enhance the quality of the process (i.e. the execution) and the outcome

44

Chapter 5. Personal Motivation for Quality (Paper B)

(i.e. high performance and better code quality). These findings show that
quality has a social facet that should be acknowledged and nurtured in
software development environments. It is also an indication that quality can
be achieved with social traits in conjunction with tools, standards and the
adherence to software engineering principles.

45

6
Affiliated Participation (Paper C)

6.1 Summary

This study was designed to discover the participation models prevalent in
affiliated participation in FOSS communities (the participation of industry
engineers in open source communities as part of their jobs) and the barriers
to active participation by companies. The data was collected from semi-
structured interviews and analyzed qualitatively. The research questions
that are the foundation of this study are what participation models are used
in affiliated participation efforts, and what barriers exist for employees to
contribute to FOSS.

6.2 Motivation

Some claim that it might be impossible to find an organization today that
does not benefit in some way from open source software [11]. Some companies,
like Intel, IBM, and Samsung, have entire programs devoted to contributing
to open source communities. Other companies become consumers of open
source almost accidentally when the software is brought in by system admin-
istrators or developers. The existing literature proposes various participation
models. For example, Hecker describes two main business models for FOSS,
that of support seller and loss leader [48]. Fitzgerald and Kenny identified

46

Chapter 6. Affiliated Participation (Paper C)

four adoption models, value-adding service, market creation, leveraging com-
munity development, and leveraging the FOSS brand [37]. In addition, FOSS
communities and companies were described as having a parasitic relationship,
where the company is unconcerned with its effect on FOSS; a symbiotic
relationship (mutually beneficial relationships, in which both the firm and
the community gain advantage), where the relationship is mutually beneficial;
and a commensalistic relationship (relationships between the two entities
where one party, the firm, benefits from the other without affecting negatively
the FOSS community), where one entity benefits but does not harm the
other [23,68].

However, all these works do not explain how this participation affects the
software development process and particularly achieving quality. I observe a
passive attitude from companies toward contributing to the software develop-
ment and its artifacts. Although, over the last three years, I observed some
significant change in the ROS 2 project, ROS 1 has suffered significantly from
this attitude. The passive behavior makes sustaining quality in ROS a real
challenge. Many artifacts (e.g. documentation, tutorials, etc.) are quickly
getting out of date and quality assurance practices are easily neglected. Given
these circumstances and the state it creates for quality in the community, I
set to investigate the reasons that makes commercial institutions passive in
FOSS communities.

6.3 Methods

Epistemology is concerned with providing a philosophical grounding for
deciding what kind of knowledge are possible and how we ensure it is adequate
and legitimate [71]. The epistemological stance of this study is constructivism
(6.1) [29]. The aim of constructivist research is to understand particular
situations or phenomena in-depth. It suggests gathering rich data from
which conclusions can be formed. To unveil the unknowns about passive

47

Chapter 6. Affiliated Participation (Paper C)

Figure 6.1: Paper C Research Methods

participation, I needed insights to people experiences, decisions and ways of
thinking. This is achievable via semi-structured interviews.

Figure 6.1 shows the method employed to gather and analyze data for this
study. I used qualitative methods to investigate these questions based on data
collected in semi-structured interviews [46,78] and participatory observations
[77]. I interviewed 21 members of the ROS and Linux communities. All
my interviewees were affiliated ROS or Linux Kernel contributors. Their
professional experiences ranged from five years to 30 years and they had
various responsibilities in their companies (e.g. Director, project manager
and developers). The observations were conducted in the ROS community. I
used thematic coding [75,93] to analyze the data that was collected.

6.4 Results

Some of the organizations I researched had decided to benefit from FOSS
in an inbound-only manner without contributing back to the community. I

48

Chapter 6. Affiliated Participation (Paper C)

referred to this behavior as passive participation. Passive participation
is desired by management, but often not by engineers involved with the
community. Management’s reasons for not wishing to participate actively
include intellectual property concerns, company image concerns, unfamiliarity
with the FOSS cost/benefit model, and lack of clear participation policies.

This passive behaviour is explained by this participant, who stated, “it is
convenient for these companies not to contribute. There are many reasons,
but the most important one is the cost to contribute is high. Producing code
of the required quality is not that easy! Plus going through cycles of reviews
is lentghy” (Participant 18, Linux Community, Paper C).

Subjects in the study indicated that it is possible to develop an active
FOSS participation strategy over time. Some organizations use a latent
model, where the release of internally developed features is delayed until
an economic gain has been guaranteed. This latent model can benefit both
the company and the FOSS community. It allows developers to become
embedded in the community and influence the direction of the project, as
well as push the organization toward sharing more. Selective revealing is
also implemented where the commodity parts of the project are contributed
and differentiated components are kept closed. Latent participants neutralize
risks of disclosing differentiated IP, yet benefit from better embedding into
the community.

Enterprises can engage in active participation in an Open Source communi-
ties. It is a strategic decision to combine in-bound and outbound engagement
with the community. Active participants seemed enthusiastic and devout
about it. It is shown in this participant statement. “We see ourselves an
integral part of the community. All the code we produced is published for
review. We adhere to the community standards and passion for quality and
we believe in a meritocratic system of rewarding achievements internally
We wouldn’t exist without the community; our business model is built around
it.”(Participant 21, Linux Community, Paper C).

49

Chapter 6. Affiliated Participation (Paper C)

I identified six barriers that inhibit affiliated participation. Poor under-
standing of FOSS can lead senior management to resist active contributions
to the community, and subjects indicated that the entire company must be
committed to active participation. Other barriers identified were company
image concerns, intellectual property protections, undefined processes, high
cost of participation, and unfamiliarity with open source.

Passive and latent participants object to active participation because of
concerns over intellectual property. Active engagement is expensive, both
financially and psychologically. For example, the Linux community has a high
barrier of entry, and costs include preparing the code of high quality, accepting
rejections, and going through multiple review cycles before a contribution
can be accepted.

6.5 Contributions

Achieving quality is reactive to the environment where quality is produced.
Increasing passive participation in the ROS community impacted the sustain-
ability of quality in this community. When commercial participation in FOSS
communities increases, understanding the participatory behavior of these
organizations and how it affects quality becomes increasingly important. The
attitude taken by these organizations constitutes the link between achieving
quality in FOSS and commercial participation. Using a community-developed
free software or resources and expecting that somebody else will step in to
contribute (e.g. fix bugs, update documentation, etc.) is selfish and not
sustainable. Quality is a believe and a shared-interest in FOSS communities.
Passive participation is not in line with achieving common and group interest.

This study draws lessons for communities leaders (or managers) and senior
management of companies participating in FOSS communities. These lessons
are listed below:

50

Chapter 6. Affiliated Participation (Paper C)

• Community leaders should institute and maintain a dialogue with
companies senior management. The purpose of such dialogue is to
advocate for active participation. Active participation does not always
mean releasing critical and competitive features. It can be contributions
to fix bugs, update documentation or financial contributions to the
foundation supporting the community.

• Senior management should investigate the community image and rep-
utation prior to participating. It is a relationship and not a simple
download of the software. Hence, management should invest some time
in knowing the community they are about to adopt its code.

• If the protection of intellectual property is the issue, then there are
various means to actively participate. As stated earlier, fixing bugs,
updating documentation and mentoring newcomers are contributions.

• Participating in FOSS does not simply imply downloading code. Com-
panies need to put in place a process and policies to guide their engineers
in using and participating in FOSS.

• The cost of participation is primarily generated by the FOSS community
itself. FOSS communities should reflect in their processes and make
them more fair and friendly (see Paper F).

51

7
Continuous Improvement (Paper D)

7.1 Summary

The purpose of this study was to positively influence the ROS community qual-
ity practices by implementing a set of interventions. I designed PAR4FOSS,
a framework for implementing change specifically for FOSS communities.
This framework is tailored for FOSS particularities to ensure a social and
cultural fit. The framework has been instantiated for the ROS community,
then implemented. The experiment showed that when the motivation for
quality combined with the availability of resources (i.e. contributors to work
on quality initiatives) coincide, then quality interventions are implemented.

7.2 Motivation

Many FOSS projects have existed for long enough to accumulate changes with
the software quality (see Chapter 4). Addressing quality changes requires
introducing change to the community. I designed and executed a tailored
participatory action research (PAR) method to determine the ability of a
FOSS community to embrace a quality improvement initiatives.

52

Chapter 7. Continuous Improvement (Paper D)

7.3 Methods

Participatory Action Research (PAR) is motivated by both practical concerns
and concerns of equity. Most participatory research focuses on “knowledge for
action”, or a bottom up approach with the focus on locally defined priorities
and local viewpoints that arises as involving local people as participants in
the research and planning. PAR enhances effectiveness and saves time. A key
element of PAR is the attitudes of researchers who determine how and for
whom research is conceptualized and conducted. PAR enables local people
to seek their own solutions according to their priorities [60].

PAR is reflexive, flexible and iterative, with a key strength of exploring
local knowledge and perceptions. Researchers become learners, as well as
facilitators and catalysts for action. The most important element of action
research is not the theories, but who defines the research problems, and who
generates, analyses, represents, owns, and acts on the information which
is sought. Participatory Action Research analysis focuses attention on the
central issues of power and control. The control lies, not in the researcher of
the participants, but is shared, in the form of a zig-zag pathway with greater
or less participation at various stages [60].

The strengths of action research are its capacity to provide robust real
world application and testing of findings, research interventions that are
specific and targeted, and result in opportunities for stakeholder engagement.
More successful outcomes occur depending on the degree of negotiated access
to the project setting, clear role outlines, commitment of time building
relationships, sensitivity toward insiders, and the scope of the project allowing
for flexibility [60].

The proposed method is a tailored version of PAR to fit FOSS. It was
evaluated in the ROS community as a case study (Figure 7.1). Participatory
action research focuses on research that enables action through reflective cycles
with both participants and researchers. It is more democratic, builds capacity,

53

Chapter 7. Continuous Improvement (Paper D)

Figure 7.1: Paper D research Methods

and encourages self-determination. The PAR process begins with reflection,
followed by action by researchers in concert with participants’ observations
obtained with informal discussions, and then the process cycles back through
these steps. PAR results in more self-reported self-confidence, self-awareness.
PAR can follow either a rigorous structure and a fluid structure [5]. I
needed to tailor the current guidelines of PAR to fit the cultural and social
particularities of ROS.

7.4 Results

I designed a participatory action research framework for FOSS communities,
called PAR4FOSS (Figure 7.2). PAR4FOSS is a new framework applicable to
FOSS communities that has three components; namely, interventions design,
democratization, and execution. It is an iterative process where transparency
and open decisions are implemented by self-management and collaboration.
The interventions are obtained from community requirements, similar com-

54

Chapter 7. Continuous Improvement (Paper D)

Figure 7.2: PAR4FOSS Framework

munities’ precedents, best practices, and problems. The PAR4FOSS has
two phases, pre-interventions and interventions phases. Four iterations were
followed in this case, following the PAR4FOSS method, to collaboratively pro-
mote quality assurance best practices and construct a culture where quality
is part of the fabric of the community.

The interventions are designed and enhanced iteratively, obtained from
community requirements, similar community precedents, best practices, and
problems. The community requirements exist as a legitimate need to improve
a process, and other communities are examined to see what they did to
successfully ingrain a culture of quality. The best practices are industry
practices that enhance a situation, and the problems of the community
are related to the scope of the change. The problem is defined as the
difference between what is happening and what should be happening. The
democratization of interventions is to legitimize the interventions, and the
interventions come from community consultation and dissemination. The

55

Chapter 7. Continuous Improvement (Paper D)

Figure 7.3: PAR4FOSS Instantiation for ROS

execution is the implementation of the interventions.

Figure 7.3 is the PAR4ROS instance deployed for ROS. In the applica-
tion of PAR4FOSS toward the ROS community, I created a working group
called the ROS Quality Assurance Working Group. This group became the
platform for the action. In the first phase of the project, the community
participated in identifying and analyzing the problems, and the second phase
implemented iterations of planning, acting, observing, and reflecting. This
research intervention creates change by influencing individuals’ knowledge,
attitudes, and beliefs, by increasing quality assurance (QA) infrastructure
and tools, and by creating supportive environments for QA practices. The
group met monthly and their discussions were summarized and publicized
in the community quality assurance forum. Feedback was received from the
community and then communicated back to the group.

We (The QA working group and I) created an impact in the community
and we successfully implemented three interventions in ROS 1 and two inter-

56

Chapter 7. Continuous Improvement (Paper D)

ventions in ROS 2 using volunteers from the community. Given that ROS
has lack of motivations for quality (Paper A), this is a considerably good
achievement and shows the method can deliver. Whether the interventions
have created a positive outcome that is an entirely different question. Assess-
ing the impact of interventions is a test for the assumptions the interventions
make, i.e. if the change occurs then a positive impact will consequently follow.
In other words, when we test an interventions we test the assumption that
was made at the time of its design, which is making positive impact not a
test of the method used to deliver the intervention.

7.5 Contributions

The novelty of this research is the ability to introduce change to a FOSS
community through the PAR4FOSS method. The lessons learned were that
competing priorities hinder the motivation to participate, that volunteers can
be unreliable, that most volunteers in the community have other jobs and
commitments, and that the method should be flexible and adaptive. I also
learned that securing the participation of resources with the right skills is a
challenge.

57

8
Governance for Quality (Paper E)

8.1 Summary

This chapter summarizes a qualitative study (Paper E) into the decision-
making process of pull request (PR) acceptance in FOSS communities.
Decision-making is the process of identifying and choosing contributions
based on the values, preferences and beliefs of the community. The success
and sustainability of FOSS communities depend on ongoing contributions,
therefore, the factors and values that drive the community decisions are
important to understand. This qualitative study sought to determine what
factors affect pull request (PR) acceptance and the principles behind pull
request evaluations. I interviewed 30 participants from five communities to
collect data for this study. The data was then coded and themes relevant
to the PR process emerged. I found that acceptance depends not only on
technical, but also social, and strategic factors. I identified and described
three types of pull requests governance; namely, protective, equitable, and
lenient, and determined how each style motivates contributors and maintains
software quality in FOSS.

58

Chapter 8. Governance for Quality (Paper E)

8.2 Motivation

Contributors in FOSS communities submit pull requests for code changes, such
as a bug fix or new feature. The pull requests are reviewed for appropriateness
and quality, but the process is different in different communities. Few pull
requests (PR) are rejected because of technical reasons, but social factors
play into rejections as well [40]. The PR evaluation process is critical to a
growth of the functional depth and breadth of FOSS product. Understanding
the governance model and its correlation with PR evaluations may help
understanding how quality is sustained across different communities..

8.3 Methods

A decision to merge or reject a PR is a complex decision that is a result
of many factors. Therefore, in evaluating the processes that take place in
the assessment of PRs in open source communities, an examination of both
human and social aspects is critical. Consequently, I chose a qualitative
method (Figure 8.1) of research that is suitable for revealing and gaining
insights into a participants’ experiences and perspectives, resulting in rich
data. I interviewed 30 contributors and maintainers from five communities
with experiences ranging from two years to 30 years. The interviewees are
geographically distributed across Asia, Europe and North America. We
analyzed the interview data using thematic coding [75, 93] which allowed
us to reveal complex mechanisms, behavior and rational. For example, the
Coala community believes that rejections are “rude” and strategically wrong.
Rejections deter contributors and undervalue their enthusiasm. Instead, the
enthusiasm of submitting a PR is leveraged; when the contribution doesn’t
meet the community standards, the contributor is mentored to bring her
code to the quality required. It is believed that this behavior toward the
contributor will convert him or her to a productive member of the community.
In contrast, the Linux Kernel community believe that rejections are a defense

59

Chapter 8. Governance for Quality (Paper E)

Figure 8.1: Paper E research Methods

mechanism against bad contribution. The community has a profound belief
that the fair of rejection drives contributors to excel in order to impress the
gatekeeper.

8.4 Results

Each of the examined communities shows a consistency in governance that
create a culture of excellence where quality is supreme. The protective and
lenient styles of governance show that the person matters as well as the code
quality. The equitable style focuses primarily on code quality and meeting
community standards.

The protective style of governance is a defensive style where the project
leader and his subordinates have absolute power over merges. This style is
referred to as the “no by default.” Maintainers reject code change submis-
sions without the necessary due diligence, based on the perception that the
contributor is unreliable or untrustworthy. This finding is illustrated in this

60

Chapter 8. Governance for Quality (Paper E)

statement of a Linux Kernel engineer, who stated, “On some parts of the
kernel building trust is essential, and there is a clear social entry barrier. It
has some downsides for beginners. Yet it’s understandable, as changes in the
kernel always come with some kind of maintenance overhead, and maintain-
ers want people that have proven to take ownership of their contributions ...
However, once a patch is considered, then it goes through thorough vetting.”
(Participant 24, Linux Community, Paper E)

Protective is the PR governance style that relies on trust, relationship
building and the contributor’s reliability.

The equitable style is based on fairness, where acceptance is a balanced
and grounded technically. Rejections are not taken lightly, but based on
justified technical argument. Participant 6 explains, “There are principles for
evaluating PRs and we religiously obey by them. We follow principles to be
the most important, and will usually reject a PR if it doesn’t hold up to these
principles.” (Participant 6, Odoo Community, Paper E)

Equitable is the PR governance styles that values fairness and rigorous
application of community principles.

The lenient style is positive and welcoming, tolerating more errors, but still
quality is not compromised. The lenient style sees contributions as assets and
believe all contributions should be welcomed enthusiastically. Mentoring is
used to develop newcomers’ expertise and elevate the quality of contributions
to the required community standards. This perspective was explained by
participant 18. He stated, “Rejections kill motivation and it’s a rude thing.
We instead steer the contribution to a positive direction, by making it better
and get it merged.” (Participant 18, DuckDuckGo Community, Paper E)

61

Chapter 8. Governance for Quality (Paper E)

Lenient is the PR governance style that reduces social barriers and
assumes that every contribution can be elevated to a mergeable state.

So how these governance styles contribute to achieving quality in FOSS?
All three PR governance styles help to reduce the problems with poor code.
Consistency and governance help in the creation of a culture of excellence.
One participant said, “The quality is the main driver that drives our decision
to either accept or reject a PR. The processes are there to support and control
the decision-making.” (Participant 2, FOSSASIA Community, Paper E). The
governance of PRs contributes to the sustainability of software quality in
FOSS. This participant further explains, “first, reliability of the code. Open
source is ever changing, people come and go. High quality code and the ability
to read the code and understand it is critical.” (Participant 2, FOSSASIA
Community, Paper E). This view was repeated concerning all PR governance
styles. One participant supporting the lenient type of governance said, “We
keep contribution’s code quality in check, but at the same time, we are trying
to be lenient towards contributors to really help them out to get the codes
to the level where their submission can be merged.” (Participant 29, Coala
Community, Paper E)

Once a PR is considered for a review, a set of software engineering principles
are applied to assess its eligibility to be merged. The quality of contributions
is assessed using seven principles. These principles are atomicity of the
contribution, maintainability of the code, avoiding technical debt, passing
peer code review, compliance with community best practices, documentation,
and passing tests.

8.5 Contributions

This study identified three governance styles; namely, protective, equitable,
and lenient. The study also found that the PR governance is a quality measure

62

Chapter 8. Governance for Quality (Paper E)

to ensure high-quality contributions. All three types of PR governance deliver
quality outcomes that are a combination of the creation and the ongoing use
of systems that reinforce the consistency and repeated efforts of the processes.
This mean that disciplinary measures (i.e. rules and control) are put in place
to ensure ongoing delivery of high quality code. Each of the models, however,
works toward quality in a different ways. The communities are aware of the
model they follow, and appears to be an important part of their identity.

63

9
Pull Requests Good Practices (Paper F)

9.1 Summary

Because of the need to retain contributors, a positive experience is impor-
tant for contributors. Delivering positive contributor experiences means the
community recognize the contributor’s effort invested in developing the code,
and more contributors means evolution of the software. Positive contributor
experience help build better relationships between the community and the
contributors and create a welcoming and positive climate. This study used
a qualitative method to analyze data from surveys on what constitutes a
fair and an unfair pull request evaluation. I identified seven good practices
(engagement, communication, appropriateness, simplicity, compliance, sup-
port, and decision) that make the experience perceived as positive by the
contributors and can enhance the experience for all stakeholders (contributor,
community and maintainer).

9.2 Motivation

GitHub receives 200 million pull requests (PR) from over 31 million developers
in one year, most of these go through open evaluation in public. In this
process, some contributors experience positive circumstances, but others do
not. I set out to find out what makes an evaluation fair and what behaviors are

64

Chapter 9. Pull Requests Good Practices (Paper F)

seen contributors as unfair. A rejection of a PR often results in demotivating
contributors who may cease contributing to the community [107]. While
recruitment and maintenance of new contributors remain critical for most
FOSS communities.

Teams that are geographically distributed experience more miscommu-
nications and misunderstandings, and they have more difficulty sharing
information and feedback. According to Hinds and McGrath, members of
a team can be categorized as constructive, passive, or aggressive [51]. Con-
structive members are balanced and show cooperation, creativity, and a free
exchange of information and respect. The passive style places more emphasis
on fulfillment of relationship and reputation goals, maintaining harmony, and
limited information sharing. The aggressive style places emphasis on personal
achievement with personal ambitions placed above concern for the group.
Constructive groups produce superior solutions, compared to passive and
aggressive members. [51,90]

When altruistic reasons for volunteering are not satisfied, volunteers are
less likely to remain with the organization [73]. Volunteer retention occurs
when motives for joining are satisfied, and when alignment with goals and
values exists. Social support increase retention of volunteers [117]. To retain
participants, community developers need to make communication channels
responsive to newcomers and make sure the interactions are positive [14].
The probability of a newcomer becoming an long term contributor was found
to be associated with the person’s extent of involvement and interactions
with her environment [119]. In the ROS community, I observe that challenges
in sustaining the community (i.e. mainly retention of contributors) affect
negatively the overall quality of the processes in place. Given the pull requests
process is the main entry point of newcomers, I decided to investigate what
makes the PR evaluation process positive and supportive for contributors, as
to encourage them to remain loyal to the community.

65

Chapter 9. Pull Requests Good Practices (Paper F)

Figure 9.1: Paper F research Methods

9.3 Methods

As shown in Figure 9.1, this study’s method used a survey to collect quali-
tative data (links to fairly and unfairly assessed PRs and the participants’
justification for their choices). I selected eight communities for this study,
including ROS, FOSSASIA. Coala, Plone, Apache Spark project, OpenSUSE,
Linux Kernel, and OpenGenus. The respondents were invited to participate
through emails from GitHub. Some participants were found on community
forums and mailing lists. The respondents were asked to find one fair and
one unfair pull request evaluation, and to give a justification of their choices.
I received 48 cases of fairly assessed PRs and 10 unfairly assessed ones.

The dialogue around the PRs in Github was analyzed using a thematic
categorization framework, and patterns were identified [75, 93]. The patterns
became themes, and the themes were labeled, resulting in the seven good
practices that make up the findings of the study. This kind of data and
analysis primarily reveal behaviors ans statements made by the contributors
and evaluators in public. It might be different than interviews data, but it

66

Chapter 9. Pull Requests Good Practices (Paper F)

still allows to capture behaviors, believes and perceptions.

9.4 Results

I identified a set of good practices found in pull request processes that have
been deemed fair. One practice is engagement, which I described as the
enthusiastic and warm reception from the community. When the number
of reviewers, engaged in the PR, exceeds two, the PR process is deemed
fair. Engagement acknowledges the contributor for his or her effort, and it
includes providing feedback, and a decision about the contribution. Lack of
engagement is demotivating, and it results in a loss of contributors.

Engagement. Every contribution carries enthusiasm, which should be
rewarded in the form of acknowledgement, feedback, and a decision. It is
a good habit for maintainers and senior community members to ensure
that new contributions are discussed timely, that feedback is provided, and
decisions are made.

Another practice is good communication, which refers to the tone of the
interactions being positive and professional. Good communication steers
the evaluation process in a positive direction. Abrupt changes of subjects
in a conversation prevent it from being constructive. However, professional,
constructive, and supportive discussions help the community.

Communication. Maintainers and reviewers should develop a habit to
communicate objectively, clearly and professionally.

Contributions must meet the needs and plans of the community’s vision and
roadmap. Contributions must meet the needs and plans of the community’s
vision and roadmap. Appropriateness is the quality of being suitable or when
a contribution addresses a particular community requirement, such as fixing
a bug or a desired feature.

67

Chapter 9. Pull Requests Good Practices (Paper F)

Appropriateness. Contributors should develop a habit to consult the
community issues list and the product vision documentation when available,
to ensure that their contribution addresses a legitimate need. Communities
should document their product vision and promote it towards contributors.

FOSS communities prefer straightforward, modular changes because they
are easy to review and assess. Cumbersome pull requests increase the risk
of defects in the code. Contributors should develop and submit easy to
understand, modular submissions.

Simplicity. This quality is highly appreciated in the contributions. Con-
tributors should develop a habit of developing and submitting easy to un-
derstand and modular submissions.

Compliance in FOSS communities is strictly enforced. Rules may apply
to programming language guidelines, while other delineate conduct and
communication. Contributors should make sure that their pull request is
compliant with the community guidelines, or the contributor is viewed as
incompetent.

Compliance. Contributors should ensure that their submission is compli-
ant with community guidelines and rules. Compliance signals competence
of the contributor and recognition of the competence of the community.

The support of community members encourages a productive contribution
of a significant quality that can be merged. It also enhances team cohesion,
and helps elevate the quality of the submission. A lack of support is indicated
by minimal feedback to contributors and by focus on errors, rather than
offering help and mentorship.

Support. A supportive evaluation process creates a positive atmosphere
and gives a good experience to contributors. Reviewers and maintainers
should develop a habit of being constructive and collegial.

68

Chapter 9. Pull Requests Good Practices (Paper F)

A logical, fair decision that is based on technical merit is also a good
practice for communities.

Decision. Decisions should be based on technical grounds. Maintainers
should develop a habit of communicating the decision rationale clearly, in
technical language.

Communities should encourage reviewers to be warm, welcoming, and
supportive. Contributors should be assertive and ask for help when needed.
An evaluation based on technical merit should always be the focus of the
community.

9.5 Contributions

Assuring quality requires an in-depth knowledge of the product, the com-
munity, the history, and the processes. A contributor who is thoroughly
familiar with and integrated with the community will produce high-quality
contributions. Such contributor is difficult to replace. Any new contributor
will need time to fully integrate with the community, learn the community’s
goals, understand the product’s current state, and absorb the history of the
quality process up.

The need to retain your contributors is as important for quality as with any
other technical function, and can greatly impact the quality, effectiveness and
speed of software quality assurance efforts. I identified seven good practices
of PR evaluation with the purpose to enhance the overall experience for all
concerned stakeholders. To sustain quality in FOSS, communities should
encourage ongoing flow of contributions and reviewers.

High rates of attrition affect how well a contributor can learn the product,
earn trust, gain efficiencies, and deliver the most valuable contribution possible.
There is a positive relationship between high employee retention and the
quality, effectiveness and speed of software quality assurance efforts.

69

10
Governing Pull Requests in FOSS

(Quantitative Study)

10.1 Introduction

In this chapter, I will present an extension of Paper E. In Paper E and
chapter 8, I investigated qualitatively how five FOSS communities (i.e. FOS-
SASIA, DuckDuckGo, Linux Kernel, Odoo and Coala) govern their PRs
process. I identified three styles of governance: (1) protective, (2) equitable
and (3) lenient. The aim of a qualitative study was not to prove generalizable
conclusions but to provide a rich, contextualized understanding of a given
phenomenon through the intensive study of particular cases [89]. To draw
broader inferences, I conducted an additional quantitative study based on
a survey described here (see Appendix G for the questions). I expanded
the sample to cover a total of 15 communities and surveyed N=387 respon-
dents. The data shows that acceptance of contributions depends not only on
technical basis, but to a great extent also on social and human aspects.

In FOSS communities, changes to the code base are made through the pull
request (PR) process, where the code is vetted for quality and conformance
with the community standards. The process is packed with social practices,
display of various human behavior, and decision-making. The decision making
can be either conscious (active) or unconscious (without a strategy). Accord-
ing to Gousious, et al., only 13% of pull requests are rejected due to technical

70

Chapter 10. Governing Pull Requests in FOSS (Quantitative Study)

reasons [40] and social challenges are the toughest challenges encountered by
contributors [41]. This is an influencing reason to investigate the rules and
control mechanisms put in place by FOSS communities to decide on the fate
of PRs.

I wanted to statistically validate the following hypotheses:

Hypothesis 1. The Linux Kernel community adopts a protective style of
governance for its code change process.

Hypothesis 2. The FOSSASIA community adopts an equitable style of
governance for its pull request process.

Hypothesis 3. The Odoo community adopts an equitable style of governance
for its pull request process.

Hypothesis 4. The Coala community adopts a lenient style of governance
for its pull request process.

Hypothesis 5. Each of the 15 FOSS communities adopts a governance style,
either protective, equitable or linient, for its pull request process.

Hypothesis 6. The Coala Community is more lenient than the Linux Kernel
Community

10.2 Methods

I intend to understand the process that takes place in the assessment of PRs
in FOSS communities; the what and how a PR is evaluated and decisions are
taken to merge or reject PRs. Given the uncharted nature of the question, I
opted for a mixed-method to explore and validate the outcome.

This study is a mix of methods, qualitative (Paper E and chapter 8) and
quantitative (this chapter) with equal status (QUAL → QUAN). The data

71

Chapter 10. Governing Pull Requests in FOSS (Quantitative Study)

collection is sequential, the qualitative phase precedes the quantitative phase.
The implementation of the quantitative phase depends on the results of the
qualitative phase. A sequential exploratory design is usually conducted in
two phases, with the priority given to the first phase [19]. This heightened
knowledge and validity of the study should be of sufficient quality to achieve
multiple validities legitimation [98]. The qualitative data collection occurred
before the quantitative data because I did not know what constructs are
important.

10.2.1 Phase I: Qualitative

In the qualitative phase, I collected data using interviews (30 interviews) with
contributors and maintainers from five communities. The five communities
also participated in the quantitative phase. For further details in this phase
of the study, please refer to Paper E and Chapter 8.

10.2.2 Phase II: Quantitative

In the second phase, a quantitative study is conducted to test the first phase’s
concepts. The quantitative strand thus builds on the qualitative phase, with
the purpose to generalize the results to a population [19].

Population and Sampling. Respondents were N=387 FOSS contribu-
tors and maintainers from fifteen communities. Participants who failed the
validation check were excluded from further analyses. I validated the data
based on the following criteria:

1. The respondent must be an active contributor or maintainer in one of
the selected FOSS communities.

2. All mandatory questions have been answered with valid input.

72

Chapter 10. Governing Pull Requests in FOSS (Quantitative Study)

3. Only one entry per respondent. We controlled participation per one IP
address.

I received 473 responses and N=387 were valid and complete.

Participation in this study was on a voluntary basis. No compensation in
any form was given to the participants. We recruited the participants by:

1. Direct contact using publicly available email in the contributor’s GitHub
or GitLab profile.

2. Posting invites to participate in the survey in the selected FOSS com-
munities’ forums, mailing lists and chat rooms.

Instruments and Procedure. The instruments consist of a set of
multiple choices and free text questions. The survey had a total of twelve
questions (the survey is available in Appendix A). The key questions relevant
for this analysis are listed in Table 10.1. The respondents have been asked to
answer in Likert scale.

To test the questionnaire structure and to ensure that respondents fully
understood the nature of the questions being asked, I conducted a pilot survey
in the ROS and Coala communities. I received feedback on the design of
the survey and amended the survey accordingly. Upon the completion of the
pilot, we started sending and posting survey invites. I activated a survey for
a period of three months in 2019.

Data Analysis. We1 selected Bayesian data analysis to analyze the
quantitative data. Bayesian analysis, also called explicit probabilistic in-
ference, is a direct, formal means of dealing with uncertainty in scientific

1The Bayesian data analysis was performed by Raúl Pardo Jimenez, a colleague at the
Department of Computer Science at ITU. He also implemented the Python program

73

Chapter 10. Governing Pull Requests in FOSS (Quantitative Study)

ID Survey Questions
V27 “In general I say no to most pull requests (PR)/patches.”
V28 “I don’t consider a pull request/patch, unless I trust the contributor.”
V29 “I don’t consider a pull request/patch, unless the contributor is reli-

able.”
V30 “I don’t consider a pull request/patch, unless I have a strong relation-

ship with the contributor.”
V31 “I assess every pull request/patch in the same manner irrespective of

the contributor.”
V32 “I assess pull requests/patches purely on technical grounds.”
V33 “I never say no to a pull request/patch. If the quality of the PR/patch

is not mergeable, then I mentor the contributor to elevate his/her
PR/patch to a mergeable state.”.

Table 10.1: The survey questions relevant for this analysis

inference. When parameters are unknown, Bayesian analysis is a way to
identify the probability distribution over parameter values. An analysis of
probability using Bayesian statistical analysis relies on prior distributions
which allows to insert some subjectivity into the model. When new data
is collected that does not fit the prior distribution, Bayesian analysis can
be used each case probability across possibilities and to revise prior beliefs.
Because reasoning with a probability distribution over conclusions is difficult,
we often use a simplifying abstraction, the High Probability Density interval
(HPD). The HPD interval describes the range of conclusions that are most
credible, typically accumulating 95% of probability mass. Working with 95%
HPD limits the chance of erroneous conclusions to 5% [63].

A magnitude of effect can be identified, which is referred to as a Region
Of Practical Equivalence or ROPE. The ROPE is a decision threshold that
is chosen in the context of current theory and measurement precision. If the
ROPE, or region of values, does not include the high density values, then
the value is rejected, but if the ROPE completely includes 95% of the high
density values, the value is accepted because the high density values are the

74

Chapter 10. Governing Pull Requests in FOSS (Quantitative Study)

most credible values [63].

Prior to analyzing the raw data, we defined groupings (Table 10.2) of PR
governance styles based on the qualitative study (Paper E). According to
the findings of Paper E, FOSS communities would adopt one of these PR
governance styles: Protective, Equitable, and Lenient.

PR Governance Definitions
Protective A community is classified as “Protective” when the

response from this community is positive in at least
one of these variables V28 (“I don’t consider a pull
request/patch, unless I trust the contributor”), V29 (“I
don’t consider a pull request/patch, unless the contrib-
utor is reliable.”), and V30 (“I don’t consider a pull
request/patch, unless I have a strong relationship with
the contributor.”). It is possible that positive evalua-
tions of V27 (“In general I say no to most pull requests
(PR)/patches”) can be included in this evaluation too

Equitable A community is classified as “Equitable” when the re-
sponse from this community is positive in at least one of
these variables V31 (“I assess every pull request/patch
in the same manner irrespective of the contributor.”),
V32 (“I assess pull requests/patches purely on technical
grounds.”). The equitability in community is expected
to find positive answers on V31, V32 which have dif-
ferent tone compared to V33 (“I never say no to a pull
request/patch. If the quality of the PR/patch is not
mergeable, then I mentor the contributor to elevate
his/her PR/patch to a mergeable state.”) in question.

Lenient A community is classified as “Lenient” when the re-
sponse from this community is positive V33 (“I never
say no to a pull request/patch. If the quality of the
PR/patch is not mergeable, then I mentor the con-
tributor to elevate his/her PR/patch to a mergeable
state.”).

Table 10.2: The PR Governance Styles as Defined in Paper E

75

Chapter 10. Governing Pull Requests in FOSS (Quantitative Study)

This survey was designed so that participants responded based on the
Likert scale as follows: 1. Strongly Agree, 2. Agree, 3. Neutral, 4. Disagree,
5. Strongly Disagree. Based on the responses of participants, the results were
categorized as positive if the 95% high probability density (HPD) interval
falls below 3 on a linear scale (< 3).

In order to test the hypotheses discussed above, we use Bayesian inference
to estimate the underlying distributions of the responses that each FOSS
community gives to each of the variables (i.e. V27 - V33). We assume that the
answers to the questions are normally distributed over the possible answers, so
we used a Bayesian model with normal distributions as a likelihood function.
We do not use a subjective prior in our analysis. We set a neutral and
flexible prior, so that we let the inference find the values of the parameters
for the underlying distribution that better accommodate the answers for
each community. Our subjective understanding of the problem based on the
qualitative analysis is instead informing the structure of the model and the
choice of the hypotheses. We used PyMC3 to perform our analyses, which is
a Python package for Bayesian statistical modeling and probabilistic machine
learning.

10.3 Subject Communities

I intentionally sought diversity in my selection of FOSS communities. The
subjects build different products, have different participation demographics
and history. For example, while FOSSASIA produces multiple software
solutions advancing “social change”, the Linux Kernel has become the defacto
choice for high performing computers. This diversity has shown to improve
the richness and the generalizability of the findings.

FOSSASIA: The FOSSASIA community shares and develop software,
hardware, and knowledge. The community enables people to participate in

76

Chapter 10. Governing Pull Requests in FOSS (Quantitative Study)

the “sharing society”, expand knowledge, tools and opportunities, freedom
of communication and expression for everyone. The community has various
projects being developed, but the most successful projects are SUSI.AI
and EventYaY. SUSI.AI is an artificial intelligent application that provides
functionality for personal assistance, Help Desks and Chatbots. EventYaY
offers features for organizers to create and manage events.

Odoo: The Odoo community develops a FOSS ERP. The community
developed over 30 main applications. The community is committed to create
and maintain an ERP that meets the complex needs of organizations without
being complicated to use. They create software that is rich in features,
integrated, and easy to upgrade. The ERP offers functionality to manage and
record sales, inventory, procurement, and accounting functions. It also has a
business intelligence engine with an all-in-one business suite program. Odoo
claims to be the most installed suite of business software for both small and
large business entities. The community has more than 1500 active members.

DuckDuckGo: DuckDuckGo is a community that designs, develops
and maintains a search engine committed to privacy. It was founded in
February 2008 by Gabriel Weinberg, the community grew as a search engine
that does not track the user’s searches nor sell information about it. By 2013,
there were over 3 million users on DuckDuckGo. In 2014, DuckDuckGo was
included in Safari, and it was built into Mozilla.

Linux Kernel: The Linux Kernel is a free and open source operating
system, developed and maintained by the Linux Kernel community. Developed
in 1991 by Linus Torvalds, Linux Kernel operates under a GNU license and
now reaches a large user base around the world.

Coala: The Coala community develops and maintains a language-
independent analysis toolkit written in Python. Coala is referred to as a

77

Chapter 10. Governing Pull Requests in FOSS (Quantitative Study)

linting and fixing program. Coala portrays itself as a newcomers welcom-
ing. Directions for newcomers are clear and encouraging. The community
documentation outlines how to get started as a member of the community,
beginning with meeting others in chat rooms and Gitter. The software was
first released in July 2015, and another release was made in 2015. Six addi-
tional releases were made in 2016, and two additional versions were released
in 2017.

ROS: ROS is an open-source meta-operating system that provides a
flexible framework for writing robot software. ROS provides a communications
infrastructure that is called a middleware. It offers anonymous message
passing, recording and playback of messages, request and response remote
procedures, and a distributed parameter system. In addition to middleware
communication, ROS provides robot specific features, such as standard
message definitions, a robot geometry library, robot description language,
diagnostics, pose estimation, localization, mapping, and navigation.

Plone: Plone is a content management system built on the Zope
application server. Plone is positioned as an “Enterprise CMS”, and it
is commonly used for intranets and as part of the web presence of large
organizations. High-profile public sector users of Plone include the U.S.
Federal Bureau of Investigation, Brazilian Government, United Nations,
City of Bern (Switzerland), New South Wales Government (Australia), and
European Environment Agency. Plone’s proponents cite its security track
record and its accessibility as reasons to choose Plone.

ReactJS: In 2013, Facebook released its React framework as a part of a
hackathon. The framework has since enjoyed huge popularity. ReactJS and
React is a JavaScript library for building user interfaces. React allows users
to create interactive UIs. Declarative views make code more predictable and
easier to debug. React allows users to build encapsulated components that

78

Chapter 10. Governing Pull Requests in FOSS (Quantitative Study)

manage their own state, then compose them to make complex UIs.

AngularJS: AngularJS is an open source platform that makes it easy
to build applications for the web. Angular combines declarative templates,
dependency injection, end to end tooling, and integrated best practices
to solve development challenges. Angular empowers developers to build
applications that live on the web, mobile, or the desktop.

OpenGenus: The community develops tools for people with bad Internet
connectivity. Its projects include Cosmos, which is an offline collection of
algorithms and data sources in various programming languages; Quark, which
allows offline searches, and the ability to save web pages in a browser, see
history, play games offline, find images offline, and find code. Other projects
are Search Engine, which allows for real time safe searches; IQ, which is a
community of freelancers and entrepreneurs who post questions and discuss
computer issues; and Discuss, which is a flexible place for programmers to
grow and get advice from others.

OpenSUSE: OpenSUSE is a Linux distribution providing a user-friendly
desktop and other features. OpenSUSE includes openQA, an automated
testing service used to determine if build/release updates are good. Other
products of OpenSUSE are OSEM, an event management tool; Jangouts,
which is a videoconferencing tool; YaST, the installation and configuration
tool; and Kiwi, an application for making a wide variety of image sets available
for Linux supported hardware.

Apache: Apache software develops and incubates hundreds of projects
through its merit-based process, known as “the Apache way.” The Apache
community currently has 7000 code committers across six continents. It is
based on the following beliefs of putting community before code, those who

79

Chapter 10. Governing Pull Requests in FOSS (Quantitative Study)

do the work make the decisions, if it did not happen on the mailing list, it
did not happen.

NodeJS: Node.js is an open source and cross-platform JavaScript
runtime environment that can work as a tool for many types of projects.
Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside
of the browser. A Node.js app is run in a single process, without creating a
new thread for every request. Node.js provides a set of asynchronous I/O
primitives in its standard library that prevent JavaScript code from blocking
and generally, libraries in Node.js are written using non-blocking paradigms,
making blocking behavior the exception rather than the norm.

Mozilla: Mozilla is a community developing a range of Web and mobile
technologies. It was founded on the legacy of Netscape. Mozilla Firefox is
a browser for a web experience that is based on new standardization that
includes privacy and marketing advantages. Mozilla is built on a mission of
openness, innovation, and opportunity.

JQuery: The JQuery community designs and plans the future of the
JQuery UI library. Being committed to maintain an open, transparent
community, the community members work as a team to develop, design, and
maintain widgets, animations, and class names that can be used as themes or
styles. The community aims to synthesize best practice examples from mobile
and desktop OS, web applications, and common sense to create a flexible
set of UI widgets. Because of the international community and audience for
jQuery UI, the project is developed to work in a variety of languages and
cultures.

80

Chapter 10. Governing Pull Requests in FOSS (Quantitative Study)

10.4 Findings

In this section we will discuss and describe the methods used to test the
hypotheses.

H1: The Linux Kernel community adopts a protective style of governance
for its code change process.

We checked to see whether the answers are positive to the questions V27-
V30. We show in the diagrams below 10.1 the posterior for answers to
questions V27-V30. The plot shows the inferred probability of what answer
can be received to each question within the Linux community. The orange
line marks the threshold 3, separating positive and negative answers. The
horizontal line marks the 95% of the probability mass (HPD).

Figure 10.1: The Distribution of the Answers V27-V30 in Linux Kernel
Community

We now check the posterior distributions for each question, for the prob-
ability of either of the answers being below 3.0, in the lower, so positive,
part of the scale. We reject H1 as for none of the questions, the 95% of the
probability mass falls into the positive part of the scale. This output suggests
that the Linux Kernel community is not protective. The HPD intervals show
that the answers are heavily spread over all possibilities, i.e., all values from
1 to 5 are within the HPD interval, and the mode is around the center of the
scale. This observation indicates that the community does not show a central
tendency toward having a protective style toward pull requests.

81

Chapter 10. Governing Pull Requests in FOSS (Quantitative Study)

Although in Paper E, I concluded that Linux is a protective community,
I was cautious in reporting this result. I stated that this protective style
is visible in some pockets of the Linux communities, while other are less
protective. Some of my interviewees conveyed to me that the community
is trying to change its attitude toward contributing in general, which could
explain the mixed results. The broad part of the HPD above seem to confirm
that.

H2: The FOSSASIA community adopts an equitable style of governance
for its pull request process.

To study this hypothesis, we estimated the distribution of the answers to
questions V31 and V32 by members of the FOSSASIA community. We show
the posterior for the expected answer in Figures 10.2 and 10.3 the different
distributions for the data. The vertical orange line separates the positive and
negative answers.

Figure 10.2: The Distribution of the Answers V31 in FOSSASIA Community

We accept H2 as more than 94% of the probability mass falls into the

82

Chapter 10. Governing Pull Requests in FOSS (Quantitative Study)

Figure 10.3: The Distribution of the Answers V32 in FOSSASIA Community

positive part of the scale for question V32, even allowing a small margin of
error. This margin of error (ROPE) is marked green in the figure.

The distribution for V32 has a mode of 1.3, meaning that dominating
answers are strongly positive. The answers to question V31 are closer to
neutral. The HDP interval goes from 0 to 3.3, with 6.2% of the distribution
is in the range of answers from neutral to disagree, so it is marginally
large to accept the answer as positive. This might suggest that there are
some participants who responded disagree to this question. These findings
are in line with our qualitative component finding, that FOSSASIA is an
equitable community. Our interview data shows that despite the majority
of our interviewees leaning toward being equitable, there are a minority of
maintainers who tend to favor the protective style of governance traits which
values the trust and reliability of the contributor.

H3: The Odoo community adopts an equitable style of governance for its
pull request process.

We ask whether the Odoo community is equitable by calculating the

83

Chapter 10. Governing Pull Requests in FOSS (Quantitative Study)

probability distributions of answers to V31 and V32. HDPs for both questions
are centered around 3 with modes 2.3 and 2.1 respectively. This does not allow
to concede that H3 holds. Even though, the probability of the disjunction
between the two questions is more concentrated toward positive answers, we
cannot classify Odoo as equitable. This does seem to indicate that the Odoo
community shows equitable tendencies.

H4: The Coala community adopts a lenient style of governance for its
pull request process.

To study this hypothesis, we estimate the posterior distribution of the
answers to question V33 by participants of the Coala community. We show the
posterior in the Figure 10.4. The HDP of the posterior distribution extends
from 0.4 to 3.1, that is most answers go from strongly agree to neutral. Only
3.9% of the answers greater than 3, that is only 3.9% of the answer are on the
side of disagree. Therefore, we can conclude that H4 holds. This supports our
qualitative study findings that the Coala community exemplifies the lenient
style of pull request governance. They strongly believe in being lenient, but
in the same time they do not compromise quality, according to our findings.

H5: Each of the 15 FOSS communities adopts a specific governance style,
either protective, equitable or lenient, for its pull request process.

To test this hypothesis, we gathered all the answers to all of the questions
by all of the communities. We estimated the distribution of the answers
to questions V27 to V33 by participants of all communities. As mentioned
earlier, we assumed that the data forms a normal distribution, and we set
uniform priors on the parameters of the normal distributions for the data,
from 1 to 5 for the mean, and 0 to 4 for the standard deviation.

For each community, we plot a bar chart shown in Figure 10.5. The plots
draw a green horizontal line showing the threshold of 0.95, shown as the

84

Chapter 10. Governing Pull Requests in FOSS (Quantitative Study)

Figure 10.4: The Distribution of the Answers V33 in the Coala Community

condition of the community to be classified as any of the categories.

In order for the hypothesis to be true, for each of the plots above, there
should be exactly one bar above the threshold. It is easy to see that this
is not the case, as there are some communities that are neither protective
nor equitable nor lenient. Also, the Coala community is both lenient and
equitable. Therefore, we conclude that H5 is false.

We can conclude that while some communities have a dominant style
of governance, other communities are closer to one governance style with
tendencies to prefer a second governance style. This behavior is statistically
observed in some communities like the Linux Kernel. We can conclude
that the Linux Kernel community is slightly more protective than equitable.
This finding is supported by the qualitative study as well. Participants in
the interviewees conveyed that the community is going through a period of
reconsidering its software changes management and evaluation style.

85

Chapter 10. Governing Pull Requests in FOSS (Quantitative Study)

Figure 10.5: Bar chart which showing the probability of a community being
protective, equitable and lenient.

To demonstrate that some communities diverge significantly in their gover-
nance styles, we propose the following hypothesis:

H6: The Coala Community is more lenient than the Linux Kernel Com-
munity.

To study this hypothesis, we estimated the distributions of the answers to
questions V33 by the Coala and Linux Kernel communities. We computed
the difference between the mean and the standard deviation of the two
estimated distributions. Moreover, we computed the effect size between

86

Chapter 10. Governing Pull Requests in FOSS (Quantitative Study)

the two differences. The effect size is a standard method to compare two
estimated normal distributions.

Figure 10.6: Hypothesis 6 Test

We show (Figure 10.6) the distributions on the difference of means, stan-
dard deviation, and effect size. These plots provide useful information in
determining whether the distributions on the answers are significantly dif-
ferent. The differences of means µ diff indicates that there is a difference
of 1.2 indicating a more lenient style, based on the answers from the Coala
community. Furthermore, the posterior distribution of the effect size suggests
a nonzero difference well outside of a (-0.1,0.1) ROPE. Consequently, we can
conclude that H6 holds.

As discussed in H1, the Linux community has protective tendencies. This
community values trust and contributor reliability more than other communi-
ties do. While the Linux community prefers contributions from trusted and
reliable contributors, the Coala community believes that every contribution
indicates an enthusiasm from a contributor that should be invested in. When
the quality of the contributions does not meet the community standards,
the contributor is mentored to elevate her code quality to meet community
requirements. The clear difference in the survey data reassures me that the
qualitative model has identified relevant phenomenon observed at the large
scale as well.

87

Chapter 10. Governing Pull Requests in FOSS (Quantitative Study)

10.5 Discussion

In summary, Hypothesis 1 stating that the Linux Kernel exhibits a protective
style was determined to be false as the probability was not 95% or higher.
Hypothesis 2 that states that FOSSASIA exhibits an equitable style of viewing
pull requests was determined to be true based on the data, as the results
were in the region of practical equivalence. Hypothesis 3 stating that the
Odoo community exhibits an equitable style was determined to be false as
well, as the results were not significant. Hypothesis 4 states that the Coala
community exhibits a lenient style, and this hypothesis was determined to
be true. Hypothesis 5 states that all FOSS communities adopt a specific
style toward pull requests, and the results show that this hypothesis was not
supported by the data and is false. Some communities show several styles,
and other communities do not indicate a specific style. Hypothesis 6 states
that the Coala community is more lenient than the Linux community, and
the data analysis determined the hypothesis to be true.

These findings show that FOSS communities are not equal. Each com-
munity has different culture, history, leadership and values. These variables
likely influence the decision-making mechanisms in the PR evaluation process.
The picture emerging from these findings is that most communities have a
dominant PR governance style, which exemplify their believes, norms and
culture. Communities with no apparent governance style (e.g. Linux Kernel)
are likely experiencing a transition period to an emerging governance style.

10.5.1 Dominant Style

The dominant style is the most prevailing style in the community. This
is the formal governance style adopted by the community. This style is
diffused in the community by its leaders (i.e. usually maintainers and senior
contributors). This participant explained, “we obviously pitch our rules and
ways and people learn them ... We believe in being unbiased and instead focus

88

Chapter 10. Governing Pull Requests in FOSS (Quantitative Study)

on the technical aspects of the contribution” (Participant 5, FOSSASIA, Paper
E). However, it is not black and white.

The allocation of a governance style to a community is not always strait-
forward. As noted in the discussion of H7, some communities have tendencies
to prefer a second governance style. This was observed, for example in FOS-
SASIA community, statistically (Figure 10.5) and qualitatively. A maintainer
explained, “we use to mentor people to improve their code. But we do less of
that now. We prefer to be more strict and fair. We do not have enough expe-
rienced reviewers ... Some maintainers still prefer to mentor the contributor
rather than just rejecting. It [mentoring] is time consuming and we afford
it” (Participant 2, FOSSASIA, Paper E). FOSS communities are reactive to
their circumstances and other variables in their environment, they adjust
their strategy accordingly. The Coala community, for example, had different
attitude and they align their PR governance accordingly. This maintainer
explained, “we prefer to invest in mentoring people to deliver high-quality
contributions. Because we believe it [mentoring] helps us recruiting ongoing
contributors and in the same time maintaining quality” (Participant 30, Coala,
Paper E). For this community, being lenient is a conscious strategy to sustain
participation.

However, being lenient does not imply “drop (one’s) guard.” A junior
contributor is mentored to elevate her contribution to the required quality
by a maintainer or a senior contributor. Then, proposed to the community
for review and technical inspection. At this stage, the community apply
its quality and inspection criteria for evaluation. Hence, H7 plot shows
that lenient communities are also equitable. This reflect a dual strategy
for PR governance that simultaneously does both, invest in the contributor
enthusiasm of submitting a PR and assuring quality by focusing purely on
technical grounds, as illustrated in the graphs of Figure 10.5 (see for example
Coala, NodeJS and AngularJS).

89

Chapter 10. Governing Pull Requests in FOSS (Quantitative Study)

10.5.2 Emerging Style

An emerging style of PR governance is a style that is becoming prominent in
the community, while the old style is still exercised by some members. While
the old style has its reasons to exist, the new style is emerging because of a need
for change. This was observed statistically in the Linux Kernel community
data and explained qualitatively. This contributor explains, “getting a patch
accepted in the Linux community can be difficult for newcomers and unfamiliar
names in the community. They have preference for trustworthy contributors.
This attitude is cascaded from the top ... However, this is changing. I know
a lot of sub-system maintainers who want a community with less fences”
(Participant 25, Linux Kernel, Paper E).

Achieving and maintaining quality is important to these communities. PR
governance is a measure to assist in preventing poor quality contributions.
Putting structures, direction and control for PRs evaluation to avoid poor
code is necessary to enable communities to operate more efficiently, to mitigate
risks and safeguard the code base.

Figure 10.7 illustrates this behavior. While the protective and the lenient
styles first focus is the person, the equitable style does not give a significant
weighing to the person. It prefers to evaluate the PR irrespective of the
person. This belief has a rationale: (1) The community believes that fair
and impartial to do so and (2) the community has a consistent influx of
contributors and contributions. It does not have a need to attract additional
contributors. Fairness is exercised by focusing on the technical features of
the PR and making decisions that are technically grounded.

The protective style looks for some qualities in the submitter of the PR
prior to the evaluation taking place. Hence, it is a two stages process. During
the early stage, the gatekeeper asses the trustworthiness of the submitter.
This is usually established by the reputation of the person or her relationship
with the maintainer. Once this barrier is overcame, then the second stage is

90

Chapter 10. Governing Pull Requests in FOSS (Quantitative Study)

Figure 10.7: FOSS Communities Pull Request Governance Model

to assess the PR technically. This stage is common to all governance styles.
The assessment take place prior to the merger. A set of software engineering
principles (Paper E) are applied to assess the suitability and the quality of
the proposed software change.

The lenient style has different philosophy. When a PR is submitted by a
newcomer (this always known when a PR labeled for newcomer is submitted
and/or the submitter is unknown to the community), then a mentor is assigned
to the contributor. This gesture is to avoid rejection. Instead, the community
believes that they have to build on the enthusiasm that comes with the
submission, hoping that that this investment may convert the contributor to
an ongoing contributor.

91

Chapter 10. Governing Pull Requests in FOSS (Quantitative Study)

10.6 Conclusion

These findings show that the studied FOSS communities align their PR
governance styles according to their needs and in some instances it evolves
from one style to another style. But in all instances, quality is not compromise.
What seem to shift is the willingness of these communities to be supportive
of the person contributing. The supportiveness of the person varies amongst
these styles and it seems to be a reaction to a strategic need. For example, in
the case of the Coala community, this strategic need is to sustain participation.
On the other hand, the Linux Kernel community is less supportive because
it has a strong influx of contributors and it prefers to filter based on trust
and relationships building under the pretext that the software is of a level of
complexity that necessitate reliable contributors to support the code.

This disciplinary aspect of FOSS communities contribute to achieving
quality by mitigating the risks posed by the contributor and the contribution.
While the protective style mitigate the risk posed by the person by assessing
her trustworthiness, the lenient style prefers to mitigate the risk and mentor
the contributor to deliver code within the community standards. The second
level of risk mitigation focused on the PR technical quality.

92

11
Discussion

The rapid development of FOSS as an alternative to traditionally developed
software systems leads to a need to examine all of the aspects of the FOSS
products and communities. This dissertation is an examination of the social,
organizational and disciplinary aspects of quality in FOSS communities. I
looked at how these constructs shape and influence delivering quality products
in FOSS. I observed that the participants in my studies learn how to deliver
quality code and internalize quality. They make part of their attitudes
and behaviour; part of one’s nature by learning or unconscious assimilation.
Quality control relies on developer commitment to the process, which may
come from compliance, identification, or internalization [21].

I identified three enablers and two desired features. Enablers are qualities
or capabilities that contribute at making quality possible. Desired features
are intended capabilities, when achieved they created a desired effect which is
maintaining quality. The enablers are (1) personal motivation for quality, (2)
governance for quality and (3) the ability to improve. The desired features
are (1) active commercial participation and (2) retention to sustain quality.
Figure 11.1 illustrates this model. It shows that the combination of the
strength of each enabler and desired feature contribute to achieving quality
in FOSS communities.

93

Chapter 11. Discussion

Figure 11.1: Achieving Quality in FOSS Communities

11.1 Personal Motivation for Quality

Quality is a result of systems, techniques, and people. People are the hardest
element to control and develop effectively [64]. One of the best ways for
quality improvements to occur is through making people more efficient [59].
Individual competence is a critical factor in project success. If the people on
a project are competent, they can use almost any process to accomplish their
task. Likewise, if the people are inadequate, no process will work [17].

Motivation, that is, initiation, direction, intensity, and persistence, in
software engineering is a key success factor for software projects, influencing
both quality and productivity [26,102]. Motivation is the software engineering
factor reported to have the single largest impact on developers’ productivity
[116]. When a person is well motivated, he/she can solve problems and
achieve work objectives. However, nearly 80% of quality problems are caused
by the way people are organized and managed [57].

FOSS contributors are highly motivated to deliver high quality code. This

94

Chapter 11. Discussion

motivation for quality is usually inherent from the participation motives.
Developers are the creators of quality. FOSS contributors are positively moti-
vated to achieve as much perfection in their job as possible. They take pride
in their work and use it to build up reputation and community recognition.
In addition, they have sense of achievement, enjoyment and responsibility
toward their tasks. Motivation for quality in FOSS is also shaped by indi-
vidual attitudes and perceptions such as the extent of understanding of the
purpose and value of quality.

Motivation implies a willingness to make something better. Emotions
are states of mind raised by external stimuli, and moods are emotional
states where an individual feels good or bad. These terms are often used
interchangeably [43]. Happiness is created by high cognitive performance,
high motivation, positive atmosphere, higher self-accomplishment, high work
engagement, higher creativity, and higher self-confidence, as well as feeling
valued or being proud of performance [42].

Affective states are characterized by their valence, arousal, and dominance.
Valence, or pleasure, is attractiveness or adverseness of an event, object,
or situation; arousal is the sensation of being mentally awake and reactive
to stimuli, and dominance is the sensation where the skills are higher than
the challenge for a task. Affective states affect work, and describe “flow” as
fully focused motivation, energized focus, full involvement, and success in
the process of the activity. Happier employees are more productive. There
is a strong positive correlation between a positive affective state and task
performance and a negative correlation between negative affective states and
task performance [43].

One avenue to improve software developers’ productivity and software
quality is to focus on people. The role of affective states of emotions, moods,
and feelings have an impact on cognitive activities [43]. Developers may
underperform if they do not feel safe and happy, and positive emotions
like happiness make people more creative. Fear can refrain developers from
changing their code [76].

95

Chapter 11. Discussion

The primary characteristics of software developers is that they are growth
oriented, that is they like challenges and learning new skills. Another quality
is that they are introverted with a low need for social interaction, and another
is that they are autonomous. In addition, the literature identified change and
challenge as motivators, followed by problem solving opportunities, teamwork
opportunities, and a chance to experiment in software development. The
task should have clear goals, be interesting to the individual, be clearly
defined, and linked to other activities. Also important to software developers
is employee participation, good management, career path opportunities, a
variety of work, a sense of belonging, and rewards and incentives. Contextual
factors such as the individual’s personality and the environment also affect
the characteristics of engineers and motivational factors [102].

FOSS contributors seem to be happy and motivated to achieve quality in
their deliverables. The internalization of quality (i.e. quality become part
of the individual believes) combined with motivation for quality (e.g. the
quality of one’s code is equated to her/his reputation) push the individual
to excel in the tasks of software development. Achieving excellence is the
result of high performance throughout the entire community. This collective
pursuit for excellence produce high quality products.

Section Summary. Quality needs motivation and motivated engineers
cherish quality. In chapter 5 (Paper B), I established a correlation between
FOSS contributors’ motivation and quality. FOSS contributors perform
code review (a quality task) with high motivation. This motivation con-
tribute at excelling at the task of code review. This claim (motivation
positively influence quality) has been supported by software engineering
motivation and quality improvement literature.

Table 11.2 shows the problems addressed by the findings discussed so far in
this chapter. Recall Problem I highlights the needs to identify and discuss
social, organisational and disciplinary aspects of quality. This finding (i.e.
FOSS developers motivation for quality is positively correlated to software
quality) tackles partially the problem. This finding also addresses Problem

96

Chapter 11. Discussion

II, Problem III and Problem V. This finding supports empirically the
anecdotal evidence that social factors contribute to achieving software quality
in FOSS. I demonstrated that FOSS contributors invest their motivation in
software development task to achieve quality. Motivation for quality is a
social trait that FOSS software adopters should look for in communities as a
positive sign for products quality.

11.2 Active Commercial Participation

The sustainability of the open source model has often been questioned because
of free-riding, monetization by a party that did not contribute to the open
source project, yet does not share its proceeds with the project contributors
[80]. Open source models are based on people contributing their time and
knowledge in a collaborative effort to create publicly available information
goods. Recruiting and motivating contributors is important to open-source
communities, and these efforts can mitigate against free-riding.

Nov and Kuk study whether perceived justice of external appropriation
will be negatively related to effort withdrawal intentions of FOSS contributors.
They find that effort withdrawal resulting from the prospect of free riders is
negatively associated with both perceived justice and intrinsic motivation.
Perceived justice moderates the effect of intrinsic motivations on free riding.
Justice or fairness personality traits moderate the tendency for withdrawal [80].
These findings are strong support to my claim that passive participation is
damaging to FOSS.

Most contemporary FOSS communities are hybrids, with commercial and
noncommercial interests, motivations, and backgrounds. Company participa-
tion and the work ethic it implies brings both dangers and opportunities for
long-term sustainability, which includes both vitality and the ability to adapt
to changes. Researchers have found that 71% of the most active projects
have five or fewer developers, and 51% of them have only one project admin-

97

Chapter 11. Discussion

istrator [49]. Therefore, these small communities depend on the leadership of
the administrator.

Traditional economic theory predicts that the free-rider problem causes
inefficient provision of public goods and calls for a central intervention to
remedy the free-riding [62]. The equilibrium is determined based on whether
the peer’s marginal benefit to sharing justifies the cost of sharing. If the cost
of sharing is small, there is an equilibrium where everyone shares; but if the
costs are high, such that no one shares [62].

Some researchers investigate the motivation for and ability of knowledge
exchange, and test the relationship between social capital and knowledge
acquisition and contribution. In each period of time, each user independently
decides whether or not to share content, and each user demands one unit
of content randomly from the other users [62]. Withholding effort is the
likelihood that a participant will give less than full effort to a job-related
task. It causes shirking, job neglect, social loafing, and free riding. Shirking
focuses on the lack of full effort, job neglect focuses on partial withdrawal
from job duties, and both focus on an individual working alone. Social loafing
is holding back effort, and these occur in group contexts. In the absence of
coercion or inducements, individuals tend to withhold knowledge. [65]

Passive participation impacts FOSS ecosystems. My ROS participants
conveyed to me their concerns of the sustainability of the community in the
increasing passive commercial participation. One participant labeled this
behavior and passive participants as “leeches,” in reference to the parasitic and
predatory worms. These species are predatory, they prey on other creatures
in their ecosystem. This comparison is strong and shows the resentment
toward this behavior from individual contributors.

Section Summary. In chapter 6 (Paper C), I concluded that passive par-
ticipation negatively affects the sustainability of the ROS community. The
sustaining of contributions in FOSS is a concern in an environment with
increasing commercial participation. The exploitation of FOSS resources

98

Chapter 11. Discussion

by passive participants has negative consequences for quality. Withhold-
ing knowledge and efficient contributions lead to de-prioritizing of quality
relevant tasks and initiatives.

Table 11.2 shows the identified problems and this dissertation’s findings.
Each tick in the table cell is an indication that a particular problem is
addressed partially or entirely by the relevant findings.

11.3 Ability to Improve

The ability to change and evolve is a key component of software sustainability
[82]. Continuous improvement is dependent on the ability to see things in
new ways, gain new understanding, and produce new patterns of behavior,
on a way that engages the organization as a whole [39]. Achieving sustained
quality improvement requires commitment from the entire organization,
particularly from top-level management. However, in the case of a community,
commitment means engaging the community to bond around the initiative of
quality improvement. I used the ROS community to test the ability of FOSS
to embrace and implement change. I learned from this engagement with the
ROS community that when the motivation for quality exist in addition to
the availability of resources to implement the interventions, then change can
materialize successfully.

Gasston and Halloran argue that the benefits of implementing quality
improvement initiatives is beyond the immediate success of the endeavor
itself [39]. They explain that the benefits from implementation of software
process assessment and improvement programs will not be successful until
organizations move toward becoming learning organizations, organizations
which improve knowledge and understanding of themselves and their environ-
ment, organizations skilled at creating, acquiring, and transferring knowledge
and modifying their behavior (i.e. becoming a learning organization) [39].
Learning organizations depend on systematic problem solving, experimen-

99

Chapter 11. Discussion

tation with new approaches, learning from their own experience and past
history, learning from the experiences of others, and transferring knowledge
quickly and efficiency throughout the organization. The method proposed in
this dissertation, PAR4FOSS creates such knowledge and learning opportuni-
ties. All artifacts, discussions and decisions were published in the community
forum to become a recorded knowledge in the community infrastructure.

However, successful interventions and the creation of knowledge are only
partly responsible for creating quality improvements. Sustaining these im-
provements and creating ongoing continuous improvements process is another
story. Sustainability, holding the gains of an improvement project, is an
important part of a quality program. Quality improvement projects are
difficult to sustain after the initial enthusiasm is gone, as quality programs
require a significant investment in time and effort [104].

We envisaged the need for a sustainable improvement process. Hence the
last cycle of interventions plans for implementing a continuous improvement
process. The aim of this final intervention is to create a self-manged process,
where the community run the process without the leadership of the researcher.

Section Summary. I designed a method (chapter 7, Paper D) to evalu-
ate the effect of software quality process improvement in the ROS commu-
nity using participatory action research (PAR). Before instituting quality
measures, I was challenged by the question how to implement change in a
FOSS community, determining what is important for a community, and
determining how a community can maintain quality. To ensure a fit, I
had to align the adaptation of PAR with the community values, beliefs,
and norms. I was able to conclude that improving quality practices and
introducing change to a community is feasible and the ROS community
embraced the change positively. However, the motivation for quality and
resources availability are fundamental for such initiative to succeed.

Table 11.2 shows the progress of the mapping of the defined problems and
the findings of this dissertation. Ability to improve addresses Problem IV

100

Chapter 11. Discussion

and Problem V.

11.4 Governance for Quality

Governance is a matter of principles [88]. Governance is achieving the direc-
tion, control, and coordination of autonomous individuals and organizations
on behalf of a FOSS community [69]. The aim of FOSS governance is solv-
ing collective action problems, solving coordination problems in software
development, and creating a better climate for contributors [69].

Software development and version control services using Git, like Github are
used to track, trace, and archive the complete development process in FOSS
software communities. Governance of FOSS communities differs with different
communities, and version control software is the intersection of governance
and coordination. Governance provides the authority in the community,
including decision rights, and the coordination between developers on the
project. Coordination, which is the common sets of rules, instructions, and
activities that operationalize a structure, is embedded in the software tools
used in version control and in the social structure of the community as
reflected in communication patterns. Volunteers in the community rely on
different motivations, and the governance of the community provides support
for the various reasons for contributing. Governance is a configuration of
multiple authoritative structures embedded in a coordination process that
guide activities, tasks, motivations, and effort toward a goal [101]. Governance
and coordination are a duality, where the two concepts are distinct and yet
strengthen, corroborate, and refine each other. Governance types emerge as
coordination works to definitely operationalize rules, guidelines, and activities
that define the community. Informal guidelines also work in a community,
and these are accessible through the ideologies of the community.

In FOSS communities, expertise, role status, and authority are acquired
over time through participation. It is a socialization process nurturing an

101

Chapter 11. Discussion

identity and learning the practices of the specific platform. Situated learning
means that newcomers find mentors to support them in developing the
skills and understanding of policies and norms through participation. Each
community has its own tools, standards, and protocols, and recognition by
other members is through expertise, as well as political influences. Reviewing
contributions is not totally objective, but are also politically and socially
influenced [88].

Shaikh and Henfridsson identified three different structures; with one of
these being centralized authority, reflecting a shared understanding of the
central core of key developers as knowing best how to manage and coordi-
nate work. In centralized authority-based communities, peripheral members
support the core developers. Another type is libertarian authority, where
individual level freedom is imperative, and all members of the community
can act autonomously and voice their opinions. A third type is collective
authority, where shared understanding is that the needs of the many outweigh
the individual right to speak [101]. This behavior is cascaded to the lowest
levels of the hierarchy in the community. This cascading effect influences
contributors and evaluators behavior during the process of PR evaluations
(i.e PR governance).

Unique features of FOSS projects make it possible to have effective be-
havior, clan, and self-control mechanisms. These mechanisms were higher in
coordinated configurations, implying that these mechanisms are complemen-
tary. With no contracts or financial incentives, these mechanisms are still
effective [30]. PR governance in FOSS communities has three purposes: to
encourage collaboration, to coordinate the software development process, and
to create an effective developer climate that attracts, motivates developers
and monitor the quality of the proposed software changes.

Section Summary. PR governance is the action of controlling the code
change process by using rules obtained from the community set of values
and norms to influence, direct and control the actions of managing code
changes. One of the functions of this governance is to assure quality.

102

Chapter 11. Discussion

FOSS communities do govern the PR process using different styles (i.e.
Protective, Equitable and Lenient) as shown in chapter 8 (Paper E).
These styles reflect the cultures of the community, its history, leadership
type, and prevailing thinking in the community.

As shown in Table 11.2, this finding addresses Problem I, Problem II,
Problem III and Problem V.

11.5 Retention to Sustain Quality

New developers typically begin by submitting patches or pull requests, which
are sets of modifications to a project’s code. The submission of a patch is a
process that affects the quality and growth of the FOSS system. It is important
because it is a primary quality assurance mechanism for FOSS systems, it
enables knowledge transfer and learning, and it is an opportunity for recruiting
potential developers for a project. The process begins with patch creation,
then moves to publication, discovery, review, and release. A project’s ability
to attract and retain developer resources and active user resources will have
a positive effect on its future sustainability [15]. The PR evaluation process
can have a significant impact on contributor motivation. The contributor’s
experience during the evaluation process has further reaching than just
whether the contribution is accepted or rejected. Most contributors perceive
the process as unpredictable [55]. To reduce this unpredictability and improve
the contributor’s experience, I proposed seven good practices for the PR
evaluation process: engagement, communication, appropriateness, simplicity,
compliance, support, and honest decision support the evaluation process
positively. Creating positive experience for the contributor hopefully would
enhance retention.

One characteristic of FOSS projects is the large number of volunteers
involved in the project development. The work is not assigned, and anyone
can choose any task that they wish. The teams self-organize their work.

103

Chapter 11. Discussion

The patch or pull request submission process is one of the most important
activities in FOSS development for many reasons. One of these reasons is
that it is a mean for patch contributors to demonstrate their technical skills
and commitment. The patch contributors can gain more central roles in
projects, so it propels the sustainability of the FOSS project. However, there
are barriers to FOSS contributions as well. The patch review varies between
FOSS projects, so this can cause confusion and require time to learn the
system for a particular community. In addition, patch review is slow and
requires a lot of time, and patches are often lost or ignored. The unreviewed
patch number runs from 27% to 54% in some projects [100]. Then the
majority of patches are rejected, with more than half of submitted patches
falling into this category. There are more patch contributors than reviewers
as well [100].

The pull request is the central work product in the modification of the
FOSS software [100]. PR evaluation consists of verifying the submitted code,
which checks for quality, security, maintainability, integration, testing, and
licensing; refining the patch, which is using feedback to modify the patch; and
resolving the patch, which is the final outcome, either accepting or rejecting
the patch. Although rejected patches can be resubmitted, some are rejected
numerous times. Patch application is when a committer uses available tools
to apply the patch to the code repository.

Better-managed projects increase the chances of sustainability. Developers
are willing to follow project leaders as long as the project leader listens to
developers’ views [83]. A critical task of sustaining the platform is to ensure
an adequate number of participants, which are the most valuable resource.
People join these communities for intrinsic and extrinsic reasons. Fostering
an environment that is open to new contributors is important [88]. Openness
of social coding creates transparency, but both technical and social factors
affect the chance of acceptance [120].

literature on volunteers management looked at retention extensively and
FOSS research should leverage some of the findings, as there are strong

104

Chapter 11. Discussion

similarities. There is a consensus in this literature that volunteers who could
leave their position as a volunteer were more likely to do so [22,73,79,92,117].
When altruistic reasons for volunteering are not satisfied, volunteers are less
likely to remain with the organization [73]. Volunteer retention occurs when
motives for joining are satisfied, and when alignment with goals and values
exists [117]. Values such as inclusivity, and fairness enhances the retention
of volunteers. Training and support were identified as the most important
reasons for volunteers retention. Other reasons given were organizational
support, social networking, positive job characteristics such as nonrepetitive
tasks, jobs with gratifying tasks and clear objectives, benefiting others, and
training volunteers [79].

In FOSS, the probability of a newcomer becoming a long term contributor
was found to be associated with the person’s extent of involvement and
interactions with her environment [119]. The extent to which an individual’s
values are consistent with the community’s impacts how long they stay on the
project. Identity and bonds in the community also affect their commitment to
the project [119]. Pull request evaluation is one of the major avenues of expo-
sure to the community believes and behavioral systems. Through this avenue
communities should display and promote an attitude based on support and
fairness. This should enhance the contributor’s experience and consequently
a better resources retention. I proposed a framework that advocate a set of
good practices for every stakeholder in the PR evaluation process. Table 11.1
lists the good practices and the corresponding stakeholder(s) responsible to
adhere to the practice.

• Engagement: As indicated previously, the literature suggests that
unreviewed and neglected PRs in FOSS communities is considerably
high. This can be demotivating for a contributor to see her or his work
being unappreciated. My conclusion after analyzing 58 pull requests
is that FOSS contributors relate fairness to community engagement
around the PR. Engagement occur when a timely and an adequate

105

Chapter 11. Discussion

Good Practices Contributor Maintainer Community

Engagement X

Communication X X X

Appropriateness X

Simplicity X

Compliance X

Support X

Decision X

Table 11.1: PR evaluation practices and involved stakeholders

number of reviewers attend to the evaluation of the PR. The enthusiasm
and the effort invested in writing and submitting a PR should not be
met by a failure to care.

• Communication: I observed that PRs considered being assessed fairly
exhibit professional and camaraderie style of communication. However,
those deemed unfairly evaluated, some of them display hostility and
harsh language. This lead me to conclude that contributors appreciate
a professional and friendly communication during the evaluation of
their PRs.

• Appropriateness: Most FOSS communities I studied have a vision for
their products and sometimes this vision is well documented. Contribu-
tors are required to submit changes that adhere to the overall product
vision of the community. When, they fail to do so, it either creates
conflict or simply the PR is neglected by the community. Contributors
should accustom themselves with their community products’ road-maps
which (often documented in file VISION.MD) and submit PRs within
the scope of the vision document. I have noticed that PRs within the
scope of the community road-maps receive adequate engagement and
enthusiasm from the community.

• Simplicity: FOSS communities strive for simplicity. It allows them
control over the software code and it facilitates speedy reviews of code
changes. Complex PR are regarded risky and time consuming to review.

106

Chapter 11. Discussion

They usually face long diverging discussions without a conclusion. They
end up abandoned or rejected. My data shows that PRs adhere to
simplicity principle are more likely to avoid this entanglement.

• Compliance: FOSS communities do not like barrages of rules, but
when they have rules they like to enforce them and appreciate when
contributors adhere to them. This practice mainly calls for contributors
to be mindful and stick to the community guidelines for code styling,
architectural decisions and codes of conduct.

• Support: This is the assistance that the contributor receives during the
PR evaluation process to meet the reviewers requirements for quality.
I have observed that PRs receiving good community support from
mentoring and advise were considered fairly assessed. Contributors feel
that support received from the community is a reward for their effort.

• Decision: Eventually, after the reviewers accept the PR, it is the
committer decision to either adhere to the reviewers recommendation or
overrule it. This is a critical point in the process. My respondents made
it clear that fairness should be exercised in the stage of the process.
Failure to do so is a risk to lose a contributor.

Volunteers quit when they feel undervalued [92]. Minimizing attrition
through retention practices is necessary. This can be done through providing
good experience for the contributor and increasing morale. Contributors’
perceptions of the community, fairness, and the degree of recognition increase
satisfaction amongst contributors. Community cohesion aids in job satisfac-
tion as well. The framework of social exchange theory states that to keep
volunteers, the rewards must exceed or balance out the costs. Volunteers
assess the relative rewards and costs of their involvement, and this assessment
determines if they will remain volunteering [6, 92]. Conflict and dysfunction
in a work group can erode social benefits and cause volunteers to resign.

107

Chapter 11. Discussion

Problems Brief Descriptions Findings & Solutions
Problem I Need to understand the social,

organizational and disciplinary
aspects of quality.

Personal Motivation for Qual-
ity, Active Commercial Partic-
ipation, Governance for Qual-
ity, and Retention to Sustain
Quality

Problem II Lack of empirical evidence that
quality in FOSS is achieved by
additional social aspects

Personal Motivation for Qual-
ity, and Governance for Qual-
ity

Problem III How do social and organiza-
tional aspects of FOSS con-
tribute to achieving quality in
FOSS?

Personal Motivation for Qual-
ity, Active Commercial Partic-
ipation, Governance for Qual-
ity, and Retention to Sustain
Quality

Problem IV How can communities leaders
steer their communities quality
to positive direction?

Personal Motivation for Qual-
ity, Active Commercial Partic-
ipation, Ability to Improve,

Problem V What are the positive signs of
quality in FOSS communities?

Active Commercial Participa-
tion, Ability to Improve, Gov-
ernance for Quality, and Re-
tention to Sustain Quality

Table 11.2: The problems and their corresponding solutions

Section Summary. Quality needs resources. Then retention of resources
is important. Dysfunctional turnover is when contributors leave because of
working conditions. The best climate for success is a supportive atmosphere
that is welcoming with opportunities for growth. Good practices variables
such as engagement and communication, facilitating the development of
positive social interaction with peers and equitable treatment are an impor-
tant part of good working conditions and enhance the contributor journey.
Volunteers management literature support my claim that enhancing the
contributor’s experience facilitate better retention.

Table 11.2 shows the mapping of this dissertation findings and solutions
to the problems identified in Chapter 2. This finding satisfies the problems

108

Chapter 11. Discussion

described in Problem I, Problem II, Problem III and Problem V

11.6 Chapter Summary

Software development process is not purely a technical task, but a com-
plex “psycho-socio-technical” activity influenced with organizational, cultural,
and social structures [3, 25]. Assuring quality in FOSS development is not
purely technical either (Paper A). In this chapter I discussed some of the
non-technical aspects of achieving quality in FOSS communities. Social,
organizational and disciplinary enablers and desired features make quality
possible in FOSS. Then, how? The personal motivation for quality (Paper
B) is a characteristic in FOSS contributors. They are highly motivated to
write high-quality code. It is their pride and instrument to build reputation
in the community. This personal motivation is invested in the task of code
review which leads to high performance and excellence in the review process
and consequently higher code quality. The sustainability of the community
is essential to achieving quality in FOSS. However, FOSS sustainability is
negatively affected by passive commercial participation (Paper C). It is a
desired feature to have in FOSS is active participation of commercial entities.
Ability to change and embrace best practices and tools (Paper D) is another
desired feature in FOSS to achieve quality. The ROS community has shown
that a FOSS community can collectively collaborate and implement quality
improvement initiatives. Another enabler of quality is PR governance. The
decision-making process of PR merger entails exercising the community be-
liefs, values and culture in choosing a decision. Quality is the primary driver
to control the PR process (Paper E). A community with lack of resources
to contribute ends up with orphan and abandoned PRs, without enough
contributors to review the code. Following the seven good practices may help
to create a supportive environment during the evaluation of PRs (Paper F).

109

12
Conclusion and Future Work

As quality is a difficult concept to define in software development, it is
a difficult concept to examine. Quality is difficult to define because it is
people and criteria dependent. This study is an investigation into the quality
in FOSS. FOSS is unique in its implementation of software development
processes and in the self-assignment of work. FOSS is a viable option for
high quality software, in spite of the geographic distribution of FOSS teams
and often unpaid work of the volunteer contributors.

One reason for the high quality of FOSS is the openness of the entire
project, including code and documentation, which allows for more feedback
that can be used for improvements. In addition, developers’ motivation is
higher and projects are able to attract talented, dedicated individuals. So
far, most of these claims were anecdotal put forward by the pioneers of open
source (e.g. Linus Torvalds, Richard Stallman, Eric Raymond, etc.). We
need empirical evidence to understand how quality is achieved in FOSS. To
support this need, I investigated this question: How do social, organizational
and disciplinary factors contribute to maintaining software quality in FOSS
Communities?

The underpinning epistemological paradigm of this research is pragmatism.
Pragmatism is a deconstructive paradigm that advocates the use of mixed
methods in research. Pragmatism includes freedom of inquiry in which
researchers can define issues that matter most to them and the community
and pursue those issues in meaningful ways. Pragmatism includes rejecting

110

Chapter 12. Conclusion and Future Work

skepticism, the willingness to accept that we are fallible, and realize that
sharp dichotomies do not exist, but most beliefs are on a continuum. Inquiry
that is based on pragmatic foundations embraces both ideas and actions.

I concluded that achieving quality is influenced by social, organizational
and disciplinary factors. So, how? These factors are able to affect community
members attitudes, opinions, behavior and interests, thereby directly impact-
ing the software development activities, including quality related tasks. I
identified three quality enablers. Enablers are the behaviours and the believes,
the tools and resources that will enable a community to achieve quality.

• Personal Motivation for Quality (Social Enabler): One of the
major factors in producing quality software, in FOSS communities, is
personal motivation for quality. This personal motivation results in
FOSS contributors developing exceptional software and excelling at
tasks like code review, which leads to higher quality deliverables. The
motivation to create quality software is internalized, that is, it is an
attitude. The desire to develop a quality product is internalized, a
value that is learned through assimilation.

• Governance for Quality (Disciplinary Enabler): Pull Request
Governance is defined as the rules in the social system of a community
to evaluate code changes and adopt decisions. The role of governance is
achieving quality. There are three styles of governance (i.e. Protective,
Equitable and Lenient) used in the pull request process that is part
of FOSS communities. These governance styles contribute to a FOSS
community achieving quality products and control of the process.

• Ability to Improve (Organizational Enabler): In a study of the
ROS community (Paper A), I observed that contributors in ROS have
relatively little motivation for quality. To improve quality control efforts,
I implemented PAR4FOSS, a model for change derived from partici-
patory action research. This action showed that a FOSS community
can improve its quality practices when the resources to assist in the

111

Chapter 12. Conclusion and Future Work

implementation are available, and the contributors are motivated to
participate in quality control efforts.

Achieving quality in FOSS requires the satisfaction or the implementation
of some desired features in the community. These are discussed below:

• Active Commercial Participation (Organizational): Participa-
tion in FOSS communities by commercial entities is increasing. Some
of the time this participation is passive, inbound only. When compa-
nies fail to contribute as well, the sustainability of the community is
impacted, as well as the quality of deliverables. Active participation
of commercial entities is necessary to ensure an equitable use of the
community resources and a sustainable growth.

• Retention of Participants to Sustain Quality (Social): Most
of the interaction with the community and those wishing to join the
community occurs in the pull request process. Therefore, an analysis
of the pull request process is the salient point to examine the presence
of fair treatment of those submitting pull requests and fair assessment
of their contributions. Seven practices are recommended for the pull
request process that help to sustain the retention of FOSS communities
contributors.

So what? Our view of achieving quality as a purely technical activity
needs to change. Achieving quality is an engineering, social, organizational
and disciplinary activity simultaneously. Our effort in researching quality
in software engineering should be equally distributed across these aspects.
We need to further understand how non-engineering aspects contribute to
achieving quality in software development teams and FOSS communities.

Another implication is how managers and software development organiza-
tions implement quality measures in their processes. Non-technical aspects
and technical aspects are inherently cobbled together. Measures like the

112

Chapter 12. Conclusion and Future Work

engineers motivation for quality, retention of engineers, and continuous im-
provement should be given equal status in software development processes as
the engineering aspects.

We need to educate software engineers that quality is a belief and the
quality of their work is a pride and has consequences in their reputation.
Education institution should teach quality as a professional value rather than
an item in a checklist. In software engineering educational programs quality
should be put as a value front and center.

So how can employers make quality as a value stick? Reminding engineers of
values does not stop after crafting, laminating and posting posters throughout
the office, however, they need to be communicated from the top on a regular
basis. Building a workforce that lives and works by the company values begins
with hiring based upon values. For each of the company’s values, develop
a list of questions designed to assess a candidate’s character and potential
fit and quality should be one of them. Software development organizations
should promote quality as an organizational value by rewarding behaviors that
demonstrate it. Managers should not hesitate to publicly reward engineers
for exhibiting behaviors that are in line with the company’s character. I
learned from studying FOSS communities, that it not only does make the
individual feel good, it also pushes the rest of the team to follow suit.

To conclude, I will summarize the discussion and the rationale of my theses.
I proposed five theses (see Chapter 2):

• T1 A number of human and social aspects create a psychological and
social environment that drives the contributors to excel and collabo-
ratively produce high quality code. This was argued and validated in
Paper B. I also discussed this in Chapter 11. I proved a correlation
between FOSS contributors’ personal motivation and achieving quality.

• T2 Active commercial participation in FOSS enhances the sustainabil-
ity of quality. This was argued and validated in Paper C. This has

113

Chapter 12. Conclusion and Future Work

also been discussed in Chapter 11. I demonstrated that the sustain-
ability of FOSS communities is affected by passive participation which
consequently affected quality related task and deliverable.

• T3 I argue that FOSS communities have the ability collaborate and
invest effort in implementing change. To be able to evolve and con-
tinuously improve quality practices is a demonstration that FOSS
communities can pursue achieving software quality. This was argued
and validated in Paper D. I demonstrated that the ROS community
has the ability to engage in an endeavor to enhance its quality processes.

• T4 Each community adopts a governance style to oversee the quality
of the suggested changes to the code base. Having in place a controlled
form of behaviour or way of working contributes to maintaining software
quality. This was argued and validated in Paper E and Chapter 10.
To mitigate the risk of poor code quality, FOSS communities put in
place a governance style to assure quality.

• T5 I argue that the contributor’s journey should be enhanced by good
PR practices to improve contributors retention. This was argued and
validated in Paper F. In Chapter 11, I argued that there is a significant
link between retention and quality.

12.1 Future Work

While this dissertation reveals interesting patterns, it is clear that further
work remains to be done. Below, I discuss some future research directions.

Collaborative effort impact on software quality: Free and open
source software (FOSS) changes the way software is developed, perceived, and
distributed. FOSS is a collaborative effort by volunteers to create high quality
software. Free and open source software (FOSS) changes the way software
is developed, perceived, and distributed. FOSS is a collaborative effort by

114

Chapter 12. Conclusion and Future Work

volunteers to create high quality software. This aspect is still neglected in
the software engineering research, i.e. how does the collaborative effort of
FOSS contributors contribute to achieving quality in FOSS?

Organizational Culture and Quality: Quality in FOSS communities
is a culture and a belief. Quality is internalized by newcomers via different
mechanisms (e.g. mentoring, harsh feedback, etc.). Why does not the
same occur in close source environments? Organizational culture is directly
connected with effectiveness and performance of the organization. I suggest
to evaluate the organizational aspects of software-intensive organizations and
examine the impact of such culture of achieving software quality.

The Power of the Maintainers and its impact on quality: I ob-
served that maintainers in FOSS enjoy certain power that was usually awarded
for their past effort, reputation and technical excellence in the community. I
was told by some maintainers that they sometimes override the community
decisions on the quality review of code. Power and influence are fundamental
human phenomena that are deeply ingrained on the psyche and conscious
personality of individuals. The difference between proper and improper use of
power is the difference between success and failure, high and low productivity,
motivation and disillusionment. I suggest to investigate how do maintainers
exercise their power? And do maintainers styles of exercising power impact
quality in FOSS?

What is the working style suitable for software engineers? I
interviewed contributors who dedicate their free time at night after their
daytime jobs to their FOSS communities. They explained that they do it
out of passion for their community. In FOSS, there is a long-held belief in
meritocracy, or the idea that the best work rises to the top, regardless of who
contributes it. Other FOSS traits also appeal to these type of contributors,
such as self-assignment of tasks. This may indicate that software engineers
have preferences for a community-like style of management. For example,
no supervision, self-assignment of tasks, meritocratic system, etc. It would
be interesting to investigate the style of management preferred by software

115

Chapter 12. Conclusion and Future Work

engineers.

116

Bibliography

[1] Navid Ahmadi, Mehdi Jazayeri, Francesco Lelli, and Sasa Nesic. A
survey of social software engineering. In 2008 23rd IEEE/ACM Inter-
national Conference on Automated Software Engineering-Workshops,
pages 1–12. IEEE, 2008.

[2] Robert C Allen. Collective invention. Journal of Economic Behavior &
Organization, 4(1):1–24, 1983.

[3] Vincenzo Ambriola et al. Software Process Technology: 8th Euro-
pean Workshop, EWSPT 2001 Witten, Germany, June 19-21, 2001
Proceedings, volume 8. Springer Science & Business Media, 2001.

[4] Gary Anthes. Open source software no longer optional. Communications
of the ACM, 59(8):15–17, 2016.

[5] Richard Baskerville and A Trevor Wood-Harper. Diversity in informa-
tion systems action research methods. European Journal of information
systems, 7(2):90–107, 1998.

[6] Tony Baxter-Tomkins, Michelle Wallace, et al. Recruitment and re-
tention of volunteers in emergency services. Australian Journal on
Volunteering, 14:39, 2009.

[7] David Bretthauer. Open source software: A history. University of
Connecticut, 2001.

[8] Yuanfeng Cai and Dan Zhu. Reputation in an open source software
community: Antecedents and impacts. Decision Support Systems,
91:103–112, 2016.

[9] Brendan G Cain, James O Coplien, and Neil B Harrison. Social patterns
in productive software development organizations. Annals of Software
Engineering, 2(1):259–286, 1996.

117

Bibliography

[10] Martin Campbell-Kelly. Historical reflections will the future of software
be open source? Communications of the ACM, 51(10):21–23, 2008.

[11] Eugenio Capra, Chiara Francalanci, Francesco Merlo, and Cristina Rossi
Lamastra. A survey on firms’ participation in open source community
projects. In IFIP International Conference on Open Source Systems,
pages 225–236. Springer, 2009.

[12] Kathy Charmaz. Premises, principles, and practices in qualitative
research: Revisiting the foundations. Qualitative health research,
14(7):976–993, 2004.

[13] Kathy Charmaz. Constructing grounded theory: A practical guide
through qualitative analysis. sage, 2006.

[14] Brenda Chawner. Community matters most: factors that affect partici-
pant satisfaction with free/libre and open source software projects. In
Proceedings of the 2012 iConference, pages 231–239. ACM, 2012.

[15] InduShobha Chengalur-Smith, Anna Sidorova, and Sherae Daniel. Sus-
tainability of free/libre open source projects: a longitudinal study.
Journal of the Association for Information Systems, 11(11):657, 2010.

[16] Jan Chong, Robert Plummer, Larry J Leifer, Scott R Klemmer, Ozgur
Eris, and George Toye. Pair programming: When and why it works.
In PPIG, page 5. Citeseer, 2005.

[17] Alistair Cockburn and Jim Highsmith. Agile software development, the
people factor. Computer, 34(11):131–133, 2001.

[18] Melvin E Conway. How do committees invent. Datamation, 14(4):28–31,
1968.

[19] John W Creswell, VL Plano Clark, and AL Garrett. Advanced mixed
methods research. Handbook of mixed methods in social and behavioural
research. Thousand Oaks, CA: Sage, pages 209–240, 2003.

118

Bibliography

[20] Philip B Crosby. Quality is free: The art of making quality certain,
volume 94. McGraw-hill New York, 1979.

[21] Kevin Crowston, Kangning Wei, James Howison, and Andrea Wiggins.
Free/libre open-source software development: What we know and what
we do not know. ACM Computing Surveys (CSUR), 44(2):1–35, 2008.

[22] Graham Cuskelly. Volunteer retention in community sport organisations.
European sport management quarterly, 4(2):59–76, 2004.

[23] Linus Dahlander and Mats G. Magnusson. Relationships between open
source software companies and communities: Observations from Nordic
firms. Research policy, 34(4), 2005.

[24] Tomi Dahlberg and Janne Jarvinen. Challenges to is quality. Informa-
tion and Software Technology, 39(12):809–818, 1997.

[25] Robertas Damaševičius. On the human, organizational, and technical
aspects of software development and analysis. In Information Systems
Development, pages 11–19. Springer, 2009.

[26] Suzana Candido de Barros Sampaio, Emanuella Aleixo Barros,
Gibeon Soares de Aquino Junior, Mauro Jose Carlos e Silva, and
Silvio Romero de Lemos Meira. A review of productivity factors and
strategies on software development. In 2010 fifth international confer-
ence on software engineering advances, pages 196–204. IEEE, 2010.

[27] Cleidson De Souza, Jon Froehlich, and Paul Dourish. Seeking the
source: software source code as a social and technical artifact. In
Proceedings of the 2005 international ACM SIGGROUP conference on
Supporting group work, pages 197–206, 2005.

[28] Benoit Demil and Xavier Lecocq. Neither market nor hierarchy nor
network: The emergence of bazaar governance. Organization studies,
27(10):1447–1466, 2006.

[29] Norman K Denzin and Yvonna S Lincoln. Strategies of qualitative
inquiry, volume 2. Sage, 2008.

119

Bibliography

[30] Dany Di Tullio and D Sandy Staples. The governance and control of
open source software projects. Journal of Management Information
Systems, 30(3):49–80, 2013.

[31] Yvonne Dittrich. Quality assurance process and community manage-
ment in ros.

[32] Neil F Doherty and Malcolm King. The importance of organisational
issues in systems development. Information Technology & People, 1998.

[33] Evert Eckhardt, Erwin Kaats, Slinger Jansen, and Carina Alves. The
merits of a meritocracy in open source software ecosystems. In Pro-
ceedings of the 2014 European Conference on Software Architecture
Workshops, pages 1–6, 2014.

[34] M Elliott and Walt Scacchi. Communicating and mitigating conflict in
open source software development projects. Projects & Profits, pages
25–41, 2002.

[35] Margaret Elliott. Examining the success of computerization move-
ments in the ubiquitous computing era: Free and open source software
movements. Computerization Movements and Technology Diffusion:
From Mainframes to Ubiquitous Computing, Information Today, Inc.,
to appear, 2008.

[36] Margaret S Elliott and Walt Scacchi. Free software developers as an
occupational community: resolving conflicts and fostering collaboration.
In Proceedings of the 2003 international ACM SIGGROUP conference
on Supporting group work, pages 21–30. ACM, 2003.

[37] Brian Fitzgerald and Tony Kenny. Developing an information systems
infrastructure with open source software. IEEE Software, 21(1), 2004.

[38] David A Garvin and WD Quality. What does product quality really
mean? Sloan management review, 25, 1984.

120

Bibliography

[39] Jennifer Gasston and Pat Halloran. Continuous software process im-
provement requires organisational learning: An australian case study.
Software Quality Journal, 8(1):37–51, 1999.

[40] Georgios Gousios, Martin Pinzger, and Arie van Deursen. An ex-
ploratory study of the pull-based software development model. In
Proceedings of the 36th International Conference on Software Engineer-
ing, pages 345–355, 2014.

[41] Georgios Gousios, Margaret-Anne Storey, and Alberto Bacchelli. Work
practices and challenges in pull-based development: the contributor’s
perspective. In 2016 IEEE/ACM 38th International Conference on
Software Engineering (ICSE), pages 285–296. IEEE, 2016.

[42] Daniel Graziotin, Fabian Fagerholm, Xiaofeng Wang, and Pekka Abra-
hamsson. What happens when software developers are (un) happy.
Journal of Systems and Software, 140:32–47, 2018.

[43] Daniel Graziotin, Xiaofeng Wang, and Pekka Abrahamsson. Are happy
developers more productive? In International Conference on Product
Focused Software Process Improvement, pages 50–64. Springer, 2013.

[44] David Hales and Chris R Douce. Modelling software organisations. In
PPIG, page 13, 2002.

[45] Brian Hanks. Empirical studies of pair programming. In Position paper
for EEAP’03-2nd International Workshop on Empirical Evaluation of
Agile Processes, 2003.

[46] Stephanie Harvey-Jordan and Sarah Long. The process and the pitfalls
of semi-structured interviews. Community Practitioner, 74(6):219, 2001.

[47] Øyvind Hauge, Claudia Ayala, and Reidar Conradi. Adoption of
open source software in software-intensive organizations–a systematic
literature review. Information and Software Technology, 52(11):1133–
1154, 2010.

121

Bibliography

[48] Frank Hecker. Setting up shop: The business of open-source software.
IEEE software, 16(1), 1999.

[49] Nina Helander and Maria Antikainen. Essays on oss practices and
sustainability.

[50] Pekka Himanen. The hacker ethic. Random House, 2010.

[51] Pamela Hinds and Cathleen McGrath. Structures that work: social
structure, work structure and coordination ease in geographically dis-
tributed teams. In Proceedings of the 2006 20th anniversary conference
on Computer supported cooperative work, pages 343–352. ACM, 2006.

[52] Project Management Institute. A guide to the project management body
of knowledge (PMBOK guide)., volume 2. Project Management Inst,
2000.

[53] George Issac, Chandrasekharan Rajendran, and RN Anantharaman.
Determinants of software quality: customer’s perspective. Total Quality
Management & Business Excellence, 14(9):1053–1070, 2003.

[54] Chris Jensen and Walt Scacchi. Role migration and advancement
processes in ossd projects: A comparative case study. In Proceedings
of the 29th international conference on Software Engineering, pages
364–374. IEEE Computer Society, 2007.

[55] Yujuan Jiang, Bram Adams, and Daniel M German. Will my patch
make it? and how fast? case study on the linux kernel. In 2013 10th
Working Conference on Mining Software Repositories (MSR), pages
101–110. IEEE, 2013.

[56] Joseph Juran and A Blanton Godfrey. Quality handbook. Republished
McGraw-Hill, 173(8), 1999.

[57] Gopal K Kanji. Quality motivation. Total Quality Management,
6(4):427–434, 1995.

122

Bibliography

[58] Mohamad Kassab, Joanna F DeFranco, and Phillip A Laplante. Soft-
ware testing: The state of the practice. IEEE Software, 34(5):46–52,
2017.

[59] Dennis F Kehoe. The fundamentals of quality management. Springer
Science & Business Media, 2012.

[60] Stephen Kemmis. Participatory action research and the public sphere.
Educational action research, 14(4):459–476, 2006.

[61] Stefan Koch. Evolution of open source software systems–a large-scale
investigation. In Proceedings of the 1st International Conference on
Open Source Systems, pages 148–153, 2005.

[62] Ramayya Krishnan, Michael D Smith, Zhulei Tang, and Rahul Telang.
The impact of free-riding on peer-to-peer networks. In 37th Annual
Hawaii International Conference on System Sciences, 2004. Proceedings
of the, pages 10–pp. IEEE, 2004.

[63] John K Kruschke and Torrin M Liddell. Bayesian data analysis for
newcomers. Psychonomic bulletin & review, 25(1):155–177, 2018.

[64] Agnieszka Kujawińska, Katarzyna Vogt, and Adam Hamrol. The role
of human motivation in quality inspection of production processes. In
Advances in Ergonomics of Manufacturing: Managing the Enterprise
of the Future, pages 569–579. Springer, 2016.

[65] Tung-Ching Lin and Chien-Chih Huang. Withholding effort in knowl-
edge contribution: The role of social exchange and social cognitive on
project teams. Information & Management, 47(3):188–196, 2010.

[66] Synopsys Mel Llaguno. Open source solution manager.[nd]. 2017 cover-
ity scan report. open source software-the road ahead.

[67] Luis F Luna-Reyes, Jing Zhang, J Ramón Gil-García, and Anthony M
Cresswell. Information systems development as emergent socio-technical
change: a practice approach. European Journal of Information Systems,
14(1):93–105, 2005.

123

Bibliography

[68] Björn Lundell, Brian Lings, and Edvin Lindqvist. Perceptions and
uptake of open source in swedish organisations. In IFIP International
Conference on Open Source Systems. Springer, 2006.

[69] M Lynne Markus. The governance of free/open source software projects:
monolithic, multidimensional, or configurational? Journal of Manage-
ment & Governance, 11(2):151–163, 2007.

[70] Lindsay Marshall and Jim Webber. The misplaced comma: Program-
mers’ tales and traditions. In PPIG, page 14, 2002.

[71] Mary Maynard. Methods, practice and epistemology: The debate about
feminism and research. Researching women’s lives from a feminist
perspective, 10(26):10–26, 1994.

[72] Charlie McDowell, Linda Werner, Heather E Bullock, and Julian Fer-
nald. The impact of pair programming on student performance, per-
ception and persistence. In 25th International Conference on Software
Engineering, 2003. Proceedings., pages 602–607. IEEE, 2003.

[73] Debra J Mesch, Mary Tschirhart, James L Perry, and Geunjoo Lee. Al-
truists or egoists? retention in stipended service. Nonprofit Management
and Leadership, 9(1):3–22, 1998.

[74] Martin Michlmayr. Quality improvement in volunteer free and open
source software projects: Exploring the impact of release management.
2007.

[75] Matthew B Miles, A Michael Huberman, and J Saldañ. Qualitative
data analysis: a methods sourcebook Newbury Park. CA, USA, SAGE
Publications [Google Scholar], 2013.

[76] Alessandro Murgia, Parastou Tourani, Bram Adams, and Marco Ortu.
Do developers feel emotions? an exploratory analysis of emotions in
software artifacts. In Proceedings of the 11th working conference on
mining software repositories, pages 262–271, 2014.

124

Bibliography

[77] Kathleen Musante and Billie R DeWalt. Participant observation: A
guide for fieldworkers. Rowman Altamira, 2010.

[78] Kathryn E Newcomer, Harry P Hatry, and Joseph S Wholey. Con-
ducting semi-structured interviews. Handbook of practical program
evaluation, 492, 2015.

[79] Cameron Newton, Karen Becker, and Sarah Bell. Learning and devel-
opment opportunities as a tool for the retention of volunteers: A moti-
vational perspective. Human Resource Management Journal, 24(4):514–
530, 2014.

[80] Oded Nov and George Kuk. Open source content contributors’ response
to free-riding: The effect of personality and context. Computers in
human behavior, 24(6):2848–2861, 2008.

[81] Alessandro Nuvolari. Open source software development: Some histori-
cal perspectives. First Monday, 10(10), 2005.

[82] Linus Nyman and Juho Lindman. Code forking, governance, and sus-
tainability in open source software. Technology Innovation Management
Review, 3(1), 2013.

[83] Linus Nyman, Tommi Mikkonen, Juho Lindman, and Martin Fougère.
Perspectives on code forking and sustainability in open source software.
In IFIP International Conference on Open Source Systems, pages 274–
279. Springer, 2012.

[84] Hugo M Ortner. The human factor in quality management. Accredita-
tion and Quality Assurance, 5(4):130–141, 2000.

[85] Margit Osterloh and Sandra Rota. Open source software develop-
ment—just another case of collective invention? Research Policy,
36(2):157–171, 2007.

[86] David Lorge Parnas and Mark Lawford. The role of inspection in
software quality assurance. IEEE Transactions on Software engineering,
29(8):674–676, 2003.

125

Bibliography

[87] Russell Pavlicek and Robin Foreword By-Miller. Embracing insanity:
Open source software development. Sams, 2000.

[88] Giacomo Poderi. Sustaining platforms as commons: perspectives on
participation, infrastructure, and governance. CoDesign, 15(3):243–255,
2019.

[89] Denise F Polit and Cheryl Tatano Beck. Generalization in quantitative
and qualitative research: Myths and strategies. International journal
of nursing studies, 47(11):1451–1458, 2010.

[90] Richard E Potter and Pierre A Balthazard. Understanding human
interactions and performance in the virtual team. JITTA: Journal of
Information Technology Theory and Application, 4(1):1, 2002.

[91] Thiagarajan Ravichandran and Arun Rai. Quality management in
systems development: an organizational system perspective. MIS
quarterly, pages 381–415, 2000.

[92] Simon Rice, Barry Fallon, et al. Retention of volunteers in the emergency
services: Exploring interpersonal and group cohesion factors. Australian
Journal of Emergency Management, The, 26(1):18, 2011.

[93] Colin Robson and Kieran McCartan. Real world research. John Wiley
& Sons, 2016.

[94] Clive CH Rosen. The influence of intra-team relationships on the
systems development process: A theoretical framework of intra-group
dynamics. In PPIG, page 4. Citeseer, 2005.

[95] Richard M Ryan and Edward L Deci. Self-determination theory and the
facilitation of intrinsic motivation, social development, and well-being.
American psychologist, 55(1):68, 2000.

[96] Steve Sawyer and Patricia J. Guinan. Software development: Processes
and performance. IBM systems journal, 37(4):552–569, 1998.

126

Bibliography

[97] Walt Scacchi. Understanding the requirements for developing open
source software systems. IEE Proceedings-Software, 149(1):24–39, 2002.

[98] Judith Schoonenboom and R Burke Johnson. How to construct a mixed
methods research design. KZfSS Kölner Zeitschrift für Soziologie und
Sozialpsychologie, 69(2):107–131, 2017.

[99] Kristie W Seawright and Scott T Young. A quality definition continuum.
Interfaces, 26(3):107–113, 1996.

[100] Bhuricha Deen Sethanandha, Bart Massey, and William Jones. Man-
aging open source contributions for software project sustainability.
In PICMET 2010 TECHNOLOGY MANAGEMENT FOR GLOBAL
ECONOMIC GROWTH, pages 1–9. IEEE, 2010.

[101] Maha Shaikh and Ola Henfridsson. Governing open source soft-
ware through coordination processes. Information and Organization,
27(2):116–135, 2017.

[102] Helen Sharp, Nathan Baddoo, Sarah Beecham, Tracy Hall, and Hugh
Robinson. Models of motivation in software engineering. Information
and software technology, 51(1):219–233, 2009.

[103] Sharilyn Shiramizu and Amarjit Singh. Leadership to improve quality
within an organization. Leadership and Management in Engineering,
7(4):129–140, 2007.

[104] Samuel A Silver, Rory McQuillan, Ziv Harel, Adam V Weizman, Alison
Thomas, Gihad Nesrallah, Chaim M Bell, Christopher T Chan, and
Glenn M Chertow. How to sustain change and support continuous
quality improvement. Clinical Journal of the American Society of
Nephrology, 11(5):916–924, 2016.

[105] Diomidis Spinellis and Vaggelis Giannikas. Organizational adoption of
open source software. Journal of Systems and Software, 85(3):666–682,
2012.

127

Bibliography

[106] Ioannis Stamelos, Lefteris Angelis, Apostolos Oikonomou, and Geor-
gios L Bleris. Code quality analysis in open source software development.
Information systems journal, 12(1):43–60, 2002.

[107] Igor Steinmacher, Gustavo Pinto, Igor Scaliante Wiese, and Marco Au-
rélio Gerosa. Almost there: A study on quasi-contributors in open-
source software projects. In 2018 IEEE/ACM 40th International Con-
ference on Software Engineering (ICSE), pages 256–266. IEEE, 2018.

[108] Katherine J Stewart and Sanjay Gosain. The impact of ideology on
effectiveness in open source software development teams. Mis Quarterly,
pages 291–314, 2006.

[109] Klaas-Jan Stol, Muhammad Ali Babar, Paris Avgeriou, and Brian
Fitzgerald. A comparative study of challenges in integrating open
source software and inner source software. Information and Software
Technology, 53(12):1319–1336, 2011.

[110] Damian A Tamburri, Fabio Palomba, Alexander Serebrenik, and Andy
Zaidman. Discovering community patterns in open-source: A sys-
tematic approach and its evaluation. Empirical Software Engineering,
24(3):1369–1417, 2019.

[111] Juan J Tarí and Vicente Sabater. Human aspects in a quality man-
agement context and their effects on performance. The International
Journal of Human Resource Management, 17(3):484–503, 2006.

[112] E Ted Prince. Human factors in quality assurance. Information systems
management, 10(3):78–80, 1993.

[113] Dave Thomas and Andy Hunt. Open source ecosystems. IEEE Software,
21(4):89–91, 2004.

[114] Linus Torvalds and David Diamond. Why open source makes sense.
Educause Review, 36(6):70–75, 2001.

[115] William MK Trochim and James P Donnelly. Research methods knowl-
edge base, volume 2. Atomic Dog Publishing Cincinnati, OH, 2001.

128

Bibliography

[116] June M Verner, Muhammad Ali Babar, Narciso Cerpa, Tracy Hall,
and Sarah Beecham. Factors that motivate software engineering teams:
A four country empirical study. Journal of Systems and Software,
92:115–127, 2014.

[117] Jon Welty Peachey, Alexis Lyras, Adam Cohen, Jennifer E Bruening,
and George B Cunningham. Exploring the motives and retention factors
of sport-for-development volunteers. Nonprofit and Voluntary Sector
Quarterly, 43(6):1052–1069, 2014.

[118] Joel West. How open is open enough?: Melding proprietary and open
source platform strategies. Research policy, 32(7), 2003.

[119] Minghui Zhou and Audris Mockus. Who will stay in the floss commu-
nity? modeling participant’s initial behavior. IEEE Transactions on
Software Engineering, 41(1):82–99, 2014.

[120] Shurui Zhou, Bogdan Vasilescu, and Christian Kästner. What the fork:
a study of inefficient and efficient forking practices in social coding. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, pages 350–361, 2019.

129

Appendices

130

A
Appendix A: Paper A

131

❘❖❙ ✥❘♦❜♦� ❖♣❡✁✂�✐♥❣ ❙②s�❡✄☎ ✐s ✂♥ ♦♣❡♥ s♦✆✁✝❡ ✝♦✄✄✆♥✐�② ✐♥

✁♦❜♦�✐✝s �✞✂� ✐s ✟❡✈❡❧♦♣✐♥❣ s�✂♥✟✂✁✟ ✁♦❜♦�✐✝s ♦♣❡✁✂�✐♥❣ s②s�❡✄

❢✂✝✐❧✐�✐❡s s✆✝✞ ✂s ✞✂✁✟✠✂✁❡ ✂❜s�✁✂✝�✐♦♥✱ ❧♦✠✲❧❡✈❡❧ ✟❡✈✐✝❡ ✝♦♥�✁♦❧✱

✝♦✄✄✆♥✐✝✂�✐♦♥ ✄✐✟✟❧❡✠✂✁❡✱ ✂♥✟ ✂ ✠✐✟❡ ✁✂♥❣❡ ♦❢ s♦✡✠✂✁❡

✝♦✄♣♦♥❡♥�s ❢♦✁ ✁♦❜♦�✐✝s ❢✆♥✝�✐♦♥✂❧✐�②✳ ☛✐s ♣✂♣❡✁ s�✆✟✐❡s �✞❡

q✆✂❧✐�② ✂ss✆✁✂♥✝❡ ♣✁✂✝�✐✝❡s ♦❢ �✞❡ ❘❖❙ ✝♦✄✄✆♥✐�②✳ ☞❡ ✆s❡

q✆✂❧✐�✂�✐✈❡ ✄❡�✞♦✟s �♦ ✆♥✟❡✁s�✂♥✟ ✞♦✠ ✐✟❡♦❧♦❣②✱ ♣✁✐♦✁✐�✐❡s ♦❢ �✞❡

✝♦✄✄✆♥✐�②✱ ✝✆❧�✆✁❡✱ s✆s�✂✐♥✂❜✐❧✐�②✱ ✝♦✄♣❧❡①✐�②✱ ✂♥✟ ✂✟✂♣�✂❜✐❧✐�②

♦❢ �✞❡ ✝♦✄✄✆♥✐�② ✂✌❡✝� �✞❡ ✐✄♣❧❡✄❡♥�✂�✐♦♥ ♦❢ q✆✂❧✐�② ✂ss✆✁✂♥✝❡

♣✁✂✝�✐✝❡s✳ ❖✆✁ ✂♥✂❧②s✐s s✆❣❣❡s�s �✞✂� s♦✡✠✂✁❡ ❡♥❣✐♥❡❡✁✐♥❣

♣✁✂✝�✐✝❡s ✁❡q✆✐✁❡ s♦✝✐✂❧ ✂♥✟ ✝✆❧�✆✁✂❧ ✂❧✐❣♥✄❡♥� ✂♥✟ ✂✟✂♣�✂�✐♦♥ �♦

�✞❡ ✝♦✄✄✆♥✐�② ♣✂✁�✐✝✆❧✂✁✐�✐❡s �♦ ✂✝✞✐❡✈❡ s❡✂✄❧❡ss

✐✄♣❧❡✄❡♥�✂�✐♦♥ ✐♥ ♦♣❡♥ s♦✆✁✝❡ ❡♥✈✐✁♦♥✄❡♥�s✳ ☛✐s ✂❧✐❣♥✄❡♥�

s✞♦✆❧✟ ❜❡ ✐♥✝♦✁♣♦✁✂�❡✟ ✐♥�♦ �✞❡ ✟❡s✐❣♥ ✂♥✟ ✐✄♣❧❡✄❡♥�✂�✐♦♥ ♦❢

q✆✂❧✐�② ✂ss✆✁✂♥✝❡ ♣✁✂✝�✐✝❡s ✐♥ ♦♣❡♥ s♦✆✁✝❡ ✝♦✄✄✆♥✐�✐❡s✳

❖♣❡♥ ❙♦✆✁✝❡ ❙♦✡✠✂✁❡✱ ✍✂❧✐�② ✎ss✆✁✂♥✝❡✱ ❖❙❙ ❈♦✄✄✆♥✐�②✳

❆✏▼ ✑✒✓✒r✒✔❝✒ ✓✕r♠❛t✿

✖✗ ✖✘✙✚✛✜ ❨✗ ✢✛✣✤✛✦❤✜ ✙✧★ ✖✗ ✩✙✪✫✇✪❦✛✗ ✬✵✶✽✗ ✭✧✮✯✰✧✦✰✤✪ ✫✴ ✷✙✘✛✸✹

✖✪✪✯✤✙✧✦✰ ✺✤✙✦✸✛✦✰✪ ✛✧ ✙✧ ✻✼✰✧ ✾✫✯✤✦✰ ❀✫✚✚✯✧✛✸✹✗ ✭✧ P❁❂❃❄❄❞❅❇❉❊ ❂❋ ●●❍■

❏❇❑❄❁❇▲❑❅❂❇▲◆ ❲❂❁◗❊❚❂❯ ❂❇ ❱❂❂❯❄❁▲❑❅❳❄ ▲❇❞ ❩✉❬▲❇ ❭❊❯❄❃❑❊ ❂❋ ❪❂❫❴▲❁❄

❵❇❉❅❇❄❄❁❅❇❉❥ ③❂❑❚❄❇④✉❁❉❥ ❪❴❄❞❄❇❥ ⑤▲⑥ ⑦⑧●⑨ ⑩❱❩❭❪❵ ⑦⑧●⑨❶✗

❤✣✼✪❷❸❸★✫✛✗✫✤❹❸✶✵✗✶✶❺❻❸❼✶❽❻✽❼❾✗❼✶❽❻✽❻❼

❖♣❡♥ ❙♦✆✁✝❡ ❙♦❢�✠✂✁❡ ✥❖❙❙☎ ✝♦✄✄✆♥✐�✐❡s ✞✂✈❡ ❜❡✝♦✄❡ ✂ s❡✁✐♦✆s

✝♦♥�❡♥✟❡✁ ❢♦✁ ✝♦✄✄❡✁✝✐✂❧ s♦❢�✠✂✁❡ s✆♣♣❧②✳ ❿✞❡ ♦♣❡♥ s♦✆✁✝❡

♣✂✁✂✟✐❣✄ ✐s ❣✂✐♥✐♥❣ ✄♦✄❡♥�✆✄ ✐♥ s�✁❡♥❣�✞ ✂♥✟ ✐s ✐♥✝✁❡✂s✐♥❣❧②

✂✟♦♣�❡✟ ❜② �✞❡ �✁✂✟✐�✐♦♥✂❧ s♦❢�✠✂✁❡ ✐♥✟✆s�✁② ➀➁✲➂➃✳ ❿✞✐s ✐♥✟✆s�✁✐✂❧

✐♥�❡✁❡s� ❜✁✐♥❣s ✐�s ♦✠♥ ✁❡q✆✐✁❡✄❡♥� ❢♦✁ ❖❙❙✱ ❡s♣❡✝✐✂❧❧② ✁❡❣✂✁✟✐♥❣

q✆✂❧✐�②✳ ❿✁✂✟✐�✐♦♥✂❧ ♦✁❣✂♥✐➄✂�✐♦♥s ✆s❡ ✂ ✝♦✄❜✐♥✂�✐♦♥ ♦❢ ♣✁✂✝�✐✝❡s✱

♣✁♦✝❡ss❡s✱ ✂♥✟ �❡✝✞♥✐q✆❡s �♦ ♣✁♦✟✆✝❡ q✆✂❧✐�② s♦❢�✠✂✁❡✳ ➅❡� ✠✞✂�

✝✂♥ ❜❡ ✟♦♥❡ ✂♥✟ ✂✝✞✐❡✈❡✟ ✐♥ ✂ �✁✂✟✐�✐♦♥✂❧ s❡��✐♥❣ ✄✐❣✞� ♥♦� ❜❡

✁❡♣✁♦✟✆✝✐❜❧❡ ✐♥ ✂♥ ♦♣❡♥ s♦✆✁✝❡ ✝♦✄✄✆♥✐�②✳ ➆❡♥✝❡✱ ✆♥✟❡✁s�✂♥✟✐♥❣

�✞❡ ✝✞✂❧❧❡♥❣❡s ♦❢ q✆✂❧✐�② ✐✄♣❧❡✄❡♥�✂�✐♦♥ ✐♥ ❖❙❙ ✝♦✄✄✆♥✐�✐❡s ✐s

�✐✄❡❧②✳

➇ ➈➉➊➋➌➍➍➌➎➏ ➐➎ ➋➑➒➉ ➓➌➔➌➐➑→ ➎➊ ➣➑➊➓ ↔➎↕➌➉➍ ➎➙ ➑→→ ➎➊ ↕➑➊➐ ➎➙ ➐➣➌➍ ➛➎➊➒ ➙➎➊ ↕➉➊➍➎➏➑→
➎➊ ↔→➑➍➍➊➎➎➋ ➜➍➉ ➌➍ ➔➊➑➏➐➉➓ ➛➌➐➣➎➜➐ ➙➉➉ ↕➊➎➝➌➓➉➓ ➐➣➑➐ ↔➎↕➌➉➍ ➑➊➉ ➏➎➐ ➋➑➓➉ ➎➊
➓➌➍➐➊➌➞➜➐➉➓ ➙➎➊ ↕➊➎➙➌➐ ➎➊ ↔➎➋➋➉➊↔➌➑→ ➑➓➝➑➏➐➑➔➉ ➑➏➓ ➐➣➑➐ ↔➎↕➌➉➍ ➞➉➑➊ ➐➣➌➍ ➏➎➐➌↔➉ ➑➏➓
➐➣➉ ➙➜→→ ↔➌➐➑➐➌➎➏ ➎➏ ➐➣➉ ➙➌➊➍➐ ↕➑➔➉➟ ➠➎↕➡➊➌➔➣➐➍ ➙➎➊ ↔➎➋↕➎➏➉➏➐➍ ➎➙ ➐➣➌➍ ➛➎➊➒ ➎➛➏➉➓
➞➡ ➎➐➣➉➊➍ ➐➣➑➏ ➢➠➤ ➋➜➍➐ ➞➉ ➣➎➏➎➊➉➓➟ ➢➞➍➐➊➑↔➐➌➏➔ ➛➌➐➣ ↔➊➉➓➌➐ ➌➍ ↕➉➊➋➌➐➐➉➓➟ ➥➎
↔➎↕➡ ➎➐➣➉➊➛➌➍➉➦ ➎➊ ➊➉↕➜➞→➌➍➣➦ ➐➎ ↕➎➍➐ ➎➏ ➍➉➊➝➉➊➍ ➎➊ ➐➎ ➊➉➓➌➍➐➊➌➞➜➐➉ ➐➎ →➌➍➐➍➦ ➊➉➧➜➌➊➉➍
↕➊➌➎➊ ➍↕➉↔➌➙➌↔ ↕➉➊➋➌➍➍➌➎➏ ➑➏➓➨➎➊ ➑ ➙➉➉➟ ➩➉➧➜➉➍➐ ↕➉➊➋➌➍➍➌➎➏➍

➫✐��❧❡ ✐s ➭♥♦✠♥ ♦❢ ✞♦✠ ❖❙❙ ✝♦✄✄✆♥✐�✐❡s ♣❡✁✝❡✐✈❡ q✆✂❧✐�② ✂♥✟

�✞❡ ✝✞✂❧❧❡♥❣❡s ♦❢ ✐✄♣❧❡✄❡♥�✐♥❣ q✆✂❧✐�② ♣✁✂✝�✐✝❡s ✐♥ ❖❙❙

✝♦✄✄✆♥✐�✐❡s✳ ❈♦✄✄✆♥✐�②✲❜✂s❡✟ ♦✁❣✂♥✐➄✂�✐♦♥s ✂✁❡ ✝✆❧�✆✁✂❧❧②

✟✐❢❢❡✁❡♥� ✂♥✟ ✞✂✈❡ ❜❡❡♥ ❡s�✂❜❧✐s✞❡✟ ❜✂s❡✟ ♦♥ ❢✆♥✟✂✄❡♥�✂❧❧②

✟✐❢❢❡✁❡♥� s❡�s ♦❢ ✈✂❧✆❡s ✂♥✟ ❣♦✂❧s✳ ❙♦❢�✠✂✁❡ ❡♥❣✐♥❡❡✁✐♥❣ ♣✁✂✝�✐✝❡s

✂♥✟ �❡✝✞♥✐q✆❡s s❡❡✄ �♦ ❜❡ ✟❡s✐❣♥❡✟ ❣❡♥❡✁✐✝✂❧❧② �♦ ❢✐� ✄♦s�

✝✐✁✝✆✄s�✂♥✝❡s ✂♥✟ ♦✁❣✂♥✐➄✂�✐♦♥✂❧ s❡��✐♥❣s✳ ➆♦✠❡✈❡✁✱ ❖❙❙

✝♦✄✄✆♥✐�✐❡s ✞✂✈❡ s✞♦✠♥ ✆s �✞✂� �✞❡② ✝✂♥ ❜✆✐❧✟ ✞✐❣✞❧②

♣✁♦❢❡ss✐♦♥✂❧ ♣✁♦✟✆✝�s ✆s✐♥❣ s♦✝✐✂❧➯�❡✝✞♥✐✝✂❧ ♣✁♦✝❡ss❡s ➀➲✱ ➳➃✳

✎❧�✞♦✆❣✞ s♦✄❡ ❖❙❙ ♣✁✂✝�✐✝❡s ✂✁❡ ✐♥s♣✐✁❡✟ ❢✁♦✄ �✞❡ s♦❢�✠✂✁❡

❡♥❣✐♥❡❡✁✐♥❣ ➭♥♦✠❧❡✟❣❡ ✂♥✟ ♣✁✂✝�✐✝❡s✱ ✐♥ ✄♦s� ✐♥s�✂♥✝❡s✱ �✞❡

✂✟♦♣�✐♦♥ ✟❡✈✐✂�❡s ❢✁♦✄ �✞❡ ♣✁❡s✝✁✐❜❡✟ ✝♦♥✟✆✝�✳ ❙✝✂✝✝✞✐ ➀➲➃

♦❜s❡✁✈❡s s♦✄❡ ➵✐♥❢♦✁✄✂❧✐s✄s➸ ✐♥ �✞❡ ✂✟♦♣�✐♦♥ ♣✁♦✝❡ss �✞✂� ✁❡❢❧❡✝�

�✞❡ ♣❡✝✆❧✐✂✁✐�✐❡s ♦❢ �✞❡ ✐♥✈♦❧✈❡✟ ✝♦✄✄✆♥✐�②✳ ➆❡ ❜❡❧✐❡✈❡s

➵✐♥❢♦✁✄✂❧✐s✄s➸ ✝✂♣�✆✁❡s �✞❡ ✆♥✐q✆❡♥❡ss ♦❢ ✞♦✠ �✞❡ ✝♦✄✄✆♥✐�②

✠♦✁➭s ✂♥✟ ♣✁♦✟✆✝❡s s♦❢�✠✂✁❡✳ ☞❡ ✠✂♥� �♦ ❧❡✂✁♥ ❢✁♦✄ �✞❡s❡

♣✂✁�✐✝✆❧✂✁✐�✐❡s �♦ ✂ss✐s� ✐♥ �✞❡ ✐✄♣❧❡✄❡♥�✂�✐♦♥ ✂♥✟ ✂✟✂♣�✂�✐♦♥ ♦❢

q✆✂❧✐�② ✂ss✆✁✂♥✝❡ ♣✁✂✝�✐✝❡s✳

❿✞❡ ✝❡♥�✁✂❧ ♦❜➺❡✝�✐✈❡ ♦❢ �✞✐s s�✆✟② ✐s �♦ ✐♥✈❡s�✐❣✂�❡ ✞♦✠ �✞❡

✝♦✄✄✆♥✐�②➻s s♦✝✐✂❧ ✂♥✟ ✝✆❧�✆✁✂❧ �✁✂✐�s ✐♥❢❧✆❡♥✝❡ �✞❡

✐✄♣❧❡✄❡♥�✂�✐♦♥ ♦❢ q✆✂❧✐�② ✂ss✆✁✂♥✝❡ ✥➼✎☎ ♣✁✂✝�✐✝❡s✱ �❡✝✞♥✐q✆❡s✱

✂♥✟ �♦♦❧s✳ ☞❡ ✐♥✈❡s�✐❣✂�❡ �✞❡ ❢♦❧❧♦✠✐♥❣ q✆❡s�✐♦♥s➽

☞✞✂� ✂✁❡ �✞❡ ❢♦✁✝❡s ✐♥❢❧✆❡♥✝✐♥❣ �✞❡ ✐✄♣❧❡✄❡♥�✂�✐♦♥ ♦❢

q✆✂❧✐�② ✂ss✆✁✂♥✝❡ ♣✁✂✝�✐✝❡s ✐♥ �✞❡ ❘❖❙ ✝♦✄✄✆♥✐�②➾

➆♦✠ ✟♦ s♦✝✐✂❧ ✂♥✟ ✝✆❧�✆✁✂❧ ✈✂✁✐✂❜❧❡s ✐♥❢❧✆❡♥✝❡ �✞❡

✐✄♣❧❡✄❡♥�✂�✐♦♥ ✂♥✟ ❡①❡✝✆�✐♦♥ ♦❢ ♣✁✂✝�✐✝❡s➾

☞❡ ✟❡❢✐♥❡ �✞❡ �❡✁✄ ➵♣✁✂✝�✐✝❡➸ ✐♥ ❧✐♥❡ ✠✐�✞ ✂s ➵➚ ✂ ✝♦✄✄♦♥

✠✂② ♦❢ ✂✝�✐♥❣✱ ✂✝➭♥♦✠❧❡✟❣❡✟ ❜② ✂ ✝♦✄✄✆♥✐�② ✂s �✞❡ ✝♦✁✁❡✝� ✠✂②

�♦ ✟♦ �✞✐♥❣s✳ ➪� ✝✂♥ ❜❡ �✂✆❣✞� �♦ ♥❡✠✝♦✄❡✁s ❜② ❧❡��✐♥❣ �✞❡✄ �✂➭❡

♣✂✁� ✐♥ �✞✐s ♣✁✂✝�✐✝❡ ✂s ✂♥ ✂♣♣✁❡♥�✐✝❡ ➀➶➃✳ ✎ ✝♦✄✄✆♥✐�② ✄✂✐♥�✂✐♥s

�✞❡ ✝♦✄✄♦♥ ♣✁✂✝�✐✝❡ �✞✁♦✆❣✞ ✄♦✁❡ ♦✁ ❧❡ss ❢♦✁✄✂❧ ➹✂✁�✐✝✆❧✂�✐♦♥

✠♦✁➭➻ ➀➘➃ ✠✞✐✝✞ ✐s ✂❧s♦ �✞❡ ✄❡✂♥s �♦✞✂♥✟❧❡ ❡①✝❡♣�✐♦♥✂❧ s✐�✆✂�✐♦♥s✳

✎✟✲✞♦✝ ❜❡✞✂✈✐♦✁➴✂❧✠✂②s ♥❡✝❡ss✂✁② �♦ ✞✂♥✟❧❡ ❡①✝❡♣�✐♦♥s ✂♥✟ �♦

✄✂✐♥�✂✐♥ �✞❡ ➹♥♦✁✄✂❧➻ ➀➷➃➴✐s ✂s s✆✝✞ ♦♥❧② ♣❡✁✝❡✐✈✂❜❧❡ ❜② ✐�s

✟❡✈✐✂�✐♦♥ ❢✁♦✄ ❜♦�✞ �✞❡ ❢♦✁✄✂❧✐➄❡✟ ✁✆❧❡s ✂♥✟ �✞❡ ❡s�✂❜❧✐s✞❡✟

♣✁✂✝�✐✝❡✳➸ ➀➬➃✳

❿✞❡ ❘❖❙ ❈♦✄✄✆♥✐�② ✐s ❧✂✁❣❡ ✂♥✟ ✟✐✈❡✁s❡✳ ➪�s ☞✐➭✐ ♣❧✂�❢♦✁✄

✁❡✝❡✐✈❡s ♦✈❡✁ ➁✳➳ ✄✐❧❧✐♦♥ ✆♥✐q✆❡ ✈✐s✐�♦✁s ✂ ②❡✂✁ ✂♥✟ ✞✂s ➘✱➷➳➮

✁❡❣✐s�❡✁❡✟ ✆s❡✁s✳ ❿✞❡ ✝♦✄✄✆♥✐�② ➵✟✐s✝♦✆✁s❡➸ ✁❡✝❡✐✈❡s ✂♥ ✂✈❡✁✂❣❡

♦❢ ➁➶➱ ♣♦s�s ✂ ✠❡❡➭✳ ❿✞❡ �♦�✂❧ ✟♦✠♥❧♦✂✟s ♦❢ �✞❡ ✳✟❡❜ ♣✂✝➭✂❣❡s ✐s

♦✈❡✁ ➁➲✳➳ ✄✐❧❧✐♦♥✳ ❖✈❡✁ �❡♥ ②❡✂✁s✱ ❘❖❙ ✞✂s ❜❡✝♦✄❡ ♦♥❡ ♦❢ ✁♦❜♦�✐✝s➻

➙➊➎➋ ➈➉➊➋➌➍➍➌➎➏➍✃➑↔➋➟➎➊➔➟

❐❒❮❰ÏÐÑÒÓ ➤➑➡ ÔÕ➦ ÔÖ×Ø➦ Ù➎➐➣➉➏➞➜➊➔➦ Ú➛➉➓➉➏
Û ÔÖ×Ø ➢➍➍➎↔➌➑➐➌➎➏ ➙➎➊ ➠➎➋↕➜➐➌➏➔ ➤➑↔➣➌➏➉➊➡➟
➢➠➤ ÜÚÝÞ ßÕØà×àáâÖãàâÕÔâàØ➨×Ø➨Öâäå×â➟ÖÖ
➣➐➐↕➍æ➨➨➓➎➌➟➎➊➔➨×Ö➟××áâ➨ã×ßâØãç➟ã×ßâØâã

èé

êëìí îïðñòóóó ììôõ òöô÷øöùôúûöùü ýûøþÿõû✷ ûö ïûû✷÷øùôú�÷ ùö✁ ✂✄☎ùö îÿ✷÷✆ôÿ û✝ ✞û✝ô✟ùø÷ óö✠úö÷÷øúö✠

❈�❆✁❊✂✶✄☎ ▼❛✆ ✥✼✱ ✥✵✝✽✱ ●✞t❤❡✟❜✠✡❣✱ ☛☞❡✌❡✟ ✍✎❛♠✐✱ ❉✐tt✡✐✏❤ ❛✟✌✑❛s✞☞s❦✐

❞✒ ✓✔❝✕✖ s�✂♥✟✂✁✟ ♦♣❡✁✂�✐♥❣ s②s�❡✄s✳ ❿✞❡ ❘❖❙ ✝♦✄✄✆♥✐�② ✞✂s

✟✐❢❢❡✁❡♥� ✂��✁✐❜✆�❡s �✞✂♥ �✞❡ ✝♦✄✄♦♥❧② s�✆✟✐❡✟ ♦♥❡s ✥✐✳❡✳✱ ➫✐♥✆①

✂♥✟ ✗♦➄✐❧❧✂☎✳ ✘✐✁s�✱ ✐� ♣✁♦✟✆✝❡s s♦❢�✠✂✁❡ ✝♦✄♣♦♥❡♥�s ❢♦✁ ✁♦❜♦�✐✝s✳

❙❡✝♦♥✟✱ ✐� ✐s ✂ ✄✆❧�✐✟✐s✝✐♣❧✐♥✂✁② ✝♦✄✄✆♥✐�②✳ ❿✞✐✁✟✱ ✄♦s� ❘❖❙

✟❡✈❡❧♦♣❡✁s ✂✁❡ ♥♦� s♦❢�✠✂✁❡ ❡♥❣✐♥❡❡✁s✳ ❿✞❡✐✁ ❡✟✆✝✂�✐♦♥✂❧

❜✂✝➭❣✁♦✆♥✟ ✐s ✟✐✈❡✁s❡ ❜✆� ✄✂✐♥❧② ❢✁♦✄ ✄❡✝✞✂♥✐✝s ✂♥✟ ❡❧❡✝�✁♦♥✐✝s

✟✐s✝✐♣❧✐♥❡s✳ ➪♥ ✂✟✟✐�✐♦♥✱ ✄❡✄❜❡✁s ✞✂✈❡ ✈✂✁②✐♥❣ ♣✁♦❢❡ss✐♦♥✂❧

❡①♣❡✁✐❡♥✝❡s ✥✐✳❡✳ ♣✂✝➭✂❣❡s ✟❡✈❡❧♦♣❡✁s✱ s�✆✟❡♥�s✱ ❈❿❖s✱ ❡�✝✳☎

☞❡ ❢✐♥✟ �✞✂� �✞❡ ✝♦✄✄✆♥✐�② ✞✂s ✂ s�✁♦♥❣ q✆✂❧✐�② ✂✠✂✁❡♥❡ss✳

❙♦✄❡ ✐♥✟✆s�✁②✲✠✐✟❡ ✂✝✝❡♣�❡✟ ♣✁✂✝�✐✝❡s ✞✂✈❡ ❜❡❡♥ ✐✄♣❧❡✄❡♥�❡✟➽

✥➁☎ ✠❡❧❧✲✟❡❢✐♥❡✟ ✟❡✈❡❧♦♣✄❡♥� ♣✁♦✝❡ss✱ ✥➂☎ ✟❡❢❡✝�s ✄✂♥✂❣❡✄❡♥�

♣✁♦✝❡ss ✂♥✟ �♦♦❧✱ ✥➲☎ ✝♦✟❡ ✁❡✈✐❡✠✱ ✥➳☎ ✝♦♥�✐♥✆♦✆s ✐♥�❡❣✁✂�✐♦♥✱ ✥➶☎

✆♥✐� �❡s�✐♥❣✱ ✂♥✟ ✥➘☎ ➭♥♦✠❧❡✟❣❡ s✞✂✁✐♥❣✳ ➆♦✠❡✈❡✁✱ �✞❡s❡ q✆✂❧✐�②

♣✁✂✝�✐✝❡s ✂✁❡ ❡①♣❡✁✐❡♥✝✐♥❣ ✐✄♣❧❡✄❡♥�✂�✐♦♥ ✂♥✟ ❡①❡✝✆�✐♦♥

✝✞✂❧❧❡♥❣❡s✳ ❙✐① ❢♦✁✝❡s ✂♥✟ ✝♦♥s�✁✂✐♥�s➴♣✂✁�✐✝✐♣✂�✐♦♥ ✄♦�✐✈❡s✱

♣✁✐♦✁✐�✐❡s ♦❢ �✞❡ ✝♦✄✄✆♥✐�②✱ ✄❡✁✐�♦✝✁✂�✐✝ ✝✆❧�✆✁❡✱ s✆s�✂✐♥✂❜✐❧✐�②✱

✝♦✄♣❧❡①✐�② ✂♥✟ ✂✟✂♣�✂❜✐❧✐�② ♦❢ �✞❡ ✝♦✄✄✆♥✐�②➴✞✂✈❡ ❣✁❡✂�❧②

✐♥❢❧✆❡♥✝❡✟ �✞❡ ✐✄♣❧❡✄❡♥�✂�✐♦♥ ♦❢ ➼✎ ✐♥ �✞❡ ❘❖❙ ✝♦✄✄✆♥✐�②✳ ❿✞❡

✝✆❧�✆✁✂❧ �✁✂✐�s ♦❢ �✞❡ ✝♦✄✄✆♥✐�② ✂❧s♦ s✠✂② �✞❡ ➼✎

✐✄♣❧❡✄❡♥�✂�✐♦♥✳ ✘✆✁�✞❡✁✄♦✁❡✱ �✞❡ q✆✂❧✐�② ♣✁✂✝�✐✝❡s ✐♥ ♣❧✂✝❡ ✂✁❡

✝♦♥s�✁✂✐♥❡✟ ❜② s✆s�✂✐♥✂❜✐❧✐�② ✐ss✆❡s ✂♥✟ �✞❡ ✝♦✄♣❧❡①✐�② ♦❢ �✞❡

♣✁♦✝❡ss ♦❢ ✟❡✈❡❧♦♣✐♥❣ ✁♦❜♦�✐✝ s②s�❡✄s✳

❿✞✐s ♣✂♣❡✁ ✁❡♣♦✁�s ♦♥ ✂ q✆✂❧✐�✂�✐✈❡ ✁❡s❡✂✁✝✞ ♦♥ s♦❢�✠✂✁❡ ➼✎

♣✁✂✝�✐✝❡s ❢♦❧❧♦✠✐♥❣ ✂ ✄✐①❡✟ ✁❡s❡✂✁✝✞ ✄❡�✞♦✟✳ ✗✐①❡✟ ✄❡�✞♦✟s

✟❡❡♣❡♥ ✆♥✟❡✁s�✂♥✟✐♥❣ ♦❢ �✞❡ ✁❡s❡✂✁✝✞ ♣✁♦❜❧❡✄✳ ❿✞✁❡❡ �❡✝✞♥✐q✆❡s

✞✂✈❡ ❜❡❡♥ ✆s❡✟➽ ✐♥�❡✁✈✐❡✠s ✠✐�✞ �❡♥ ♣✂✁�✐✝✐♣✂♥�s✱ ✈✐✁�✆✂❧

❡�✞♥♦❣✁✂♣✞②✱ ✂♥✟ ✝♦✄✄✆♥✐�② ✁❡✂✝✞✲♦✆�s✳ ➪♥ �✞❡ ❧✂s� ✟❡✝✂✟❡✱ �✞❡

❢♦✝✆s ♦❢ ❖❙❙ s�✆✟✐❡s ✞✂s ❜❡❡♥ ♦♥ ➵✞✐❣✞ ♣✁♦❢✐❧❡➸ ✝♦✄✄✆♥✐�✐❡s✱ ❧✐➭❡

✗♦➄✐❧❧✂✱ �✞❡ ➫✐♥✆① ❑❡✁♥❡❧✱ ✂♥✟ ✎♣✂✝✞❡✳ ☞❡ s❡❧❡✝�❡✟ ❘❖❙ ❢♦✁ ✐�s

✆♥✐q✆❡♥❡ss ✂s ✁♦❜♦�✐✝s s♦❢�✠✂✁❡ ✠✐�✞ ✂ ❧✂✁❣❡ ✂♥✟ ✟✐✈❡✁s❡

♣✂✁�✐✝✐♣✂♥� ❜✂s❡✳ ❿✞✐s ✠✐❧❧ ✝♦♥�✁✐❜✆�❡ �♦ �✞❡ ✟✐✈❡✁s✐�② ♦❢ �✞❡

s✂✄♣❧❡s s�✆✟✐❡✟ ♣✁❡✈✐♦✆s❧②✳

☞❡ ✐✟❡♥�✐❢✐❡✟ �✠♦ s�✁❡✂✄s ♦❢ ✁❡❧✂�❡✟ ✠♦✁➭➽ ✥➁☎ ✠✞✂� �✞❡ ➼✎

♣✁✂✝�✐✝❡s ✐♥ ❖❙❙ ✝♦✄✄✆♥✐�✐❡s ✂✁❡ ✂♥✟ ✥➂☎ ✞♦✠ q✆✂❧✐�② ✐s ✂ss✆✁❡✟

✐♥ ❖❙❙ ✟❡✈❡❧♦♣✄❡♥�✳

◗✙ ✚r✔❝✕✛❝✒✜ ✛✢ ✣✤✤ ✦✖✧✧✉✢✛✕✛✒✜★ ➪❙❖ ✟❡❢✐♥❡s ➼✎ ✂s ➵❢♦✝✆s❡✟

♦♥ ♣✁♦✈✐✟✐♥❣ ✝♦♥❢✐✟❡♥✝❡ �✞✂� q✆✂❧✐�② ✁❡q✆✐✁❡✄❡♥�s ✠✐❧❧ ❜❡

❢✆❧❢✐❧❧❡✟➸ ➀➮➃✳ ➪� ✐s ✂ s❡� ♦❢ ✂✝�✐✈✐�✐❡s ❢♦✁ ❡♥s✆✁✐♥❣ q✆✂❧✐�② ✐♥ s♦❢�✠✂✁❡

❡♥❣✐♥❡❡✁✐♥❣ ♣✁♦✝❡ss❡s �✞✂� ✆❧�✐✄✂�❡❧② s✞♦✆❧✟ ✁❡s✆❧� ✐♥ q✆✂❧✐�②

s♦❢�✠✂✁❡ ♣✁♦✟✆✝�s✳ ➆✂❧❧♦✁✂♥ ✂♥✟ ❙✝✞❡✁❧✐s ➀➁➱➃ s✆✁✈❡②❡✟ ❡❧❡✈❡♥

❖❙❙ ♣✁♦➺❡✝�s �♦ ✐✟❡♥�✐❢② �✞❡ ➼✎ ♣✁✂✝�✐✝❡s ✂✟♦♣�❡✟ ❜② �✞❡

✝♦✄✄✆♥✐�✐❡s✳ ❿✞❡② ♦❜s❡✁✈❡✟ ✂ ✈✂✁✐✂�✐♦♥ ✐♥ �✞❡ ✂✟♦♣�✐♦♥ ✂♥✟

✐✄♣❧❡✄❡♥�✂�✐♦♥ ♦❢ ➼✎✳ ☞✞✐❧❡ s♦✄❡ ✝♦✄✄✆♥✐�✐❡s ✥✐✳❡✳✱ ✗♦➄✐❧❧✂ ✂♥✟

◆❡�❇❡✂♥s☎ ✞✂✈❡ ✟❡✟✐✝✂�❡✟ ➼✎ �❡✂✄s ✂♥✟ ✠❡❧❧✲❡s�✂❜❧✐s✞❡✟ ➼✎

♣✁✂✝�✐✝❡s✱ ♦�✞❡✁ ✝♦✄✄✆♥✐�✐❡s s❡❡✄ �♦ ❢♦❧❧♦✠ �✞❡ ♣✁✂✝�✐✝❡s ♦♥❧②

✁✆✟✐✄❡♥�✂✁✐❧②✳ ✩♥❢♦✁�✆♥✂�❡❧②✱ ♥♦ ✝❧❡✂✁ ♣✂��❡✁♥ ❡✄❡✁❣❡s ♦♥ ✠✞❡♥

✂ ♣✁✂✝�✐✝❡ s✆✝✝❡❡✟s ✂♥✟ ✠✞❡♥ ✐� ❢✂✐❧s✳ ➪♥ ♦✁✟❡✁ �♦ ✆♥✟❡✁s�✂♥✟ ✠✞②

s♦✄❡ ✝♦✄✄✆♥✐�✐❡s s✆✝✝❡❡✟❡✟ ✐♥ ✐✄♣❧❡✄❡♥�✐♥❣ s♦✄❡ ➼✎ ♣✁✂✝�✐✝❡s

s✆✝✝❡ss❢✆❧❧② ✠✞✐❧❡ ♦�✞❡✁s ✟✐✟ ♥♦�✱ ✠❡ s�✆✟② �✞❡ ✐♥❢❧✆❡♥✝❡✁s ♦❢ ✂

s✆✝✝❡ss❢✆❧ ➼✎ ✐✄♣❧❡✄❡♥�✂�✐♦♥ ✂♥✟ ❡①❡✝✆�✐♦♥✳

✗✐✝✞❧✄✂②✁ ✂♥✟ ✝♦✂✆�✞♦✁s ➀➁➁➃ s�✆✟✐❡✟ q✆✂❧✐�② ♣✁✂✝�✐✝❡s ✐♥

s❡✈❡♥ ❖❙❙ ✝♦✄✄✆♥✐�✐❡s✳ ❿✞❡② ❢♦✆♥✟ �✞✂� �✞❡ ✟❡❣✁❡❡ ♦❢ ✂✟♦♣�✐♦♥

♦❢ q✆✂❧✐�② ♣✁✂✝�✐✝❡s ✐♥❢❧✆❡♥✝❡s �✞❡ ♦✈❡✁✂❧❧ q✆✂❧✐�② ♦❢ �✞❡

✝♦✄✄✆♥✐�② ♣✁♦✟✆✝�✳ ❿✞❡② ✐✟❡♥�✐❢② ✂ s❡� ♦❢ q✆✂❧✐�② ♣✁✂✝�✐✝❡s �✂➭✐♥❣

♣❧✂✝❡ ✐♥ �✞❡ s�✆✟✐❡✟ ✝♦✄✄✆♥✐�✐❡s➽ ♥❡✠ ✄❡✄❜❡✁s ➺♦✐♥✐♥❣✱ ✁❡❧❡✂s❡

✄✂♥✂❣❡✄❡♥�✱ ❜✁✂♥✝✞ ✄✂♥✂❣❡✄❡♥�✱ ♣❡❡✁ ✁❡✈✐❡✠✱ �❡s�✐♥❣✱ ✟❡❢❡✝�s

✄✂♥✂❣❡✄❡♥�✱ ✂♥✟ s�✂♥✟✂✁✟s ✂♥✟ ❣✆✐✟❡❧✐♥❡s ✟♦✝✆✄❡♥�✂�✐♦♥✳

✎❧�✞♦✆❣✞ �✞❡s❡ ♣✁✂✝�✐✝❡s ✂✁❡ ♣✁✂✐s❡✟ ✐♥✟✆s�✁②✲✠✐✟❡✱ s♦✄❡ ✂✁❡ ♥♦�

❢♦✁✄✂❧✐➄❡✟✱ ✂♥✟ �✞❡ ✐✄♣❧❡✄❡♥�✂�✐♦♥ ❢✂✝❡s ✝✞✂❧❧❡♥❣❡s✳ ❿✞❡② ❧✐s� s✐①

q✆✂❧✐�② ♣✁✂✝�✐✝❡s ✐ss✆❡s➽ ✆♥✄✂✐♥�✂✐♥❡✟ ✝♦✟❡✱ ✄✂♥✂❣✐♥❣ ✈✂✁✐✂❜✐❧✐�②✱

❧✂�❡♥✝② ✐♥ s❡✝✆✁✐�② ❢✐①❡s ✂♥✟ ✆♣✟✂�❡s✱ ✂✄❜✐❣✆♦✆s ❜✆❣s ✁❡♣♦✁�✐♥❣

♣✁♦✝❡ss✱ ✟✐❢❢✐✝✆❧�② ✂��✁✂✝�✐♥❣ ♥❡✠ ♣✂✁�✐✝✐♣✂♥�s✱ ✂♥✟ �✂s➭

✝♦♦✁✟✐♥✂�✐♦♥ ♣✁♦❜❧❡✄s✳ ➆♦✠❡✈❡✁✱ �✞❡② ✟♦ ♥♦� ✂♥✂❧②➄❡ �✞❡ ✁♦♦�

✝✂✆s❡s ♦❢ �✞❡s❡ ✐ss✆❡s✳

❩✞✂♦ ✂♥✟ ✪❧❜✂✆✄ ➀➁➂➃ ✁❡♣♦✁� �✞✂� s♦❢�✠✂✁❡ ✟❡✈❡❧♦♣✄❡♥� �♦♦❧s

✂✁❡ ♣♦♣✆❧✂✁ ✐♥ ❖❙❙ ✝♦✄✄✆♥✐�✐❡s✫ ➷➶✬ ♦❢ �✞❡ ✁❡s♣♦♥✟❡♥�s ♦❢ �✞❡✐✁

s✆✁✈❡② ✆s❡ ✝♦♥❢✐❣✆✁✂�✐♦♥ ✄✂♥✂❣❡✄❡♥� �♦♦❧s✱ ✂♥✟ ➘➁✬ ♦❢ �✞❡

♣✁♦➺❡✝�s ❡✄♣❧♦② ❜✆❣ �✁✂✝➭✐♥❣ �♦♦❧s✳ ✎� �✞❡ s✂✄❡ �✐✄❡✱

✟♦✝✆✄❡♥�✂�✐♦♥ ✐s ♥♦� ♣♦♣✆❧✂✁✫ ♦♥❧② ➲➂✬ ♦❢ s✆✁✈❡②❡✟ ♣✁♦➺❡✝�s ✞✂✈❡

✟❡s✐❣♥ ✟♦✝✆✄❡♥�s✱ ✂♥✟ ♦♥❧② ➂➱✬ ✞✂✈❡ ✟♦✝✆✄❡♥�s �♦ ♣❧✂♥ ✁❡❧❡✂s❡s✳

✗♦✁❡ �✞✂♥ ✞✂❧❢ ✥➶➬✬☎ ♦❢ �✞❡ ♣✁♦➺❡✝�s s♣❡♥� ✄♦✁❡ �✞✂♥ ➂➱✬ ♦❢ �✞❡✐✁

�✐✄❡ ♦♥ �❡s�✐♥❣✱ ❜✆� ♦♥❧② ➁➶✬ ♦❢ �✞❡ ♣✁♦➺❡✝�s s♣❡♥� ✄♦✁❡ �✞✂♥ ➳➱✬

♦❢ �✞❡✐✁ �✐✄❡ ♦♥ �❡s�✐♥❣✳ ➪� s❡❡✄s �✞✂� ❧✂✁❣❡✁ ♣✁♦➺❡✝�s �❡♥✟ �♦ s♣❡♥✟

❧❡ss �✐✄❡ ♦♥ �✞❡✐✁ �❡s�✐♥❣ ♣✞✂s❡ ✝♦✄♣✂✁❡✟ �♦ s✄✂❧❧❡✁ ♣✁♦➺❡✝�s✳

❿✞❡② ❢✐♥✟ �✞✂� ➂➱➯➳➱✬ ♦❢ ❜✆❣s ✂✁❡ ✐✟❡♥�✐❢✐❡✟ ❜② ❡♥✟ ✆s❡✁s✳ ❿✞✐s

✂❣✁❡❡s ✠✐�✞ ✂ q✆✂❧✐�✂�✐✈❡ s✆✁✈❡② ♦❢ ➆✂❧❧♦✁✂♥ ✂♥✟ ❙✝✞❡✁❧✐s ➀➁➱➃✳ ❿✞❡

✐✄♣❧❡✄❡♥�✂�✐♦♥ ♦❢ �❡s�✐♥❣ ♣✁✂✝�✐✝❡s ✈✂✁✐❡s ✂✝✁♦ss ✝♦✄✄✆♥✐�✐❡s✳

✎❧s♦✱ ♥♦♥✲♣✁♦❣✁✂✄✐♥❣ ✂✝�✐✈✐�✐❡s ✥✐✳❡✳✱ ✟♦✝✆✄❡♥�✂�✐♦♥☎ ✂✁❡ ♥♦�

❢✂✈♦✁❡✟ ❜② ✝♦♥�✁✐❜✆�♦✁s✳ ➅❡� ✠✞✂� ✄✂➭❡s s♦✄❡ ✝♦✄✄✆♥✐�✐❡s

➭❡❡♥❧② ❡✄❜✁✂✝❡ �❡s�✐♥❣ ♣✁✂✝�✐✝❡s ✠✞✐❧❡ ♦�✞❡✁s s❡❡✄ �♦ s✞② ❢✁♦✄ ✐�

✞✂s ♥♦� ❜❡❡♥ ✐♥✈❡s�✐❣✂�❡✟✳ ❿✞❡✁❡ ✐s ✂ ♥❡❡✟ ❢♦✁ s�✆✟✐❡s �♦

✐♥✈❡s�✐❣✂�❡ ❢✆✁�✞❡✁ ✠✞② ♥♦♥✲♣✁♦❣✁✂✄✐♥❣ �✂s➭s ✂✁❡ ♥♦� s�✐✄✆❧✂�✐♥❣

❢♦✁ ❖❙❙ ✟❡✈❡❧♦♣❡✁s✳

❘✐❣❜② ❡� ✂❧✳ ➀➁➲➃ ✂✁❣✆❡ �✞✂� ✟❡s♣✐�❡ ❜❡✐♥❣ ✟✐❢❢✐✝✆❧� �♦

✐✄♣❧❡✄❡♥�✱ ✝♦✟❡ ♣❡❡✁ ✁❡✈✐❡✠ ✐s ❧✂✁❣❡❧② ✂✟♦♣�❡✟ ❜② ❖❙❙

✝♦✄✄✆♥✐�✐❡s ✂s ✂ ✝❡♥�✁✂❧ q✆✂❧✐�② ✝♦♥�✁♦❧ ♣✁✂✝�✐✝❡✳ ❿✞❡② s�✆✟✐❡✟

�✞❡ ❡❢❢✐✝✐❡♥✝② ✂♥✟ �✞❡ ❡❢❢❡✝�✐✈❡♥❡ss ♦❢ �✞❡ ♣✁✂✝�✐✝❡ ✐♥ ❖❙❙

✝♦✄✄✆♥✐�✐❡s✳ ❿✞❡② ❢♦✆♥✟ �✞✂� �✞❡ ❡❢❢✐✝✐❡♥✝② ✂♥✟ �✞❡ ❡❢❢❡✝�✐✈❡♥❡ss

♦❢ �✞❡ ♣✁✂✝�✐✝❡ ✟❡♣❡♥✟ ♦♥ �✞❡ ❧❡✈❡❧ ♦❢ �✞❡ ♣✂✁�✐✝✐♣✂�✐♦♥ ✐♥ �✞❡

✁❡✈✐❡✠ ♣✁♦✝❡ss✱ �✞❡ s✐➄❡ ♦❢ �✞❡ ✝✞✂♥❣❡✱ ✂♥✟ �✞❡ ✂✆�✞♦✁➻s ❡①♣❡✁✐❡♥✝❡

✂♥✟ ❡①♣❡✁�✐s❡✳ ☞✞✐❧❡ �✞❡ ✂✆�✞♦✁ ❡①♣❡✁�✐s❡ s✞♦✁�❡♥s �✞❡ ✁❡✈✐❡✠

✝②✝❧❡✱ �✞❡ s✐➄❡ ✂♥✟ �✞❡ ✝♦✄♣❧❡①✐�② ♦❢ �✞❡ ✝✞✂♥❣❡ ❡❧♦♥❣✂�❡s �✞❡

✝②✝❧❡✳

➫✆ss✐❡✁ ➀➁➳➃ ✁❡✝♦✆♥�s �✞❡ ❡①♣❡✁✐❡♥✝❡ ♦❢ ✞✐s �❡✂✄ ➺♦✐♥✐♥❣ �✞❡

☞✐♥❡ ♣✁♦➺❡✝�✱ ✂♥ ♦♣❡♥ s♦✆✁✝❡ ✐✄♣❧❡✄❡♥�✂�✐♦♥ ♦❢ �✞❡ ☞✐♥✟♦✠s

✎P➪✳ ❿✞❡ �❡✂✄ ✐s ✝♦❧❧♦✝✂�❡✟ ✂♥✟ ✂❢❢✐❧✐✂�❡✟ ✠✐�✞ ✂ s♦❢�✠✂✁❡ s�✁✂�❡❣②

✂♥✟ ✁❡s❡✂✁✝✞ ✝♦♥s✆❧�✐♥❣ s❡✁✈✐✝❡s ❢✐✁✄✳ ❿✞❡✐✁ ❢✐✁s� ✝♦♥�✁✐❜✆�✐♦♥ ✟✐✟

♥♦� ♣✂ss �✞❡ ✝♦✟❡ ✁❡✈✐❡✠ ♣✁♦✝❡ss s✐♥✝❡ ✐� ✟✐✟ ♥♦� ✄❡❡� �✞❡

✝♦✄✄✆♥✐�② s�✂♥✟✂✁✟s✳ ➆❡ ✁❡✝✂❧❧s✱ ➵❿❡✂✄ ✄❡✄❜❡✁s ✠✂�✝✞ �✞❡ ✝♦✟❡

✝✂✁❡❢✆❧❧②✳ ◆♦ ♦♥❡ ✠✂♥�s �♦ s❡❡ ❜✆❣s ✐♥�✁♦✟✆✝❡✟ ✐♥�♦ �✞❡ s♦✆✁✝❡

�✁❡❡ ➚ ✂ ✁❡✂❧ s❡♥s❡ ♦❢ ♦✠♥❡✁s✞✐♣✱ ♦❢ ♣✁✐✟❡ ✐♥ �✞❡ ✠♦✁➭✱ ❡①✐s�s ♦♥

☞✐♥❡✳➸ ➪♥✐�✐✂❧❧②✱ �✞❡ �❡✂✄ ✁❡s❡♥�❡✟ �✞❡ ✁❡➺❡✝�✐♦♥✳ ➆♦✠❡✈❡✁✱ ✂❢�❡✁

�✞✁❡❡ ✝♦♥s❡✝✆�✐✈❡ ✁❡➺❡✝�✐♦♥s✱ �✞❡② ✂✟✂♣�❡✟ �✞❡✐✁ ♣✁♦❣✁✂✄✐♥❣

s�✂♥✟✂✁✟s �♦ �✞❡ ✝♦✄✄✆♥✐�② s�✂♥✟✂✁✟s ✂♥✟ ✝♦♥✈❡♥�✐♦♥s✳ ❿✞✐s

♥✂✁✁✂�✐✈❡ ✐s ✝♦♥s✐s�❡♥� ✠✐�✞ �✞❡ ✠✐✟❡❧② ✂✝✝❡♣�❡✟ ✂ss✆✄♣�✐♦♥ �✞✂�

❖❙❙ q✆✂❧✐�② ✐s ♦✠❡✟ �♦ ♣❡❡✁ ✁❡✈✐❡✠✳ ✪❧s❡✠✞❡✁❡✱ ✝♦✟❡ ✐s ✂❧s♦

✝❧✂✐✄❡✟ �♦ ❜❡ ♦❢ ✞✐❣✞ q✆✂❧✐�② ❜❡✝✂✆s❡ ✐� ✐s ✝✁❡✂�❡✟ ✠✐�✞ ♣✂ss✐♦♥✱

è✻

✂♥✟ ✟❡✈❡❧♦♣❡✁s ✂✁❡ ✞✐❣✞❧② ✄♦�✐✈✂�❡✟ ❜❡✝✂✆s❡ �✞❡② ❡♥➺♦② ✠✞✂�

�✞❡② ✟♦ ➀➁➶➃✳

❍✖✇ ✛✜ q✉✔❛✛✕② ✔✜✜✉r✒❞ ✛✢ ✣✤✤ ❞✒✈✒❛✖♣✧✒✢✕t ➪♥ �✞❡ ✝❧♦s❡✟ s♦✆✁✝❡

s♦❢�✠✂✁❡ ✟❡✈❡❧♦♣✄❡♥�✱ ➼✎ ✁❡❧✐❡s ♦♥ ♣✁♦✝❡✟✆✁✂❧ ✁✐❣♦✁✱ ❡①�❡♥s✐✈❡

�❡s�✐♥❣✱ ✂♥✟ ✞✐❣✞ �❡s�✐♥❣ ✝♦✈❡✁✂❣❡✳ ➼✆✂❧✐�② ✐♥ ❖❙❙ ✐s ✂ss✆✁❡✟ ❜②

✟❡✈❡❧♦♣✄❡♥� ✥✝♦✟❡ ✄♦✟✆❧✂✁✐�② ✂♥✟ ❢✁❡q✆❡♥� ✁❡❧❡✂s❡s☎✱ ♥♦� ❜②

✝♦♥�✁♦❧✳ ✎ss✆✁✐♥❣ q✆✂❧✐�② ✐s ✞✐❣✞❧② ✟❡♣❡♥✟❡♥� ♦♥ ✞✐❣✞

♣✂✁�✐✝✐♣✂�✐♦♥ ✐♥ �✞❡ ♣✁♦➺❡✝�✳ ➆✐❣✞ ♣✂✁�✐✝✐♣✂�✐♦♥ ✂♥✟ ❢✁❡q✆❡♥�

✁❡❧❡✂s❡s ✝✁❡✂�❡ ❡♥❡✁❣② ✐♥ �✞❡ ✟❡✈❡❧♦♣✄❡♥� ♣✁♦✝❡ss✳ ❿✞✐s ❢✂✝✐❧✐�✂�❡s

❜✆❣ ✟✐s✝♦✈❡✁② ✂♥✟ ❣❡♥❡✁✂�❡s ✂ ❢✂s� ❢❡❡✟❜✂✝➭ ✝②✝❧❡✳ ❈♦♥s❡q✆❡♥�❧②✱

✟❡❢❡✝�s ✂✁❡ ✐✟❡♥�✐❢✐❡✟ ✂♥✟ ✝♦✁✁❡✝�❡✟ ✄♦✁❡ q✆✐✝➭❧② ➀➁➶➃✳

✗♦s� s✆✝✝❡ss❢✆❧ ❖❙❙ ♣✁♦➺❡✝�s ✂✁❡ s✆s�✂✐♥✂❜❧❡ ✂♥✟ ✂♣♣❧②

s�✁✆✝�✆✁❡✟ ✂♥✟ ♦✁❣✂♥✐➄❡✟ ✟❡✈❡❧♦♣✄❡♥� ♣✁♦✝❡ss❡s✳ ❖��❡ ✂♥✟

✝♦✂✆�✞♦✁s ➀➁➶➃ s✆❣❣❡s� �✞✂� ✂��✁✂✝�✐♥❣ �✂❧❡♥�❡✟ ✝♦♥�✁✐❜✆�♦✁s ✠✐�✞

✟✐✈❡✁s❡ s➭✐❧❧s✱ ✐✄♣❧❡✄❡♥�✂�✐♦♥ ♦❢ ✂ ➼✎ ➭♥♦✠❧❡✟❣❡ s✞✂✁✐♥❣

✐♥❢✁✂s�✁✆✝�✆✁❡✱ s�✂♥✟✂✁✟s ✂♥✟ ❣✆✐✟❡❧✐♥❡s✱ ✂♥✟ �♦♦❧s ✞❡❧♣ �♦ ❡♥s✆✁❡

s✆s�✂✐♥✂❜❧❡ q✆✂❧✐�② ♣✁✂✝�✐✝❡s✳ ➆♦✠❡✈❡✁✱ s✆s�✂✐♥✂❜✐❧✐�② ✁❡✄✂✐♥s �✞❡

➭❡② ♣✂✁✂✄❡�❡✁ ❢♦✁ ✂✝✞✐❡✈✐♥❣ q✆✂❧✐�② ✐♥ ❖❙❙ ✝♦✄✄✆♥✐�✐❡s ➀➁➘✱ ➁➷➃✳

❖♣❡♥ s♦✆✁✝❡ s♦❢�✠✂✁❡ ✟❡✈❡❧♦♣✄❡♥� ♥❡✝❡ss✐�✂�❡s s♣❡✝✐❢✐✝

✄❡�✞♦✟s ✂♥✟ �❡✝✞♥✐q✆❡s ❢♦✁ ✂ss✆✁✐♥❣ q✆✂❧✐�② ➀➁➬➃✳ ☞✂✞②✆✟✐♥ ❡�

✂❧✳ ➀➁➮➃ ✝❧✂✐✄ �✞✂� q✆✂❧✐�② ✐♥ �✞❡ ❖❙❙ ✟❡✈❡❧♦♣✄❡♥� ♣✁♦✝❡ss ✐s

✂✝✞✐❡✈❡✟ ✈✐✂ s✆s�✂✐♥✂❜✐❧✐�②✱ ♣❡❡✁ ✁❡✈✐❡✠✱ ✂♥✟ ✝♦✟❡ ✄♦✟✆❧✂✁✐�②✳

❿✞❡② ✂✁❣✆❡ �✞✂� ✝♦✟❡ ✄♦✟✆❧✂✁✐�② ❡♥✞✂♥✝❡s ❢❡✂�✆✁❡s ❡✈♦❧✆�✐♦♥ ✂♥✟

✄✐♥✐✄✐➄❡s ❜✆❣s➻ ✐♥�✁♦✟✆✝�✐♦♥ ✐♥ �✞❡ ❡✈♦❧✆�✐♦♥ ♣✁♦✝❡ss✳ ✎❜❡✁✟♦✆✁

➀➁➷➃ ❜❡❧✐❡✈❡s �✞✂� ✐✁✁❡s♣❡✝�✐✈❡ ♦❢ �✞❡ ✝♦✄✄✆♥✐�② ✟❡✟✐✝✂�✐♦♥ �♦

q✆✂❧✐�②✱ ✞✂✈✐♥❣ ✂ s✆s�✂✐♥✂❜✐❧✐�② s�✁✂�❡❣② ✐s ✟❡�✁✐✄❡♥�✂❧ �♦ ✂ss✆✁✐♥❣

q✆✂❧✐�②✳ ❑✞✂♥➺✂♥✐ ✂♥✟ ❙✆❧✂✐✄✂♥ ➀➁➬➃ ❜❡❧✐❡✈❡ �✞❡ ✟✐s✝♦✈❡✁② ♦❢ ❜✆❣s

✐s ✟❡♣❡♥✟❡♥� ♦♥ �✞❡ s✐➄❡ ♦❢ �✞❡ ✝♦✄✄✆♥✐�②✳ ❿✞❡ ❧✂✁❣❡✁ �✞❡

✝♦✄✄✆♥✐�② ✐s✱ �✞❡ ✄♦✁❡ ✝✞✂♥✝❡s �✞❡✁❡ ✂✁❡ ♦❢ ❜✆❣s ❜❡✐♥❣ ✐✟❡♥�✐❢✐❡✟✱

✁❡♣♦✁�❡✟✱ ✂♥✟ ❢✐①❡✟✱ ✂❧s♦ ➭♥♦✠♥ ✂s ➫✐♥✆s➻s ❧✂✠➽ ➵❡♥♦✆❣✞ ❡②❡❜✂❧❧s✱

✂❧❧ ❜✆❣s ✂✁❡ s✞✂❧❧♦✠➸ ➀➁➬➃✳ ➪♥ ✂✟✟✐�✐♦♥✱ ✞✂✈✐♥❣ ✂ ➭♥♦✠❧❡✟❣❡

s✞✂✁✐♥❣ ✂♥✟ ✝♦❧❧✂❜♦✁✂�✐♦♥ ♣❧✂�❢♦✁✄ ❢✂✝✐❧✐�✂�❡s ➭♥♦✠❧❡✟❣❡

✟✐ss❡✄✐♥✂�✐♦♥ ✂♥✟ s✆❜s❡q✆❡♥�❧② ♥✆✁�✆✁❡s q✆✂❧✐�② ✝♦♥�✁✐❜✆�✐♦♥s

✂♥✟ ❡❢❢❡✝�✐✈❡ ✝♦✄✄✆♥✐✝✂�✐♦♥ ➀➁➮✲➂➱➃✳

✎❜✟♦✆ ❡� ✂❧✳ ➀➂➁➃ ✐♥✈❡s�✐❣✂�❡✟ s♦✄❡ ✞✐❣✞✲♣✁♦❢✐❧❡ ❖❙❙

✝♦✄✄✆♥✐�✐❡s➻ ✥✎♣✂✝✞❡✱ ✗♦➄✐❧❧✂✱ ✂♥✟ ◆❡�❇❡✂♥s☎ s♦❢�✠✂✁❡ �❡s�✐♥❣

♣✁✂✝�✐✝❡s ✂♥✟ ✞♦✠ �✞❡② ✝♦♥❢♦✁✄ ♦✁ ✟❡✈✐✂�❡ ❢✁♦✄ ➪❙❖✴➪✪❈

s�✂♥✟✂✁✟s✳ ❿✞❡ s�✆✟✐❡✟ ✝♦✄✄✆♥✐�✐❡s ✞✂✈❡ ✄✂�✆✁❡✟ �❡s�✐♥❣

♣✁✂✝�✐✝❡s✳ ❙�✐❧❧✱ �✞❡ ✐✄♣❧❡✄❡♥�✂�✐♦♥ ♦❢ �❡s�✐♥❣ ♣✁✂✝�✐✝❡s ✟❡✈✐✂�❡s

❢✁♦✄ �✞❡ ♣✁❡s✝✁✐❜❡✟ ✐♥✟✆s�✁② ✈❡✁s✐♦♥✳ ❿✞❡✐✁ s�✆✟② ✐s ❧✐✄✐�❡✟ �♦ ❢♦✆✁

❧✂✁❣❡✱ s✆✝✝❡ss❢✆❧✱ ✂♥✟ ✠❡❧❧✲❡s�✂❜❧✐s✞❡✟ ✝♦✄✄✆♥✐�✐❡s ✥✐✳❡✳✱ ✗♦➄✐❧❧✂✱

✎♣✂✝✞❡✱ ◆❡�❇❡✂♥s✱ ✂♥✟ ➪■✪☎✳

✗♦s� ♦❢ �✞❡ ✐✟❡♥�✐❢✐❡✟ ✠♦✁➭ ❡①♣❧♦✁❡✟ ➼✎ ✐♥ ✐s♦❧✂�✐♦♥ ♦❢ ♦�✞❡✁

✁❡s❡✂✁✝✞ s�✁❡✂✄s✱ s✆✝✞ ✂s ♣✂✁�✐✝✐♣✂�✐♦♥ ✄♦�✐✈❡s✱ ✝✆❧�✆✁❡✱

✝♦✄✄✆♥✐�② s✆s�✂✐♥✂❜✐❧✐�②✱ ✂♥✟ ✝♦✄✄✆♥✐�② ✟❡✈❡❧♦♣✄❡♥�✳ P✁✂✝�✐✝❡s

❡①❡✝✆�✐♦♥ ✝✂♥♥♦� ❜❡ ✝♦✄♣❧❡�❡❧② ✟❡�✂✝✞❡✟ ❢✁♦✄ �✞❡✐✁ ✄✐❧✐❡✆ ✥✐✳❡✳✱

♦✁❣✂♥✐➄✂�✐♦♥✱ ✝♦✄✄✆♥✐�②☎ ✂♥✟ �✞❡ s♦✝✐✂❧ ✝♦♥�❡①�✳ ❿✞❡② ✞✂✈❡ �♦ ❜❡

s�✆✟✐❡✟ ✐♥ ✁❡❧✂�✐♦♥ �♦ �✞❡ s♦✝✐✂❧✱ ✝✆❧�✆✁✂❧✱ ✂♥✟ ♦✁❣✂♥✐➄✂�✐♦♥✂❧

✝♦♥�❡①� ♦❢ �✞❡✐✁ ✄✐❧✐❡✆✳

❿✞❡✁❡ ✞✂s ❜❡❡♥ ✂ ✁❡✝❡♥� s✞✐❢� ♦❢ ✐♥�❡✁❡s� �♦✠✂✁✟ ➼✎ ✐♥ �✞❡

✝♦♥�❡①� ♦❢ ♦♣❡♥ s♦✆✁✝❡ s♦❢�✠✂✁❡ ✟❡✈❡❧♦♣✄❡♥� ➀➁➳✲➁➶➃✳ ➪� s❡❡✄s �♦

✐♥✟✐✝✂�❡ �✞✂� q✆✂❧✐�② ✐s ✂ss✆✁❡✟ ✈✐✂ �✞❡ ✝♦✄❜✐♥✂�✐♦♥ ♦❢ ♦♥❡ ♦✁ ✄♦✁❡

♦❢ �✞❡s❡ ✈✂✁✐✂❜❧❡s➽ ✝♦✟❡ ✁❡✈✐❡✠s✱ ✟❡✟✐✝✂�❡✟ ➼✎ �❡✂✄✱ ➫✐♥✆s➻s ❧✂✠✱

✂♥✟ ✂ s✆s�✂✐♥✂❜✐❧✐�② s�✁✂�❡❣②✳ ❙✐✄✆❧�✂♥❡♦✆s❧②✱ ♦�✞❡✁ s�✆✟✐❡s ➀➘✲➬➃

✂♣♣❡✂✁ �♦ ✂❣✁❡❡ �✞✂� s♦❢�✠✂✁❡ ❡♥❣✐♥❡❡✁✐♥❣ ➼✎ ♣✁✂✝�✐✝❡s ✄✂➭❡

�✞❡✐✁ ✠✂② �♦ ❖❙❙ ✝♦✄✄✆♥✐�✐❡s✳ ❿✞❡✁❡ ✂✁❡ s✐❣♥✐❢✐✝✂♥� ❡✄♣✐✁✐✝✂❧

❡✈✐✟❡♥✝❡s �✞✂� ❖❙❙ ✝♦✄✄✆♥✐�✐❡s ✂✟♦♣� ➼✎ ♣✁✂✝�✐✝❡s ❢✁♦✄

s♦❢�✠✂✁❡ ❡♥❣✐♥❡❡✁✐♥❣✳ ➆♦✠❡✈❡✁✱ ✐� s❡❡✄s �✞✂� ✐♥ s♦✄❡ ✐♥s�✂♥✝❡s✱

�✞❡ ✐✄♣❧❡✄❡♥�✂�✐♦♥ ♦❢ �✞❡s❡ ♣✁✂✝�✐✝❡s ✐s ❡①♣❡✁✐❡♥✝✐♥❣ ✝✞✂❧❧❡♥❣❡s

➀➁➁✱ ➁➂➃✳ ☞❡ ✝✂♥♥♦� ✆♥✟❡✁s�✂♥✟ �✞❡ s✆✝✝❡ss ♦❢ s♦❢�✠✂✁❡

❡♥❣✐♥❡❡✁✐♥❣ ♣✁✂✝�✐✝❡s ✐♥ ❖❙❙ ✝♦✄✄✆♥✐�✐❡s ✠✐�✞♦✆� ✆♥✟❡✁s�✂♥✟✐♥❣

✞♦✠ �✞❡ s♦✝✐✂❧ ❢✂❜✁✐✝ ✂♥✟ ✝✆❧�✆✁✂❧ ✈✂✁✐✂❜❧❡s ✝♦✁✁❡❧✂�❡ ✠✐�✞ �✞❡s❡

♣✁✂✝�✐✝❡s✳ ❿✞❡ ✟❡♣❡♥✟❡♥✝✐❡s ✂♥✟ �✞❡ ✝♦✁✁❡❧✂�✐♦♥ ❜❡�✠❡❡♥ ❖❙❙

✝♦✄✄✆♥✐�② s♦✝✐✂❧ ✂♥✟ ✝✆❧�✆✁✂❧ ✈✂✁✐✂❜❧❡s ✂♥✟ ➼✎ ✐s ♥♦� ✠❡❧❧✲

✆♥✟❡✁s�♦♦✟✳ ➆❡♥✝❡✱ �✞✐s s�✆✟② s✆❣❣❡s�s ✐♥✈❡s�✐❣✂�✐♥❣ ✠✞✂�

✐♥❢❧✆❡♥✝❡s �✞❡ ✐✄♣❧❡✄❡♥�✂�✐♦♥ ✂♥✟ �✞❡ ❡①❡✝✆�✐♦♥ ♦❢ ➼✎ ♣✁✂✝�✐✝❡s

✐♥ ❖❙❙ ✝♦✄✄✆♥✐�✐❡s✳ ❿✞✐s ✐s ✂♥ ✐♥✐�✐✂❧ s�❡♣ ✐♥ ✂ �✞✁❡❡✲②❡✂✁ ✁❡s❡✂✁✝✞

♣✁♦➺❡✝� �♦ ♣✁♦♣♦s❡ ✂♥ ✐✄♣❧❡✄❡♥�✂�✐♦♥ s�✁✂�❡❣② ❢♦✁ s♦❢�✠✂✁❡

❡♥❣✐♥❡❡✁✐♥❣ ♣✁✂✝�✐✝❡s ✐♥ ❖❙❙ ✝♦✄✄✆♥✐�✐❡s✳

❿✞✐s ♣✂♣❡✁ ♣✁❡s❡♥�s ✁❡s✆❧�s ♦❢ q✆✂❧✐�✂�✐✈❡ ✁❡s❡✂✁✝✞ ✐♥ ♦♥❡ ✝✂s❡

s�✆✟② ✝♦✄✄✆♥✐�② ✥❘❖❙☎✳ ❿✞❡ ✟✂�✂ ✠✂s ❣✂�✞❡✁❡✟ ✆s✐♥❣ ✂

✝♦✄❜✐♥✂�✐♦♥ ♦❢ �❡✝✞♥✐q✆❡s➽ ✐♥✲✟❡♣�✞ s❡✄✐✲s�✁✆✝�✆✁❡✟ ✐♥�❡✁✈✐❡✠s

✠✐�✞ �❡♥ ♣✂✁�✐✝✐♣✂♥�s✱ ✈✐✁�✆✂❧ ❡�✞♥♦❣✁✂♣✞②✱ ✂♥✟ ✝♦✄✄✆♥✐�② ✁❡✂✝✞✲

♦✆�s✳ ➼✆✂❧✐�✂�✐✈❡ ✁❡s❡✂✁✝✞ ✄❡�✞♦✟s ❡♥�✂✐❧ ✂ s�✁✆✝�✆✁❡✟ ♣✁♦✝❡ss ❢♦✁

�✞❡ ✝♦❧❧❡✝�✐♦♥✱ ♦✁❣✂♥✐➄✂�✐♦♥✱ ✂♥✟ ✐♥�❡✁♣✁❡�✂�✐♦♥ ♦❢ �❡①�✆✂❧ ✄✂�❡✁✐✂❧

✟❡✁✐✈❡✟ ❢✁♦✄ ✝♦♥✈❡✁s✂�✐♦♥s✱ ✐♥�❡✁✈✐❡✠s✱ ♦✁ ♦❜s❡✁✈✂�✐♦♥ ➀➂➂✲➂➳➃✳

❖♥❡ ✁❡s❡✂✁✝✞❡✁ s♣❡♥� ➁➂➱ ✞♦✆✁s s�✆✟②✐♥❣ �✞❡ ✝♦✄✄✆♥✐�② ♦♥❧✐♥❡

✐♥❢✁✂s�✁✆✝�✆✁❡✱ ❢♦✁✆✄s✱ ✂♥✟ ✈✐✁�✆✂❧ ✐♥�❡✁✂✝�✐♦♥s✳ ❿✞❡ ✁❡s❡✂✁✝✞❡✁s

✂��❡♥✟❡✟ ❢♦✆✁ ✝♦✄✄✆♥✐�② ❡✈❡♥�s✳ ❿✞❡s❡ ✝♦✄✄✆♥✐�② ✁❡✂✝✞✲♦✆�s

✠❡✁❡ ✂♥ ♦♣♣♦✁�✆♥✐�② �♦ ♦❜s❡✁✈❡✱ ❜❡ ♣✂✁� ♦❢ ✝♦♥✈❡✁s✂�✐♦♥s✱ ✂♥✟

❡①♣❡✁✐❡♥✝❡ �✞❡ ✝♦✄✄✆♥✐�② ✂�✄♦s♣✞❡✁❡✳ ✘✐❡❧✟ ♥♦�❡s ✠❡✁❡ ✆s❡✟ �♦

✝✂♣�✆✁❡ �✞✐s ❡①♣♦s✆✁❡ �♦ �✞❡ ✝♦✄✄✆♥✐�②✳ ❿✞✐s ❡�✞♥♦❣✁✂♣✞✐✝

❡①♣❡✁✐❡♥✝❡ ✠✂s ✝♦✄♣❧❡✄❡♥�❡✟ ❜② ✐♥✲✟❡♣�✞ ✐♥�❡✁✈✐❡✠s ✠✐�✞ �❡♥

✂✝�✐✈❡ ✝♦✄✄✆♥✐�② ✄❡✄❜❡✁s✳ ❿✞❡✐✁ ♣✁♦❢❡ss✐♦♥✂❧ ✁♦❧❡s ✂♥✟

♣✂✁�✐✝✐♣✂�✐♦♥ ✐♥ �✞❡ ✝♦✄✄✆♥✐�② ✈✂✁✐❡✟ ❢✁♦✄ ✝♦✁❡ ✟❡✈❡❧♦♣❡✁s �♦

♣✂ss✐✈❡ ✂s ✆s❡✁s ♦❢ �✞❡ ✝♦✄✄✆♥✐�② ✝♦✟❡✳

❿✞❡ ✟✂�✂ ✂♥✂❧②s✐s ✠✂s ✂✝✞✐❡✈❡✟ ❜② ♦♣❡♥ ✝♦✟✐♥❣✱ ❢♦✝✆s ✝♦✟✐♥❣✱

✂♥✟ �✞❡♦✁❡�✐✝✂❧ ✝♦✟✐♥❣ ➀➂➳➃✳ ❿✞✐s s�✆✟② ✟✐✟ ♥♦� ✆s❡ ❣✁♦✆♥✟❡✟

�✞❡♦✁② ✂s ✂♥ ✆♥✟❡✁❧②✐♥❣ ✁❡s❡✂✁✝✞ ✄❡�✞♦✟♦❧♦❣②✱ ❜✆� ✐�s ❣✁♦✆♥✟❡✟

✂♣♣✁♦✂✝✞ ✞✂s ❜❡❡♥ �✞❡ ❣✆✐✟✐♥❣ ♣✁♦✝❡ss ❢♦✁ �✞❡ ❡✄♣✐✁✐✝✂❧ ✟✂�✂

✂♥✂❧②s✐s✳

✤✉❜�✒❝✕✳ ❘❖❙ ✂♥✟ ❘❖❙ ➪♥✟✆s�✁✐✂❧ ✂✁❡ �✞❡ ✝♦✄✄✆♥✐�② s✆❜➺❡✝�s ♦❢

�✞✐s s�✆✟②✳ ❿✞❡ ❘♦❜♦� ❖♣❡✁✂�✐♥❣ ❙②s�❡✄ ✥❘❖❙☎ ✐s ✂ ✄✐✟✟❧❡✠✂✁❡

❢✁✂✄❡✠♦✁➭ �✞✂� ✐s ✠✐✟❡❧② ✆s❡✟ ✐♥ ✁♦❜♦�✐✝s✳ ❘❖❙ ♣✁♦✈✐✟❡s s�✂♥✟✂✁✟

♦♣❡✁✂�✐♥❣ s②s�❡✄ ❢✂✝✐❧✐�✐❡s s✆✝✞ ✂s ✞✂✁✟✠✂✁❡ ✂❜s�✁✂✝�✐♦♥✱ ❧♦✠✲❧❡✈❡❧

✟❡✈✐✝❡ ✝♦♥�✁♦❧✱ ✂♥✟ ✝♦✄✄♦♥❧② ✆s❡✟ ✁♦❜♦�✐✝s ❢✆♥✝�✐♦♥✂❧✐�②✳

❿✞❡ ✆♥✟❡✁❧②✐♥❣ ♣✞✐❧♦s♦♣✞② ♦❢ ❘❖❙ ✐s �♦ ✄✂➭❡ ✆♥✐✈❡✁s✂❧

s♦❢�✠✂✁❡ ♣♦✁�✂❜❧❡ �♦ ✟✐❢❢❡✁❡♥� ✁♦❜♦�✐✝s s②s�❡✄s✳ ❘❖❙ ✐s ❜✂s❡✟ ♦♥

�✞❡ ✝♦♥✝❡♣� ♦❢ ✁❡✆s❡ ✂♥✟ ♦♣❡♥ s♦✆✁✝❡ s♦❢�✠✂✁❡✳ ➪�s ♦✁✐❣✐♥s ✝✂♥ ❜❡

�✁✂✝❡✟ ❜✂✝➭ �♦ ➂➱➱➷✳ ❿✞❡ ♣✁♦➺❡✝� ✠✂s ✐♥✝❡♣�❡✟ ❜② �✞❡ ❙�✂♥❢♦✁✟

✎✁�✐❢✐✝✐✂❧ ➪♥�❡❧❧✐❣❡♥✝❡ ➫✂❜♦✁✂�♦✁② ➀➂➶➃✳ ➪♥ ➂➱➱➬ ✂ s�✂✁�✆♣✱ ☞✐❧❧♦✠

●✂✁✂❣❡✱ ✐♥✞❡✁✐�❡✟ �✞❡ ♣✁♦➺❡✝�✳ ✘✐✈❡ ②❡✂✁s ❧✂�❡✁✱ ✐♥ ➂➱➁➲✱ ☞✐❧❧♦✠

●✂✁✂❣❡ ✠✂s ✂❜s♦✁❜❡✟ ❜② ✂♥♦�✞❡✁ ✝♦✄♣✂♥②✱ ✂♥✟ ❘❖❙

➵s�❡✠✂✁✟s✞✐♣➸ �✁✂♥s✐�✐♦♥❡✟ �♦ �✞❡ ❖♣❡♥ ❙♦✆✁✝❡ ❘♦❜♦�✐✝s

✘♦✆♥✟✂�✐♦♥ ➀➂➶➃✳ ❿♦✟✂②✱ ❘❖❙ ✐s �✞❡ ✟❡ ❢✂✝�♦ ♦♣❡✁✂�✐♥❣ s②s�❡✄ ❢♦✁

✁♦❜♦�✐✝s✳

❘❖❙ ➪♥✟✆s�✁✐✂❧ ✐s ➵✂♥ ♦♣❡♥✲s♦✆✁✝❡ ♣✁♦➺❡✝� �✞✂� ❡①�❡♥✟s �✞❡

✂✟✈✂♥✝❡✟ ✝✂♣✂❜✐❧✐�✐❡s ♦❢ ❘❖❙ s♦❢�✠✂✁❡ �♦ ✄✂♥✆❢✂✝�✆✁✐♥❣➸ ➀➂➘➃✳

❘❖❙ ➪♥✟✆s�✁✐✂❧ ✐s ✂ ❜✁✂♥✝✞ ♦❢ ❘❖❙ ✠✐�✞ ✂ s♣❡✝✐❢✐✝ ✐♥✟✆s�✁✐✂❧

✁✂❢❧✉✄✂❝✄❡s ✥❢ ☎✉✆❧✐✝✞ ✟ss✉❡✆✂❝✄ ✠❡✆❝✝✐❝✄s ✐✂ ✆✂ ✡☛✄✂ ☞✥✉❡❝✄ ✌✥♠♠✉✂✐✝✞ ❈✍❆❙❊ ✷✵✶✽✱ ▼✎✏ ✷✵✶✽✱ ✑✒✓❤✔♥✕✖✗❣✱ ❙✘✔✙✔♥

è✻

❈�❆✁❊✂✶✄☎ ▼❛✆ ✥✼✱ ✥✵✝✽✱ ●✞t❤❡✟❜✠✡❣✱ ☛☞❡✌❡✟ ✍✎❛♠✐✱ ❉✐tt✡✐✏❤ ❛✟✌✑❛s✞☞s❦✐

✂♣♣❧✐✝✂�✐♦♥ ❢♦✝✆s✳ ➪♥✝❡♣�❡✟ ✐♥ ➂➱➁➂✱ ❘❖❙ ➪♥✟✆s�✁✐✂❧ ✞✂s s❡✝✆✁❡✟ �✞❡

✝♦❧❧✂❜♦✁✂�✐♦♥ ♦❢ ➭❡② ♣❧✂②❡✁s ✐♥ �✞❡ ✁♦❜♦�✐✝s ✐♥✟✆s�✁② ✥❡✳❣✳✱ ✎❇❇✱

➅✂s➭✂✠✂✱ ❙✐❡✄❡♥s✱ ❏♦✞♥ ■❡❡✁❡✱ ❇✗☞✱ ❇♦s✝✞✱ ❡�✝✳☎✳ ❘❖❙

➪♥✟✆s�✁✐✂❧➻s ✂✄❜✐�✐♦♥ ✐s �♦ ❜❡✝♦✄❡ �✞❡ ✠♦✁❧✟✠✐✟❡ ♦♣❡♥ s♦✆✁✝❡

s�✂♥✟✂✁✟ ❢♦✁ ✐♥✟✆s�✁✐✂❧ ✁♦❜♦�s✳

➪♥ ✁❡s♣♦♥s❡ �♦ ❘➼➁ ✂♥✟ ❘➼➂✱ ✠❡ ♦❜s❡✁✈❡ �✞✂� ➼✎ ♣✁✂✝�✐✝❡s ✐♥ �✞❡

❘❖❙ ✝♦✄✄✆♥✐�② ✂✁❡ ✐♥❢❧✆❡♥✝❡✟ ✂♥✟ ✝♦♥s�✁✂✐♥❡✟ ❜② �✞❡ ❢♦❧❧♦✠✐♥❣

❢♦✁✝❡s➽

➁✳ P✂✁�✐✝✐♣✂�✐♦♥ ✄♦�✐✈❡s

➂✳ P✁✐♦✁✐�✐❡s ♦❢ �✞❡ ✝♦✄✄✆♥✐�②

➲✳ ✗❡✁✐�♦✝✁✂�✐✝ ✝✆❧�✆✁❡

➳✳ ❙✆s�✂✐♥✂❜✐❧✐�②

➶✳ ❈♦✄♣❧❡①✐�②

➘✳ ✎✟✂♣�✂❜✐❧✐�②

❿✞❡ ❘❖❙ ✝♦✄✄✆♥✐�② ✁❡�✂✐♥s s♦✄❡ ♦❢ �✞❡ s♦❢�✠✂✁❡ ❡♥❣✐♥❡❡✁✐♥❣

✂♥✟ ✐♥✟✆s�✁② ♣✁✂✝�✐✝❡s ✂♥✟ ♣✁♦✝❡ss❡s✳ ✗✂♥② ♦❢ �✞❡ ✝♦✄✄✆♥✐�② ➼✎

✂✝�✐✈✐�✐❡s s�✐❧❧ ❡✈♦❧✈❡✫ ✄✂♥② ❡①♣❡✁✐❡♥✝❡ ✝✞✂❧❧❡♥❣❡s ✐♥ �✞❡

✐✄♣❧❡✄❡♥�✂�✐♦♥ ✂♥✟ ❡①❡✝✆�✐♦♥✳ ❙♦✄❡ ♦❢ �✞❡s❡ ✐ss✆❡s ✂✁❡ ♦❢ ✂

✄❡✝✞✂♥✐✝✂❧ ♥✂�✆✁❡ ✥✐✳❡✳✱ ♦✆�✟✂�❡✟ ✟♦✝✆✄❡♥�✂�✐♦♥s☎ ✂♥✟ ✁❡q✆✐✁❡

s�✁✂✐❣✞�❢♦✁✠✂✁✟ ✄❡✝✞✂♥✐✝✂❧ ✂✟➺✆s�✄❡♥�✳ ➆♦✠❡✈❡✁✱ ✂ s✐❣♥✐❢✐✝✂♥�

s❡❣✄❡♥� ♦❢ �✞❡ ✐ss✆❡s ✐♥✈♦❧✈❡s ✝✆❧�✆✁✂❧ ✂❧✐❣♥✄❡♥� ✂♥✟✴♦✁

✂❧✐❣♥✄❡♥� ✠✐�✞ �✞❡ ♣✂✁�✐✝✆❧✂✁✐�✐❡s ♦❢ ♦♣❡♥ s♦✆✁✝❡ s♦❢�✠✂✁❡

✟❡✈❡❧♦♣✄❡♥� ♣✁✂✝�✐✝❡s ✂♥✟ ♣✁♦✝❡ss❡s✳ ❿✞❡s❡ ✐ss✆❡s ✄✂♥✐❢❡s� �✞❡

✝✆❧�✆✁✂❧ ✂♥✟ s♦✝✐✂❧ ♥✂�✆✁❡ ♦❢ �✞❡ ✝♦✄✄✆♥✐�②✳ ✎✟✟✁❡ss✐♥❣ �✞❡✄ ✠✐❧❧

♥❡✝❡ss✐�✂�❡ ✂❧✐❣♥✐♥❣ �✞❡ ♣✁✂✝�✐✝❡ ♦✁ �✞❡ ♣✁♦✝❡ss ✠✐�✞ �✞❡ ✝✆❧�✆✁✂❧

s❡��✐♥❣ ♦❢ �✞❡ ✝♦✄✄✆♥✐�②✳

❿✞❡s❡ ✐ss✆❡s ✂✁❡ ✄❡✁❡❧② ✂ ✄✂♥✐❢❡s�✂�✐♦♥ ♦❢ ✆♥❢✐� ♣✁✂✝�✐✝❡s ✂♥✟

✂✟✂♣�✂�✐♦♥ ❢✂✐❧✆✁❡ �♦ �✞❡ ❡♥✈✐✁♦♥✄❡♥� ❘❖❙ ✝♦✄✄✆♥✐�②✳ ➪❢ �✞❡✁❡ ✐s

✂ ♣✁♦❜❧❡✄✱ �✞❡♥ �✞❡✁❡ ✄✐❣✞� ❜❡ ✁❡✂s♦♥s ❢♦✁ ✐� �♦ ❡①✐s� ✐♥ �✞❡ ❢✐✁s�

♣❧✂✝❡✳ ❿✞❡ ✐ss✆❡s ❡①✐s� ❜❡✝✂✆s❡ ♦❢ ✂ ✁❡✂✝�✐♦♥ �♦ �✞❡ ✐♥�✁♦✟✆✝�✐♦♥ ♦❢

✝✞✂♥❣❡✳ ❿✞❡ ✐✄♣❧❡✄❡♥�✂�✐♦♥ ♦❢ �✞❡s❡ ♣✁✂✝�✐✝❡s ✟✐✟ ♥♦� ✝✂�❡✁ �♦ �✞❡

s♦✝✐✂❧ ✂♥✟ ✝✆❧�✆✁✂❧ ♣✂✁�✐✝✆❧✂✁✐�✐❡s ♦❢ �✞❡ ✝♦✄✄✆♥✐�②✳ ➪� ✂ss✆✄❡✟

�✞✂� ✂ ✟❡❢✂✆❧� ✐✄♣❧❡✄❡♥�✂�✐♦♥ ✠✐❧❧ ❢✐� �✞❡ ✝♦✄✄✆♥✐�②✳

➪♥ �✞❡ ❢♦❧❧♦✠✐♥❣✱ ✠❡ ✂✁❡ ✟✐s✝✆ss✐♥❣ �✞❡ ✐✟❡♥�✐❢✐❡✟ ✐♥❢❧✆❡♥✝❡✁s

❜② ♣✁❡s❡♥�✐♥❣ �✞❡ ❣✁♦✆♥✟✐♥❣ ❢♦✁ �✞❡✄ ✐♥ ♦✆✁ ✟✂�✂ ✂♥✟ ✐♥ �✞❡

❡①✐s�✐♥❣ ❧✐�❡✁✂�✆✁❡✳ ➪♥ �✞❡ ❢✐♥✂❧ ♣✂✁✂❣✁✂♣✞ ♦❢ ❡✂✝✞ s✆❜s❡✝�✐♦♥

✟✐s✝✆ss✐♥❣ ✂♥ ✐♥❢❧✆❡♥✝✐♥❣ ❢♦✁✝❡✱ ✠❡ ✂❧❧♦✠ ♦✆✁s❡❧✈❡s �♦ s♣❡✝✆❧✂�❡

✐♥ ✠✞✂� ✠✂② ✐� ✝♦✆❧✟ ❜❡ ✆s❡✟ �♦ ✐✄♣✁♦✈❡ ➼✎ ♣✁✂✝�✐✝❡s ✐♥ �✞✐s

✝♦✄✄✆♥✐�②✳

❿✞❡ ♣✂✁�✐✝✐♣✂♥�s ✟♦ ♥♦� ✝♦♥s✝✐♦✆s❧② ✟❡✄♦♥s�✁✂�❡ �✞❡ ✄♦�✐✈❡s ✂♥✟

�✞❡✐✁ ✐✄♣✂✝� ♦♥ �✞❡✐✁ ❡♥❣✂❣❡✄❡♥� ✐♥ �✞❡ ✝♦✄✄✆♥✐�②✳ ❖✆✁ ✂♥✂❧②s✐s

✟❡✄♦♥s�✁✂�❡s �✞✂� ❜♦�✞ ✐♥�✁✐♥s✐✝ ✂♥✟ ❡①�✁✐♥s✐✝ ✄♦�✐✈❡s ✞✂✈❡

✐♥❢❧✆❡♥✝❡✟ �✞❡ ✐✄♣❧❡✄❡♥�✂�✐♦♥ ♦❢ ➼✎ ♣✁✂✝�✐✝❡s ✐♥ �✞❡ ✝♦✄✄✆♥✐�②✱

✄✂✐♥❧② ✐✟❡♦❧♦❣② ✂♥✟ ❡♥➺♦②✄❡♥�✳ ❙♦✄❡ ♣✂✁�✐✝✐♣✂♥�s ✞✂✈❡ s�✁♦♥❣

✐✟❡♦❧♦❣✐✝✂❧ ❣✁♦✆♥✟s✱ ✂♥✟ ✐� ✐s ✄✂♥✐❢❡s�❡✟ ✐♥ �✞❡✐✁ ✝♦♥✟✆✝� ✂♥✟

❡♥❣✂❣❡✄❡♥� ✐♥ �✞❡ ✝♦✄✄✆♥✐�②✳ P✁♦❣✁✂✄✄✐♥❣ ✂♥✟ �✞❡ ✝✞✂❧❧❡♥❣❡

♦❢ ✝♦✄♣❧❡①✐�② ✂✁❡ s♦✆✁✝❡s ♦❢ ❡♥➺♦②✄❡♥� ❢♦✁ s♦✄❡ ♣✂✁�✐✝✐♣✂♥�s✳

➪♥�✁✐♥s✐✝ ✄♦�✐✈✂�✐♦♥ ✁❡❢❡✁s �♦ ❜❡✞✂✈✐♦✁ �✞✂� ✐s ✟✁✐✈❡♥ ❜②

✐♥�❡✁♥✂❧ ✁❡✠✂✁✟s ➀➂➷➃ ❜✂s❡✟ ♦♥ ✐♥�❡✁♥✂❧ s✂�✐s❢✂✝�✐♦♥ ✂♥✟ s❡❧❢✲

❡♥➺♦②✄❡♥� ➀➂➬➃✳ ❿✞❡ ✄♦�✐✈✂�✐♦♥ �♦ ❡♥❣✂❣❡ ✐♥ ✂♥ ✐♥�✁✐♥s✐✝ ❜❡✞✂✈✐♦✁

✂✁✐s❡s ❢✁♦✄ ✠✐�✞✐♥ �✞❡ ✐♥✟✐✈✐✟✆✂❧ ❜❡✝✂✆s❡ ✐� ✐s ♥✂�✆✁✂❧❧② s✂�✐s❢②✐♥❣✳

❿✞✐s ✝♦♥�✁✂s�s ✠✐�✞ ❡①�✁✐♥s✐✝ ✄♦�✐✈✂�✐♦♥✱ ✠✞✐✝✞ ✐♥✈♦❧✈❡s ❡♥❣✂❣✐♥❣

✐♥ ✂ ❜❡✞✂✈✐♦✁ ✐♥ ♦✁✟❡✁ �♦ ❡✂✁♥ ❡①�❡✁♥✂❧ ✁❡✠✂✁✟s ➀➂➷✱ ➂➬➃ �✞✂� ✂✁✐s❡

♦✆�s✐✟❡ ♦❢ �✞❡ ✐♥✟✐✈✐✟✆✂❧✳ ➪� ✝✂♥ ✐♥✈♦❧✈❡ �✂♥❣✐❜❧❡ ♦✁ ♣s②✝✞♦❧♦❣✐✝✂❧

✁❡✠✂✁✟s✳ Ps②✝✞♦❧♦❣✐✝✂❧ ❢♦✁✄s ♦❢ ❡①�✁✐♥s✐✝ ✄♦�✐✈✂�✐♦♥ ✝✂♥ ✐♥✝❧✆✟❡

♣✁✂✐s❡ ✂♥✟ ♣✆❜❧✐✝ ✂✝✝❧✂✐✄ ➀➂➷✱ ➂➬➃✳

✹�✶�✶ ✶❞❡♦❧♦❣②

➪Þ◆▲✁✂Þ➠✂➩ ➁➽ ❖❙❙ ✐✟❡♦❧♦❣② ✐s ♣✁❡s❡♥� ✐♥ �✞❡ ❘❖❙ ✝♦✄✄✆♥✐�②

�✞✐♥➭✐♥❣ ✂♥✟ ✟❡✝✐s✐♦♥ ✄✂➭✐♥❣✳

❉✔✕✔★ ❖♣❡♥♥❡ss ✐s �✞❡ ✐✟❡♦❧♦❣② ✂��✁✐✆�❡ �✞✂� ✐♥❢❧✆❡♥✝❡s

♣✁✂✝�✐✝❡s ✐♥ �✞❡ ❘❖❙ ✝♦✄✄✆♥✐�②✳ ❙♦✄❡ ✝♦✄✄✆♥✐�② ✄❡✄❜❡✁s

✈✂❧✆❡ �✞✐s ♥♦✁✄ ✞✐❣✞❧②✳ ➪♥ ♦♥❡ ♦❢ �✞❡ ✝♦✄✄✆♥✐�② ❡✈❡♥�s ✥❘❖❙❈♦♥

➂➱➁➷☎ �✞✂� ✠❡ ✂��❡♥✟❡✟✱ ✄❡✄❜❡✁s ✟✐s✝✆ss❡✟ ❙❧✂✝➭ ✂s ✂♥ ♦♥❧✐♥❡

✝♦✄✄✆♥✐✝✂�✐♦♥ �♦♦❧ ✂✟♦♣�❡✟ ❜② ✂ ❣✁♦✆♣ ♦❢ ✟❡✈❡❧♦♣❡✁s ❢♦✁

✟✐s✝✆ss✐♦♥s ✂♥✟ ✝♦❧❧✂❜♦✁✂�✐♦♥✳ ❙❡✈❡✁✂❧ ✝♦✄✄✆♥✐�② ✄❡✄❜❡✁s

✁❡❢✆s❡✟ �♦ ✆s❡ ✐�✱ ✠✞✐❧❡ ♦�✞❡✁s ✠❡✁❡ ✞✂♣♣② �♦ ✝♦♥�✐♥✆❡ ✆s✐♥❣ ✐�✳

❖♥❡ ✄❡✄❜❡✁ ❣♦� ❡✄♦�✐♦♥✂❧ ✠✞❡♥ �✞❡ ✐�❡✄ ✝✂✄❡ ✆♣ ❢♦✁ ✟✐s✝✆ss✐♦♥

✂♥✟ ✂ss❡✁�❡✟✱ ➵➪ ✁❡❢✆s❡ �♦ ✆s❡ ✐�✳ ➪� ✐s ♥♦� ♦♣❡♥ s♦✆✁✝❡✦➸ ✎♥♦�✞❡✁

✝♦✄✄✆♥✐�② ✄❡✄❜❡✁ ➺♦✐♥❡✟ �✞❡ ♦♣♣♦s✐�✐♦♥➽ ➵➪� ✐s ✟✐s✂♣♣♦✐♥�✐♥❣ �♦

s❡❡ s♦✄❡ ♣❡♦♣❧❡ ✆s✐♥❣ ✂ ✝❧♦s❡✟ s♦✆✁✝❡✱ ❜✆� ➪ ✁❡❢✆s❡ �♦ ✆s❡ ✐�✳➸ ❿✞❡✁❡

✠✂s ✂♥ ✂✠➭✠✂✁✟ s✐❧❡♥✝❡ ❜❡❢♦✁❡ �✞❡ ✟✐s✝✆ss✐♦♥ ✂✟✈✂♥✝❡✟ �♦

✂♥♦�✞❡✁ s✆❜➺❡✝�✳ ✎♣♣✂✁❡♥�❧②✱ ♥♦� ✂❧❧ ✝♦✄✄✆♥✐�② ✄❡✄❜❡✁s ✁✂♥➭

♦♣❡♥♥❡ss ❡q✆✂❧❧② ✞✐❣✞✳ ❙♦✄❡ ✞✂✈❡ ✂ ✁❡❧✂①❡✟ ✂♥✟ ♣✁✂❣✄✂�✐✝

✂��✐�✆✟❡ �♦✠✂✁✟ ✂✟♦♣�✐♥❣ ✝❧♦s❡✟ s♦✆✁✝❡ ✐♥❢✁✂s�✁✆✝�✆✁❡ ✂♥✟ �♦♦❧✐♥❣✳

✙✢✔❛②✜✛✜★ ❖♣❡♥♥❡ss ✐s ✂ ✄✂♥✟✂�❡✟ ✝♦✄✄✆♥✐�② ✁❡q✆✐✁❡✄❡♥�

✁♦♦�❡✟ ✐♥ s♦✄❡ ✄❡✄❜❡✁s➻ ✐✟❡♦❧♦❣✐✝✂❧ s�✂♥✟♣♦✐♥�s✳ ✎❧�✞♦✆❣✞

✂✟✞❡✁❡♥✝❡ �♦ �✞❡ ✐✟❡♦❧♦❣✐✝✂❧ ❜❡❧✐❡❢s ✂✁❡ ♥♦� s✞✂✁❡✟ ✠✐�✞ �✞❡ s✂✄❡

❡♥�✞✆s✐✂s✄ ✂✝✁♦ss �✞❡ ✝♦✄✄✆♥✐�②✱ ✐� ✐s ✂ ❢✆♥✟✂✄❡♥�✂❧ ✈✂✁✐✂❜❧❡

✂♥✟ s✞♦✆❧✟ ♥♦� ❜❡ ✟✐s✄✐ss❡✟✳ ❙✐✄✐❧✂✁ �♦ �✞❡ ❙❧✂✝➭ ✝✂s❡✱ �✞❡

✐✄♣❧❡✄❡♥�✂�✐♦♥ ♦❢ ✂ �♦♦❧✱ ♣✁♦✝❡ss✱ ♦✁ ♣✁✂✝�✐✝❡ �✞✂� ✟♦❡s ♥♦�

❡✄❜✁✂✝❡ ♦♣❡♥♥❡ss ✂♥✟ �✁✂♥s♣✂✁❡♥✝② ✠♦✆❧✟ ✝✁❡✂�❡ ✟✐✈✐s✐♦♥ ✐♥ �✞❡

✝♦✄✄✆♥✐�②✱ ✂♥✟ �✞❡ ✝✞✂♥✝❡s ♦❢ �✞❡ ♣✁✂✝�✐✝❡ ❜❡✐♥❣ ✂❜✂♥✟♦♥❡✟ ❜②

✂ s❡❣✄❡♥� ♦❢ �✞❡ ✝♦✄✄✆♥✐�② ✄❡✄❜❡✁s ✐s ✞✐❣✞✳

❖♣❡♥♥❡ss ✐s ✂ ✄✂♥✐❢❡s�✂�✐♦♥ ♦❢ �✠♦ ✝✆❧�✆✁✂❧ �✁✂✐�s ♦❢ ♦♣❡♥

s♦✆✁✝❡ ✝♦✄✄✆♥✐�✐❡s➽ �✁✂♥s♣✂✁❡♥✝② ✂♥✟ �✁✆�✞ ➀➳➃✳ P✂✈❧✐✝❡➭ ➀➂➮➃

❜❡❧✐❡✈❡s �✞✂� �✁✆�✞ ✐s ✂ ❢✆♥✟✂✄❡♥�✂❧ ✝♦✄✄✆♥✐�② ✂ss❡�✳ ➆❡ ❡①♣❧✂✐♥s

�✞✂� �✁✆�✞ ✂♥✟ �✁✂♥s♣✂✁❡♥✝② ❡✄♣♦✠❡✁ �✞❡ ✝♦✄✄✆♥✐�② �♦ ♣✁♦✟✆✝❡

➵❢✁❡❡ s♦❢�✠✂✁❡✳➸ ✪❧❧✐♦� ✂♥✟ ❙✝✂✝✝✞✐ ➀➳➃ ❡①♣❧✂✐♥ �✞✂� ➵s♣❡✂➭✐♥❣ �✞❡

�✁✆�✞➸ ✐s ❡✈✐✟❡♥� ✐♥ �✞❡ ✝♦✄✄✆♥✐�② s♦✝✐✂❧ ❧✐❢❡ ✂♥✟ ✠♦✁➭ ♣✁✂✝�✐✝❡s✳

➵➪✟❡♦❧♦❣✐❡s ✂✁❡ �✞❡ s✞✂✁❡✟ ❢✁✂✄❡✠♦✁➭ ♦❢ ✄❡♥�✂❧ ✄♦✟❡❧s �✞✂�

❣✁♦✆♣s ♦❢ ✐♥✟✐✈✐✟✆✂❧s ♣♦ss❡ss �✞✂� ♣✁♦✈✐✟❡ ❜♦�✞ ✂♥ ✐♥�❡✁♣✁❡�✂�✐♦♥

♦❢ �✞❡ ❡♥✈✐✁♦♥✄❡♥� ✂♥✟ ✂ ♣✁❡s✝✁✐♣�✐♦♥ ✂s �♦✞♦✠ �✞✂� ❡♥✈✐✁♦♥✄❡♥�

s✞♦✆❧✟ ❜❡ s�✁✆✝�✆✁❡✟➸ ➀➲➱➃✳ ❿✞❡ ❖❙❙ ✐✟❡♦❧♦❣② ♦✁✐❣✐♥s ✂✁❡ ✟❡❡♣❧②

❡s�✂❜❧✐s✞❡✟ ✐♥ �✞❡ ➵✘✁❡❡ ❙♦❢�✠✂✁❡ ✗♦✈❡✄❡♥�➸ ♦❢ �✞❡ ➻➬➱s ❧❡✟ ❜②

❘✐✝✞✂✁✟ ❙�✂❧❧✄✂♥ ➀➳✱ ➲➁✱ ➲➂➃✳ ❿✞❡ ✄♦✈❡✄❡♥� ✐s ✠✐✟❡❧② ✂✝✝✁❡✟✐�❡✟

❢♦✁ ♣✂✈✐♥❣ �✞❡ ✠✂② ❢♦✁ �✞❡ ♦♣❡♥ s♦✆✁✝❡ ✟❡✈❡❧♦♣✄❡♥�✳

❿✞❡✁❡ ✞✂s ❜❡❡♥ ✝♦♥s✐✟❡✁✂❜❧❡ ✐♥�❡✁❡s� ✐♥ ✆♥✟❡✁s�✂♥✟✐♥❣ �✞❡

✐✟❡♦❧♦❣✐✝✂❧ ❢✁✂✄❡✠♦✁➭ ♦❢ ♦♣❡♥ s♦✆✁✝❡ s♦❢�✠✂✁❡ ✝♦✄✄✆♥✐�✐❡s ➀➳✱

➁➶✱ ➲➲✱ ➲➶➃✳ ➪♥ s❡��✐♥❣s s✆✝✞ ✂s ❖❙❙ ✝♦✄✄✆♥✐�✐❡s✱ ✠✞❡✁❡ ❡♥�✁②

❜✂✁✁✐❡✁s ✂✁❡ ♥♦♥❡①✐s�❡♥� ✂♥✟ ✐♥s�✐�✆�✐♦♥✂❧✐➄✂�✐♦♥ ♦❢ ✝♦♥�✁♦❧ ✐s ✂

✝✞✂❧❧❡♥❣❡✱ ✐✟❡♦❧♦❣② s❡❡✄s �♦ ❢✂✝✐❧✐�✂�❡ ♦✁✟❡✁ ➀➲➳➃✳ ➆♦✠❡✈❡✁✱

➫➺✆♥❣❜❡✁❣ ➀➲➳➃ s✆❣❣❡s�s �✞✂� ✝♦✄✄✐�✄❡♥� �♦ �✞❡ ✐✟❡♦❧♦❣② ✈✂✁✐❡s

✠✐✟❡❧② ✂✝✁♦ss ✟❡✈❡❧♦♣❡✁s✳

■✧♣✔❝✕★ ❙�❡✠✂✁� ✂♥✟ ●♦s✂✐♥ ➀➲➶➃ ❢♦✆♥✟ �✞✂� ♦♣❡♥ s♦✆✁✝❡

♣✂✁�✐✝✐♣✂♥�s ✂✟✞❡✁❡ �♦ �✞✐s ✐✟❡♦❧♦❣②✳ ■✂✈✐✟ ❡� ✂❧✳ ➀➲➘➃✱ ■✂✈✐✟ ✂♥✟

è✻

❙✞✂♣✐✁♦ ➀➲➷➃✱ ●✞♦s✞ ➀➲➬➃✱ ✂♥✟ ●✞♦s✞ ❡� ✂❧✳➻s ➀➲➮➃ s✆✁✈❡②s s✆❣❣❡s�

�✞✂� ✄❡✄❜❡✁s➻ ♣✂✁�✐✝✐♣✂�✐♦♥ ✄♦�✐✈❡s ✞✂✈❡ ✆♥✟❡✁♣✐♥♥✐♥❣

✐✟❡♦❧♦❣✐✝✂❧ ❜❡❧✐❡❢s✳ ❖❙❙ ✐✟❡♦❧♦❣② ♥❡❡✟s �♦ ❜❡ ✂♥✂❧②➄❡✟✱ ✂♥✟ ✐�s

✆♥✟❡✁❧②✐♥❣ ❜❡❧✐❡❢s ✂♥✟ ♥♦✁✄s ✄✆s� ❜❡ ✂✝➭♥♦✠❧❡✟❣❡✟ ❜❡❢♦✁❡ �✞❡

✟❡s✐❣♥ ✂♥✟ �✞❡ ✐✄♣❧❡✄❡♥�✂�✐♦♥ ♦❢ s♦❢�✠✂✁❡ ❡♥❣✐♥❡❡✁✐♥❣ ♣✁✂✝�✐✝❡s

✐♥ ❖❙❙ ✝♦✄✄✆♥✐�✐❡s✳ ☞❡ ✂✁❣✆❡ �✞✂� ✐✟❡♦❧♦❣② s✞♦✆❧✟ ❜❡

✂ss✐✄✐❧✂�❡✟ ✐♥�♦ �✞❡ ✝♦✄✄✆♥✐�② ♣✁✂✝�✐✝❡s �♦ ❡♥s✆✁❡ ✐�s s✆✝✝❡ss✳ ✘♦✁

❡①✂✄♣❧❡✱ ✠✞❡♥ s❡❧❡✝�✐♥❣ ✂ �♦♦❧ ❢♦✁ ✂ ♣✂✁�✐✝✆❧✂✁ ♣✁♦✝❡ss✱ ♦♥❡ s✞♦✆❧✟

✝♦♥s✐✟❡✁ ✂♥ ♦♣❡♥ s♦✆✁✝❡ �♦ ✂✝✝♦✄✄♦✟✂�❡ �✞❡ ♦♣❡♥♥❡ss ❢❡✂�✆✁❡ ♦❢

�✞❡ ✝♦✄✄✆♥✐�② ✐✟❡♦❧♦❣✐✝✂❧ ✈✂❧✆❡s✳ ✎ ✝❧♦s❡✟ s♦✆✁✝❡ �♦♦❧ ✠✐❧❧ ✝✁❡✂�❡

✟✐✈✐s✐♦♥✱ ✂♥✟ ❡✈❡♥�✆✂❧❧② �✞❡ ✂ss♦✝✐✂�❡✟ �♦♦❧ ✂♥✟ ♣✁✂✝�✐✝❡ ✠✐❧❧ ❜❡

✂❜✂♥✟♦♥❡✟✳

✹�✶�✷ ❊�❥♦②♠❡�t

➪Þ◆▲✁✂Þ➠✂➩ ➂➽ ✪♥➺♦②✄❡♥� ✐s ❡q✆✂�❡✟ ✠✐�✞ ✝✞✂❧❧❡♥❣❡ ✐♥ �✞❡

✝♦✄✄✆♥✐�② ✝✆❧�✆✁❡✱ ✠✞✐❧❡ �✞❡ ➼✎ �✂s➭s ✂✁❡ ♥♦� ✈✐❡✠❡✟ ✂s

✝✞✂❧❧❡♥❣✐♥❣✳

❉✔✕✔★ ☞❡ ♦❜s❡✁✈❡✟ �✞✂� ❡♥➺♦②✄❡♥� ✐s ✂ ➭❡② ✟✁✐✈❡✁ ✐♥

✝♦✄✄✆♥✐�② ♣✂✁�✐✝✐♣✂�✐♦♥✳ ◆♦♥✲♣✁♦❣✁✂✄✐♥❣ �✂s➭s ✂✁❡ ❡✐�✞❡✁ ❜❡✐♥❣

✟✆❧② ❡①❡✝✆�❡✟ ♦✁ �✂➭✐♥❣ ♣❧✂✝❡ ❧♦♦s❡❧② ✐♥ �✞❡ ✝♦✄✄✆♥✐�② ♣✁✂✝�✐✝❡s✳

✎♥ ✂��❡♥✟❡❡ ✂� �✞❡ ✝♦✄✄✆♥✐�② ②❡✂✁❧② ✝♦♥❢❡✁❡♥✝❡ ✝♦✄✄❡♥�❡✟ ♦♥

✂ ♣♦s�❡✁ �✞✂� ✂✟✈♦✝✂�❡✟ ✂♥ ❡❢❢♦✁� �♦ ✐✄♣❧❡✄❡♥� ✂♥✟ ♣✁♦✄♦�❡ ➼✎

♣✁✂✝�✐✝❡s ✐♥ �✞❡ ✝♦✄✄✆♥✐�②➽ ➵☞✞✂� ②♦✆ ✂✁❡ �✁②✐♥❣ �♦ ✂✝✞✐❡✈❡ ✐s

❢♦✁✄✂❧✫ ✠❡ ✟❡✈❡❧♦♣❡✁s s❡❡➭ ❢✆♥ ✐♥ ✠✁✐�✐♥❣ ✝♦✟❡ ✂♥✟ ✝✁❡✂�✐♥❣ ♥❡✠

❢❡✂�✆✁❡s✳➸ ➵❙➭✐♣♣✐♥❣ ✂♥✟ s➭✐✄✄✐♥❣ �✞✁♦✆❣✞ ♣✆❧❧ ✁❡q✆❡s�s ✂♥✟

✟✆✁✐♥❣ ✝♦✟❡ ✁❡✈✐❡✠ ✂✁❡ ✝♦✄✄♦♥ ♦✝✝✆✁✁❡♥✝❡s✱➸ ♦♥❡ ♣✂✁�✐✝✐♣✂♥�

s�✂�❡✟✳ ❿✞✐s ✂��✐�✆✟❡ ✞✂s ✐�s ✝♦♥s❡q✆❡♥✝❡s✳ ➆❡ ❢✆✁�✞❡✁ ❡①♣❧✂✐♥❡✟✱

➵❿✞✐♥❣s ✟♦♥✬� ❣❡� ✁❡✈✐❡✠❡✟ ✂♥✟ ✟♦♥➻� ❣❡� �✞❡ ♥❡✝❡ss✂✁② ✂��❡♥�✐♦♥

❢♦✁ ✂ ❧♦♥❣❡✁ �✐✄❡✳➸

✙✢✔❛②✜✛✜★ ✪♥➺♦②✄❡♥� ✂s ✂♥ ✐♥�✁✐♥s✐✝ ✄♦�✐✈✂�✐♦♥ ✞✂s ❜❡❡♥

✂ss♦✝✐✂�❡✟ ✠✐�✞ ♣✁♦❣✁✂✄✄✐♥❣ ✥➵✝♦✟✐♥❣➸☎✳ ➆♦✠❡✈❡✁✱ ♣✁♦❣✁✂✄✄✐♥❣

✐s ♥♦� �✞❡ ♦♥❧② ✂✝�✐✈✐�② �✂➭✐♥❣ ♣❧✂✝❡ ✐♥ ✂♥ ♦♣❡♥ s♦✆✁✝❡ s♦❢�✠✂✁❡

✟❡✈❡❧♦♣✄❡♥� ❡♥✈✐✁♦♥✄❡♥�✳ ❖�✞❡✁ ✐♥✞❡✁❡♥� �✂s➭s ✐♥✝❧✆✟❡ ✝♦✟❡

✁❡✈✐❡✠s✱ ✁❡❧❡✂s❡ ✄✂♥✂❣❡✄❡♥�✱ ✟♦✝✆✄❡♥�✂�✐♦♥ ✠✁✐�✐♥❣ ✂♥✟

✄✂✐♥�❡♥✂♥✝❡✱ ❡�✝✳ ❿✞❡✁❡ ✐s ✂ ♥❡❡✟ �♦ ✆♥✟❡✁s�✂♥✟ �✞❡ ✁❡❧✂�✐♦♥s✞✐♣

❜❡�✠❡❡♥ ♥♦♥✲♣✁♦❣✁✂✄✄✐♥❣ �✂s➭s ✂♥✟ ❡♥➺♦②✄❡♥�✳ ➪♥ ✂ ✝♦✄✄✆♥✐�②

❜✂s❡✟ ❧✂✁❣❡❧② ♦♥ ✈♦❧✆♥�❡❡✁s✱ �✞✐s ✐s ✂ ✝♦♥✟✐�✐♦♥ ✜✛✢✒ q✉✔ ✢✖✢ ❢♦✁

✄✂➭✐♥❣ s♦❢�✠✂✁❡ ✟❡✈❡❧♦♣✄❡♥� ♣✁♦✝❡ss❡s ❢✆♥✝�✐♦♥ ❜❡②♦♥✟

♣✁♦❣✁✂✄✐♥❣✳

■❡✝✐ ✂♥✟ ❘②✂♥➻s ➀➳➱➃ s❡❧❢✲✟❡�❡✁✄✐♥✂�✐♦♥ �✞❡♦✁② ✐s ✂ ✠✐✟❡❧②

s✆♣♣♦✁�❡✟ ✝♦♥�❡✄♣♦✁✂✁② ✐♥�✁✐♥s✐✝ ✄♦�✐✈✂�✐♦♥ �✞❡♦✁②✳ ➪� s✆❣❣❡s�s

�✞✂� ✞✆✄✂♥s ✞✂✈❡ �✞✁❡❡ ✐♥�✆✐�✐✈❡ ♣s②✝✞♦❧♦❣✐✝✂❧ ♥❡❡✟s➽ ✂ ♥❡❡✟ �♦

❢❡❡❧ ✝♦✄♣❡�❡♥�✱ ✂ ♥❡❡✟ �♦ ❜❡❧♦♥❣✱ ✂♥✟ ✂ ♥❡❡✟ �♦ ❢❡❡❧

✐♥✟❡♣❡♥✟❡♥�✳ ➪♥�✁✐♥s✐✝ ✄♦�✐✈✂�✐♦♥s ❡✄❡✁❣❡ ✐♥ ♣❡♦♣❧❡➻s ❜❡✞✂✈✐♦✁

�♦ s✆♣♣♦✁� �✞❡s❡ ♣s②✝✞♦❧♦❣✐✝✂❧ ♥❡❡✟s✳ ■❡✝✐ ✂♥✟ ❘②✂♥ ➀➳➱➃ ❡①♣❧✂✐♥

�✞✂� ✠✞❡♥ ♣❡♦♣❧❡ ❢❡❡❧ ✝♦✄♣❡�❡♥�✱ ✂✆�♦♥♦✄♦✆s✱ ✂♥✟ s❡❧❢✲

✟❡�❡✁✄✐♥❡✟✱ �✞❡② ✠✐❧❧ s❡❡➭ �♦ ❢✆❧❢✐❧❧ �✞❡✐✁ ✐♥�❡✁♥✂❧ s❡❧❢✲

s✂�✐s❢✂✝�✐♦♥✳ ✘✁❡❡✟♦✄ ♦❢ ✝✞♦✐✝❡✱ �✞❡ ♣✁❡s❡♥✝❡ ♦❢ ✂ ✝✞✂❧❧❡♥❣❡✱ ✂♥✟

�✞❡ ✂❜✐❧✐�② �♦ ♦✈❡✁✝♦✄❡ �✞❡ ✝✞✂❧❧❡♥❣❡ ✂✁❡ �✞❡ �✞✁❡❡ ✈✂✁✐✂❜❧❡s �✞✂�✱

✠✞❡♥ ✄❡�✱ s�✐✄✆❧✂�❡ ✐♥�✁✐♥s✐✝ ✄♦�✐✈✂�✐♦♥ ➀➳➱➃✳ ◆♦♥✲✝♦✟✐♥❣ �✂s➭s

✂✁❡ ♥♦� ➵✝✞✂❧❧❡♥❣✐♥❣➸ ♦✁ ✂� ❧❡✂s� ✂✁❡ ♣❡✁✝❡✐✈❡✟ ✂s ♥♦� ❜❡✐♥❣ s♦✳

❿✞❡② ✂��✁✂✝� ❢❡✠❡✁ ✝♦♥�✁✐❜✆�♦✁s✱ ✂♥✟ ✝♦♥s❡q✆❡♥�❧②✱ ➼✎ ♣✁✂✝�✐✝❡s

✐♥ �✞❡ ✝♦✄✄✆♥✐�② ✥✐✳❡✳✱ ✄✂✐♥�❡♥✂♥✝❡ ✂♥✟ �❡s�✐♥❣☎ ✁❡✝❡✐✈❡ ❧❡ss

✂��❡♥�✐♦♥✳

■✧♣✔❝✕★ ➪� ✞✂s ❜❡❡♥ s✆❣❣❡s�❡✟ �✞✂� ❡♥➺♦②✄❡♥� ✐s ✂ ➭❡② ✝♦♥s�✁✆✝�

❢♦✁ ✆♥✟❡✁s�✂♥✟✐♥❣ ✂♥✟ ❡①♣❧✂✐♥✐♥❣ �✞❡ ✄♦�✐✈✂�✐♦♥ ♦❢ ❖❙❙

♣✂✁�✐✝✐♣✂♥�s ➀➂➷✱ ➳➁✱ ➳➂➃✳ ➫✂➭✞✂♥✐ ✂♥✟ ☞♦❧❢ ➀➂➷➃ s✆❣❣❡s� �✞✂�

❡♥➺♦②✄❡♥� ✐s ✂ ♣✁❡✈✂❧❡♥� ✄♦�✐✈✂�✐♦♥ ✂✄♦♥❣s� ❖❙❙ ✝♦♥�✁✐❜✆�♦✁s✳

➆❡♥✝❡✱ ✐�➻s ♥♦� ✂ ❢♦✁✝❡ �♦ ✐❣♥♦✁❡✳ ❿✞❡♥ ✠✞✂� ✐✄♣✂✝� ✟♦❡s �✞✐s ✞✂✈❡

♦♥ �✞❡ ✐✄♣❧❡✄❡♥�✂�✐♦♥ ♦❢ ➼✎ ✂♥✟ ♦�✞❡✁ ♥♦♥✲♣✁♦❣✁✂✄✄✐♥❣ �✂s➭s

✐♥ ❖❙❙ ✝♦✄✄✆♥✐�✐❡s➾ ➪� ✂♣♣❡✂✁s �✞✂� ♦♥❡ ♥❡❡✟s �♦ ✐✄✄❡✁s❡ ❢✆♥

✐♥�♦ ♥♦♥✲✝♦✟✐♥❣ �✂s➭s✳ ❿✞✐s ✝✂♥ ❜❡ ✟♦♥❡ ❜② ✁❡❢✁✂✄✐♥❣ �✞❡ �✂s➭s ♦✁

�✞❡ ♣✁♦✝❡ss✳ ✘♦✁ ❡①✂✄♣❧❡✱ ✟❡✈❡❧♦♣✐♥❣ ✂✆�♦✄✂�❡✟ �❡s�s ✥�✞✂� ✂✁❡

♣✁♦❣✁✂✄✄❡✟ ✂♥✟ ❧❡✂✈❡ ✝✁❡✟✐� ✐♥ ✝♦✟❡ ✁❡♣♦s✐�♦✁✐❡s☎ ✄✂② ❜❡

♣❡✁✝❡✐✈❡✟ ✂s ✄♦✁❡ ❢✆♥ �✞✂♥ ✠✁✐�✐♥❣ ✄✂♥✆✂❧ �❡s�s✳ ❿✞✂� ✠♦✆❧✟

✄✂➭❡ ✐� ✄♦✁❡ ✝✞✂❧❧❡♥❣✐♥❣ ✂♥✟ ✄♦✁❡ ✂➭✐♥ �♦ ♣✁♦❣✁✂✄✄✐♥❣✳

➪Þ◆▲✁✂Þ➠✂➩ ➲➽ ➼✎ ✐s ♥♦� ✞✐❣✞ ✐♥ �✞❡ ♣✁✐♦✁✐�✐❡s ♦❢ �✞❡ ✝♦✄✄✆♥✐�②✳

❈♦♥s❡q✆❡♥�❧②✱ ➼✎ �✂s➭s ✂✁❡ ♥❡❣❧❡✝�❡✟✳

❉✔✕✔★ P✁✐♦✁✐�✐❡s ♦❢ �✞❡ ✝♦✄✄✆♥✐�② ✂✁❡ ✟❡�❡✁✄✐♥❡✟ ❜② �✞❡ ♦✁✟❡✁

♦❢ ✐✄♣♦✁�✂♥✝❡ ❜❡�✠❡❡♥ ✈✂✁✐♦✆s ✝♦♥�✁✐❜✆�✐♦♥s ✂♥✟ ✐♥✐�✐✂�✐✈❡s✳

P✁✐♦✁✐�✐❡s ✂✁❡ s✆❜➺❡✝� �♦ ✝✞✂♥❣❡ ✠✐�✞ ✝✞✂♥❣❡s ✐♥ �✞❡ ✝♦✄✄✆♥✐�② ♦✁

✠✐�✞ ✝✞✂♥❣❡s ✐♥ ♣❡♦♣❧❡➻s ♦❜➺❡✝�✐✈❡s✱ ✄♦�✐✈❡s✱ ♦✁ ➭♥♦✠❧❡✟❣❡✳

➪♥♥♦✈✂�✐♦♥ ✂♥✟ ❢✆♥✝�✐♦♥✂❧ ✟❡♣�✞ ✂♥✟ ❜✁❡✂✟�✞ ✂✁❡ �✞❡ ♣✁✐♦✁✐�✐❡s ♦❢

�✞❡ ❘❖❙ ✝♦✄✄✆♥✐�②✳ ➵✪✈❡✁②❜♦✟② ✐s ✂✐✄✐♥❣ ❢♦✁ ♥❡✠ �✞✐♥❣s✱➸ ♦♥❡

♣✂✁�✐✝✐♣✂♥� s�✂�❡✟✳ ❿✞❡② �✞✁✐✈❡ ♦♥ ✐♥♥♦✈✂�✐♥❣ ✂♥✟ ✁❡s♦❧✈✐♥❣

✝✞✂❧❧❡♥❣✐♥❣ ✂♥✟ ✝♦✄♣❧❡① �❡✝✞♥✐✝✂❧ ✐ss✆❡s✳ ❿✞✐s ✞✂s ❜❡❡♥ ♦❜s❡✁✈❡✟

✂� �✞❡ ✝♦✄✄✆♥✐�② ②❡✂✁❧② ✝♦♥❢❡✁❡♥✝❡ ✥❘❖❙❈♦♥ ➂➱➁➷☎✳ ❿✞❡ ✄✂✐♥

♣✁♦❣✁✂✄ ✠✂s ✟❡✟✐✝✂�❡✟ �♦ ♥❡✠ ✐♥♥♦✈✂�✐✈❡ ❢❡✂�✆✁❡s ✂♥✟ ✆s❡ ✝✂s❡s

✁✆♥♥✐♥❣ ♦♥ �✞❡ ✝♦✄✄✆♥✐�② �❡✝✞♥♦❧♦❣✐✝✂❧ ♣❧✂�❢♦✁✄✳ ❖♥❡

✐♥�❡✁✈✐❡✠❡❡ s�✂�❡✟✱ ➵✗♦✁❡ ✐✄♣♦✁�✂♥�❧②✱ ♦✆✁ ❢♦✝✆s ✐s ❢❡✂�✆✁❡s ✂♥✟

❢✆♥✝�✐♦♥✂❧✐�②✳ ❿✞❡ ♣✁♦✝❡ss ✐s ♥♦� ✂❧✠✂②s �✞❡ ♣✁✐♦✁✐�②✳➸ ✎♥♦�✞❡✁

♣✂✁�✐✝✐♣✂♥� ✝♦♥❢✐✁✄❡✟✱ ➵☞❡ ✠✂♥� �♦ ✂❧s♦ ❢♦✝✆s ♦♥ �✞❡ ♥❡✠ s�✆❢❢✳➸

➪♥ ✂✟✟✐�✐♦♥✱ ♥❡✠ ❢❡✂�✆✁❡s ✂✁❡ ✝♦✄✄♦♥❧② ✂♥♥♦✆♥✝❡✟ ✂♥✟

s✞♦✠✝✂s❡✟ ✐♥ �✞❡ ✝♦✄✄✆♥✐�② ❢♦✁✆✄ ✥✐✳❡✳ ✗♦♥♦✝✆❧✂✁ ❈✂✄❡✁✂✱ ✂♥✟

◆❡✠ ♣✂✝➭✂❣❡s ❢♦✁ ➫✆♥✂✁☎✳

✙✢✔❛②✜✛✜★ ❈♦♥s❡q✆❡♥�❧②✱ q✆✂❧✐�② ♣✁✂✝�✐✝❡s ✂♥✟ ✝♦♥�✐♥✆♦✆s

✐✄♣✁♦✈❡✄❡♥� ✂✁❡ ✆♥✟❡✁✲♣✁✐♦✁✐�✐➄❡✟✳ ✎ ♣✂✁�✐✝✐♣✂♥� ✝♦✄✄❡♥�❡✟ ♦♥

�✞❡ ✝✆✁✁❡♥� ➼✎ ♣✁♦✝❡ss❡s ✐♥ �✞❡ ✝♦✄✄✆♥✐�②✱ ➵➪� �✂➭❡s ✂ ❧♦� ♦❢ �✐✄❡

�♦ s❡� �✞✐♥❣s ✆♣ ♣✁♦♣❡✁❧②✱ ✂♥✟ ✂ ❧♦� ♦❢ ♣❡♦♣❧❡ s❡❡ �✞✂� ✂s ✠✂s�❡✟

�✐✄❡ ❜❡✝✂✆s❡ ②♦✆ ✂✁❡ ✟❡✈❡❧♦♣✐♥❣ ✂ ♥❡✠ ✝♦✄♣♦♥❡♥� �✞✂� ✐s ✟♦✐♥❣

s♦✄❡�✞✐♥❣✳ ➅♦✆ ✠✂♥� �♦ ❢♦✝✆s ♦♥ ✟❡✈❡❧♦♣✐♥❣ ②♦✆✁ ✝♦✄♣♦♥❡♥�✫

②♦✆ ✟♦♥✬� ✠✂♥� �♦ ❢♦✝✆s ♦♥ s❡��✐♥❣ ✆♣ �❡s�s✱ ❣✂�✞❡✁✐♥❣ ✟✂�✂✱ ♣✆��✐♥❣

➀♦✆�➃ ✂ s✐✄✆❧✂�✐♦♥✱ ➀✂♥✟➃ ✂❧❧ �✞✐s ➭✐♥✟ ♦❢ ✝♦❧❧✂�❡✁✂❧ ✠♦✁➭✳➸

■✧♣✔❝✕★ ❿♦ ✝♦✆♥�❡✁ �✞✐s ✟❡✲♣✁✐♦✁✐�✐➄✂�✐♦♥ ♦❢ ➼✎✱ �✞❡ ❖❙❙ ✝♦✁❡

�❡✂✄ ✄♦✟❡❧ ✝♦✆❧✟ ♣♦ss✐❜❧② ❜❡ ✁❡♣❧✐✝✂�❡✟ ❢♦✁ ➼✎✳ ➪♥ �✞❡ ✝♦✁❡ �❡✂✄

✄♦✟❡❧✱ ✂ ✝♦✄✄✆♥✐�② s❡�s ✆♣ ✂ ✟❡✟✐✝✂�❡✟ �❡✂✄ ❣✆✂✁✟✐♥❣ ✂♥✟

❡♥✞✂♥✝✐♥❣ �✞❡ ✝♦✁❡ ✄♦✟✆❧❡s ♦❢ �✞❡ ♣✁♦➺❡✝�✳ ❿✞❡ ✝♦✁❡ �❡✂✄ ✄♦✟❡❧

✞✂s ❜❡❡♥ s✆✝✝❡ss❢✆❧ ✐♥ �✞❡ ❘❖❙ ✝♦✄✄✆♥✐�②✳ ❿✞✐s ✄♦✟❡❧ ✝♦✆❧✟

♣♦ss✐❜❧② ❜❡ ✁❡♣❧✐✝✂�❡✟ ❢♦✁ q✆✂❧✐�② ❜② ✝✁❡✂�✐♥❣ ✂ ✟❡✟✐✝✂�❡✟ �❡✂✄ �♦

♦✠♥ ✂♥✟ ❣✆✂✁✟ ➼✎ ♣✁✂✝�✐✝❡s ✐♥ �✞❡ ✝♦✄✄✆♥✐�②✳ ❿✞✐s ✠♦✆❧✟

❡❧❡✈✂�❡ ♣✁✐♦✁✐�② ✁✂♥➭ ♦❢ q✆✂❧✐�② ✂ss✆✁✂♥✝❡ �♦ �✞❡ ❧❡✈❡❧ s✐✄✐❧✂✁ �♦

♣✁♦❣✁✂✄✄✐♥❣ ✝♦✁❡ ✄♦✟✆❧❡s✳

➪Þ◆▲✁✂Þ➠✂➩ ➳➽ ❘❖❙ ✝✆❧�✆✁❡ ♦❢ ✄❡✁✐�♦✝✁✂✝② ✐s ♥♦� ✐♥�❡❣✁✂�❡✟ ✐♥�♦

➼✎ ♣✁✂✝�✐✝❡s✳

❉✔✕✔★ ❿✞❡ ✝✆❧�✆✁✂❧ �✁✂✐�s ♦❢ ♦♣❡♥ s♦✆✁✝❡ s♦❢�✠✂✁❡ ✝♦✄✄✆♥✐�✐❡s

✂✁❡ ❣✁♦✆♥✟❡✟ ✐♥ �✞❡ ✐✟❡♦❧♦❣✐✝✂❧ ❜❡❧✐❡❢s ✂♥✟ ✄❡✄❜❡✁s➻ ✄♦�✐✈✂�✐♦♥s✳

❿✞❡ s�✆✟② ♦❢ �✞❡ ❘❖❙ ✝♦✄✄✆♥✐�② ✐♥✟✐✝✂�❡s �✞✂� s�✂�✆s ✂��✂✐♥✄❡♥�✱

✁✂❢❧✉✄✂❝✄❡s ✥❢ ☎✉✆❧✐✝✞ ✟ss✉❡✆✂❝✄ ✠❡✆❝✝✐❝✄s ✐✂ ✆✂ ✡☛✄✂ ☞✥✉❡❝✄ ✌✥♠♠✉✂✐✝✞ ❈✍❆❙❊ ✷✵✶✽✱ ▼✎✏ ✷✵✶✽✱ ✑✒✓❤✔♥✕✖✗❣✱ ❙✘✔✙✔♥

è✻

❈�❆✁❊✂✶✄☎ ▼❛✆ ✥✼✱ ✥✵✝✽✱ ●✞t❤❡✟❜✠✡❣✱ ☛☞❡✌❡✟ ✍✎❛♠✐✱ ❉✐tt✡✐✏❤ ❛✟✌✑❛s✞☞s❦✐

♦♣❡♥♥❡ss✱ ❢✁❡❡✟♦✄ ♦❢ ✝✞♦✐✝❡✱ ✂♥✟ �✞❡ s�✁✐✈❡ �♦ ✐♥♥♦✈✂�❡ ✝♦♥s�✐�✆�❡

�✞❡ ✝✆❧�✆✁✂❧ �✁✂✐�s ♦❢ �✞❡ ✝♦✄✄✆♥✐�②✳ ➆♦✠❡✈❡✁✱ ✄❡✁✐�♦✝✁✂✝② ✐s ✂

s✐❣♥✐❢✐✝✂♥� ✂��✁✐❜✆�❡ ♦❢ ❘❖❙ ✝✆❧�✆✁❡✳

✩♥❢♦✁�✆♥✂�❡❧②✱ ✠❡ ♦❜s❡✁✈❡✟ �✞✂� �✞❡ ✝♦✄✄✆♥✐�②➻s ✝✆❧�✆✁✂❧

✈✂✁✐✂❜❧❡s ✂✁❡ ♥♦� ✝✁✂❢�❡✟ ✐♥�♦ �✞❡ ✐✄♣❧❡✄❡♥�✂�✐♦♥ ♦❢ ➼✎ ♣✁✂✝�✐✝❡s✳

✘✂✄❡ ✂♥✟ ✁❡♣✆�✂�✐♦♥ ✂✁❡ �✞❡ ✁❡✠✂✁✟s ❢♦✁ �✞♦s❡ ✠✐�✞ s✆♣❡✁✐♦✁

�❡✝✞♥✐✝✂❧ ➭♥♦✠❧❡✟❣❡✱ ✂♥✟ �✞❡② ❣❡♥❡✁♦✆s❧② ✞❡❧♣ ♦�✞❡✁s �♦ ✁❡s♦❧✈❡

�✞❡✐✁ �❡✝✞♥✐✝✂❧ ✝✞✂❧❧❡♥❣❡s ✐♥ �✞❡ ✝♦✄✄✆♥✐�② ❢♦✁✆✄s✳ ❿✞❡✁❡ ✐s ♥♦

s✆✝✞ ✈✐s✐❜✐❧✐�② ♦✁ ✁❡✠✂✁✟ ❣✐✈❡♥ �♦ �✞♦s❡ ✠✞♦ ♣❡✁❢♦✁✄ �❡s�✐♥❣

✂✝�✐✈✐�✐❡s ♦✁ ✟♦✝✆✄❡♥�✂�✐♦♥✳

➪❢ ❡♥➺♦②✄❡♥� ✐s ♦♥❡ ♦❢ �✞❡ ♣✂✁�✐✝✐♣✂�✐♦♥ ✟✁✐✈❡✁s✱ �✞❡♥ q✆✂❧✐�②

s✞♦✆❧✟ ❜❡ ❢✆♥✳ ➆♦✠❡✈❡✁✱ �✞✐s ✐s ♥♦� �✞❡ ✝✂s❡✳ ✘✆♥ ✐s ♥♦� ✝♦♥s�✁✆✝�❡✟

✐♥�♦ ➼✎ ♣✁✂✝�✐✝❡s✳ ✘✆♥ ✐s ✂❧s♦ �✞❡ ✐♥�❡❧❧❡✝�✆✂❧ s�✐✄✆❧✂�✐♦♥ ✂♥✟

✝✞✂❧❧❡♥❣❡✳ ➼✆✂❧✐�② ♣✁✂✝�✐✝❡s ✂✁❡ ✝♦♥❢♦✁✄✂♥✝❡ �♦ ✁✆❧❡s✱ s�✂♥✟✂✁✟s✱

✂♥✟ ♣✁♦✝❡ss❡s✳ ❈♦♥s❡q✆❡♥�❧②✱ ➼✎ ✂✝�✐✈✐�✐❡s ✟♦ ♥♦� ✂��✁✂✝�

✝♦♥�✁✐❜✆�✐♦♥s✳ ❖♥❡ ♣✂✁�✐✝✐♣✂♥�s s�✂�❡✟✱ ➵✗✂✐♥�❡♥✂♥✝❡✦ ◆♦ ♦♥❡

✠✂♥�s �♦ ✟♦ �✞✂�✳ ➪ ✄❡✂♥ ➪ ✂✄ s✂②✐♥❣ ➪ ✂✄ ♥♦� ✞✂♣♣② �✞✂� �✞✐s ✐s

✂✝�✆✂❧❧② ✂ ✁❡✂❧ ♣✁♦❜❧❡✄✳➸

✙✢✔❛②✜✛✜★ ❈✆❧�✆✁❡ s�❡✄s ❢✁♦✄ ✂●✁❡❡➭ ✠♦✁✟ ➵✝✆❧�✆✁✂✱➸ ✄❡✂♥✐♥❣

➵�♦ �❡♥✟✱ ✝✆❧�✐✈✂�❡✱ �✐❧❧✱ ❡✟✆✝✂�❡ ♦✁ ✁❡❢✐♥❡➸ ➀➳➲➃✳❇❡♥♥❡�� ➀➳➳➃ ✟❡❢✐♥❡s

✝✆❧�✆✁❡ ✂s ✂ s✞✂✁❡✟ ✄❡♥�✂❧ s②s�❡✄ �✞✂� ✟✐s�✐♥❣✆✐s✞❡s �✞❡ ✄❡✄❜❡✁s

♦❢ ♦♥❡ ❣✁♦✆♣ ❢✁♦✄ ✂♥♦�✞❡✁✳ ❈✆❧�✆✁❡ ✐s �✁✂♥s❢❡✁✁❡✟ ❢✁♦✄ ♦♥❡

❣❡♥❡✁✂�✐♦♥ �♦ ✂♥♦�✞❡✁✳ ✘❡❧❧♦✠s ✥ ➫✐✆ ➀➳➶➃ ✂✁❣✆❡✟ �✞✂� ✝✆❧�✆✁❡ ✐s

❡✈❡✁ ✝✞✂♥❣✐♥❣ ✂s ❣❡♥❡✁✂�✐♦♥s ✂✟✟ s♦✄❡�✞✐♥❣ ♥❡✠ �♦ �✞❡ ✝✆❧�✆✁❡

❜❡❢♦✁❡ ♣✂ss✐♥❣ ✐� �♦ �✞❡ ♥❡①� ❣❡♥❡✁✂�✐♦♥✳

➪♥ ✂ s♦✝✐✂❧ s②s�❡✄ ✠✞❡✁❡ ✄❡✁✐�♦✝✁✂✝② ✟✐✝�✂�❡s �✞❡ s♦✝✐✂❧

s�✁✆✝�✆✁❡ ✂♥✟ �❡✝✞♥✐✝✂❧ ➭♥♦✠❧❡✟❣❡ ✐s ✂✠✂✁✟❡✟ ❜② s♦✝✐✂❧ ✄❡✁✐�s �♦

✂��✂✐♥ ✞✐❣✞❡✁ ✝♦✄✄✆♥✐�② s�✂�✆s✱ q✆✂❧✐�② ♣✁✂✝�✐✝❡s ❜❡✝♦✄❡ �✁✐✈✐✂❧✳

❿✞✐s ❜❡✝♦✄❡s ✄♦✁❡ ♣✁♦❜❧❡✄✂�✐✝ ✠✞❡♥ �✞❡ ✐♥♥♦✈✂�✐♦♥➻s ❢✆♥✝�✐♦♥✂❧

✟❡♣�✞ ✂♥✟ ❜✁❡✂✟�✞ ✟♦✄✐♥✂�❡ �✞❡ ✝♦✄✄✆♥✐�②➻s ♣✁✐♦✁✐�✐❡s✳ ➪♥ ✂ ❧♦✝✂❧

✝♦✄✄✆♥✐�② ✄❡❡�✐♥❣✱ ✂ ✞✐❣✞❧② ✁❡❣✂✁✟❡✟ ✟❡✈❡❧♦♣❡✁ ✠✂s ✐♥�✁♦✟✆✝❡✟

�♦ �✞❡ ✝✁♦✠✟ ✂s ❜❡✐♥❣ ➵❢✂✄♦✆s ✠♦✁❧✟✠✐✟❡➸ ❢♦✁ ✟❡✈❡❧♦♣✐♥❣ ✂

❢❡✂�✆✁❡ �✞✂� ✠✂s ❡♥�✞✆s✐✂s�✐✝✂❧❧② ✂♣♣✁❡✝✐✂�❡✟✳ ✎♣♣✂✁❡♥�❧②✱ ✞✐s

✝♦♥�✁✐❜✆�✐♦♥ ✠✂s ♦❢ ❡①✝❡♣�✐♦♥✂❧ �❡✝✞♥✐✝✂❧ ✝♦✄♣❧❡①✐�②✳ ❖�✞❡✁s ✞✂✟

✆♥s✆✝✝❡ss❢✆❧❧② ✂��❡✄♣�❡✟ �♦ ✟❡❧✐✈❡✁ ✐� ♣✁❡✈✐♦✆s❧②✳ ➪♥ ✞✐s

♣✁❡s❡♥�✂�✐♦♥✱ ✞❡ s�✂�❡✟✱ ➵☞✞❡♥ ②♦✆ ✝♦♥�✁✐❜✆�❡ ✂ ♥❡✠ ❢❡✂�✆✁❡✱ ✠✞②

�✞✐♥➭ ✂❜♦✆� q✆✂❧✐�②➾ ❏✆s� ✟❡✈❡❧♦♣ ✐� ✂♥✟ ♣✆� ✐� ♦✆� �✞❡✁❡✳➸ ❿✞✐s

✂��✐�✆✟❡ ♦❢ ❢❡✂�✆✁❡s ❢✐✁s� ✂♥✟ q✆✂❧✐�② ❧✂�❡✁ s✞♦✠s �✞✂� q✆✂❧✐�② ✐s ♥♦�

❜✆✐❧� ✐♥�♦ �✞❡ ✝✆❧�✆✁✂❧ ❡♥✈✐✁♦♥✄❡♥�✳

■✧♣✔❝✕★ ✎✝✝♦✁✟✐♥❣ �♦ ❈✁♦s❜② ➀➳➘➃✱ q✆✂❧✐�② s✞♦✆❧✟ ❜❡ ✝✁✂❢�❡✟

✐♥�♦ ✐�s ✝✆❧�✆✁✂❧ ❡♥✈✐✁♦♥✄❡♥�✳ ➪� ✞✂s �♦ ❜❡ ♣✂✁� ♦❢ �✞❡ ♦✁❣✂♥✐➄✂�✐♦♥

❢✂❜✁✐✝✱ ♥♦� ♣✂✁� ♦❢ �✞❡ ❢✂❜✁✐✝✳ ❈✆❧�✆✁❡ ✂♥✟ ♣✁✂✝�✐✝❡s s✞♦✆❧✟ ❜❡ ✐♥

s②♥❡✁❣② ✠✐�✞ ❡✂✝✞ ♦�✞❡✁✳ ☞❡ ♦❜s❡✁✈❡✟ �✞✂� ✠✞❡♥ ✂ ♣✁✂✝�✐✝❡ ✐s

✂❧✐❡♥✂�❡✟ ❢✁♦✄ �✞❡ ✝♦✄✄✆♥✐�② ✝✆❧�✆✁❡✱ ✐�s ✐✄♣❧❡✄❡♥�✂�✐♦♥ ✂♥✟

❡①❡✝✆�✐♦♥ ❢✂✐❧✳ ➼✎ ♣✁✂✝�✐✝❡s s✞♦✆❧✟ ❜❡ ✂❧✐❣♥❡✟ �♦ �✞❡ ✄❡✁✐�♦✝✁✂✝②

s②s�❡✄✳ ◆♦♥✲♣✁♦❣✁✂✄✄✐♥❣ �✂s➭s✱ ❡s♣❡✝✐✂❧❧② ➼✎✱ s✞♦✆❧✟ ❜❡

✁❡✠✂✁✟❡✟ ➵➭✂✁✄✂s➸ s✐✄✐❧✂✁ �♦ ✂♥s✠❡✁✐♥❣ ✝♦✄✄✆♥✐�② ✄❡✄❜❡✁s➻

q✆❡s�✐♦♥s✳ ❿✞❡ ➵➭✂✁✄✂s➸ s②s�❡✄ ✐s ✂ ✁❡✠✂✁✟ s✝✞❡✄❡ ✠✞❡✁❡❜②

✄❡✄❜❡✁s ✂✁❡ ✁❡✠✂✁✟❡✟ ➵➭✂✁✄✂s➸ ✥✐✳❡✳✱ ♣♦✐♥�s☎ ❢♦✁ ✞❡❧♣✐♥❣ �♦

✂♥s✠❡✁ q✆❡s�✐♦♥s ✐♥ �✞❡ ✝♦✄✄✆♥✐�② ❢♦✁✆✄✳ ✗❡✄❜❡✁s ✠✐�✞ ✞✐❣✞

➵➭✂✁✄✂s➸ ✂✁❡ ✞✐❣✞❧② ✁❡❣✂✁✟❡✟ ✐♥ �✞❡ ✝♦✄✄✆♥✐�②✳

➪Þ◆▲✁✂Þ➠✂➩ ➶➽ ❿✞❡ ✂❜s❡♥✝❡ ♦❢ ✂ ✠♦✁➭✐♥❣ s✆s�✂✐♥✂❜✐❧✐�② s�✁✂�❡❣②

♣✆�s ✝♦♥s�✁✂✐♥�s ♦♥ �✞❡ ❡①❡✝✆�✐♦♥ ✂♥✟ �✞❡ ✟❡✈❡❧♦♣✄❡♥� ♦❢ ➼✎✳

❉✔✕✔★ ✎ s✆❜➺❡✝� s�✂�❡s➽ ➵➀❙✆s�✂✐♥✂❜✐❧✐�②➻s➃ ✂❧✠✂②s �✞❡ ♣✁♦❜❧❡✄

❜❡✝✂✆s❡ ✐❢ ②♦✆ ✟♦♥➻� ✞✂✈❡ �✞❡ ❧✂✁❣❡ ❡①♣♦s✆✁❡✱ �✞❡ ♣✁♦➺❡✝� ✟♦❡s ♥♦�

✞✂✈❡ ✄✆✝✞ ✝✞✂♥✝❡ �♦ s✆✁✈✐✈❡ ✂❢�❡✁ ✐� ✞✂s ❜❡❡♥ ✟❡✈❡❧♦♣❡✟✳➸ ✘✐♥✟✐♥❣

✂ ❜✂❧✂♥✝❡ ❜❡�✠❡❡♥ q✆✂❧✐�② ✂♥✟ s�✐✄✆❧✂�✐♥❣ ❣✁♦✠�✞ �✞✁♦✆❣✞

♦♥❣♦✐♥❣ ✝♦♥�✁✐❜✆�✐♦♥s ✞✂s ❜❡❡♥ ✂ ✝✞✂❧❧❡♥❣❡ ❢♦✁ ❘❖❙✳ ☞✞✐❧❡ �✞❡

❢❧♦✠ ♦❢ ♥❡✠ ✝♦♥�✁✐❜✆�✐♦♥s ✐s s�❡✂✟②✱ �✞❡ ✝♦✁❡ �❡✂✄ ✟♦❡s ♥♦� ✞✂✈❡

�✞❡ ✝✂♣✂✝✐�② �♦ ❡♥s✆✁❡ �✞❡✐✁ q✆✂❧✐�②✳

➵❿✞❡ ✄✂✐♥ ✝✞✂❧❧❡♥❣❡ ✐s ❜✂s✐✝✂❧❧② �✐✄❡ ✂♥✟ ✁❡s♦✆✁✝❡s✳➸ ➪♥

✂✟✟✐�✐♦♥✱ �✞❡ ✂❜s❡♥✝❡ ♦❢ ✂ ✠♦✁➭✐♥❣ s✆s�✂✐♥✂❜✐❧✐�② s�✁✂�❡❣② ✞✂s ❧❡✟

�♦ ✂ ✁❡s♦✆✁✝✐♥❣ ✐ss✆❡ ✐♥ �✞❡ s♦❢�✠✂✁❡ ✄✂✐♥�❡♥✂♥✝❡ ✂✝�✐✈✐�✐❡s✳ ❿✞❡

✝♦✄✄✆♥✐�② ✂��❡✄♣�❡✟ ✂ ❢❡✠ ✐♥✐�✐✂�✐✈❡s �♦ ✂��✁✂✝� ♥❡✠ ✄✂✐♥�✂✐♥❡✁s✫

✞♦✠❡✈❡✁✱ �✞❡s❡ ✞✂✈❡ ❜❡❡♥ ✆♥s✆✝✝❡ss❢✆❧✳ ❖♥❡ ♣✂✁�✐✝✐♣✂♥�

❡①♣❧✂✐♥❡✟✱ ➵❙♦ ✐� ✐s ❣♦♦✟ �♦ ❣❡� ♣❡♦♣❧❡ ✐♥✱ ❜✆� ✐�➻s ✞✂✁✟ �♦ ❣❡�

✄✂✐♥�✂✐♥❡✁s ✐♥✱ ❜♦�✞ ♦❢ ✠✞✐✝✞ ✠✐❧❧ ✂✝�✆✂❧❧② ✝♦♥�✐♥✆♦✆s❧② s♣❡♥✟

s♦✄❡ ♦❢ �✞❡✐✁ �✐✄❡ �✁✐✂❣✐♥❣ ✂♥✟ ✝♦♥�✁✐❜✆�✐♥❣✳ ❿✞✂�➻s ✂ ✞✆❣❡

✝✞✂❧❧❡♥❣❡✱ ✂♥✟ ✠❡ ✞✂✈❡ ♥♦� ❢✐❣✆✁❡✟ ♦✆� ✂ ❣♦♦✟ ✠✂② �♦ ❣❡� ✄♦✁❡

♣❡♦♣❧❡ ✐♥✈♦❧✈❡✟✱ ✂♥✟ �✞✂�✱ ➪ �✞✐♥➭✱ ✐s ♦♥❡ ♦❢ �✞❡ ❜✐❣❣❡s� ✝✞✂❧❧❡♥❣❡s

❢♦✁ �✞❡ ♣✁♦➺❡✝�✳➸ ❈♦♥s❡q✆❡♥�❧②✱ ✂ ✞✐❣✞ ♥✆✄❜❡✁ ♦❢ ♣✂✝➭✂❣❡s ❡♥✟ ✆♣

❜❡✐♥❣ ♦✁♣✞✂♥s ✂♥✟ ✆♥✄✂✐♥�✂✐♥❡✟✳ ❿✞✐s ✂♣♣❧✐❡s �♦ ♥♦♥✲✝♦✟❡

✂✁�✐❢✂✝�s ✂s ✠❡❧❧✫ s♦✄❡ ➼✎ ☞✐➭✐ ✟♦✝✆✄❡♥�✂�✐♦♥ ✞✂s ♥♦� ❜❡❡♥

✆♣✟✂�❡✟ ❢♦✁ ②❡✂✁s✳

✙✢✔❛②✜✛✜★ ✎ s✆s�✂✐♥✂❜❧❡ ✝♦✄✄✆♥✐�② ✐s ➵♦♥❡ �✞✂� ✐s

❡✝♦♥♦✄✐✝✂❧❧②✱ ❡♥✈✐✁♦♥✄❡♥�✂❧❧②✱ ✂♥✟ s♦✝✐✂❧❧② ✞❡✂❧�✞② ✂♥✟ ✁❡s✐❧✐❡♥�➸

➀➳➷➃✳ ❘❡s✐❧✐❡♥✝❡ �✁✂♥s✝❡♥✟s ✐♥✝❡♣�✐♦♥ ✂♥✟ �✞❡ ✂❜✐❧✐�② �♦ ♣✁♦✟✆✝❡ ✂

♣✁♦✟✆✝� ❜✆� ✁✂�✞❡✁ �✞✂♥ �✞❡ ♣✁♦✟✆✝�➻s ✂❜✐❧✐�② �♦ ❡✈♦❧✈❡ ✂♥✟

✝♦♥�✐♥✆♦✆s❧② ✐♥♥♦✈✂�❡ ✂♥✟ �✞✁✐✈❡✳ ✘✂✐❧✐♥❣ �♦ ✝✁❡✂�❡ ✂ s✆s�✂✐♥✂❜❧❡

❡♥✈✐✁♦♥✄❡♥� �♦ s✆♣♣♦✁� �✞❡✄s❡❧✈❡s✱ ❖❙❙ ✝♦✄✄✆♥✐�✐❡s ✆s✆✂❧❧②

✈✂♥✐s✞✳

■✧♣✔❝✕★ ❙✆s�✂✐♥✂❜✐❧✐�② ✐s ✟✐❢❢✐✝✆❧� �♦ ✂✝✞✐❡✈❡✫ ✞♦✠❡✈❡✁✱ ✂

♣✁♦➺❡✝�➻s ✂❜✐❧✐�② �♦ ✂��✁✂✝� ✂♥✟ ✁❡�✂✐♥ ✟❡✈❡❧♦♣✄❡♥� ✂♥✟ ✆s❡✁

✁❡s♦✆✁✝❡s ✐♥✝✁❡✂s❡ �✞❡ ♣♦ss✐❜✐❧✐�② ♦❢ s✆s�✂✐♥✂❜✐❧✐�② ➀➳➬➃✳

❈♦✄✄✆♥✐�✐❡s �✞✂� ❢✂✐❧ �♦ ✝✁❡✂�❡ ✂ s✆s�✂✐♥✂❜❧❡ ❡♥✈✐✁♦♥✄❡♥� �♦

s✆♣♣♦✁� �✞❡✄s❡❧✈❡s ✈✂♥✐s✞✳ ❿✞❡ ❡✈♦❧✆�✐♦♥ ♦❢ �✞❡ ✝♦✄✄✆♥✐�②

♣✁♦✟✆✝� ✁❡❧✐❡s ♦♥ ♦♥❣♦✐♥❣ ✝✁❡✂�✐✈❡ ✝♦♥�✁✐❜✆�✐♦♥s✳ ➆❡♥✝❡✱ ❖❙❙

✝♦✄✄✆♥✐�✐❡s ♥❡❡✟ �♦ ✟❡s✐❣♥ ✂♥✟ ✐✄♣❧❡✄❡♥� ✂ ✠♦✁➭✐♥❣

s✆s�✂✐♥✂❜✐❧✐�② s�✁✂�❡❣② �♦ s✆♣♣♦✁� ❣✁♦✠�✞ ✂♥✟ ✐♥♥♦✈✂�✐♦♥✳

➪Þ◆▲✁✂Þ➠✂➩ ➘➽ ❿✞❡ ✝♦✄♣❧❡①✐�② ♦❢ ✁♦❜♦�✐✝s s②s�❡✄s ✂✟✟s ✝✞✂❧❧❡♥❣❡s

�♦ �✞❡ ✐✄♣❧❡✄❡♥�✂�✐♦♥s ♦❢ ➼✎✳

❉✔✕✔★ ✎♥ ✐♥�❡✁✈✐❡✠❡✟ ✄❡✝✞✂♥✐✝✂❧ ❡♥❣✐♥❡❡✁ ✟❡❢✐♥❡s q✆✂❧✐�② ✂s

�✞❡ ✁♦❜♦� ❢✆♥✝�✐♦♥✐♥❣ ✟❡❢❡✝� ❢✁❡❡✳ ❙✐✄✆❧✂♥♦✆s❧②✱ ✂ s♦❢�✠✂✁❡

❡♥❣✐♥❡❡✁ ✐s ✟✐s✂♣♣♦✐♥�❡✟ �✞✂� q✆✂❧✐�② ♣✁✂✝�✐✝❡s ✂✁❡ ♥♦� ✂✟✞❡✁✐♥❣ �♦

s♦❢�✠✂✁❡ ❡♥❣✐♥❡❡✁✐♥❣ s�✂♥✟✂✁✟s✳

✙✢✔❛②✜✛✜★ ➼✎ ♦❢ ✁♦❜♦�✐✝ s②s�❡✄s ✐s ✂ ✝✞✂❧❧❡♥❣✐♥❣ ❡♥✟❡✂✈♦✁✳

❘♦❜♦�s ✂✁❡ ✝♦✄♣❧❡① ✟✐s�✁✐❜✆�❡✟ s②s�❡✄s✱ ✝♦✄❜✐♥✐♥❣ ✝♦♥�✁♦❧✱ ✎➪✱

✝♦♥✝✆✁✁❡♥✝② ✂♥✟ ✄♦❜✐❧✐�②✳ ❿✞❡✐✁ ✟❡✈❡❧♦♣✄❡♥� ✐s ✂ ✝♦✄♣❧❡①

✐♥�❡✁✟✐s✝✐♣❧✐♥✂✁② ♣✁✂✝�✐✝❡✳ ❿✞❡✐✁ ❧✐❢❡ ✝②✝❧❡ ✈✂✁✐❡s ❢✁♦✄ �✞❡

�✁✂✟✐�✐♦♥✂❧ s♦❢�✠✂✁❡✳ ❿✞✐s ✝♦✄♣❧❡①✐�② ♦❢ ✁♦❜♦�✐✝s ✟❡✈❡❧♦♣✄❡♥� ✐s

♥♦� ✁❡❢❧❡✝�❡✟ ✐♥ �✞❡ ✝✆✁✁❡♥� ✐✄♣❧❡✄❡♥�✂�✐♦♥ ♦❢ ➼✎ ♣✁♦✝❡ss❡s ✐♥ �✞❡

❘❖❙ ✝♦✄✄✆♥✐�②✳

■✧♣✔❝✕★ ❿✞❡ ✝♦✄♣❧❡①✐�② ✂♥✟ ✐♥�❡✁✟✐s✝✐♣❧✐♥✂✁✐�② ♦❢ ✁♦❜♦�✐✝s

s②s�❡✄s ✐s ✐♥✞❡✁❡♥� �♦ �✞❡ ❘❖❙ ✝♦✄✄✆♥✐�②✫ ✐� ✐s ✆♥❧✐➭❡❧② �✞✂� ✐�

✝✂♥ ❜❡ ❡①♣❧♦✐�❡✟ �♦ ♣✁♦✈✐✟❡ ❜❡��❡✁ ➼✎✳ ☞❡ ✝♦♥s✐✟❡✁ ✐� ✂s ✂ ❢♦✁✝❡

èè

✁✂❢❧✉✄✂❝✄❡s ✥❢ ☎✉✆❧✐✝✞ ✟ss✉❡✆✂❝✄ ✠❡✆❝✝✐❝✄s ✐✂ ✆✂ ✡☛✄✂ ☞✥✉❡❝✄ ✌✥♠♠✉✂✐✝✞ ❈✍❆❙❊ ✷✵✶✽✱ ▼✎✏ ✷✵✶✽✱ ✑✒✓❤✔♥✕✖✗❣✱ ❙✘✔✙✔♥

�✞✂� ✂✟✟✐�✐♦♥✂❧❧② ✝♦✄♣❧✐✝✂�❡s ✂♥ ✐✄♣❧❡✄❡♥�✂�✐♦♥ ♦❢ ✂ s✆✝✝❡ss❢✆❧

q✆✂❧✐�② ✄✂♥✂❣❡✄❡♥� s�✁✂�❡❣② ❢♦✁ ❘❖❙✳

☞❡ ✝♦♥s✐✟❡✁ �✞❡ ♦✁❣✂♥✐✝ s❡❧❢✲✂❧✐❣♥✄❡♥� ♦❢ ♣✁✂✝�✐✝❡s �♦ �✞❡

✝♦✄✄✆♥✐�②➻s s♦✝✐✂❧ ✂♥✟ ✝✆❧�✆✁✂❧ ✝✞✂✁✂✝❡�❡✁✐s�✐✝s✳ ✎♥ ♦✁❣✂♥✐✝

✄♦✟✐❢✐✝✂�✐♦♥ ✟♦❡s ♥♦� ♦✝✝✆✁ ✈✐✂ s�✂❣❡✟ ✐✄♣❧❡✄❡♥�✂�✐♦♥ ♥♦✁ ✈✐✂ ✂

✟❡s✐❣♥ ✝✞✂♥❣❡ ♣✁♦✝❡ss✱ ❜✆� ✂✁✐s❡s ✐♥❢♦✁✄✂❧❧②✳ ❿✞❡ ✝♦✄✄✆♥✐�②

✐✄♣❧✐✝✐�❧② ✂✝➭♥♦✠❧❡✟❣❡s ♥♦♥✲✝♦♥❢♦✁✄✂♥✝❡ �♦ ✐♥✟✆s�✁② ♣✁✂✝�✐✝❡s✳

✘♦✁ ✐♥s�✂♥✝❡✱ �✞❡✁❡ ✐s ♥♦ ❢♦✁✄✂❧ ✁❡q✆✐✁❡✄❡♥�s ❡♥❣✐♥❡❡✁✐♥❣ ♣✁♦✝❡ss

✐♥ ♣❧✂✝❡✳ ➪♥s�❡✂✟✱ ✁❡q✆✐✁❡✄❡♥�s ✂✁❡ ✝♦❧❧❡✝�❡✟ ❢✁♦✄ ✐✟❡✂s ✂♥✟ ✝♦✟❡

✝♦♥�✁✐❜✆�✐♦♥s ♦❢ �✞❡ ✄❡✄❜❡✁s✳

❿✞❡ s❡❧❢✲✂❧✐❣♥✄❡♥� ♦❢ ♣✁✂✝�✐✝❡s ✐s ♥♦� ✂❧✠✂②s s✆✝✝❡ss❢✆❧✳ ❿✞❡

✟✐❢❢❡✁❡♥✝❡ ❜❡�✠❡❡♥ ✂ ✝♦✄✄✆♥✐�②✲❜✂s❡✟ ✂✟✂♣�✂�✐♦♥ ♦❢ ♣✁✂✝�✐✝❡s

✂♥✟ ✂ s�✂♥✟✂✁✟ ✝✞✂♥❣❡ ✄✂♥✂❣❡✄❡♥� ♣✁♦➺❡✝� ❧✐❡s ✝✞✐❡❢❧② ♥♦� ✐♥ �✞❡

✝✞✂♥❣❡ ❜✆� ✐♥ �✞❡ ✠✂② �✞❡ ✝✞✂♥❣❡ ✐s ✟❡✈❡❧♦♣❡✟ ✂♥✟ ✐♥�❡❣✁✂�❡✟ ✐♥�♦

�✞❡ ✝♦✄✄✆♥✐�②✳ ✎♥ ✂✟✂♣�✂�✐♦♥ s✞♦✆❧✟ ✁♦♦�❡✟ ✐♥ �✞❡ ✝♦✄✄✆♥✐�②

✝♦♥�❡①�✳ ➪� ✁❡q✆✐✁❡s ✟❡❡♣ ✆♥✟❡✁s�✂♥✟✐♥❣ ♦❢ ✠✞✂� �✞❡ ✝♦✄✄✆♥✐�② ✐s

✟♦✐♥❣✱ ✠✞② ♣❡♦♣❧❡ ♣✂✁�✐✝✐♣✂�❡✱ ✞♦✠ ✟✐✟ �✞❡② ✝♦♣❡ ✠✐�✞ ♣✂s� ✂♥✟

♣✁❡s❡♥� ✝✞✂♥❣❡s✱ �✞❡✐✁ ✐♥❢♦✁✄✂❧✐�② ✂♥✟ ✞♦✠ ✂♥ ♦✁❣✂♥✐✝ ✂✟✂♣�✂�✐♦♥

✞✂s ✟❡✈❡❧♦♣❡✟ ✐♥ �✞❡ ♣✂s�✳

✹�✻�✶ ✶✶�❢♦r♠❧✐s♠s✶ ❖❢ Pr♦❝❡ss❡s

➪Þ◆▲✁✂Þ➠✂➩ ➷➽ ❿✞❡ ❘❖❙ ✝♦✄✄✆♥✐�② ✟♦❡s ♥♦� ❢♦❧❧♦✠ ➼✎ ♣✁✂✝�✐✝❡s

✂s ♣✁❡s✝✁✐❜❡✟✳ ➪� ♣✁❡❢❡✁s ✂♥ ♦✁❣✂♥✐✝ ✟❡✈❡❧♦♣✄❡♥� ♦❢ ♣✁✂✝�✐✝❡s✳

❉✔✕✔★ P✁♦✝❡ss❡s ✐♥ �✞❡ ❘❖❙ ✝♦✄✄✆♥✐�② �❡♥✟ �♦ �✂➭❡ ✂♥ ♦✁❣✂♥✐✝

✝♦✆✁s❡ �♦ ❢✆❧❧ ✐✄♣❧❡✄❡♥�✂�✐♦♥✱ ✐♥❢♦✁✄❡✟ ❜② ✐�s ♦✠♥ �✁✐✂❧ ♦❢ ✂

♣✁✂✝�✐✝❡ ✂s ♦♣♣♦s❡✟ �♦ ✂ ♣❧✂♥♥❡✟ ✐✄♣❧❡✄❡♥�✂�✐♦♥ �✞✂� ✝♦✄❡s ❢✁♦✄

✂ ✠❡❧❧✲❡s�✂❜❧✐s✞❡✟ ✝✞✂♥❣❡ ✟❡s✐❣♥ ♣✁♦✝❡ss ➭♥♦✠♥ �♦ �✞❡ s♦❢�✠✂✁❡

❡♥❣✐♥❡❡✁✐♥❣ ✁❡s❡✂✁✝✞❡✁s✳ ❙♦✄❡ ♦❢ �✞❡ ✝♦✄✄✆♥✐�② ♣✁✂✝�✐✝❡s ✠❡✁❡

✐♥�❡♥✟❡✟ �♦ ❜❡ �✁✐✂❧s✱ ✠✞✐✝✞ ✞✂✈❡ s✐♥✝❡ ❜❡✝♦✄❡ ✂❜✐✟✐♥❣✳ ➵✗♦s� ♦❢

�✞❡ ✝✆✁✁❡♥� ♣✁♦✝❡ss❡s ✐♥ ♣❧✂✝❡ ✞✂✈❡ ❜❡❡♥ �✞♦✆❣✞� ✐♥ ❢❧✐❣✞�✱➸ ✂

♣✂✁�✐✝✐♣✂♥� s�✂�❡s✳ ✎♥♦�✞❡✁ ♦♥❡ ❡①♣❧✂✐♥s ✠✞② �✞❡ ✂✟✞❡✁❡♥✝❡ �♦ �✞❡

✝♦✟❡ ✁❡✈✐❡✠ ✐s ❢❧✆✐✟➽ ➵❿✞❡✁❡ ✐s ♥♦ ❢♦✁✄✂❧ ♣✁♦✝❡ss ❢♦✁ �✞✂�✱ ✠✞✐✝✞ ✐s

♣✁♦❜✂❜❧② s♦✄❡�✞✐♥❣ ✠❡ ✝♦✆❧✟ ✐✄♣✁♦✈❡ ♦♥✱ ❜✆� �✞❡✁❡ ✐s ♥♦ ❢✐①❡✟

✁✆❧❡ ➀♦♥➃ ✠✞✂� �♦ ✝✞❡✝➭ ❢♦✁✳➸

✙✢✔❛②✜✛✜★ ❿✞❡s❡ ✈♦✐✝❡s ❢✁♦✄ �✞❡ ❘❖❙ ✝♦✄✄✆♥✐�② ✂✁❡ ✝♦♥s✐s�❡♥�

✠✐�✞ ❡✂✁❧✐❡✁ ✂♥✂❧②s❡s✳ ✎✝✝♦✁✟✐♥❣ �♦ ✪❧❧✐♦� ✂♥✟ ❙✝✂✝✝✞✐ ➀➳➃✱ ❖❙❙

♣✁♦➺❡✝�s ✂✁❡ ♦❢�❡♥ ✄✂♥✂❣❡✟ ✐♥❢♦✁✄✂❧❧②✳ ❙✝✂✝✝✞✐ ➀➲➃ s✆❣❣❡s�s �✞✂�

❖❙❙ ♣✁✂✝�✐✝❡s ✜✖✓✕✇✔r✒ ✥✛✢✓✖r✧✔❛✛✜✧✜�✱ ❜② ♥♦� ✂✟✞❡✁✐♥❣ �♦ �✞❡

�✁✂✟✐�✐♦♥✂❧ ❡♥❣✐♥❡❡✁✐♥❣ ♣✁✂✝�✐✝❡✱ s�✂♥✟✂✁✟s✱ ✂♥✟ ✁✂�✐♦♥✂❧❡✳

❙♦✄❡�✐✄❡s �✞❡ ✐♥❢♦✁✄✂❧✐s✄s ✂✁❡ ✟❡✄♦✝✁✂�✐✝✂❧❧② ✂❣✁❡❡✟ ✆♣♦♥

�✞✁♦✆❣✞ ✂ ✈♦�✐♥❣ s②s�❡✄ ➀➲➲➃✳ ❙♦✄❡�✐✄❡s �✞❡② ❡✄❡✁❣❡ ✐✄♣❧✐✝✐�❧②✳

✘♦✁ ✐♥s�✂♥✝❡✱ �✞❡ �✁✂✟✐�✐♦♥✂❧ ✝♦✟❡ ✐♥s♣❡✝�✐♦♥ ✐s ❢✆♥✟✂✄❡♥�✂❧❧②

✟✐❢❢❡✁❡♥� ❢✁♦✄ ❖❙❙ ✝♦✟❡ ✁❡✈✐❡✠ ➀➁➲➃✳

■✧♣✔❝✕★ ☞❡ ❧❡✂✁♥ ❢✁♦✄ �✞✐s �✞✂� �✞❡ ✐✄♣❧❡✄❡♥�✂�✐♦♥ ♦❢ ➼✎

s✞♦✆❧✟ ❜❡ ♦✁❣✂♥✐✝ ✂♥✟ ✂❧❧♦✠ ❢♦✁ ➵✐♥❢♦✁✄✂❧✐s✄s✳➸ P✁❡s✝✁✐❜✐♥❣

♣✁✂✝�✐✝❡s �♦♣✲✟♦✠♥ ✟♦❡s ♥♦� ✠♦✁➭✳ ❿✞❡ ❖❙❙ ✝♦✄✄✆♥✐�✐❡s ♣✁❡❢❡✁

�♦ ✁❡❢❧❡✝�✱ ✟❡❧✐❜❡✁✂�❡✱ ✂♥✟ ✟❡✄♦✝✁✂�✐✝✂❧❧② ✝♦♥s✆❧� �✞❡ ✠✐✟❡✁

✄❡✄❜❡✁s✞✐♣ ❜❡❢♦✁❡ ✂✟♦♣�✐♥❣ ✂ ✝✞✂♥❣❡✳ ■✆✁✐♥❣ �✞✐s ♣✁♦✝❡ss✱

♣✁✂✝�✐✝❡ ✂✟✂♣�✂�✐♦♥ ♦✝✝✆✁s✳ ✎✝�✐♦♥ ✁❡s❡✂✁✝✞ ✁❡❣✂✁✟✐♥❣ ➼✎

♣✁♦✝❡ss❡s ✐♥ ❖❙❙ s✞♦✆❧✟ ✟❡❢✐♥✐�❡❧② �✂➭❡ �✞✐s ✐♥�♦ ✂✝✝♦✆♥�✳

✹�✻�✶ ✶❊❛s❡ ❖❢ ❯s❡

➪Þ◆▲✁✂Þ➠✂➩ ➬➽ ❿✞❡ ❘❖❙ ✝♦✄✄✆♥✐�② ✞✂s ✂♥ ✂❢❢✐♥✐�② ❢♦✁ ❡✂s❡ ♦❢ ✆s❡✳

❉✔✕✔★ ❖♥❡ ♣✂✁�✐✝✐♣✂♥� s✆✄✄✂✁✐➄❡✟ �✞✐s ❡❧❡❣✂♥�❧②➽

➵P✁✐♦✁✐�✐➄✂�✐♦♥ s✞♦✆❧✟ ✂❧s♦ ❧♦♦➭ ✂� ✞♦✠ ❧♦♥❣ �✞❡ �✂s➭ ✠♦✆❧✟ �✂➭❡

✈❡✁s✆s ✞♦✠ ✐✄♣♦✁�✂♥� ✐� ✐s➴✂♥✟ ✞♦✠ ✂✟✂♣�✂❜❧❡ �✞❡ ✝♦✄✄✆♥✐�② �♦

�✞❡ �✂s➭✳ ➅♦✆ ✝✂♥♥♦� ❜✁✐♥❣ ✂ ❣✂✄❡✲✝✞✂♥❣✐♥❣ �✞✐♥❣✳ P❡♦♣❧❡ ✠♦✆❧✟

s✂② �✞✐s ✐s �♦♦ ✝♦✄♣❧✐✝✂�❡✟✫ ➪➻✄ ♥♦� ❣♦✐♥❣ �♦ ✟♦ ✐�✳ ➪�➻s ♦♣❡♥ s♦✆✁✝❡✱

♥♦� ❡✈❡✁②❜♦✟② ✂✐✄✐♥❣ ❢♦✁ s�✂❜✐❧✐�②✳ ✪✈❡✁②❜♦✟② ✐s ✂✐✄✐♥❣ ❢♦✁ ♥❡✠

�✞✐♥❣s✳ ❙♦ ②♦✆ ✠✂♥� �♦ ✄✂➭❡ s✆✁❡ �✞♦s❡ ♣❡♦♣❧❡ ✂✁❡ ♥♦� s✝✂✁❡✟

✂✠✂② ✠✐�✞ ✝♦✄♣❧✐✝✂�❡✟ ♣✁♦✝❡ss❡s ♦❢ �❡s�✐♥❣✳➸

✙✢✔❛②✜✛✜★ ❿✞❡ ✝♦✄✄✆♥✐�② ✟❡❢✐♥✐�✐♦♥ ♦❢ ❡✂s❡ ♦❢ ✆s❡ ✐s

➵✄✐♥✐✄✆✄ ✂♥♥♦②✂♥✝❡➸ ✂♥✟ ✂♥ ❡♥➺♦②✂❜❧❡ ✆s❡✁ ❡①♣❡✁✐❡♥✝❡✳ ❿✞✐s ✐s

✐♥ ❧✐♥❡ ✠✐�✞ ➵❡❢❢❡✝�✐✈❡♥❡ss✱➸ ➵❡❢❢✐✝✐❡♥✝②✱➸ ✂♥✟ ➵s✂�✐s❢✂✝�✐♦♥ ♦❢ ✆s❡✳➸

❈♦♥s❡q✆❡♥�❧②✱ �✞❡ ✝♦✄✄✆♥✐�② ✄❡✄❜❡✁s ❡①♣❡✝� �✞✂� ➼✎ ♣✁✂✝�✐✝❡s

✂✁❡ ❡❢❢❡✝�✐✈❡ ✂♥✟ ❡❢❢✐✝✐❡♥�✳ ➼✎ ♣✁♦✝❡ss❡s s✞♦✆❧✟ ♥♦� ✟❡❧✂② ♦✁

✝♦♥s�✁✂✐♥ ✟❡✈❡❧♦♣❡✁s➻ ✟❡✟✐✝✂�✐♦♥ �♦ ✐♥♥♦✈✂�✐♦♥✳

■✧♣✔❝✕★ ❿♦♦❧s ✂♥✟ ♣✁♦✝❡ss❡s s✞♦✆❧✟ ❢✂✝✐❧✐�✂�❡ ✐♥♥♦✈✂�✐♦♥ ✂♥✟

♥♦� ✝♦♥s�✁✂✐♥ �✞❡ ✝✁❡✂�✐✈✐�② ✂♥✟ ♣✂✁�✐✝✐♣✂�✐♦♥✳ ✪✂s❡ ♦❢ ✆s❡ s✞♦✆❧✟

❜❡ ✂ ❢✂✝�♦✁ ✐♥ �✞❡ ✐✄♣❧❡✄❡♥�✂�✐♦♥ ♦❢ ➼✎ ♣✁✂✝�✐✝❡s✱ ✂♥✟ �♦♦❧s ✐♥

❖❙❙ ✝♦✄✄✆♥✐�✐❡s ✥✠✞✐✝✞ ✐s ♦❜✈✐♦✆s❧② ✂ ✝✞✂❧❧❡♥❣❡☎✳

❿✞❡ ❘❖❙ ✝♦✄✄✆♥✐�② ✞✂s ✂✟♦♣�❡✟ ✂✝✝❡♣�❡✟ ➼✎ ♣✁✂✝�✐✝❡s✱ ❜✆� ✐� ✐s

s�✁✆❣❣❧✐♥❣ ✠✐�✞ �✞❡✐✁ ❡❢❢❡✝�✐✈❡ ✐✄♣❧❡✄❡♥�✂�✐♦♥ ✂♥✟ ❡①❡✝✆�✐♦♥✳ ☞❡

❢♦✝✆s❡✟ ♦♥ ✠✞✂� ✐♥❢❧✆❡♥✝❡s �✞✐s ✐✄♣❧❡✄❡♥�✂�✐♦♥ ✂♥✟ ❡①❡✝✆�✐♦♥

✥❘➼➁ ✂♥✟ ❘➼➂☎ ✐♥ ♦✁✟❡✁ �♦ ✆♥✟❡✁s�✂♥✟ �✞❡ ✈✂✁✐✂❜❧❡s �✞✂�

✝♦♥�✁✐❜✆�❡ �♦ �✞❡ s✆✝✝❡ss ✂♥✟ �✞❡ ❡s�✂❜❧✐s✞✄❡♥� ♦❢ ➼✎ ♣✁✂✝�✐✝❡s ✐♥

✂♥ ❖❙❙ ✝♦✄✄✆♥✐�②✳ ❿✞❡ ✐✄♣❧❡✄❡♥�✂�✐♦♥ ✂♥✟ ❡①❡✝✆�✐♦♥ ♦❢ ➼✎

♣✁✂✝�✐✝❡s ✐♥ �✞❡ ❘❖❙ ✝♦✄✄✆♥✐�② ✂♣♣❡✂✁s �♦ ❜❡ ✐♥❢❧✆❡♥✝❡✟ ❜②

s♦✝✐✂❧ ✂♥✟ ✝✆❧�✆✁✂❧ ❢✂✝�♦✁s ✂♥✟ ✐s ✝♦♥s�✁✂✐♥❡✟ ❜② s✆s�✂✐♥✂❜✐❧✐�② ✂♥✟

✝♦✄♣❧❡①✐�②✳ ❿✞✐s s✞✂♣❡s �✞❡ ♣✁✂✝�✐✝❡s �♦✠✂✁✟ ✂ ✝♦✄✄✆♥✐�②✲

�✂✐❧♦✁❡✟ ✈✂✁✐✂�✐♦♥ ✁✂�✞❡✁ �✞✂♥ ❢♦❧❧♦✠✐♥❣ �✞❡ �✁✂✟✐�✐♦♥✂❧❧②

♣✁❡s✝✁✐❜❡✟ s♦❢�✠✂✁❡ ❡♥❣✐♥❡❡✁✐♥❣ ✁❡✝✐♣❡s✳

☞✞✂� ✟♦❡s �✞✐s �❡❧❧ ✆s➾ ❿✞❡ ✐✟❡♥�✐❢✐❡✟ ✐♥❢❧✆❡♥✝❡✁s s✞♦✆❧✟ ❜❡

✠❡✂✈❡✟ ✐♥�♦ �✞❡ ✟❡s✐❣♥ ✂♥✟ ✐✄♣❧❡✄❡♥�✂�✐♦♥ ♦❢ ➼✎ ✐♥ ❖❙❙

✝♦✄✄✆♥✐�✐❡s✳ ❿✞✐s ♥❡✝❡ss✐�✂�❡s s♦✄❡ ✐♥❣❡♥✆✐�② ✂♥✟ ❜♦❧✟♥❡ss✳ ➪♥

✝♦✄✄❡✁✝✐✂❧ s♦❢�✠✂✁❡ ♣✁♦✟✆✝�✐♦♥✱ ➼✎ ♣✁✂✝�✐✝❡s ✂✁❡ ♣✁❡s✝✁✐❜❡✟ ✂♥✟

❡♥❢♦✁✝❡✟ ❜② ✄✂♥✂❣❡✄❡♥�✳ ➪♥ �✞❡ ❢✆�✆✁❡✱ ☞❡ ✂✐✄ �♦ ✝✞✂♥❣❡ �✞❡

�✁✂➺❡✝�♦✁② ♦❢ �✞❡ ❘❖❙ ✝♦✄✄✆♥✐�② �♦ ♣✁✐♦✁✐�✐➄❡ ➼✎ ♣✁✂✝�✐✝❡s ✞✐❣✞❡✁

✂♥✟ �♦ ❡①❡✝✆�❡ �✞❡✄ ❡❢❢❡✝�✐✈❡❧② ✠✐�✞♦✆� ✄✂♥✂❣❡✄❡♥� ✐♥

�✁✂✟✐�✐♦♥✂❧ s❡♥s❡✳

❊✁✕✒r✢✔❛ ✈✔❛✛❞✛✕②✳ ❘❖❙ s✞✂✁❡s �✞❡ ✝✆❧�✆✁✂❧ ✂♥✟ s♦✝✐✂❧ ✂��✁✐❜✆�❡s ♦❢

♦�✞❡✁ ❖❙❙ ✝♦✄✄✆♥✐�✐❡s✳ ➆❡♥✝❡✱ �✞❡ ✁❡❧✂�❡✟ ✐♥❢❧✆❡♥✝❡✁s ✠✐❧❧ ❧✐➭❡❧②

❜❡ ✂♣♣❧✐✝✂❜❧❡ �♦ ♦�✞❡✁ ✝♦✄✄✆♥✐�✐❡s ✂s ✠❡❧❧✳ ❿✞❡ ✝♦✄♣❧❡①✐�② ♦❢

✁♦❜♦�✐✝s s♦❢�✠✂✁❡ ✄✂② ♥♦� ❜❡ ✁❡♣✁❡s❡♥�✂�✐✈❡ ♦❢ ✄✂♥② ♦�✞❡✁ ❖❙❙

♣✁♦➺❡✝�s✱ ❜✆� ✐� ✝❧❡✂✁❧② ✐s ❢♦✁ s♦✄❡✳

✙❝❦✢✖✇❛✒❞❣✧✒✢✕✜★ ☞♦✁➭ ♣✂✁�✐✂❧❧② s✆♣♣♦✁�❡✟ ❜② ✪✩➻s ➆➂➱➂➱

♣✁♦❣✁✂✄✄❡ ✆♥✟❡✁ ❘❖❙➪◆ ♣✁♦➺❡✝�✱ ❣✁✂♥� ✂❣✁❡❡✄❡♥� ◆♦✳ ➷➲➂➂➬➷✳

☞❡ �✞✂♥➭ �✞❡ ✐♥�❡✁✈✐❡✠❡❡s ❢♦✁ �✞❡✐✁ ♣✂✁�✐✝✐♣✂�✐♦♥✳

❬✶❪ ✂✗ ❍✙✯❹✰✜ ❀✗✲❋✗ ✾✄✤✰✧✪✰✧✜ ✙✧★ ☎✗ ❀✫✧✤✙★✛✜ ✆✖★✫✼✸✛✫✧ ✫✴ ✫✼✰✧ ✪✫✯✤✦✰ ✛✧

✸❤✰ ✪✫✴✸✇✙✤✰ ✛✧★✯✪✸✤✹✜➂ ✛✧ ✝❪❪ ✬✵✵✽✗

❬✬❪ ◆✙❹✹✜ ✢✗✜ ❨✙✪✪✛✧✜ ✖✗ ✞✗✜ ✟ ✠❤✙✸✸✙✦❤✰✤❥✰✰✜ ✖✗ ✡✬✵✶✵✮✗ ✻✤❹✙✧✛♥✙✸✛✫✧✙✘

✙★✫✼✸✛✫✧ ✫✴ ✫✼✰✧ ✪✫✯✤✦✰ ✪✫✴✸✇✙✤✰❷ ❜✙✤✤✛✰✤✪ ✙✧★ ✤✰✚✰★✛✰✪✗ ❱❂❬❬✉❇❅❃▲❑❅❂❇❊

❂❋ ❑❚❄ ❭❱⑤✜ ✺☛✡❼✮✗

❬❼❪ ✩✗ ✾✦✙✦✦❤✛✜ ✆☞✧★✰✤✪✸✙✧★✛✧❹ ✸❤✰ ✤✰❡✯✛✤✰✚✰✧✸✪ ✴✫✤ ★✰✌✰✘✫✼✛✧❹ ✫✼✰✧

✪✫✯✤✦✰ ✪✫✴✸✇✙✤✰ ✪✹✪✸✰✚✪✜➂ ❏❵❵ P❁❂❃❄❄❞❅❇❉❊✍❪❂❋❑❴▲❁❄✜ ✶❺❽✡✶✮✜ ✬✵✵✬✗

❬❺❪ ✞✗ ✎✘✘✛✫✸✸✜ ✩✗ ✾✦✙✦✦❤✛✜ ✏❁❄❄ ❊❂❋❑❴▲❁❄✿ ❭ ❃▲❊❄ ❊❑✉❞⑥ ❂❋ ❊❂❋❑❴▲❁❄

❞❄❳❄◆❂❯❬❄❇❑ ❅❇ ▲ ❳❅❁❑✉▲◆ ❂❁❉▲❇❅③▲❑❅❂❇▲◆ ❃✉◆❑✉❁❄ ✭✾☎ ✬✵✵❼✗

è✑

❈�❆✁❊✂✶✄☎ ▼❛✆ ✥✼✱ ✥✵✝✽✱ ●✞t❤❡✟❜✠✡❣✱ ☛☞❡✌❡✟ ✍✎❛♠✐✱ ❉✐tt✡✐✏❤ ❛✟✌✑❛s✞☞s❦✐

❬❻❪ ✩✰✧❹✰✤✜ ✎✗ ❱❂❬❬✉❇❅❑❅❄❊ ❂❋ ❯❁▲❃❑❅❃❄✿ ✥❄▲❁❇❅❇❉❥ ❬❄▲❇❅❇❉❥ ▲❇❞ ❅❞❄❇❑❅❑⑥✗

❀✙✚❜✤✛★❹✰ ☞✧✛✌✰✤✪✛✸✹ ✺✤✰✪✪✜ ✶❽❽✽✗

❬❾❪ ✎✗ ✞✗ �✰✤✪✫✧✜ ✙✧★ ✾✗ ▲✗ ✾✸✙✤✜ ✆✖✧✙✘✹♥✛✧❹ ★✯✰ ✼✤✫✦✰✪✪ ✛✧ ✸❤✰

✇✫✤❦✼✘✙✦✰➂✗ ❭❱⑤ ✁✝❏❪✜ ❺✡❼✮✜ ✶❽✽❾✗

❬❬❪ ▲✗ ✖✗ ✾✯✦❤✚✙✧✜ ✆✻✴✴✛✦✰ ✼✤✫✦✰★✯✤✰ ✙✪ ✼✤✙✦✸✛✦✙✘ ✙✦✸✛✫✧❷ ✚✫★✰✘✪ ✫✴ ✇✫✤❦

✙✧★ ✪✹✪✸✰✚ ★✰✪✛❹✧➂✗ ❭❱⑤ ✁✝❏❪✜ ✶✡❺✮✜ ✶❽✽❼

❬✽❪ ❀✗ ❍✙✧✪✪✫✧✜ ❨✗ ✢✛✸✸✤✛✦❤✜ ✠✗ �✯✪✸✙✴✪✪✫✧✜ ✙✧★ ✾✗ ✂✙✤✧✙❦✜ ✆❍✫✇ ✙❹✛✘✰ ✙✤✰

✛✧★✯✪✸✤✛✙✘ ✪✫✴✸✇✙✤✰ ★✰✌✰✘✫✼✚✰✧✸ ✼✤✙✦✸✛✦✰✪❄➂✗ ❏❪❪✜ ❬❽✡❽✮✜ ✬✵✵❾✗

❬❽❪ ❏❪✝ ✄⑧⑧⑧✿ ☎✉▲◆❅❑⑥ ❬▲❇▲❉❄❬❄❇❑ ❊⑥❊❑❄❬❊ ❸ ✏✉❇❞▲❬❄❇❑▲◆❊ ▲❇❞

❳❂❃▲④✉◆▲❁⑥✗ ✬✵✶❻✗

❬✶✵❪ ✆✗ ✝✗ ❍✙✘✘✫✤✙✧✜ ✩✗ ▲✗ ✾✦❤✰✤✘✛✪✜ ✆❍✛❹❤ ❡✯✙✘✛✸✹ ✙✧★ ✫✼✰✧ ✪✫✯✤✦✰ ✪✫✴✸✇✙✤✰

✼✤✙✦✸✛✦✰✪✜➂ ❲❂❁◗❊❚❂❯ ❂❇ ✝❯❄❇ ❪❂✉❁❃❄ ❪❂❋❑✳ ❵❇❉✳✜ ✬✵✵✬✗

❬✶✶❪ ✞✗✞✛✦❤✘✚✙✹✤✜ ❋✗ ❍✯✧✸✜ ✙✧★ ✢✗ ✺✤✫❜✰✤✸✜ ✆◗✯✙✘✛✸✹ ✼✤✙✦✸✛✦✰✪ ✙✧★

✼✤✫❜✘✰✚✪ ✛✧ ✴✤✰✰ ✪✫✴✸✇✙✤✰ ✼✤✫❥✰✦✸✪✜➂ ✛✧ ✝❪❪✜ ✬✵✵❻

❬✶✬❪ ▲✗ ✂❤✙✫✜ ✾✗ ✎✘❜✙✯✚✜ ✆✖ ✪✯✤✌✰✹ ✫✧ ❡✯✙✘✛✸✹ ✤✰✘✙✸✰★ ✙✦✸✛✌✛✸✛✰✪ ✛✧ ✫✼✰✧

✪✫✯✤✦✰✜➂ ❪❏③❪✝✏✁ ❪❂❋❑✳ ❵❇❉❅❇❄❄❁❅❇❉ ◆❂❑❄❊✜ ✬❻✡❼✮✜ ✬✵✵✵✗

❬✶❼❪ ✺✗ ❀✗ ☎✛❹❜✹✜ ✢✗✞✗ �✰✤✚✙✧✜ ▲✗ ❀✫✇✰✧✜ ✙✧★ ✞✗ ✖✗ ✾✸✫✤✰✹✜ ✆✺✰✰✤ ✤✰✌✛✰✇

✫✧ ✫✼✰✧✲✪✫✯✤✦✰ ✪✫✴✸✇✙✤✰ ✼✤✫❥✰✦✸✪❷ ✺✙✤✙✚✰✸✰✤✪✜ ✪✸✙✸✛✪✸✛✦✙✘ ✚✫★✰✘✪✜ ✙✧★

✸❤✰✫✤✹✜➂ ❭❱⑤ ✁✝❪❵⑤✜ ✬❼✡❺✮✜ ✬✵✶❺✗

❬✶❺❪ ✾✗ ▲✯✪✪✛✰✤✜ ✆◆✰✇ ✸✤✛✦❦✪❷ ❍✫✇ ✫✼✰✧ ✪✫✯✤✦✰ ✦❤✙✧❹✰★ ✸❤✰ ✇✙✹ ✚✹ ✸✰✙✚

✇✫✤❦✪✜➂ ❏❵❵❵ ❪❂❋❑❴▲❁❄✜ ✬✶✡✶✮✜ ✬✵✵❺✗

❬✶❻❪ ✎✗ ✾✗ ☎✙✹✚✫✧★✜ ✁❚❄ ❱▲❑❚❄❞❁▲◆ ✞ ❑❚❄ ❡▲③▲▲❁✗ ✻➄☎✰✛✘✘✹ ✬✵✵✶✗

❬✶❾❪ ✆✗ ✻✸✸✰✜ ☎✗✞✫✤✰✸✫✧✜ ❍✗ ✢✗ ✟✧✫✰✘✘✜ ✆✖✼✼✘✛✰★ ❡✯✙✘✛✸✹ ✙✪✪✯✤✙✧✦✰

✚✰✸❤✫★✪ ✯✧★✰✤ ✸❤✰ ✫✼✰✧ ✪✫✯✤✦✰ ★✰✌✰✘✫✼✚✰✧✸ ✚✫★✰✘✜➂ ✛✧ ❱✝⑤P❪❭❱❈⑧⑨✳

❬✶❬❪ ✞✗ ✖❜✰✤★✫✯✤✜ ✆✖✦❤✛✰✌✛✧❹ ❡✯✙✘✛✸✹ ✛✧ ✫✼✰✧✲✪✫✯✤✦✰ ✪✫✴✸✇✙✤✰✜➂ ❏❵❵❵

❊❂❋❑❴▲❁❄✜ ✬❺✡✶✮✜ ✬✵✵❬✗

❬✶✽❪ ✖✗ ✟❤✙✧❥✙✧✛✜ ☎✗ ✾✯✘✙✛✚✙✧✜ ✆✆❤✰ ✼✤✫✦✰✪✪ ✫✴ ❡✯✙✘✛✸✹ ✙✪✪✯✤✙✧✦✰ ✯✧★✰✤

✫✼✰✧ ✪✫✯✤✦✰ ✪✫✴✸✇✙✤✰ ★✰✌✰✘✫✼✚✰✧✸✜➂ ❱❂❬❯✉❑❄❁❊ ✞ ❏❇❋❂❁❬▲❑❅❃❊ ⑦⑧●●✗

❬✶❽❪ ✢✗ ✩✙❤✹✯★✛✧✜ ✖✗ ✾✦❤✙✸✸✰✧✜ ✢✗ ✩✛✧❦✘✰✤✜ ✙✧★ ✾✗ ✠✛✴✴✘✜ ✆✖✪✼✰✦✸✪ ✫✴

✪✫✴✸✇✙✤✰ ❡✯✙✘✛✸✹ ✙✪✪✯✤✙✧✦✰ ✛✧ ✫✼✰✧ ✪✫✯✤✦✰ ✪✫✴✸✇✙✤✰ ✼✤✫❥✰✦✸✪❷ ✸✇✫ ✦✙✪✰

✪✸✯★✛✰✪ ✴✤✫✚ ✙✼✙✦❤✰ ✼✤✫❥✰✦✸✜➂ ✛✧ ❵❊❘✝⑤❏❱❘✝✜ ✬✵✵❬✗

❬✬✵❪ ☎✗ ✾✸✙✘✘✚✙✧✜ ✆✆✤✙✧✪✦✤✛✼✸ ✫✴ ☎✛✦❤✙✤★ ✞✗ ✾✸✙✘✘✚✙✧➄✪ ✪✼✰✰✦❤✜✧ ✴✤✰✰

✪✫✴✸✇✙✤✰❷ ❋✤✰✰★✫✚ ✙✧★ ✦✫✫✼✰✤✙✸✛✫✧✧ ◆❨☞✜ ✬❽✞✙✹ ✬✵✵✶✜➂

❬✬✶❪ ✆✗ ✖❜★✫✯✜ ✺✗ �✤✫❹✫✧✫✜ ✙✧★ ✺✗ ✟✙✚✸❤✙✧✜ ✆✖ ✦✫✧✦✰✼✸✯✙✘ ✴✤✙✚✰✇✫✤❦ ✴✫✤

✫✼✰✧ ✪✫✯✤✦✰ ✪✫✴✸✇✙✤✰ ✸✰✪✸ ✼✤✫✦✰✪✪✜➂ ✛✧ ❱❂❬❯✉❑❄❁ ❪❂❋❑❴▲❁❄ ▲❇❞ ❭❯❯◆❅❃▲❑❅❂❇❊

❱❂❇❋❄❁❄❇❃❄ ❲❂❁◗❊❚❂❯❊✗ ✭✎✎✎✜ ✬✵✶✬✜

❬✬✬❪ ✟✗✞✙✘✸✰✤✯★✜ ✆◗✯✙✘✛✸✙✸✛✌✰ ✤✰✪✰✙✤✦❤❷ ✪✸✙✧★✙✤★✪✜ ✦❤✙✘✘✰✧❹✰✪✜ ✙✧★

❹✯✛★✰✘✛✧✰✪✜➂ ✁❚❄ ✥▲❇❃❄❑✜ ✌✫✘✗ ❼❻✽✜ ✧✫✗ ❽✬✽✵✜ ✬✵✵✶✗

❬✬❼❪ ✖✗ ❍✫✇✪✫✧✜ ✆◗✯✙✘✛✸✙✸✛✌✰ ✤✰✪✰✙✤✦❤ ✚✰✸❤✫★✪✜➂ ❘❄❊❄▲❁❃❚ ❪❑▲❁❑❄❁❊✿

❪❂❃❅❂◆❂❉⑥ ⑩✝❇◆❅❇❄ ❵❞❅❑❅❂❇❶✜ ✬✵✶✵✗

❬✬❺❪ ✟✗ ❀❤✙✤✚✙♥✜ ✆✺✤✰✚✛✪✰✪✜ ✼✤✛✧✦✛✼✘✰✪✜ ✙✧★ ✼✤✙✦✸✛✦✰✪ ✛✧ ❡✯✙✘✛✸✙✸✛✌✰

✤✰✪✰✙✤✦❤❷ ☎✰✌✛✪✛✸✛✧❹ ✸❤✰ ✴✫✯✧★✙✸✛✫✧✪✜➂ ☎✉▲◆❅❑▲❑❅❳❄ ❩❄▲◆❑❚ ❘❄❊❄▲❁❃❚✜ ❬✡✶❺✮✜

✬✵✵❺✗

❬✬❻❪ ✝❯❄❇ ❘❂④❂❑❅❃❊✗ ❤✸✸✼✪❷❸❸✫✪✤✴✫✯✧★✙✸✛✫✧✗✫✤❹❸ ❬❾✲✢✰✦✲✬✵✶❬❪✗

❬✬❾❪ ❤✸✸✼❷❸❸✤✫✪✛✧★✯✪✸✤✛✙✘✗✫✤❹❸✗ ❬✖✦✦✰✪✪✰★❷ ✵❾✲✢✰✦✲✬✵✶❬❪✗

❬✬❬❪ ☎✗ ✞✗ ☎✹✙✧ ✙✧★ ✎✗ ▲✗ ✢✰✦✛✜ ✆✾✰✘✴✲★✰✸✰✤✚✛✧✙✸✛✫✧ ✸❤✰✫✤✹ ✙✧★ ✸❤✰

✴✙✦✛✘✛✸✙✸✛✫✧ ✫✴ ✛✧✸✤✛✧✪✛✦ ✚✫✸✛✌✙✸✛✫✧✜ ✪✫✦✛✙✘ ★✰✌✰✘✫✼✚✰✧✸✜ ✙✧★ ✇✰✘✘✲❜✰✛✧❹✗➂

❭❬❄❁❅❃▲❇ P❊⑥❃❚❂◆❂❉❅❊❑✜ ❻❻✡✶✮✜ ✬✵✵✵✗

❬✬✽❪ ✟✗ ☎✗ ▲✙❦❤✙✧✛✜ ☎✗ �✗ ✩✫✘✴✜ ✰✸ ✙✘✗✜ ✆✩❤✹ ❤✙✦❦✰✤✪ ★✫ ✇❤✙✸ ✸❤✰✹ ★✫❷

☞✧★✰✤✪✸✙✧★✛✧❹ ✚✫✸✛✌✙✸✛✫✧ ✙✧★ ✰✴✴✫✤✸ ✛✧ ✴✤✰✰❸✫✼✰✧ ✪✫✯✤✦✰ ✪✫✴✸✇✙✤✰

✼✤✫❥✰✦✸✪✜➂ P❄❁❊❯❄❃❑❅❳❄❊ ❂❇ ✏❁❄❄ ▲❇❞ ✝❯❄❇ ❪❂✉❁❃❄ ❪❂❋❑❴▲❁❄✜ ✌✫✘✗ ✶✜ ✬✵✵❻✗

❬✬❽❪ ☎✗ ✺✙✌✘✛✦✰❦ ✙✧★ ❋✫✤✰✇✫✤★ ❜✹ ☎✗ ✞✛✘✘✰✤✜ ❵❬④❁▲❃❅❇❉ ❏❇❊▲❇❅❑⑥✿ ✝❯❄❇

❪❂✉❁❃❄ ❪❂❋❑❴▲❁❄ ❉❄❳❄◆❂❯❬❄❇❑✗ ✾✙✚✪✜ ✬✵✵✵✗

❬❼✵❪ ✖✗ ✆✗ ✢✰✧♥✙✯ ✙✧★ ✢✗ ❀✗ ◆✫✤✸❤✜ ✆✾❤✙✤✰★ ✚✰✧✸✙✘ ✚✫★✰✘✪❷ ✛★✰✫✘✫❹✛✰✪ ✙✧★

✛✧✪✸✛✸✯✸✛✫✧✪✜➂ ❑⑥◗◆❂❊✜ ✌✫✘✗ ❺❬✜ ✧✫✗ ✶✜ ✶❽❽❺✗

❬❼✶❪ �✗ ✠✫✧ ✟✤✫❹❤✜ ✾✗ ❍✙✰✴✘✛❹✰✤✜ ✾✗ ✾✼✙✰✸❤✜ ✙✧★✞✗ ✩✗✩✙✘✘✛✧✜ ✆❀✙✤✤✫✸✪ ✙✧★

✤✙✛✧❜✫✇✪❷ ✚✫✸✛✌✙✸✛✫✧ ✙✧★ ✪✫✦✛✙✘ ✼✤✙✦✸✛✦✰ ✛✧ ✫✼✰✧ ✪✫✯✤✦✰ ✪✫✴✸✇✙✤✰

★✰✌✰✘✫✼✚✰✧✸✗➂⑤❏❪ ☎✉▲❁❑❄❁◆⑥✜ ❼❾✡✬✮✜ ✬✵✶✬✗

❬❼✬❪ ✾✗ ❀✗ ✡♥❜✰❦✜ ✆✭✧✸✤✫★✯✦✛✧❹ ✛✧✧✫✌✙✸✛✫✧✪ ✛✧✸✫ ✫✼✰✧ ✪✫✯✤✦✰ ✼✤✫❥✰✦✸✪✜➂

✺❤✗✢✗ ★✛✪✪✰✤✸✙✸✛✫✧✜ ❋✤✰✛✰ ☞✧✛✌✰✤✪✛✸ä✸ ✠✰✤✘✛✧✜ ✬✵✶✶✗

❬❼❼❪ ✞✗ ✠✰✤❹❡✯✛✪✸ ✙✧★ ✝✗ ▲❥✯✧❹❜✰✤❹✜ ✆✆❤✰ ✼✫✇✰✤ ✫✴ ❹✛✴✸✪❷ ✫✤❹✙✧✛♥✛✧❹ ✪✫✦✛✙✘

✤✰✘✙✸✛✫✧✪❤✛✼✪ ✛✧ ✫✼✰✧ ✪✫✯✤✦✰ ✦✫✚✚✯✧✛✸✛✰✪✜➂ ❏❇❋❂❁❬▲❑❅❂❇ ❪⑥❊❑❄❬❊ ❏❂✉❁❇▲◆✜

✌✫✘✗ ✶✶✜ ✧✫✗ ❺✜ ✬✵✵✶✗

❬❼❺❪ ✝✗ ▲❥✯✧❹❜✰✤❹✜ ✆✻✼✰✧ ✪✫✯✤✦✰ ✚✫✌✰✚✰✧✸✪ ✙✪ ✙ ✚✫★✰✘ ✴✫✤ ✫✤❹✙✧✛✪✛✧❹✜➂

❵✉❁❂❯❄▲❇ ❏❂✉❁❇▲◆ ❂❋ ❏❪✜ ❽✡❺✮✜ ✬✵✵✵✗

❬❼❻❪ ✟✗ ✝✗ ✾✸✰✇✙✤✸✜ ✾✗ �✫✪✙✛✧✜ ✆✆❤✰ ✛✚✼✙✦✸ ✫✴ ✛★✰✫✘✫❹✹ ✫✧ ✰✴✴✰✦✸✛✌✰✧✰✪✪ ✛✧

✫✼✰✧ ✪✫✯✤✦✰ ✪✫✴✸✇✙✤✰ ★✰✌✰✘✫✼✚✰✧✸ ✸✰✙✚✪✜➂⑤❏❪ ☎✉▲❁❑❄❁◆⑥✜ ✬✵✵❾✗

❬❼❾❪ ✺✗ ✖✗ ✢✙✌✛★✜ ✖✗ ✩✙✸✰✤✚✙✧✜ ✙✧★ ✾✗ ✖✤✫✤✙✜ ✆❋▲✻✾✾✲☞✾ ✸❤✰

✴✤✰✰❸✘✛❜✤✰❸✫✼✰✧ ✪✫✯✤✦✰ ✪✫✴✸✇✙✤✰ ✪✯✤✌✰✹ ✴✫✤ ✬✵✵❼✜➂ ❪❑▲❇❋❂❁❞ ❏❇❊❑❅❑✉❑❄ ❋❂❁

❵❃❂❇❂❬❅❃ P❂◆❅❃⑥ ❘❄❊❄▲❁❃❚❥ ✬✵✵❼✗

❬❼❬❪ ✺✗ ✖✗ ✢✙✌✛★ ✙✧★ ✝✗ ✾✗ ✾❤✙✼✛✤✫✜ ✆❀✫✚✚✯✧✛✸✹✲❜✙✪✰★ ✼✤✫★✯✦✸✛✫✧ ✫✴ ✫✼✰✧✲

✪✫✯✤✦✰ ✪✫✴✸✇✙✤✰❷ ✩❤✙✸ ★✫ ✇✰ ❦✧✫✇ ✙❜✫✯✸ ✸❤✰ ★✰✌✰✘✫✼✰✤✪ ✇❤✫

✼✙✤✸✛✦✛✼✙✸✰❄➂ ❏❇❋❂❁❬▲❑❅❂❇ ❵❃❂❇❂❬❅❃❊ ▲❇❞ P❂◆❅❃⑥✜ ✬✵✡❺✮✜ ✬✵✵✽✗

❬❼✽❪ ☎✗ ✖✗ �❤✫✪❤✜ ✆☞✧★✰✤✪✸✙✧★✛✧❹ ✴✤✰✰ ✪✫✴✸✇✙✤✰ ★✰✌✰✘✫✼✰✤✪❷ ❋✛✧★✛✧❹✪ ✴✤✫✚

✸❤✰ ❋▲✻✾✾ ✪✸✯★✹✜➂ P❄❁❊❯❄❃❑❅❳❄❊ ❂❇ ✏❁❄❄ ▲❇❞ ✝❯❄❇ ❪❂✉❁❃❄ ❪❂❋❑❴▲❁❄✜ ✬✵✵❻✗

❬❼❽❪ ☎✗ ✖✗ �❤✫✪❤✜ ☎✗ �✘✫✸✸✜ ✠✗ ✟✤✛✰❹✰✤✜ ✙✧★ �✗ ☎✫❜✘✰✪✜ ✆❋✤✰✰❸✘✛❜✤✰ ✙✧★ ✫✼✰✧

✪✫✯✤✦✰ ✪✫✴✸✇✙✤✰❷ ✾✯✤✌✰✹ ✙✧★ ✪✸✯★✹✜➂ ✬✵✵✬✗

❬❺✵ ✎✗ ▲✗ ✢✰✦✛ ✙✧★ ☎✗✞✗ ☎✹✙✧✜ ✆✆❤✰ ❹✰✧✰✤✙✘ ✦✙✯✪✙✘✛✸✹ ✫✤✛✰✧✸✙✸✛✫✧✪ ✪✦✙✘✰❷

✾✰✘✴✲★✰✸✰✤✚✛✧✙✸✛✫✧ ✛✧ ✼✰✤✪✫✧✙✘✛✸✹✜➂ ❏❂✉❁❇▲◆ ❂❋ ❘❄❊❄▲❁❃❚ ❅❇ P❄❁❊❂❇▲◆❅❑⑥✜

✌✫✘✗ ✶❽✜ ✧✫✗ ✬✜ ✶❽✽❻✗

❬❺✶❪ ✠✗ ▲✯✸❤✛❹✰✤✜ ❀✗ ✝✯✧❹✇✛✤✸❤✜ ✆✆❤✰ ✦❤✙✪✰ ✴✫✤ ✻✾✾ ❡✯✙✘✛✸✹❷ ✆❤✰ ✚✰✙✧✛✧❹

✫✴ ✚✰✚❜✰✤ ✤✫✘✰✪✜ ✚✫✸✛✌✙✸✛✫✧✪✜ ✙✧★ ❜✯✪✛✧✰✪✪ ✚✫★✰✘✪✜➂ ✛✧ ❵❬❄❁❉❅❇❉ ✏❁❄❄ ▲❇❞

✝❯❄❇ ❪❂✉❁❃❄ ❪❂❋❑❴▲❁❄ P❁▲❃❑❅❃❄❊✗ ✭�✭✜ ✬✵✵❬

❬❺✬❪ ✟✗ ▲✙❦❤✙✧✛✜ ✎✗ ❍✛✼✼✰✘ ✆❍✫✇ ✫✼✰✧ ✪✫✯✤✦✰ ✪✫✴✸✇✙✤✰ ✇✫✤❦✪❷ ☛✴✤✰✰➄ ✯✪✰✤✲

✸✫✲✯✪✰✤ ✙✪✪✛✪✸✙✧✦✰➂ ❘❄❊❄▲❁❃❚ P❂◆❅❃⑥ ❼✬✡❾✮ ✬✵✵❼✗

❬❺❼❪ ▲✗ ✾✚✛✤✦✛✦❤✜ ✆❀✫✧✦✰✼✸✪ ✫✴ ❀✯✘✸✯✤✰ ✙✧★ ✻✤❹✙✧✛♥✙✸✛✫✧✙✘

✖✧✙✘✹✪✛✪➂✗ ❭❞❬❅❇❅❊❑❁▲❑❅❳❄ ❪❃❅❄❇❃❄ ☎✉▲❁❑❄❁◆⑥✜ ✌✫✘✗ ✬✽✜ ✧✫✗ ❼✜ ✶❽✽❼✗

❬❺❺❪ ✆✗ ✠✰✧✧✰✸✸✜ ✆❀✯✘✸✯✤✙✘ ✾✸✯★✛✰✪ ✙✧★ ✸❤✰ ❀✯✘✸✯✤✰ ❀✫✧✦✰✼✸➂✗ ❱✉◆❑✉❁▲◆

❪❑✉❞❅❄❊✜ ✌✫✘✗ ✬❽✜ ✧✫✗ ❺✜ ✬✵✶❻✗

❬❺❻❪ ☎✗ ❋✰✘✘✫✇✪✜ ✙✧★ ✖✗ ✞✗ ▲✛✯✜ ✆☞✪✰ ✙✧★ ✚✛✪✯✪✰ ✫✴ ✸❤✰ ✦✫✧✦✰✼✸ ✫✴

✦✯✘✸✯✤✰➂✗ ❱❂❇❊❑❁✉❃❑❅❂❇ ⑤▲❇▲❉❄❬❄❇❑ ✞ ❵❃❂❇❂❬❅❃❊✜ ❼✶✡❻✮✜ ✬✵✶❼✗

❬❺❾❪ ✠✗ ❀✤✫✪❜✹ ✺❤✛✘✛✼✜ ✆◗✯✙✘✛✸✹ ✇✛✸❤✫✯✸ ✸✰✙✤✪❷ ✆❤✰ ✙✤✸ ✫✴ ❤✙✪✪✘✰✲✴✤✰✰

✚✙✧✙❹✰✚✰✧✸✜➂ ✶❽✽❺✗

❬❺❬❪ ❏❇❊❑❅❑✉❑❄ ❋❂❁ ❪✉❊❑▲❅❇▲④◆❄ ❱❂❬❬✉❇❅❑❅❄❊✗ ❬✻✧✘✛✧✰❪✗ ✖✌✙✛✘✙❜✘✰❷

❤✸✸✼✪❷❸❸✇✇✇✗✛✪✦✌✸✗✫✤❹❸✗ ❬✖✦✦✰✪✪✰★❷ ✶❾✲✢✰✦✲✬✵✶❬❪✗

❬❺✽❪ ✭✗ ❀❤✰✧❹✙✘✯✤✲✾✚✛✸❤✜ ✖✗ ✾✛★✫✤✫✌✙✜ ✾✗ ✢✙✧✛✰✘✜ ✆✾✯✪✸✙✛✧✙❜✛✘✛✸✹ ✫✴ ❋✤✰✰✲

▲✛❜✤✰ ✻✼✰✧ ✾✫✯✤✦✰ ✾✫✴✸✇✙✤✰ ✼✤✫❥✰✦✸✪❷ ✖ ✘✫✧❹✛✸✯★✛✧✙✘ ✪✸✯★✹✗➂ ❏❂✉❁❇▲◆ ❂❋

❭❊❊❂❃❅▲❑❅❂❇ ❋❂❁ ❏❇❋❂❁❬▲❑❅❂❇ ❪⑥❊❑❄❬❊✳ ✶✶✜ ✬✵✶✵

è✻

B
Appendix B: Paper B

140

Why Does Code Review Work for Open Source
Software Communities?

Adam Alami
IT University of Copenhagen

Denmark

Marisa Leavitt Cohn
IT University of Copenhagen

Denmark

Andrzej Wasowski
IT University of Copenhagen

Denmark

Abstract—Open source software communities have
demonstrated that they can produce high quality results. The
overall success of peer code review, commonly used in open source
projects, has likely contributed strongly to this success. Code
review is an emotionally loaded practice, with public exposure of
reputation and ample opportunities for conflict. We set off to ask
why code review works for open source communities, despite this
inherent challenge. We interviewed 21 open source contributors
from four communities and participated in meetings of ROS
community devoted to implementation of the code review process.

It appears that the hacker ethic is a key reason behind the
success of code review in FOSS communities. It is built around
the ethic of passion and the ethic of caring. Furthermore,
we observed that tasks of code review are performed with
strong intrinsic motivation, supported by many non-material
extrinsic motivation mechanisms, such as desire to learn, to grow
reputation, or to improve one’s positioning on the job market.

In the paper, we describe the study design, analyze the collected
data and formulate 20 proposals for how what we know about
hacker ethics and human and social aspects of code review,
could be exploited to improve the effectiveness of the practice
in software projects.

Index Terms—Open Source, Code Review, Motivation

I. INTRODUCTION

Code review is an established software engineering practice, that
ensures good quality of source code, lowers bug frequency, and
enforces coding standards [1]. During code review, reviewers
(software engineers other than the author) read code in order
to point out mistakes, shortcomings, and convention violations
that had been overlooked during programming. The practice
has evolved over the years from simple inspections of sections
of code to formalized techniques that give immediate feedback.
Reviews are performed in various forms, such as pair program-
ming, informal walkthroughs, and mandatory approvals before
code merging. A variety of tools have been developed to help
reviewers scrutinize and check the viability and functionality
of code during these reviews, and to formulate feedback.

Code review is particularly successful and cherished in free
and open source software (FOSS) communities [1]–[4]. Some
would go as far as to say that code review is the raison d’être
of FOSS: “code review . . . is the reason behind open source.
If anyone could contribute to a project, there could be chaos.”
It is a ”wall that separates bad code from good code.”1 When
asked about relative importance of code review and testing, code
review is often ranked clearly above testing by FOSS engineers.

1Statements by FOSS engineers interviewed in this study.

The effectiveness of code review depends on the level of
participation, the size of the changes made, and the reviewer
experience and expertise. Thus it is not an entirely obvious
practice to implement. Now, that code review is also widely
used in the industry [4], [5], it is particularly relevant to
understand why and how it works. As, the standard of peer
reviewing in the open source environment remains a beacon
of best practice, we turn our attention to FOSS projects for
insight. We investigate the practice from the perspective of the
main participants, their motives and behaviors. We ask:

RQ: Why does code review work for FOSS communities?

We want to understand how contributors deal with the inherent
negative feedback; what motivates them; and what values lead
them to first contribute code of high quality, then produce
high quality feedback, and finally to diligently consider the
feedback to improve the contributions. We ask this question to
(i) learn from FOSS communities to translate the experience
to closed-source environment, (ii) to help other projects
in implementing the practice successfully. We formulate
observations based on data and then speculate how project
and community managers can incorporate these results into
their work culture. We find that:

• FOSS contributors experience rejection and negative feed-
back regularly. Communities do not eliminate this negative
experience, as this seems to be the core improvement
mechanism of code review.

• Our subjects develop mature attitude to negative feedback,
taking it as an opportunity to learn, to improve, and
ultimately excel in their job.

• The ethic of passion drives the contributors. They are
passionate about all aspects of the project, including the
reviews. The passion allows them to invest themselves into
code review, and it also makes them resilient to negative
interactions.

• Community members develop a working ethic of care,
showing commitment and care toward the project, the com-
munity, and other developers. The code review is a gate
keeping practice, an implementation of the care for quality
of the project. Thus care is a strong motivator for both for
performing the code review, and for diligent execution.

• Intrinsic motivation: Altruism and enjoyment are key
intrinsic motivators of FOSS code reviewers. Even

1073

2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)

1558-1225/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSE.2019.00111

paid-for code reviewers are effectively volunteers, who
choose tasks following intrinsic interests.

• FOSS communities have developed a gift economy,
centered around a range of non-monetary non-material
extrinsic motivators: reciprocity of contributions, sharing
success, displaying status and reputation, transfer of
FOSS reputation to professional career, continuous
learning and development, all the way to punishment
for under-performance. These economy “pays” for code
review effort.

In the final part of the paper, we reinterpret these observations
to extract ideas for improving the code review process in
existing projects and communities. We hypothesize that prac-
tices described by our subjects (for instance, communicating
guidelines, or establishing mentorship) are the reasons behinds
their thriving during code review. We thus formulate them as
imperative suggestions, that, we hope, can be used for further
investigation in action research projects.

We start by characterizing the studied communities in this
paper, using them also to cast some light on the practice of
FOSS code review (Section II). Section III describes the study
design. Section IV is devoted to the analysis and interpretation
of the data. We aggregate the actionable hypotheses in
Section V, discuss related work in Section VI, and conclude in
Section VII.

II. SUBJECT COMMUNITIES

We begin by characterizing the five studied FOSS communities
and how do they use code review. Throughout the paper we
use the terms developer, programmer, software engineer, and
hacker interchangeably to refer to FOSS contributors.

Robot Operating System (ROS) is a popular open-source middle-
ware for robotics. It provides standard communication and
coordination features, and bundles implementations of essential
robotics-specific functionality with software drivers for popular
hardware components. A ROS-based application is created by
complementing selected ROS components with application spe-
cific code, typically in Python or in C++. The project originated
in 2007 at the Stanford Artificial Intelligence Laboratory. In
2008, it transferred to Willow Garage, a robotics start-up. Since
2013, it has been stewarded by the Open Robotics foundation.

Since its inception, the community enforced reviews for every
pull request, even for changes from the core team. Common
code inspection meetings were also organized. Over time the
review practices have deteriorated and are abandoned due to
lack of resources. This development partly motivates our study—
we work with the community to re-energize the practice through
an action research style intervention. As a result the community
is initiating a pilot project using standard GitHub tools for
code review and a policy that encourages code contributors
submitting pull requests to review their peers’ contributions.

Apache Allura is a hosting platform. Allura integrates key devel-
opment tools (version control repositories, issue tracker, wikis,
blogs, etc.) for developers. It is an open source project, under

the umbrella of Apache foundation, implemented in Python.
Since 2012 it is used by SourceForge as the main platform.

The official community code guidelines2 require that each
contribution is tested in a local fork prior to submission. Each
pull request must be accompanied with the necessary test cases
to be added to the automated test suite of the project. As a
precondition to the submission, the contribution must pass all
existing tests. Contributions with “open” status are reviewed
and discussed in the Git Merge Request discussion forum or in
the issue tracker. Violations of the community code review are
highlighted, architectural and programming decisions are de-
bated. Good contributions are praised. A contribution could be
rejected for minor code guidelines violations. Any member of
the community can review code; however, ultimately it is the de-
cision of the maintainer whether to merge a contribution or not.

The Comprehensive Knowledge Archive Network (CKAN) is
an open source project developing a web-based storage and
distribution platform for data, mostly used by public institutions
joining the open data movement. CKAN is implemented
primarily in Python and JavaScript. The project is overseen by
the Open Knowledge International association.

The CKAN community uses GitHub for pull requests
management and code review. Each contribution must be accom-
panied with the relevant tests and updated documentation. Once
a pull request is submitted, it is subject to review by one to four
other community members. The community specifies coding
standards for all used technologies (i.e. Python, CSS, etc.).
Architectural and programming decisions are debated and minor
code guideline violations are pointed out. The official review
guideline recognizes that besides standards, reviewer’s judg-
ment is a key factor in accepting or rejecting contributions. 3

FOSSASIA is a community centered in Southeastern Asia
developing software for social change since 2009. FOSSASIA
projects are not limited to software applications, but include
also hardware and design.

FOSSASIA focuses “on the code quality more than on
managing pull request ethics,”4 emphasizing the actual goal
of the code review work. Its best practices are documented
in programing and commit style guidelines. Pull requests are
reviewed using standard GitHub facilities. Up to eight reviewers
participate in a single discussion. Acceptance requires reaching
a consensus between reviewers. It is the responsibility of the
core team to review code. Reviewers in this community can be
pedantic, even grammatical errors in the code comments are
pointed out. Still, FOSSASIA manages to maintain a friendly
atmosphere. Reviewers offer help to fix errors if required.

The Linux Kernel is the most popular and versatile operating
system kernel on the planet, used on super computers and web-
servers, powering up cloud infrastructure, and controlling lots of
mobile and embedded devices (including all Android devices).

2https://forge-allura.apache.org/p/allura/wiki/Contributing%20Code/
3http://docs.ckan.org/en/2.8/contributing/reviewing.html
4https://github.com/fossasia/susi server

1074

Since its inception in 1991, the project is a success story,
especially in terms of developing a sustainable community.

Unlike other communities, Linux is not using GitHub for
code review, but communicates changes and performs the
review using mailing lists. The code style guideline and pull
request submission documentation are thoroughly detailed.
Even the size of the email is specified. Contributors are
encouraged to prepare patches that are concise and logically
atomic. Contributors submit their patches to the relevant
subsystem mailing list, where they are reviewed by volunteers.
Criticism and other comments are exchanged very openly
in the mailing list. Code is pedantically reviewed; there are
known cases when a patch went through 20 review iterations.
Acceptance of a patch is subject to a community consensus,
but the ultimate decision resides with the maintainer.

III. METHOD

Recall that we are asking Why does code review work for FOSS
communities? To answer this question we want to dig deeply
into the mindset of participants in this inherently human process
that relies heavily on communication skills; that involves
feedback, critique and rejection on daily basis; and that exposes
power and decision hierarchies in communities. For this reason,
we choose a qualitative research method that is suitable for
exposing participants’ experiences and motivations. We have
conducted 21 semi-structured interviews with members of
the communities that are using code review (Apache Allura,
CKAN, FOSSASIA, Linux). To this we add observation of
three meetings of the ROS community (10–16 participants)
devoted to implementing a new code review process. While
the interviews explain mostly the experience with the
existing process, the meetings are more likely to review the
expectations, wishes, and concerns with the process, as during
the meetings people reflect about consequences of instituting it.

A. Interviews

While a structured interview has a rigorous set of questions,
which does not allow to divert, a semi-structured interview is
open, allowing new ideas to be brought on top of a predefined

TABLE I
KEY PARTS OF THE INTERVIEW FRAMEWORK

in
tr

o Can you talk to me about your community?
What first motivated you to participate in this community?

co
re Can you describe the code review process in your community?

pr
ob

in
g

What makes you adhere to best practices?
How do you cope with the feedback?
What makes you want to participate in code review?
Can you share with me an example of good feedback you received,
a part of the code review, and how did you feel about it?
Can you share with me an example of negative feedback you
received, part of the code review, and how did you feel about it?

question framework. The flexibility is used to enhance the
depth of interviewee’s statements. This makes semi-structured
interview suitable for capturing rich qualitative data and
obtaining deep insights into people’s believes and behaviors.

The questions in our interview framework fall into three
categories: introductory, core, and probing (Tbl. I). The intro-
ductory questions were designed to warm up the conversation.
The core question related directly to our research question.
The probing questions aimed at making the conversation
detailed and concrete. We also asked other questions (not
in the table) about quality assurance practices in FOSS. These
questions sometimes revealed the relation of code review to
other practices, as shown in the statements reported in Sect. I.

B. ROS Community Meetings on Code Reviews

The interviews were executed with members of the communities
that successfully use code review. In contrast, the ROS
community has failed to sustain the practice in the past, and
now, having grown substantially, it attempts to reboot it. As part
of our action research involvement with the ROS community we
facilitated community meetings, where QA practices are being
discussed and implemented. Re-instituting the code review was
one of the highest prioritized activities of this group (within
the top three of the sixteen prioritized actions).

Three one hour long community meetings were dedicated
to the implementation and the logistics required to implement
a code review process in the community. The meetings had an
open structure. Ideas to implement, and details of implementa-
tions were proposed and voted by participants (and not by the
facilitators, the authors). It is important that the meeting group
takes the execution of decisions on themselves, so they have to
bear in mind the cost of the implementation. In the meetings, we
also observe reflections on the prior attempt to implement code
review in the community, and reflections on this. The meeting
data complements the interview data in following ways: we
collect opinions of much more contributors quickly, we can see
how differing opinions are confronted, we see how ROS contrib-
utors discuss the failure of code review, and how they anticipate
the practice in a community that is not yet converted to use it.

C. Subject Selection

We have selected the five FOSS communities (Sect.II), to
achieve a deep understanding of the phenomena under study.
We interviewed 21 participants from Allura, CKAN, FOSSA-
SIA, and Linux communities. We searched for contributors
on LinkedIn, using community name and terms ”contribu-
tor“/”developer“. We contacted random entries from the search
results and used snowballing to increase the sample. We had no
prior relationships to any of the subjects. Table II summarizes
the demographics of the population. The role labels are self-
selected by participants (on LinkedIn profiles). The majority of
the participants contribute to FOSS as part of their professional
employment and are paid for their contributions. Two of the
participants were students. Twenty participants were males and
one was a female.

1075

The participants for ROS community meetings on quality
assurance have been recruited using two methods: directly
inviting community members to participate (eight individuals)
and via an announcement in the community public forum (15
individuals). The group counts predominately developers, but
also some directors, project managers and CTOs of companies
using ROS are amongst the group members. Not all 23
participants joined all three meetings; attendance was in average
16 participants.

D. Data Collection

Due to geographical distribution of subjects, all interviews were
conducted remotely, using Google Hangouts. Each interview
lasted 40-60min and generated on average 14 pages of verbatim.
The ROS QA group meetings used an electronic meeting
platform, GoToMeeting. We transcribed the recorded audio,
generating 16 pages of verbatim per meeting on average.

E. Analysis

We analyzed the material from interviews and meetings
following the guidelines of Robson and McCartan [9] and of
Miles and coauthors [10]. The analysis was iterative, started
in early stages of data collection, and continued throughout
the study. First, the open coding enabled us to retrieve and
compare the text that has been linked to a particular theme.
We devised the codes by examining the data line-by-line using
the following questions as a lens: What is this saying? What
does it represent? What is happening in here? What is she
trying to convey? What is the process being described?

Then we searched for patterns in statements and ideas,
formulating themes. A theme is a concept, an implied topic

TABLE II
DESCRIPTION OF THE STUDY POPULATION

Participant Community Role Experience [Y] Country

1 Allura student 2 India
2 Allura software developer 12 USA
3 Allura senior software developer 14 USA

4 CKAN software developer 10 Slovenia
5 CKAN software engineer 12 UK
6 CKAN student 2 Slovenia
7 CKAN senior software engineer 8 UK

8 FOSSASIA software developer 2 India
9 FOSSASIA software engineer 8 India
10 FOSSASIA software engineer 10 India
11 FOSSASIA software developer 8 India
12 FOSSASIA software developer 7 India
13 FOSSASIA software engineer 13 India

14 Kernel Linux kernel engineer 18 Denmark
15 Kernel Linux kernel hacker 10 Denmark
16 Kernel principal engineer 23 Brazil
17 Kernel embedded Linux engineer 5 Spain
18 Kernel embedded Linux engineer 7 USA
19 Kernel Linux kernel engineer 10 USA
20 Kernel Linux kernel engineer 12 USA
21 Kernel senior project manager 30 USA

that organizes a group of repeating ideas that help to answer
the study question [9]. We used analytical memos to formulate
and work with the themes: the first author compiled a number
of memos based on the coding that summarized and aggregated
observations. These where used as discussion material between
the authors. Table III captures the identified themes, examples
of verbatim, and argues why a particular theme was selected.

IV. FINDINGS

Code review is an emotionally loaded practice, with lots of
exposure of reputation and ample opportunities for conflict. In
the following we present our findings, which explain how the
successful communities deal with these issues. In a nutshell, we
stipulate that the underlying reason behind code review success
in FOSS is hacker ethics. Himanen [11] argues that the hacker
ethics are more about moral virtues, in contrast to the protestant
work ethic, which stresses diligent hard effort. Hacker’s values,
according to Himanen include but are not limited to passion,
caring, creativity and joy in creating software.

A. Rejections & Negative Feedback
A publicly communicated rejection of a contribution is a
common experience in FOSS code review, across all studied
communities. The reports from the Linux kernel community
are most pronounced, where some even speak of “rejection
by default,” assuming the rejection as the initial position (Par-
ticipant 16). An examination of the Linux Kernel mailing list
archives shows that the language used can be intimidating.5 The
Linux kernel community uses frequent rejections and the harsh
language deliberately as a “congestion control” mechanism
(Participant 13) that limits the overflow of contributions.

How do contributors handle rejections and negative feedback
in code review? Given the vulnerability of contributors in the
code review process, one would expect that FOSS communities
would be decaying. Yet, the communities, we studied, are
flourishing. It appears that ability to deal with rejection is
sine qua non for succeeding in open source: “for someone to
succeed he needs to be able to handle rejections, rudeness,
and jarring-to-the-senses language” (Participant 14). In the
remainder of this paper we investigate the mechanisms that we
observed at work, that, among others, minimize the negative
effects of receiving critical feedback: learning from rejection,
the ethics of passion, the ethics of care, and reputation.

Implications. Crucially, none of the subject communities
attempt to eliminate rejection and negative feedback from
their development process. This is clearly not a route to deal
with the issues of code review. Anybody implementing a code
review process should institute an environment where rejections
are common, accepted, and normal. Mentoring and training
should be considered to support newcomers to the practice in
learning how to handle rejections.
Observation 1. Contributors are subject to frequent rejections
in code review. Communities neither reduce nor eliminate the
negative feedback, as they believe it is core to the practice.

5https://lkml.org/lkml/2018/8/3/621

1076

TABLE III
THEMES: EXAMPLES, DEFINITIONS, AND WHY THEY WERE CHOSEN

Theme Definition The theme in our data Example verbatim

Rejection An action taken by someone of not accepting,
trusting, or considering a contribution of another
community member. In the context of code review,
this refers plainly to the refusal to include the
contributed code in the main project.

Rejection is an inherent and dominat-
ing characteristic of the code review
process, thus it appears in our data
naturally. Rejections were discussed
frequently, both directly and indirectly.

I was completely depressed. It was some feed-
back I got on Friday. I have a patch which
has gone through 5 revisions . . . I had these 5
revisions and this has not happened! . . . I got
these two guys which they are anti-social. They
picked a piece of my code and say why do you
do this? This is crap, it will hurt performance . . .
They never say something nice. Participant 14

Iterative
improve-
ment

In code review, a cycle of repeated review, rejection,
and improvement (in response to criticism) of the
same contribution.

Iterative improvement (our name) was
brought up by several participants,
both in negative and positive sense.
Some participant perceive it as ”de-
pressing“ other see it as an opportunity
to learn and grow.

Only a certain type of people can handle this.
It’s not very healthy on the mental state. You
have to be able to handle this and very persis-
tent. The last patch I got in has gone through
7 revisions before it got in. Participant 14.

Passion A strong inclination toward a significant activity in
one’s life. Passion is often self-defining, pertinent to
one’s identity. It is a necessary component in reach-
ing the highest level of achievement, and contributes
to creativity. It affects autonomy, competence, and
relatedness [6].

Passion occurs directly numerous
times in data. Subjects also talk about
their community and work passion-
ately. They speak with certainty, in
higher pitched and faster voice that
demands attention, with positive and
assertive body language.

. . . down the line, you always get to be attached
to the project and get the passion of contribut-
ing and getting it out to the world so yes, it
is one of the reasons why people contribute.
Participant 8

Caring A relationship where the “caring” person acts in
response to a perceived need from the “cared-for.”
A caring relationship is a basic human instinct, a
universal virtue. The caring party engages in helping
the cared-for [7].

Caring repeatedly appears as a core
value in the interviews and discussions,
with symptomatic phrases like “I care,”

“we care”. We see both care for ab-
stract entities (the project, community,
quality) and for community members.

In FOSSASIA we care. It’s not like an average
job. We do it because we want to do it and we
care about the quality. Participant 10

Intrinsic
motiva-
tion

An internal desire to perform an activity. Self-
applied. Arises from a direct relationship between
the individual and the circumstances. The reward is
intangible—a sense of achievement or satisfaction.
Intrinsic behavior springs from the human need for
competence and self-determination, directly derived
from the emotions of interest and enjoyment [8].

While talking about their tasks, par-
ticipants repeatedly used phrases
like ”makes me happy“ or ”feels
good/nice.“

It feels nice doing something for the community.
There is satisfaction, especially when the PR
is merged. It feels nice! Participant 10

Extrinsic
motiva-
tion

Inspiration to act to gain some external reward [8],
valued by goal-oriented individuals. An extrinsic
reward is tangible or physically given to award
one’s participation. Extrinsic rewards are easier to
exploit in project management than intrinsic ones.

This theme emerged as participants
talked repeatedly about the signifi-
cance of reputation to themselves or
to their peers.

It’s a great piece of software and a success
story. Everybody wants to be part of it. Not
only that, having a reputation in the community
also counts. Participant 16

B. Iterative Improvement

Code review in the studied communities is iterative. Typically,
after a rejection, or in response to negative feedback, the
contributors implement necessary improvements, and ask for
another review. A pull request may go through 20 iterations of
review in the Linux community (Participant 15). In FOSSASIA,
the range is 1–4 iterations (Participant 12). This amount of
iterative scrutiny may appear intimidating at first. One could
be tempted to conclude that the comfort of the contributors is
sacrificed in the name of quality. However this is not the view
shown by our subjects: Iterative improvement is a mechanism
to turn the negative feedback into a positive experience—they
can advance their technical excellence in the process.

How learning affects code review? Ghosh and coauthors
observe that knowledge is a salient motive for participation
in FOSS [12], [13]. Lakhani and Wolf report that 45% of
the survey’s participants join a FOSS community to improve
their skills [14]. FOSS creates a positive environment for
learning [13]. Our subjects concur. They use terms such

as “opportunity to learn” (Participant 15) and “self-growth”
(Participant 21) when referring to processing feedback. The
rejection and negative feedback are rationalized from an issue
to a reason for individuals to join the process.

Observation 2: The iterative improvement cycle in code
review turns negative feedback into a positive opportunity
for learning and technical-growth by contributors. Receiving
feedback may even become a reason for participation.

Implications. Reacting to feedback in mature ways can be
learned. Organizations and FOSS communities should consider
using, for instance, coaches and mentors to help the participants
in code review to develop a constructive attitude to feedback.

C. Ethic of Passion

Passion is a strong inclination or desire toward an activity
that one likes or even loves, that one finds important, and
one invests time and energy in [15]. Passion is a necessary
component in reaching the highest level of achievement, and
contributes to creativity [15]. FOSS contributors review code

1077

that does not concern them in any way out of their passion
for programming, passion for the community’s project, and
passion for excellence. “In open source or at least in the Linux
Kernel community it’s not a job like in a company, even though
most people are getting paid now. People have passion about
this. I think the most important thing is how they perceive the
criticism when they are passionate about the work. I think
we don’t see it as criticism” (Participant 20). Participants see
passion also as a help in coping with negative feedback. They
speak with passion and a sense of purpose.
How does passion shape the execution of code review?
Vallerand et al. propose a dualistic model of passion, dis-
tinguishing obsessive and harmonious passion [15]. Obsessive
passion is tied to a person’s self-esteem, ego. The person’s
identity is defined by the passion, thus she is compelled to
engage in the activity. Such person engages in an activity rigidly.
Obsessive passion generates strong negative effect when the
person is unable to be involved in the activity. Our data does not
show any strong links between the activity of code review and
the participants’ identity, and we do not observe any negative
effect regarding inability to perform code reviews. Hence, we
conclude that passion of the studied subjects is of the harmo-
nious type. Harmonious passion results from an autonomous
internalization of acceptance of the activity [15]. The desire to
participate in the activity is significant, but not overpowering.
Harmonious passion generates greater positive effect than obses-
sive passion. Individuals subject to harmonious passion demon-
strate better concentration, better flow, and flexible persistence.

According to Vallerand’s model, passion should positively
affect the quality of the performed code reviews, and our
subjects concur, for instance: “passion is the force behind the
quality of the work and people contributions” (Participant 11).
Interestingly, Bonneville-Roussy et al. [16] analyze the types of
goals that people subject to harmonious and obsessive passion
set. They note that only harmonious passion generates so called
mastery goals, which is consistent with our subjects being very
passionate about technical excellence, and the participation in
code reviews to achieve the excellence (see Observation 2).

Observation 3: The ethic of passion motivates FOSS con-
tributors. Consequently, they dedicate effort to code review,
deliver high quality, and are more resilient to rejection.

Implications. It is definitely difficult to operationalize passion.
Passion is innate, but it can be developed and nurtured like
any other value. It should be nurtured in software engineering
environments. If code review is important for an organization,
passion for the practice should clearly be key for selecting the
project members (as opposed to training skeptics to perform
code review). Since passion is contagious, organizations and
projects should strive to recruit passionate managers and team
members, and encourage them not to be shy about their passion.

D. Ethic of Caring

Toombs et al. [17] argue that hacker communities demonstrate
a nonliberal ethos, prizing self-determination, technological
expertise, independence, freedom from government, and

suspicion of authorities. However, for these communities
to function, care values are also important, those values of
collaboration, cooperation, and support of one another. For
FOSS contributors, work is about the power of human reunion,
about working together and caring for each other, for the
community, and for the project. “People in the community
care about the work. They care about the community, about
the product and its quality. Everybody cares. This caring
together makes a difference. You don’t feel [like if you were]
working for a company.” (Participant 11) Caring, as articulated
by the subjects, is the feeling and the display of concern and
attaching importance to the community work and its products.
How does care shape the execution of code review? Subjects
believe in a positive correlation between caring ethic, work
satisfaction and performance. Community members appear
to naturally care for the project and do not want anything that
would hamper its effectiveness and efficiency. Code review is
a way to execute that care for reviewers, to enforce the quality
requirements. Asked how people cope with a heavy review
load in the Linux community, Participant 16 stated “People
care about quality in this community. Not only that. People
are passionate about the project.” Participant 3 puts code
reviews and care as the two most important factors behind
the success of FOSS: “number one is peer review, so that is
one of the main practices. Number two, we try to do it with
care. Number three, we try to have as many tests as possible
and we try to have at most 80-90% code coverage.”

Paradoxically, caring is the motivating factor for some
subjects, also when they are reviewees. Care shown by
others may help to deal with negative aspects of code review.
Participant 1 names the caring attitude of his community
mentors as the main motivator behind his persistence in the
early days. Others talk about reviewers who not only criticize
contributions, but also offer help to improve them.

Observation 4: The ethic of care drives our subjects. They
use the gate of code review to exercise care for quality. Care
also helps them to control the negative feedback.

Implications. Care is easier to habituate than passion. Thus
companies and projects should find it easier to exploit it, by
instituting an ethic of care. A caring attitude can be rewarded
and encouraged. It appears that a successful implementation
of code review would be helped if leaders cared about how
contributors cope with feedback, and if they themselves shown
care for code review. Note that in many FOSS communities
the project leader is actually the most active code reviewer.

E. Intrinsic Motivation

Intrinsic refers to the innate, the natural, the part of a whole
that cannot be removed from the whole nor the whole from it.
Intrinsic motivation derives from internal satisfaction. Some
subjects directly name natural affinity for programming behind
their dedication to work (including code review), adherence to
best practice and assuring the overall quality of the tasks.

Altruism and enjoyment were observed to be the main
intrinsic motivation amongst our participants, for instance: “The

1078

TABLE IV
EXTRINSIC MOTIVATORS IN THE STUDIED COMMUNITIES

Motivator Description

Reciprocity Known in the literature as the gift economy. Other community mem-
bers respond positively to your contributions, through mechanism like
reviewing code for each other, offering help, public appreciation, etc.

Participation
in success

Success is attractive, and contributors find it rewarding to be part of a
successful project, and being able to help, or given responsible roles
in it (such as code reviewer).

Status,
reputa-
tion

Work experience in a FOSS project accumulates technical exper-
tise and social capital elevating the contributor status. Since the
management hierarchy is much less important than in commercial
organizations, the status matters more here. Reputation and status
might be intangible, or expressed using a metric system (like Karma
points, forks, likes, etc.)

Career
building

Both intangible and “tangible” reputation accumulated in successful
open source projects, translate into carrier opportunities for engineers:
interesting job offers, presenting at conferences, etc.

Learning Code review, like any feedback process, provides peer-learning and
development opportunities. The reviewers act like masters in relation-
ship to apprentices (contributors). These roles can of course swap for
the same individuals.

Be
amongst
the best

Code-review introduces a high acceptance bar, deterring mediocre
submissions. Contributors’ apprehension of critique is an extrinsic
motivator that leads to better initial submissions and more diligent
improvement to feedback. Unlike the previous five, this is the only
negative extrinsic motivator (exercised by code reviewers) that we
have seen in our study.

feeling that your code is going to be used, maybe, for future.
Maybe its going to help some people and that’s something I
really like” (Participant 7). The FOSS motivation literature
suggest that enjoyment is a key motivator for contributors [14],
[18], [19]. Subjects are “happy” (Participant 7) or experience

“nice feelings” (Participant 21) when performing code review.
How does intrinsic motivation influence the execution of
code review? Intrinsically motivated employees perform well,
behave effectively, and remain loyal to the organization [20].
Rogstadius and coauthors determined that increased pay does
increase worker’s willingness to accept a task and faster
completion, but pay does not affect the quality of the work
[21]. They claim that, intrinsic motivators can lead to higher
quality work, in fact, higher than extrinsic rewards.

Our subjects agree with these findings, Participant 11 states
“It’s a great feeling. I don’t know how to describe it, but feels nice.
It drives me always to do more and better.” The intrinsic quality
in the execution of code review starts from the selection process.
Contributors voluntarily select the patch they are comfortable to
review. This is different from many closed-source environments,
where reviewers are assigned to review code.

Observation 5: Altruism, and enjoyment are key intrinsic
motivators for our subjects. Open source reviewers are
effectively volunteers (even if paid) and can choose review
tasks following intrinsic interests.

Implications. The very nature of intrinsic motivation is that it
cannot be easily controlled externally. Perhaps, the only way to
exploit it, is to watch for the symptoms (altruistic behaviours,
enjoyment), and take them as indicators of good code reviewers.
Furthermore, increasing the freedom of choice for reviewers
might increase their effectiveness.

F. Extrinsic Motivation

Perhaps the most interesting are the extrinsic motivators that
affect the code review, as they are the most controllable
mechanism in place. We analyze them in more detail than
the previous findings. Table IV summarizes the six extrinsic
motivators identified in our data. We devote a paragraph to
each below. We close each of them with a hypothesis on how
it could be exploited by project managers implementing code
review.
Reciprocity. In contrast to our present economy system, which
is based on quantifiable and measurable exchange transactions
using money as unit for measurement, the gift economy is
much more flexible. When giving, the contributor is owed [22].
There is an implicit moral obligation to reciprocate the gesture
of giving [23], but more subtle than just give-and-take. The
exchange does not require quantification and measurement, or
at least not explicitly. A FOSS community gives you learning,
expertise and the sense of togetherness. Your respond helping
others to experience the same. “I feel satisfied when I’m able
to give back something that I have” (Participant 6).

How shall one operationalize this motivator? First, the
situation where learning, expertise, and the sense of community
is offered to contributors and reviewers is easy to mirror
in other projects (both closed and open source). Second,
our data shows that it may be worth to make the software
engineering environment a relational (where relations grow
through reciprocal exchanges), not only transactional (where
time and effort is exchanged for a paycheck).
Participation in success. Success is attractive to hackers.
A successful project earns the respect of contributors, and
attracts more contributors. “It’s a great piece of software and
a success story. Everybody wants to be part of it” (Participant
16). Success is a general motivator, also for parties during
code review, which is seen as a key practice contributing to
the success in FOSS communities. It is hard to make a project
successful, however successful projects can exploit it to attract
community members, and can expect members to be more
motivated to contribute.
Status in the community. Reputation. Reputation is the most
pronounced extrinsic motivator in our data, out of all listed in
Table IV. This is in line with the rich literature about desire for
reputation as a motivation to participate in FOSS communities
overall [14], [24]–[26]. Some subjects partake in code review as
a way to gain reputation and recognition. Some go as far as to
name the status an “award” for code review. Some perform it
particularly diligently, as not to loose the hard earned reputation.
Work experience in an open source project accumulates
technical expertise and social capital elevating the contributor’s
status. Since the management hierarchy is much less important
than in commercial organizations, the status matters more here.

Reputation is motivating even for junior contributors.
Participant 1 reports how he felt having received praise
from his mentor for suggesting an alternative architectural
solution in a code review. The mentor recognized his technical
expertise: “I felt like I [was] made for this, I had to do this

1079

more and more . . . four to five hours continuously, I coded
for the second issue to get the same feedback and I’m still
doing this continuously because that energizes me.”

Paradoxically, code reviewing earns reputation, but then it
may diminish the effect of code review on one’s contributions.
Some highly recognized senior contributors admit that they are
treated more respectfully in code review, because of their repu-
tation, or even that they are able to commit code without review.

How to exploit reputation and status in project organization
to boost code review? One simple idea is to use gamification.
Another idea is to let the code review practice contribute to
building a meritocratic structure in the project.

Today reputation is often gamified through some kind of
points system (karma), computed by the project development
platform. ROS community members, who work on implement-
ing the new code review process, believe that performing code
reviews should be reflected by rewards in such a point system.

Accruing and recognizing status based on technical contri-
butions leads to construction of meritocracy as a backbone
social hierarchy in the project. The senior members of ROS
community believe that meritocracy should be designed and
blended into the process of code review. So code review should
become an instrument into organizing the community—then,
as a side effect, the code review will work better itself.
Career building. Subjects recognize that active participation
in FOSS projects is a differentiating factor on the job market,
a tangible sign of expertise that can be leveraged in career
development. “It’s nice to build up a CV, it’s nice for an intel-
lectual perspective because once you get some code accepted,
it means that you are reaching some level of, you know some
stuff” (Participant 17). A company director active in the ROS
community meetings stated that his company benchmarks
candidates using community profiles and reputation.
Learning. Participants of code reviews learn from each other.
Subjects agree that is beneficial for many; for junior project
members, but also for the reviewers. “that’s how they [review-
ers] learn, maybe they will see in the code something that they
didn’t know about and it’s interesting to them so they will ask
about it, or they discuss it” (Participant 4). “Review is making
us better programmers. We learn when we review others code
and when our code is being reviewed. You learn from other
code and how they code and you learn from the feedback” (Par-
ticipant 14). This is the self-applying motivator of code review:
people participate for the direct educational benefit of it. Project
managers should remember that for many subjects not the mun-
dane and simple, but the stimulating and developing tasks are
motivating, and maintain the corresponding allocation of tasks.
Be amongst the best. Mediocrity is prosecuted with a harsh
language and strong tone in the Linux Kernel community.
This attitude aims at filtering the best and shields the project
from average contributions. “I think if you get just the best
people, perhaps the contributions are then the best. There
are many ways of interacting that requires this high touch.”
(Participant 16). While widely criticized online,6 even the

6For example: https://sage.thesharps.us/2015/10/05/closing-a-door/

critiques admit that code review communication needs to be
harsh. The problem they criticize is not harshness, but lack
of respect: “I need communication that is technically brutal
but personally respectful” (idem.). This is the only negative
motivator observed in the study; the main form of punishment
for under-performing used in FOSS communities.

Observation 6: An established reciprocal gift culture, sharing
in the fame of success, reputation, public visibility of status for
employers, learning opportunities, and punishment for not per-
forming ultimately the best are the key extrinsic motivators be-
hind work and code review of our subjects. These are all non-
monetary motivators that can be used to improve code review.

G. Trustworthiness of the findings

The validity of qualitative research is achieved through trust-
worthiness [27], [28]. Four constructs are used to establish
trustworthiness: credibility, transferability, dependability, and
confirmability.

Credibility establishes internal validity, which rivals hypothe-
ses exclusion [27], [29], [30]. It ensures the proposed theory
is reliable and representative of the raw data [31]. We used
peer debriefs and participant checks. One author conducted
the coding the other authors confirmed the emerging theory
and categories from the collected data. Participant checks have
been used for narrative accuracy and interpretive validity [27],
[29], [32]. Participants were asked to validate the authenticity
of the verbatim transcripts. They were also asked to comment
on the analytical interpretation. Their comments served as a
check on the viability of the coding.

Transferability refers to the extent to which the findings
of qualitative research, either partially or completely, can be
generalized or applied to similar settings [27]. We believe
that we meet the transferability requirements by providing
evidence that the research findings could be applicable to
other similar contexts (i.e., free and open source communities).
An audit trail is available and detailed enough to allow other
researchers to replicate a similar inquiry in similar communities
[33]. Sikolia et al. [28] suggest that researchers can ensure
transferability by describing the research clearly, explaining
the diverse experiences of the participants, implementing
methodology, interpreting the results, and adding contributions
from debriefing.

Dependability is synonymous with reliability in the tradi-
tional quantitative research. It is concerned with the ability
of the research to reach the same conclusions if replicated in
the same setting and conditions [27]. It measures replicability
or repeatability. This is done by a peer researcher who audits
and confirms that the research procedures are followed and
authentic. Shenton [27] suggests that the research report should
include discussions on dependability and that researchers should
comprehensively explain the research design and the data
gathering methods.

Confirmability refers to real objectivity in the study. It is
improved by triangulation of the study data and findings [27].
The study should reflect the preferences of the participants and

1080

not the researchers. Unlike quantitative studies, the direction
of a qualitative study is created by the participants and not the
researchers. The reflective discussion of the researcher promotes
the reality that the data indeed reflects the participants’ views
and not the researcher’s. An audit trail should also be discussed
in the study report as another tool to improve confirmability in
the study [27], [29]. This audit establishes confirmability [28].
An audit trail is when a detailed process of data collection,
data analysis, and interpretation of the data has been provided.

V. DISCUSSION

Our analysis shows that the human aspect of code review is
definitely not to be ignored. Human constructs such as handling
rejection, coping with close scrutiny, ethic of passion, ethic of
care, intrinsic and extrinsic motivations shape the execution
of code review in important and mostly positive ways. We
aggregate the most actionable consequences of the study, along
with proposals of actionable interventions in Table V.

Rejections are an inherent aspect of the code review process
(Observation 1). Software engineering environments should
institute a culture where rejections are embraced. A rejection
culture implies understanding and communicating that rejection
is not a failure. Otherwise it is very difficult to use code-review
to improve quality. Instead of being eliminated, rejection and
the negative experiences need to be sublimated into a learning
opportunity. Fortunately, this can be rationalized and trained
and many organizations use internal reviewing successfully as
way to raise quality of products.

According to Burke and Fiksenbaum passion enhances
mental and psychological well-being of the employees [34].
FOSS contributors (Observation 3) show as the most passionate
workers in engineering, and, as such, an excellent subject
to study this phenomenon further. Project and community
managers should definitely not ignore but cherish and support
this virtue of software teams.

While the ethic of care is not really associated with a
stereotypical antisocial programmer in public perception,
the FOSS contributors clearly exhibit traits of caring, at
least in the limited scope of their project and community
(Observation 4). That care is apparently developed through
existing mechanisms in the FOSS communities that can also
be used by others: the contagious care of project leaders,
mentoring arrangements, and a sense of shared ownership of
project’s design, goals, and ways of working.

It is difficult to directly implement exploitation of intrinsic
motivators in code review. Self-determination theory attempts
to differentiate factors that facilitate and that undermine
intrinsic motivation [35]. A sub-theory, the cognitive evaluation
theory, maintains that interpersonal events that lead to feelings
of competence enhance intrinsic motivation when they are
accompanied by a sense of autonomy [35], [36]. Autonomy
is described as the leeway that is given to the employee to
complete their job tasks [37].

Scientists do agree that satisfaction and performance in-
creases intrinsic motivation. Kraiger, et al. [38] argue that a
positive effect increases people’s enjoyment and interest. Erez

et, al. [39] found that a positive effect increases the intrinsic
attractiveness (i.e. goodness) of moderately desirable rewards.
It also affects satisfaction and performance during the activity
[39], [40]. Thus it would be extremely valuable to explore more
action oriented research involving intrinsic motivation in code
review, and collaborative software development in general.

The richness of extrinsic motivators is visible in the studied
communities (Observation 6). There are known results that
extrinsic motivators do correlate with performance and that
they synergize with intrinsic motivations [41], [42]. We list
some ideas on how to exploit them to improve code review in
the bottom most part of Table V.

VI. RELATED WORK

The subject of code review has been investigated from various
angles, yet, the human and social aspects of the process received
little attention. Bachelli and Bird [43] found that the top
motivation for code reviewers is finding defects, but in fact,
defect-related communication is proportionally small. Instead,
the reviewers are concerned with knowledge transfer, increasing
team awareness, and creating alternative solutions. The fabric
of code review is communication, knowledge transfer, praise
and critique. Code review is primarily a social activity.

Lussier [44] describes the experience of first rejection
of a contribution to the Wine project, an open source
implementation of the Windows API. While the team was
initially resentful, after three more rejections, the code was
accepted. Meanwhile the team developed a real sense of
ownership and pride in their work. Lussier recounts that the
passion of contributors is one of the reasons for the high quality
of code. These findings are in accordance with our conclusions.

Asynchronous reviews support team discussions and find
the same number of defects as collocated meetings [1]. They
provide passive listeners with learning experience; focus better
on the ideal solution, not on the defects, but still find defects
earlier than the scheduled reviews. Most FOSS reviews begin
within hours of submitting the change and are completed
within one or two days. It is key that the reviewed changes
are small, independent, and complete; typically 11—32 lines
of code. Rigby et al. point out that communities allow expert
developers to self-select submissions to review [1]. Selecting
tasks can allow experts to stay vested in a project. However,
their study misses the human and social factors of code review.
We show that these are important. They sway the execution
positively and steer the outcome to higher quality. They also
appear to be exploitable in project organization.

Votta [45] suggests that face-to-face code review meetings
of the whole team should be replaced with depositions. A
deposition is a three-person team: an author, a moderator, and
a reviewer. To save costs, the moderator can be eliminated.
The results of such meetings are just as effective as full-team
meetings. Our study indicates that human and social aspects of
code review can counteract the impersonality of asynchronous
meetings, and they can still allow for many experts to interact.

German and colleagues [46] studied OpenStack. They found
twenty-four percent of participants subject to reviews stated that

1081

TABLE V
AN INTERPRETATION OF THE STUDY: SUGGESTIONS OF ACTIONABLE INTERVENTIONS

Consequence of Observations Examples of consequent actions/interventions for projects
A working environment valuing code
review embraces rejection, as rejection
is inherent and valuable in code review.
(cf. Observation 1)

– Provide code review guidelines on how to communicate constructive feedback and how to
interpret feedback.

– Include handling rejections into training for new engineers. Rejection is not failure.
– Establish an in-house counseling, mentoring or coaching function for engineers that maintains

understanding of the positive value of code review.

Iterative improvement is an important
method of programming work, besides
the pervasive striving for perfection.
(cf. Observation 2)

– Promote code review practice as a knowledge sharing and learning opportunities.
– Reward and appreciate learning, and striving for excellence both in teams and individuals.
– Democratize the code review process. Allow reviewers to select what they want to review.

The ethic of passion should be nurtured
in project teams and communities.
(cf. Observation 3)

– Recruit passionate developers if possible. Seek passion for code review in particular. Appoint
passionate individuals to lead software engineers.

– Eliminate toxic sources that deplete passion from engineers.
– Reduce tasks that do not coincide with passions.
– Include passion and self-determination as a parameter when allocating tasks. FOSS contributors

choose what to work on, what to review, when to do it, etc.

The ethic of care is a positive contrib-
utor in a project team involved in code
review, worthwhile cultivating.
(cf. Observation 4)

– Care and commitment shall be demonstrated at every level of the software team. Leaders
should review code diligently. Many FOSS project leaders are top code reviewers.

– The FOSS we studied, nurture care by establishing mentor–contributor relationships that last
up to five years. Developing relationships seems key to the ethic of care.

– Develop a team as a community, especially regarding reviews. Develop “our way” of doing
things and enforce it in reviews; emphasize common ownership, methods, designs and successes.

Nurturing engineers’ intrinsic motives,
altruism and enjoyment. (cf. Observa-
tion 5)

– Intrinsic motives are very difficult to exploit, and little known results of action research
regarding that exist in software engineering. To the best of our knowledge, so far this is
mostly an area for future research.

Many non-monetary exploitable extrin-
sic motives drive FOSS contributors
to make code-review effective. (cf.
Observation 6)

– Do not neglect non-monetary non-material rewards, but develop a relational environment in
your team, where rewards come from collaboration.

– If your project is successful, use it to attract motivated community members.
– Build a meritocratic hierarchy, a key motivator for performing well in code reviews.
– You might want to use a point system to gamify gaining reputation and status.
– Acknowledge and reward individuals and group achievements regularly, with growth

opportunities (promotions, conference talks, etc.).
– Use code review as a key learning and development opportunity for engineers in your team.

they are treated unfairly occasionally and fifteen percent feel
they are treated unfairly often. Reviewers who were questioned
stated that they conduct reviews fairly (60%), but some stated
that they conduct reviews unfairly occasionally (40%). They
stated that contributions are prioritized for review by the
developer’s expertise, the importance of the patch, the author
of the patch, the difficulty of the patch, or the freshness of
the patch, which can affect consistency and perceptions of
fairness. Newcomers are often treated with a negative bias, as
well. These findings emphasize the importance of the human
and social aspect of code review.

VII. CONCLUSION

We had set out to explore why code review works for
open source software communities. We interviewed 21 open
source developers from four different successful communities
and collected data from meetings of a community debating
introduction of code review. Having analyzed the data, we
find that, besides the well known project management and QA

reasons for success of the code review practice, a number of
human and social aspects are key—they create a psychological
and social environment that is friendly for development of
successful code review interactions.

In order to encourage future work, we examined the data, and
extracted patterns of management, behavior, and other elements
of the FOSS work environment pertaining to code review that
appear to be replaceable in other contexts (Table V). We hope
that these can be a useful inspiration for project and community
managers. Fore-mostly, we hope that they can inspire action
research interventions into both closed and open source projects,
and that this way we can obtain a better understanding how to
proactively control the quality of code review.

Acknowledgment: Supported by the ROSIN project under
the European Union’s Horizon 2020 research and innovation
programme, grant agreement No 732287. We would like to
thank the interviewees for their participation and making this
research possible.

1082

REFERENCES

[1] P. Rigby, B. Cleary, F. Painchaud, M.-A. Storey, and D. German, “Con-
temporary peer review in action: Lessons from open source development,”
IEEE software, vol. 29, no. 6, pp. 56–61, 2012.

[2] P. C. Rigby, D. M. German, and M.-A. Storey, “Open source software
peer review practices: a case study of the apache server,” in Proceedings
of the 30th international conference on Software engineering. ACM,
2008, pp. 541–550.

[3] M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens, “Modern
code reviews in open-source projects: Which problems do they fix?”
in Proceedings of the 11th working conference on mining software
repositories. ACM, 2014, pp. 202–211.

[4] A. Aurum, H. Petersson, and C. Wohlin, “State-of-the-art: software
inspections after 25 years,” Software Testing, Verification and Reliability,
vol. 12, no. 3, pp. 133–154, 2002.

[5] B. Boehm and V. R. Basili, “Software defect reduction top 10 list,”
Foundations of empirical software engineering: the legacy of Victor R.
Basili, vol. 426, no. 37, 2005.

[6] R. J. Vallerand, C. Blanchard, G. A. Mageau, R. Koestner, C. Ratelle,
M. Léonard, M. Gagné, and J. Marsolais, “Les passions de l’ame: on
obsessive and harmonious passion.” Journal of personality and social
psychology, vol. 85, no. 4, p. 756, 2003.

[7] N. Noddings, Caring: A relational approach to ethics and moral
education. Univ of California Press, 2013.

[8] R. M. Ryan and E. L. Deci, “Intrinsic and extrinsic motivations: Classic
definitions and new directions,” Contemporary educational psychology,
vol. 25, no. 1, pp. 54–67, 2000.

[9] C. Robson and K. McCartan, Real world research. John Wiley & Sons,
2016.

[10] M. B. Miles, A. M. Huberman, and J. Saldana, “Qualitative data analysis:
A method sourcebook,” CA, US: Sage Publications, 2014.

[11] P. Himanen, The hacker ethic. Random House, 2010.
[12] R. A. Ghosh, R. Glott, B. Krieger, and G. Robles, “Free/libre and open

source software: Survey and study,” 2002.
[13] R. A. Ghosh, “Understanding free software developers: Findings from

the FLOSS study,” Perspectives on free and open source software, pp.
23–46, 2005.

[14] K. R. Lakhani, R. G. Wolf, and Others, “Why hackers do what they
do: Understanding motivation and effort in free/open source software
projects,” Perspectives on free and open source software, vol. 1, pp. 3–22,
2005.

[15] R. J. Vallerand, S.-J. Salvy, G. A. Mageau, A. J. Elliot, P. L. Denis,
F. M. E. Grouzet, and C. Blanchard, “On the role of passion in
performance,” Journal of personality, vol. 75, no. 3, pp. 505–534, 2007.

[16] A. Bonneville-Roussy, G. L. Lavigne, and R. J. Vallerand, “When passion
leads to excellence: The case of musicians,” Psychology of Music, vol. 39,
no. 1, pp. 123–138, 2011.

[17] A. L. Toombs, S. Bardzell, and J. Bardzell, “The proper care and feeding
of hackerspaces: Care ethics and cultures of making,” in Proceedings
of the 33rd annual ACM conference on human factors in computing
systems. ACM, 2015, pp. 629–638.

[18] K. R. Lakhani and E. Von Hippel, “How open source software works:
” free” user-to-user assistance,” Research policy, vol. 32, no. 6, pp.
923–943, 2003.

[19] B. Luthiger and C. Jungwirth, “The Chase for OSS Quality: The Meaning
of Member Roles, Motivations, and Business Models,” in Emerging Free
and Open Source Software Practices. IGI Global, 2007, pp. 147–168.

[20] R. Q. Danish, M. K. Khan, A. U. Shahid, I. Raza, and A. A. Humayon,
“Effect of intrinsic rewards on task performance of employees: Mediating
role of motivation.” International Journal of Organizational Leadership,
vol. 4, no. 1, 2015.

[21] J. Rogstadius, V. Kostakos, A. Kittur, B. Smus, J. Laredo, and M. Vukovic,
“An assessment of intrinsic and extrinsic motivation on task performance
in crowdsourcing markets.” ICWSM, vol. 11, pp. 17–21, 2011.

[22] E. S. Raymond, “The Cathedral and the Bazaar,” 1998.
[23] D. Zeitlyn, “Gift economies in the development of open source software:

anthropological reflections,” Research policy, vol. 32, no. 7, pp. 1287–
1291, 2003.

[24] J. Hahn, J. Y. Moon, and C. Zhang, “Emergence of new project
teams from open source software developer networks: Impact of prior
collaboration ties,” Information Systems Research, vol. 19, no. 3, pp.
369–391, 2008.

[25] G. Hertel, S. Niedner, and S. Herrmann, “Motivation of software devel-
opers in Open Source projects: an Internet-based survey of contributors
to the Linux kernel,” Research policy, vol. 32, no. 7, pp. 1159–1177,
2003.

[26] J. Lerner and J. Tirole, “Some simple economics of open source,” The
journal of industrial economics, vol. 50, no. 2, pp. 197–234, 2002.

[27] A. K. Shenton, “Strategies for ensuring trustworthiness in qualitative
research projects,” Education for information, vol. 22, no. 2, pp. 63–75,
2004.

[28] D. Sikolia, D. Biros, M. Mason, and M. Weiser, “Trustworthiness of
grounded theory methodology research in information systems,” 2013.

[29] S. C. Brown, R. A. Stevens, P. F. Troiano, and M. K. Schneider,
“Exploring complex phenomena: Grounded theory in student affairs
research,” Journal of college student development, vol. 43, no. 2, pp.
173–183, 2002.

[30] G. Rolfe, “Validity, trustworthiness and rigour: quality and the idea of
qualitative research,” Journal of advanced nursing, vol. 53, no. 3, pp.
304–310, 2006.

[31] D. Straub, M.-C. Boudreau, and D. Gefen, “Validation guidelines for
IS positivist research,” The Communications of the Association for
Information Systems, vol. 13, no. 1, p. 63, 2004.

[32] M. Carcary, “The Research Audit Trial: Enhancing Trustworthiness in
Qualitative Inquiry.” Electronic Journal of Business Research Methods,
vol. 7, no. 1, 2009.

[33] A. Cooney, “Rigour and grounded theory,” Nurse researcher, vol. 18,
no. 4, pp. 17–22, 2011.

[34] R. J. Burke and L. Fiksenbaum, “Work motivations, satisfactions,
and health among managers: Passion versus addiction,” Cross-Cultural
Research, vol. 43, no. 4, pp. 349–365, 2009.

[35] R. M. Ryan and E. L. Deci, “Self-determination theory and the facilitation
of intrinsic motivation, social development, and well-being.” American
psychologist, vol. 55, no. 1, p. 68, 2000.

[36] F. P. Morgeson, K. Delaney-Klinger, and M. A. Hemingway, “The
importance of job autonomy, cognitive ability, and job-related skill
for predicting role breadth and job performance.” Journal of applied
psychology, vol. 90, no. 2, p. 399, 2005.

[37] C. J. Fornaciari and K. L. Dean, “Experiencing organizational work de-
sign: Beyond hackman and oldham,” Journal of Management Education,
vol. 29, no. 4, pp. 631–653, 2005.

[38] K. Kraiger, R. S. Billings, and A. M. Isen, “The influence of positive
affective states on task perceptions and satisfaction,” Organizational
Behavior and Human Decision Processes, vol. 44, no. 1, pp. 12–25,
1989.

[39] A. Erez and A. M. Isen, “The influence of positive affect on the
components of expectancy motivation.” Journal of Applied psychology,
vol. 87, no. 6, p. 1055, 2002.

[40] B. M. Staw and S. G. Barsade, “Affect and managerial performance:
A test of the sadder-but-wiser vs. happier-and-smarter hypotheses,”
Administrative Science Quarterly, pp. 304–331, 1993.

[41] J. Boiché, P. G. Sarrazin, F. M. Grouzet, L. G. Pelletier, and J. P. Chanal,
“Students’ motivational profiles and achievement outcomes in physical
education: A self-determination perspective.” Journal of Educational
Psychology, vol. 100, no. 3, p. 688, 2008.

[42] L. G. Pelletier and P. Sarrazin, “Measurement issues in self-determination
theory and sport.” 2007.

[43] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of
modern code review,” in Proceedings of the 2013 international conference
on software engineering. IEEE Press, 2013, pp. 712–721.

[44] S. Lussier, “New tricks: How open source changed the way my team
works,” IEEE software, vol. 21, no. 1, pp. 68–72, 2004.

[45] L. Votta, “Does the Modern Code Inspection Have Value,” in Presentation
at the NRC Seminar on Measuring Success: Empirical Studies of Software
Engineering, 1999.

[46] D. M. German, G. Robles, G. Poo-Caamaño, X. Yang, H. Iida, and
K. Inoue, “Was my contribution fairly reviewed?: a framework to study
the perception of fairness in modern code reviews,” in Proceedings of the
40th International Conference on Software Engineering. ACM, 2018,
pp. 523–534.

1083

C
Appendix C: Paper C

152

Affiliated Participation in Open Source Communities
Adam Alami

Computer Science
IT University of Copenhagen

Andrzej Wąsowski
Computer Science

IT University of Copenhagen

Abstract—Background: The adoption of Free/Libre and Open
Source Software (FOSS) by institutions is significantly increasing,
and so is the affiliated participation (the participation of industry
engineers in open source communities as part of their jobs).
Aims: This study is an investigation into affiliated participa-
tion in FOSS communities. So far, little is known about the
affiliated participation and the forces that influence it, even
though the FOSS innovation model is increasingly becoming
a serious contender for the private investment model in many
sectors. Method: We present a qualitative inquiry into affiliated
participation in the Robot Operating System (ROS) and Linux
Kernel communities, using twenty-one in-depth interviews and
participatory observation data from twenty-nine community
events. Results: Our results show that affiliated participation in
these communities is constrained by several barriers: objections
of senior management, protection of the company’s image, pro-
tection of intellectual property, undefined processes and policies,
the high cost of participation, and unfamiliarity with the FOSS
system. Conclusions: These barriers should be addressed in any
organization considering using FOSS as a significant acquisition,
distribution, and development strategy.

Index Terms—FOSS, Open Source Software Adoption, Open
Source Software Participation, Affiliated Participation

I. INTRODUCTION

Free/Libre Open Source Software (FOSS) was born as an
informal and niché movement. By mid 90’s, it became a
recognized software development and distribution model. The
emergence of the Internet removed the physical barriers in
collaboration and accelerated FOSS growth. The traditional
collocated development process ceased to be the only option—
the collaboration of highly recognized experts facilitates faster
progress and innovation [1]. In 2008, Hauge [2] reported that
already half of the surveyed companies used open source
components. The FOSS process is considered a phenomenon
of the collective action innovation model. The increasing
interest in adopting FOSS could mean that FOSS becomes a
contender for the private investment innovation model. If this
assumption is valid then it is timely to investigate commercial
adoption of, and the participation in, the FOSS movement.

The value of the FOSS market is estimated by some to
exceed 1.9 billion [3]. We can safely assume that FOSS code
is used in many of our everyday technical gadgets, software
and tools. Companies and government institutions not only use
FOSS, but increasingly choose to open source the code of their
products. In 2016, Walmart open sourced a version of its cloud
management system. In 2011, ExxonMobil released an open
source “Standards DevKit” (a developer toolkit). They wanted

978-1-7281-2968-6/19/$31.00 ©2019 IEEE

to foster collaboration amongst oil and gas companies. In 2016,
several financial companies (Morgan, Wells Fargo, and the
London Stock Exchange) launched “Hyperledger”—an open
source project aiming to build blockchain-based capability
to track the exchange of financial assets, including stocks,
and bonds. The names of the companies involved mark an
interesting shift in the attitude towards open source. This trend
is observed even in government policies. Recently, in 2016,
the US government released a federal code source policy. It
institutes a pilot program requiring that government agencies
release 20% of new custom-developed code as open source.1

The commercial interest mixed with the collective action
work model and communitarian ideology raises gripping
research questions. How does a company adopt community
maintained source code? How is the engagement with the
community shaped? What are the forms of participation?
What makes the engagement successful and well functioning?
We set out to study how individuals working for commercial
companies participate in FOSS communities, the so called
affiliated participation phenomenon:

RQ1: What are the participation models used by companies
and institutions to engage with the community?
RQ2: What are the barriers for employees of companies to
actively contribute to FOSS as part of their main job?

We investigate these questions using qualitative research meth-
ods, collecting data during semi-structured interviews with 21
participants and through participatory observation in 29 events
and meetings. We work with two large FOSS communities:
ROS and The Linux Kernel. The Robot Operating System
(ROS) is a framework that is widely used in robotics. The Linux
kernel is an open-source Unix-like computer operating system
kernel. Both communities enjoy lively participation from many
commercial actors, both contributing and benefiting from the de-
velopment. We find that affiliated participation is constrained by
a few barriers: senior management objection, company image,
intellectual property protection concerns, undefined processes
and policies, the high cost of participation, and unfamiliarity
with the system. When these barriers are unmanaged and the
company has a business model and strategies (i.e. product,
branding) misaligned to the community processes and system
of values, a passive behavior toward contributing is observed.

Ideally, when a company starts to use open source code, it
should envision a community participation process and comple-

1https://sourcecode.cio.gov, seen September 2018

ment it with a set of participation policies. In addition, the com-
pany software acquisition strategy should reflect that decision.
Otherwise, the participation becomes passive, and the company
becomes a consumer of the community produced goods without
contributing back to the community. A passive participation
strains the community’s sustainability, it leads the community
into regression which hinders growth and ability to innovate.

The paper proceeds by discussing the prior research in
Sect. II. Section III presents the studied FOSS communities
and argues why they are a suitable choice for understanding
affiliated participation. In Sect. IV, we define our mixed
research method and discuss the rationale behind it. Section V
presents the key findings, and Sect. VII interprets the findings
as possible actions for companies interested in improving their
participation in FOSS. We conclude in Sect. IX.

II. RELATED WORK

FOSS adoption by commercial entities: Several works show
the extent of the FOSS adoption in industry, the demography of
the participating companies, and the participation behavior [4].
Already in 2006, companies contributed to 97 out of the 300
most active SourceForge projects [5]. Yet the market of FOSS is
difficult to size [2]. The existing attempts [6]–[10] focus on few
projects like the LAMP stack itself, Linux, or end-user applica-
tions (mail or office tools). Studies from Finland, UK, Australia,
and US report low FOSS adoption in the public sector—Linux,
used by more than 50% of respondents, is a notable excep-
tion [11], [12]. Together with the other elements of the LAMP
stack, Linux was also frequently used in other sectors 15 years
ago [9]. However, the adoption varies widely across countries,
sectors, and company sizes, from as low as 17.7% in Sweden
and as high as 43.7% in Germany [9]. A survey on Australia’s
top companies reports that 26% used a varied spectrum of FOSS
products in 2005 [7]. With the exception of Linux, Apache
HTTP Server, and perhaps a few others, most surveys report that
less than 30% respondents adopted FOSS. Less is known about
the extent of the internal adoption of FOSS in these companies
and the participation behavior in the community. Some of our
subjects claim that a pure passive adoption is a sub-optimal
form of participation, where not all benefits are realized.

FOSS-related business models: Two main business models
for FOSS are (i) the support seller, where a company sells
services associated with a FOSS project, and (ii) the loss-
leader, where a company uses FOSS to grow the user base of
an industrial software product by promoting it towards a FOSS
community, typically using a free license for a variant [13].
Fitzgerald [14] identified four adoption models: value-adding
service enabler (similar to support seller), market creation,
leveraging community development, and leveraging the FOSS
brand. How do companies actually implement these business
models varies, with significant heterogeneity, especially regard-
ing the degree of openness to FOSS [15]. This heterogeneity is
reflected degree of adoption, re-use, and integration [14], [16],
[17]. None of these works investigates and explains how the
companies actually engage with the community; what makes

their business models successful, and how the engagement with
the community fuels or mitigates the risks of adopting FOSS.

Affiliated participation and community relations: The
detailed qualitative aspects of commercial participation in FOSS
projects has attracted relatively little attention of researchers. In
a systematic literature review on commercial use of open source
software [18], Höst and Oručević-Alagić list only minimal
work regarding the ways companies get engaged in FOSS
communities: contributions happen either through individual
developers [13], [19], or by a substantial commitment.

Henkel [20] observes that for-profit organizations protect
their contributions to the community selectively. They perceive
active participation as overly open, unsuitable for a company.
Many affiliated participants contribute out of personal interest,
rather than as representatives of a company. Yet, half of the
supervisors are aware that their engineers share code. Further-
more, only 22.8% of respondents describe their firm’s policy
towards contributing actively as encouraging participation in
FOSS, and 16.8% think that it is restrictive. Even though, this
study sheds some light on affiliated participation, it does not
attempt to understand the participation behavior. Our research
objective is to analyze this issue in depth.

Lundell et al. [21], as well as Dahlander and Magnusson [22]
identified three types of relationship between companies and
FOSS communities: parasitic (in which the commercial interest
is indifferent to its effect on FOSS), symbiotic (mutually
beneficial relationships, in which both the firm and the
community gain advantage), and commensalistic (relationships
between the two entities where one party, the firm, benefits from
the other without affecting negatively the FOSS community).
Lundell et al. [21] suggest that most relationships are symbiotic.
Our study shows that the relationships differ a lot between
the two studied communities—not all communities have been
able to successfully develop a vibrant symbiotic environment.

Open innovation in software engineering: The FOSS
movement has enabled a new kind of innovation in software
intensive product development, the open innovation—a
distributed innovation process based on managed knowledge
flows across organizational boundaries. Under open innovation
firms use both external and internal ideas with internal
and external paths to market when working to advance
their technology [23]. Activities are inbound or outbound
and classified as pecuniary (related to competitive assets
and producing rewards) vs. non-pecuniary (related to
non-competitive assets without immediate rewards). Inbound
activities use input from outside the organization and outbound
activities exploit internally developed innovations [24].

According to Munir et al. [25] innovation occurs as an
exchange of information about new technology, and it is one
of the main drivers for collective inventions. Both cooperation
and competition exist in open innovation, and this results
in value creation, expanding benefits from the process, and
value appropriation, as benefits are seized from the process.
Value creation expands the market, and value appropriation
determines the firm‘s share of the market [26].

However, FOSS is more than exchanging ideas or

TABLE I
A CENSUS OF THE PARTICIPATING COMPANIES IN THE STUDY.

Company Company sector No. of employees Community Age[Y] Model Revenue or Budget

1 Industrial robotics start-up 12 (FY 2018) ROS 10 passive C0.3 million (FY 2017)
2 Industrial robotics 102 (FY 2018) ROS 16 passive $1.2 million (FY 2017)
3 OSRF Foundation 29 (FY 2018) ROS 10 active -
4 Academic institution 5,189 (FY 2017) ROS 177 active C21.3 million (FY 2017)
5 Industrial robotics vendor 36 (FY 2018) ROS 7 passive C1.6 million (FY 2017)
6 Industrial research institute 2,602 (FY 2018) ROS 10 latent $583 million (FY 2018)
7 Industrial research institute 25,000 (FY 2018) ROS 72 latent C2.3 billion (FY 2017)
8 Industrial research institute 2,761 (FY 2018) ROS 10 passive $322.3 million (FY 2017)

9 Industrial robotics vendor 50 (FY 2018) Linux Kernel 26 passive $2.9 million (FY 2018)
10 Linux distributor 12,600 (FY 2018) Linux Kernel 26 active $2.9 billion (FY 2017)
11 Telecommunication 4,796 (FY 2018) Linux Kernel 37 passive $23.5 million (FY 2017)
12 Telecommunication 4,796 (FY 2018) Linux Kernel 37 passive $1.87 billion (FY 2017)
13 Software vendor 21 (FY 2018) Linux Kernel 24 latent $1.25 billion (FY 2017)
14 Linux distributor 1,467 (FY 2018) Linux Kernel 27 active $365.5 million (FY 2017)

TABLE II
INTERVIEW SUBJECTS BY COMMUNITY, COMPANIES, JOB DESCRIPTION, AND WORK EXPERIENCE.

Participant # Company Subject role Country Exp. [Y] Nature of involvement with FOSS
ROS community members
Participant 1 Company 1 co-founder France 5 An organization using the core of ROS to control

tailored robotics systems combining various robot
components.

Participant 2 Company 2 director USA 12 A company using ROS components to build
military robotics systems

Participant 3 Company 3 core developer USA 10 The steward of the ROS community.
Participant 4 Company 4 technical lead Netherlands 12 A large university offering consulting and re-

search on industrial robotics.
Participant 5 Company 5 developer Germany 6 An organization specialized in 3D sensors that

enable perception and localization for robots.
Uses ROS components to develop products.

Participant 6 Company 6 developer Singapore 8 An organization leveraging ROS components to
build robotics systems for customers.

Participant 7 Company 6 developer Singapore 10
Participant 8 Company 7 developer Spain 10 An organization leveraging ROS components to

build robotics systems for customers.
Participant 9 Company 5 developer Germany 10
Participant 10 Company 8 technical lead South Korea 13 An organization leveraging ROS components to

develop robotics systems for customers.
The Linux Kernel community members
Participant 11 Company 10 kernel engineer Denmark 18 A Linux distributor that provides consulting and

support services
Participant 12 Company 10 kernel hacker Denmark 10
Participant 13 Company 10 principal engineer Brazil 23
Participant 14 Company 10 kernel engineer USA 10
Participant 15 Company 10 kernel engineer USA 12
Participant 16 Company 11 embedded Linux engineer Spain 5 A company packaging Linux with in-house

telecommunications & hardware products
Participant 17 Company 11 embedded Linux engineer USA 7
Participant 18 Company 12 kernel engineer USA 30 A developer of complex software for oil and gas

industry. Bundles Linux with its products.
Participant 19 Company 13 kernel engineer USA 10 A developer of software for the telecommunica-

tion industry.
Participant 20 Company 13 kernel engineer USA 8
Participant 21 Company 14 project manager USA 30 A Linux distributor that provides consulting and

support services.

information. It carries a strong personal aspect (collaboration
of individuals, as opposed to collaboration of companies) and
associates many risk and prejudices (for instance regarding
IP protection). Our study sheds light on the internal work in
this processes, and the obstacles contributors and companies

face in daily engagement; many of which cannot be explained
in terms of market interplay or innovation.

III. SUBJECT COMMUNITIES

We have chosen to work with two communities (ROS and
Linux Kernel) that enjoy a strong industrial participation
and a significant adoption in the respective industries. Both
communities are accustomed to commercial participation and
committed to building relations with commercial members.

The Robot Operating System (ROS) is a robotics middle-ware
supporting a wide a variety of platforms that it slowly becomes
a de facto standard in robotics. The project develops tools,
libraries, component drivers, conventions, standard communica-
tion and coordination features, and implementations of essential
robotics-specific functionality, for example localization or
planning. A ROS-based application is composed of several
ROS components complemented with application specific code.

ROS originated at the Stanford Artificial Intelligence
Laboratory (SAIL). In 2007, the code was transferred to a
start-up, Willow Garage, and released under an open source
license. Since 2013, the Open Source Robotics Foundation
(OSRF) stewards the work of the ROS community.

ROS Industrial is a branch of ROS, and a corresponding
association, with focus on industrial applications. Since 2012,
ROS Industrial has secured the collaboration of key players in
the industry (e.g. ABB, Yaskawa, Siemens, John Deere, BMW,
Bosch, etc.). For this reason, ROS is a relevant and interesting
community to study the interplay and the mix of proprietary,
closed source, open source, and free software development.

The Linux Kernel project develops an open-source Unix-like
operating system kernel that is used across extremely many
hardware platforms. Since its creation by Linus Torvalds in
1991, the project has successfully developed a sustainable
community. According to the Linux Foundation, which today
is the main body, stewarding the development of the kernel,
the project attracted nearly 12,000 developers from more than
1,200 companies, who contributed code since tracking began
in 2005. The adoption of the kernel by Android is a testimony
for its commercial viability, sustainability and investment
value in long term. This commercial success and the rich
social environment of the kernel community leans it well to
study of commercial involvement in the FOSS movement.

IV. METHODS

Participation of affiliated members in open source projects
is a multifaceted complex process. We approach it with
interpretative deductive reasoning characteristic of qualitative
methods, collecting data using in-depth interviews and
participatory observations.

A. Interviews

Semi-structured interviews provide us with a reasoned
interpretation of the participation process by the subjects.

Subject selection: We interviewed 21 members of the
ROS and Linux communities. ROS subjects were recruited
at community events in 2017 and 2018 (ROSCon, ROS-
Industrial Conference, Danish ROS MeetUp). Linux subjects
were approached via LinkedIn. We searched for contributors

on LinkedIn, using community name and terms ‘contribu-
tor’/’developer‘. We contacted random entries from the search
results. We asked the first four participants of the Linux
community to facilitate further contacts (snowball sampling).
We stopped gathering data when we reached saturation. Table I
is a census of the participating companies. Linux and ROS are
fundamentally important for all the involved companies. The
open source code is part of their main products and services.
Table II summarizes the demographics of the interviewed
population. With the exception of one female (Linux) all other
subjects were male. The interviewer, who also selected the
subjects, had no prior relationships to the participants.

Design: Prior to conducting the interviews, we compiled
an interview guide with main questions and a set of possible
probing questions. Table III summarizes this structure. We
commenced every interview with introduction questions,
before diving into the core questions of the interview. Probing
questions were evoked as needed to encourage the participant
to expand a particular anecdote or add more details to the
answer. We encouraged the interviewees to be unreserved and
fluidly accommodated the changes in the course of discussion.

Data collection: All interviews were conducted using
Google Hangouts. Face to face interviews were infeasible
due to the geographical distribution of subjects (Tbl. II). Each
interview lasted 40–60min and generated on average fourteen
pages of verbatim. The transcriptions were approved by the
subjects regarding narrative accuracy and interpretive validity.

B. Participatory Observations

The observations are part of a three years action research
project in which we actively take part in improving the
quality of ROS and quality assurance in ROS. The observing
researcher becomes explicitly part of the process being
examined [27]. Observation helps him to understand what
is going on in the daily development of a particular social
group. Sofaer argues [27] that it is impossible to get sufficient
exposure to a group without becoming a participant—it is
through interaction with the participants that a researcher can
come to sense the feelings, attitudes, and perceptions of the
subjects. Thus, in contrast to the interviews, which present

TABLE III
KEY PARTS OF THE INTERVIEW FRAMEWORK

in
tr

o Can you talk to me about your community?
What motivated you to participate in this community in the first place?

co
re

Can you discuss your company engagement in the community? How
do you engage with the community?
Can you discuss your company contributions and contribution process?
Are there any constraints from the company or from the community
to contribute?

pr
ob

in
g

Do you have a process in place for contributing to the community?
What is the management’s attitude toward contributing to FOSS?
What type of contributions you allowed to contribute?
Can you share with us an example of your company contributing to
the community? And how you went about it?

a reasoned perspective of the subjects, observations expose
direct attitudes, complementing the interview data.

In the field: We embedded ourselves in the ROS community
by attending community events and meetings—in total 29
sessions. We helped to establish and joined the monthly meet-
ings of the ROS quality assurance working group. The group
consist of 26 members, other than the exception of one student,
all members are affiliated to robotics companies, or research
institutions. We also established report with the core team. The
inclusive nature of the ROS community made us feel part of
it fairly quickly. We took the stance of moderate participants,
which allowed us to balance between being insiders and
outsiders. Table IV summarizes the participatory activities.

Data collection: We observed the community while
participating. The data were collected through three techniques:
(1) informal conversations, (2) direct observations and (3)
participation in community events and activities. Notes were
taken on-the-fly and fields notes were compiled afterwards;
in total 30 field notes, each 1.5 page long on average.

C. Data Analysis

We used thematic coding. We analyzed the collected empirical
material following the guidelines of Robson and McCartan [28]
and of Miles et al. [29]. We examined the data line-by-line
using the following questions as a lens to identify codes (open
coding): 1) What is this saying? What does it represent?
2) What is happening here? 3) What is at issue here? 4) What is
he trying to convey? 5) What process is being described? When
answering these questions, we assigned labels to the verbatim.
Table V summarizes the selected themes and how they were
inferred from the data. One author conducted the coding and
the other author confirmed the emerging theory and categories
from the collected data. Six debriefing sessions were organized
where the examination of the codes and the coding process has
taken place. The outcome of the data analysis was presented
to the participants for validation (i.e. member checking). We
shared the whole findings with all the participants and asked
for feedback. All participants, who responded to our emails,
confirmed our interpretation and supported the findings.

TABLE IV
PARTICIPATORY OBSERVATION VENUES

Year Community event Occurrences Size
2017 Danish ROS MeetUp 1 30 persons
2017 ROSCon 2017 conference 1 large event (≈ 500)
2017 ROS Industrial Conference 1 large event (≈ 200)
2018 ROS Industrial Developers Meet-

ing
7 10 persons

2018 ROS Quality Assurance Working
Group

12 23 persons

2018 Danish ROS MeetUp 1 15 persons
2018 ROSCon 2018 conference 1 large event (≈ 500)
2018 ROS Industrial Conference 1 large event (≈ 200)
2019 ROS Quality Assurance Working

Group
4 16 persons

V. FINDINGS

A. Models of Commercial Engagement in FOSS

In response to RQ1, we identify three participation models
among our subjects: passive, active, and latent.

Passive participation: We have observed several cases of
passive participation, where an organization leverages the
community products without contributing back. For instance,
Participant 1 admits that their passive attitude was conscious
and strategic: “Our strategy was from the beginning not to
contribute (...) Soon, [we] will start contributing to bug fixes...
There is a sentiment among our engineers to contribute back.”

Finding the right balance between contributing and reaping
benefits is difficult for FOSS adopters, who struggle to protect
themselves against competition while meeting the needs of
customers [25]. Clearly, some subjects opted for non-pecuniary
inbound engagement. (The inbound open innovation is the
exploitation of externally available knowledge [30], [31].)
Huizingh reports that companies engage in inbound open
innovation deliberately, mostly due to concerns with sharing
knowledge [31], [32].

It is known that the perspective of the active FOSS
community is different: passivity adds little value to the growth
and sustainability of the community; “free riders” [33], [34],
who do not contribute to the development of the community
but “reap the benefits,” are a concern. This probably concerns
some of the engineers, who are the part of the company directly
interacting with FOSS contributors in online discussions.

Observation 1. Some of the studied companies consciously
decided to benefit from FOSS in an inbound-only manner,
without contributing back. Interestingly, the engineers, who
interact directly with the community, contest this decision.

Active participation: The passive participation seems to be
raised more often as an issue in the ROS community than
in Linux. However, also in the ROS community some of the
organizations begin to realize that passive participation is not
fully productive: “We learned our lessons! Not up-streaming
is a losing strategy.”2 To fully exploit FOSS, organizations
need to find ways to benefit also from giving, for example to
share the cost of maintenance, to receive community-developed
fixes, compatible extensions, and new features. Companies
also realize that if the profitability depends on the success of
the community, the long-term health of the FOSS project is
also of importance for them. Some of the companies that we
interviewed in the Linux Kernel community, have successfully
built an active participation model that depends on the
community: all their developments are up-streamed and their
engineers are an integral (even core) part of the community.

Prior research confirms that it is possible and beneficial
to combine non-pecuniary and pecuniary involvement with
external knowledge, sharing cost and bearing cost of innova-
tion [35]. Open innovation provides opportunities to reduce
development costs, to shorten development time, and to enrich

2A quote from a ROS community event; up-streaming is contributing code un-
der an open source license, which lets the community to take over maintenance.

TABLE V
THEMES: EXAMPLES, DEFINITIONS, AND WHY THEY WERE CHOSEN

Theme The theme indicators in our data Example of verbatim

Objection of
senior
management

Reports of decisions made by upper management against con-
tributing, for example: Participant 10 links the company’s decision
not to contribute to the management’s limited understanding of
FOSS. Hence the lack of understanding and company policies
are the reasons behind the objection. We also see, that the senior
management owns the objection, not the subject.

“We usually don’t contribute that much to the community... It
is part of this company policies but it is hard to contribute
outside the company. One side I guess is a cultural thing so
let’s say that our bosses they don’t understand well this open
source and this community ideas, they don’t understand that
very well.” (Participant 10) “We had a lot of push backs from
management. We‘ve done a lot of convincing.” (Participant 7)

Company’s
image

Direct associations between the quality of deliverable originating
in the company and the company’s image, for example: Participant
7 linked the company image to the quality of contribution.

“I guess it is also an image thing. So every time you are
contributing to something that is public and you are using
your company name to contribute, they [management] want to
be sure that the quality or the contribution is really valuable.”
(Participant 7) “Our management is concerned about our image.
There is a lot of scrutiny over contributions.” (Participant 11)

Intellectual prop-
erty

IP is repeatedly discussed by subjects, often linked to manage-
ment‘s believe that contributing reduces the competitive advantage;
a side-effect of (mis)understanding the FOSS cost/benefit model.

“The main obstacle to upstreaming our code is management
concerns of loosing the competitive edge.” (Participant 17)

Undefined
processes
and policies

Several subjects made a direct connection to the lack of clear
policies and processes being problematic (an indecision).

“It is confusing to most people. Our policies and processes are
not clear! It create confusion when you can and when cannot
contribute.” (Participant 6)

High cost of
participation

The cost of participation appears in both interviews and observa-
tions. The subjects are aware of the additional burden introduced
by contributing to FOSS.

“The cost of upstreaming is high. You not only have to produce
good code, but good Linux Kernel code that is accepted by
the community” (Participant 18)

Unfamiliarity
with the
“system”

Direct and indirect suggestions of unfamiliarity with the “system”:
the community rules, conventions, and processes. Idiosyncratic
to the Linux community.

“It’s not that simple! a successful engagement requires fa-
miliarity with the system in place. Most companies are not.”
(Participant 18)

internal innovation processes [25]. Our subjects indicate that
understanding of this tends to grow in organizations over time.

Observation 2. Some subjects argue that over time it is
possible, and even beneficial, to develop an active FOSS
participation strategy that combines pecuniary and non-
pecuniary contributions, both inbound and outbound.

Latent participation: Some organizations exercise a
compromise latent participation model, where the release
of internally developed features is delayed until an economic
gain has been guaranteed: “We need to recover our internal
investment first before we can open source anything.” (a ROS
developer asked if his company is willing to open source newly
developed features). This selectively revealing strategy relies on
keeping some parts internal while releasing less profit-making
assets, exploiting dual licensing and restrictive licensing.

The latent model benefits both the company and the FOSS
community. Contributing parts of the development, allows to
embed developers in the community, and influence its direction.
Simultaneously, it allows the open source community to push
the organization toward sharing more [25], as we also observe
in our data. Some authors recommend selective revealing [20],
contributing parts considered as a commodity while keeping the
differentiating components closed. Van der Linden et al. [36]
emphasize that the timing of the contribution versus the release
of the feature is key—the functionality will become commodity
eventually due to a constant progress of technology. Also,
this strategy does create a synchronization issue between the
community version of the software and the in-house instance.

Observation 3. The latent participants neutralize risks of
disclosing the differentiating IP, while still benefiting from a
better embedding into community than the passive participants
(a non-pecuniary inbound innovation combined with deferred
non-pecuniary and pecuniary outbound collaboration).

B. Barriers to Commercially Affiliated Participation in FOSS

Since affiliated participation occurs under the umbrella of an
institution, it is performed under some constraints. While affili-
ated participants have to follow rules, structures, and guidelines
of their employer, independent participants are free of rules
and have no organizational authority to report to. In response
to RQ2, we identified six barriers to affiliated participation
described in the paragraphs below and summarized in Tbl. VI.
Each dot on the table indicates the presence of the behavior on
the corresponding community or participation model. The last
three columns represent where the behavior originates from.
Each dot in those columns is an indication that the institution,

TABLE VI
BARRIERS VS COMMUNITIES, PARTICIPATION MODELS, AND ORIGINS

Participation barrier R
O

S

L
in

ux

Pa
ss

iv
e

L
at

en
t

A
ct

iv
e

In
st

itu
tio

n

C
om

m
un

ity

In
di

vi
du

al

Senior management objection r r r r
Company’s image r r r
Intellectual property protection r r r r r
Undefined processes & policies r r r r r
High cost of participation r r r r r
Unfamiliarity with the system r r r r r

community or individual is the originator of the behavior. There
are slight differences between what barriers are experienced by
subjects in the two communities, and by subjects adhering to
various participation models. Also, the barriers seem to have
various sources. We return to these issues in discussions below.

Objection of senior management: Some subjects indicate that
senior management shows little understanding of open source
community environment, social structure and processes. They
are willing to consume the community goods, but resist con-
tributing actively. “Our bosses don’t understand well this open
source and this community idea” (Participant 8, asked why the
company does not contribute to the community). Unfamiliarity
with FOSS is just one of the reasons. This objection is based on
various grounds. “Our management does not support contribut-
ing back to the community. They [management] have several
reasons” (Participant 2). Active participants also admit that it
takes commitment of the company, not only of the engineers, to
succeed: “My company is fully committed to the community. We
upstream everything we produce internally” (Participant 13).

The passively participating companies, are typically used
to produce proprietary software and engage contractually with
other parties, where risks are managed, and relationships are
under control. The risks of contributing actively are unknown.
It is unclear how to mitigate them and how to calculate the
benefits. A passive participation is safer.

Synchronizing the product strategy and the participation
model helps to realize the full benefits of FOSS participa-
tion [25], [37], [38]. Little is known about how companies need
to design their business models to match different open innova-
tion strategies. For this reason, companies may mistakenly think
of open innovation as yet another “off the shelf” management
practice that can be implemented almost as an add-on to exist-
ing practices and organizational arrangements in the company.

Observation 4. Subjects in actively participating companies
enjoy support of the management. Subjects in passively
participating companies often indicate lack of management’s
support as a constraining factor; apparently caused by lack
of experience and little proven business practice.

Protection of the company’s image: The FOSS contributions
represent the company publicly, or at least to the respective
community. The company’s image is easily associated with
their quality. Thus, we experience concerns that negative
judgments of contributions may affect this image: “It is
also an image thing. So, every time you are contributing to
something that is public and you are using the company name
to contribute, they[management] want to be sure that the
quality or the contribution is really valuable... there are a lot
of thresholds to do that” (Participant 8).

Businesses realize that they need to create a desirable
and positive corporate image, not only through marketing
resources, but also by creating positive and avoid negative
situations. A passive engagement is a risk mitigation strategy
that can help to shelter the company image. However, several
active contributors have turned this situation around, by
exploiting FOSS in branding and in attracting high quality

employees. In particular, we see that once the FOSS project
brand is strong (e.g. Linux), companies are more likely to try
to exploit it. ROS users are much more reserved about this.

Observation 5. Some of subjects see the FOSS community as
a channel in establishing, maintaining or improving image of
their brand, while others do not know how to do that.

Protection of intellectual property (IP): We registered
concerns that FOSS participation implies disclosing competitive
IP. The idea of sharing source developed in-house is foreign;
anything produced by an employee should remain protected in
the company. Businesses are reluctant to expose the differentiat-
ing technologies and to risk loosing the competitive advantage.

“The main concern is leaking our proprietary code and any
architectural design that’s in the code. We use ROS but we
have our own architecture on how to use ROS” (Participant 2).

“My boss object up-streaming our work. He thinks that will
reveal how we do things to our competitors” (Participant 17).

This protective attitude (regardless if justified!) is at
odds with core FOSS values: sharing and openness. In the
communitarian philosophy of FOSS, withholding contributions
to protect IP slows down the collective innovation process
and favors a single entity. Openness is a manifestation of two
cultural traits of open source communities: transparency and
truth [39]. Pavlicek [39] believes that truth is a fundamental
community asset [39]. He explains truth and transparency
empowers the community to produce free software. This
conflict of positions (community values and the protection of IP)
is a ground reason for passive engagement with the community.

Henkel [20] claims that management is overly concerned
about openness, concluding that a more positive attitude
increases benefits of open innovation. Yet, numerous other
authors advise companies to contribute with commodity
features and keep differentiating factors in-house [20], [37],
[40]. Bosch [41] and Van Linden et al. [36] explain that
the release of commodity functionality has its advantages;
companies can benefit from the reduction of the cost of
maintenance and focus on the differential capabilities.

Observation 6. Passive and latent participants object to active
participation for IP loss concerns. Active participants have
developed a business model that is less IP-sensitive.

Undefined participation process and policies: Some of the
studied organizations suffer from a lack of formal participation
policies and governance. They think it is not important, or
even not necessary, to adjust their internal processes to the
community engagement. Participant 7, was asked if there is a
process in place to manage contributions, replied: “I’m talking
to my management to set up a process where if we develop
a driver for example we can contribute back to the community.
So, I’m working on the process.”

The lack of polices and processes confuses the participating
engineers. Some of them have roots in FOSS. They have con-
tributed since they were students. Some were even hired based
on the FOSS record. They still display strong hacker mentality,
but are uncertain how being paid affects the engagement

with the community. Munir et al. [24] postulate that software
organizations that want to benefit from open innovation via
FOSS engagement need to adapt their internal processes.

Observation 7. Subjects, who have successfully implemented
an active participation model, have aligned their internal
policies to reflect the community engagement. Those with
passive and latent participation have not done so.

High cost of participation: Subjects admit that active
engagement is expensive: “The cost of getting something
through this process [upstreaming] is high.” “[Passive
participation] is the easy way to engage with the community.
It takes a lot of effort to produce code that is up-streamable”
(participants 17 and 11 resp.). Both financial and psychological
costs of community engagement are high. This is most visible
in the Linux case, which is known for a very high barrier of
entry. The typical costs include preparing the code contributions
at the expected quality, meeting coding styles and conventions,
accepting rejections, and dealing with multiple review cycles,
preparing documentation, and tests. Often lengthy negotiations
with other community members are required.

The economic formula for the participation is not well
understood. If the community engagement is not seen as a
long term investment but rather as seeking “freebies,” we are
probably dealing with a rather short term uninformed vision.
Munir et al. [24] explains that FOSS participation can be
costly. Open innovation is costly and it is not always easy to
start it. It should be determined by the strategic, organizational,
and managerial contexts of the firm, and the benefits and costs
must be evaluated. In such case it would be able to not only
generate cost, but also the appropriate profit [42].

Importantly, unlike the other barriers discussed above, the
cost of participation is controlled also by the FOSS community.
While the large part of this cost may be inherent to the process,
the community has some influence on how high the barrier of
entry is, and how expensive it is to adjust to the collaboration.

Observation 8. The cost of participation may be high, so
companies need to integrate efficiently, weighing the cost
against the prospective benefits. FOSS communities should
be careful not to incur undue cost, especially on newcomers.

Unfamiliarity with the “system”: We find references to the
FOSS “system” in our data, and statements that the “system”
is a further constraint to commercial participation. The
“system” refers to the social order, rituals, norms and practices
of the community. Participant 18 states: “[to] understand the
process how this works. That‘s a big thing.” Participant 16
concurs: “Understanding the system is something that‘s take
time and management doesn’t see the value on that.”

The high cost of participation and the unfamiliarity with
the system may be addressed by hiring engineers with prior
successful engagement in the community. “When we hire new
people, we always look for a cultural fit. We look for past
experience in the community. Most people stay for long time.
But, there are people who do not fit culturally.” (Participant
11) The contributors should share the community values and

passion for the project. “In order to be successful, you need to
have passion for the project. Whoever working for the project
needs to have that passion” (Participant 12).

Observation 9. Engineers inexperienced with the community
culture and processes struggle to fit in and are inefficient.
Hiring community members counteracts this and tightens the
bond between the company and the FOSS project.

VI. TRUSTWORTHINESS

An important aspect of any qualitative endeavor is
establishing trustworthiness [43]. Qualitative researchers
establish that the findings of the study are credible, transferable,
dependable, and confirmable. Trustworthiness is assured by
the establishment of these four traits [43]. We will briefly
discuss how we established these traits (see tbl. VII).

Credibility: The techniques we employed to address
credibility are, namely, prolonged engagement, persistent
observation, and methodological triangulation [44]. Peer
debriefing has been used during the research process, one
author conducted the analysis and the second author validated
the emerging theory against the raw data. Six debriefing
sessions were organized. We also assured credibility by
member checking with the participants to test the findings
and interpretations. We sent the interviews transcripts and
description of the findings to the participants for validation.

Transferability: Transferability is the degree to which the
results can be transferred to other contexts, sites or settings. [43].
In qualitative research, this quality of transferability refers to
case-to-case transfer [45]. We provided thick descriptions of the
research methods so that others can judge transferability [43].

Dependability: To ensure dependability we provided
information that is s logical, traceable, and clearly documented
[45]. When the research process is described completely,
readers are better able to judge the dependability of the
research [43]. If the process of the research can be audited,
then it can ensure dependability [43].

Confirmability: Confirmability is the characteristic of the
match between the researcher’s interpretations and findings
and the data, which requires the researcher to demonstrate how
the conclusions and interpretations were made [45]. According
to Guba and Lincoln [43], confirmability is established when

TABLE VII
STRATEGIES AND TECHNIQUES EMPLOYED IN THE STUDY TO MEET

TRUSTWORTHINESS REQUIREMENTS

Strategies used to establish trustworthiness C
re

di
bi

lit
y

Tr
an

sf
er

ab
ili

ty

D
ep

en
da

bi
lit

y

C
on

fir
m

ab
ili

ty

Prolonged engagement r
Peer debriefs r r
Observations r
Triangulation r r
Participants checks r
Comprehensive and transparent research method r r
Audit trail r r r

credibility, transferability, and dependability are all achieved. In
addition, we compiled an audit trail throughout the study. An au-
dit trail is a documentation that provides readers with evidence
of the decisions and choices we made, including theoretical
and methodological issues in the study and a clear rationale
for all decisions. The audit is useful for other researchers to
follow the decision trail and reach the same conclusions.

VII. DISCUSSION: HOW TO OVERCOME THE BARRIERS?

We now enter a more speculative mode of reasoning, and
consider what actions and solutions emerge from our data that
help companies and communities to overcome the barriers.

Table VI shows how the participation barriers map to models
in our data. Clearly, subjects following different models were
focused on different barriers. The active participants have
likely been able to overcome the first four barriers that relate
to company’s management. A promising picture emerges that
organizations might be able to evolve from passive participants,
through latent contributors, to full active community members,
who (as per reports of our subjects) find the participation
beneficial. Barriers originate not only in the institutions, but
also in the communities and individuals (Tbl VI). We stipulate
that barriers need to be addressed gradually and on all sides.

In Table VIII we contrast the perspective of active and
passive participants on each of the barriers. We provide
examples of statements from both sides in the two middle
columns and add a commentary in the rightmost column. In the
following text, we summarize what actions suggest themselves.

Objection of senior management: We find that active
participants have overcome senior management objections. It
appears that engineers seeking active participation in FOSS
projects in their work choose employers where management is
committed. Software teams seeking active participation should
prioritize good communication with senior management, and
work towards commitment.

Company’s image: While active participants leverage the
community success to support their brands, passive and latent
participants see the FOSS community as a liability to their
image. This in itself means that the FOSS projects have an
image value to be exploited—a certain quality and maturity
stamp. At the same time, it is clear, that businesses interested
in beneficial symbiosis with FOSS projects may want to
evaluate the reputation of said projects first. A low reputation
project incurs an image cost, while a high reputation project
can be used in branding more easily.

Protection of intellectual property: Licensing fees are far
from the only way to profit in the software industry. Hardware
sales, support, consulting are known reliable streams of
income. Furthermore, in fast moving software sectors, speed
of innovation may be more important than any temporary
technological advantage. Thus, some of the active participants
foresee releasing their features’ IP as a strategic trade-off.

Based on this study, we can recommend to identify a suitable
business model, consistent with the FOSS participation model.
If indeed stringent IP protection is key to profitability, we
cannot recommend active participation. However intermediate

forms, where features are released with delay, or non-critical
features are contributed, can already enable benefits of FOSS
participation, such as lower development cost, higher quality,
and using the community for growing the market share.

Undefined participation process and policies: Participation
processes and policies should be documented and communi-
cated to the engineers, regardless of the participation model.
Lack of defined participation processes and policies confuses
the engineers, who need transparency regarding what can and
what should be done when representing a company in the FOSS
community. Moreover, lack of policy increases unnecessary
risks, like premature release in the latent or passive participation
models. In the active model, engineers need clear feedback
that up-streaming and release engineering are indeed seen by
the company as legitimate use of time—otherwise the benefits
might not be fully unlocked. Finally, clear policies help the
participating engineers to distinguish goals of the open source
community and of the company—these do not have to be the
same, and they do influence engineering decisions. This aware-
ness should be used to affect the direction of the community.

High cost of participation: The cost of participation is
primarily generated by the FOSS community itself, thus
we recommend that communities consider whether some
costs are not undue. For instance emotional costs (e.g.
when communicating a patch rejection) can be reduced
by using constructive language and avoiding hostilities.
The ROS community is discussing associating mentors to
newcomers, who can help them in the integration process.
Some communities offer training materials, or training courses.
Stewarding foundations accept donations to pay experienced
members for some work, instead of using the in-house
engineers who may incur a higher overhead if inexperienced.

Unfamiliarity with the “system”: Similar measures should
be taken as for the cost of participation. Companies in
both studied communities, and at all participation models,
recommend hiring experienced FOSS engineers, preferably
directly from the community. This entirely elevates this
barrier, and it has a side effect that it tends to bring technical
excellence to the company. In addition experienced FOSS
contributors could mentor inexperienced employees, who have
little experience in dealing with FOSS communities.

The participation of a commercial and non-commercial
institutions in a FOSS community occurs through an employee
or a group of employees. Sometimes, the affiliation remains
anonymous: “You sign up with your name not with the name
of the company. People know my name not the company.”
(Participant 12) However, in some instances, the member is
known in the community to represent a company. Participation
mechanisms in the FOSS communities have been originally
created for individuals not for organizations. The increase in
commercial participation calls for a change to the community
participation model. For example, the sign-up form for the
ROS community online forum is designed to capture individual
demographic data only, but neglects the fact that the member
signing up may be working for a company.

TABLE VIII
CONTRAST ANALYSIS: PARTICIPATION BARRIERS MANIFESTATION AND HOW THEY ARE RESOLVED IN SUBJECT ORGANIZATIONS.

Barrier Manifestation (Passive Perspective) Resolution (Active Perspective) Researcher’s Commentary

Objection
of senior
management

“Our bosses they don’t understand
well this open source and this com-
munity ideas.” (Participant 10)

“Our management is committed to the Linux community
[...] very supportive of the community... We communi-
cate all the time with management” (Participant 11)

Poor understanding (passive) may be due
to a communication failure. Managers in
the active organization established a good
communication channel with engineers.

Company‘s
Image

“Every time we want to contribute,
our management object and each time
the excuse is the quality many not be
good enough for our company’s image.”
(Participant 12)

“We believe contributing is good for our brand. It’s a
strong and successful project” (Participant 15)

The employer of Participant 6 (passive)
uses the risk optics to assess the cost,
while the employer of Participant 15 (ac-
tive) consciously exploits the reputation
of Linux to strengthen own brand.

Protection
of IP

“The main concern is to reveal our
architecture to our competitors.”
(Participant 16)

“To strike an effective balance between open source
and proprietary code, the key is to think strategically...
We engage with a strong community to help us with the
process, identify bugs, and maintain a steady pace of
new feature releases. Not developing these capabilities
exclusively in-house frees up our engineers to focus on
projects that really drive the business.” (Participant 15)

The passive participant clearly values
the protection of IP more than the cost
savings and the open innovation poten-
tial. The active participant has made a
strategic decision to adopt FOSS both
inbound and outbound, lowering cost and
accelerating innovation.

Undefined
processes
& policies

“We do not have an internal process
or policies in place to tell us how and
when to contribute.” (Participant 10)

“Our policy is to upstream everything.”
(Participant 11)

The passive participant suffers from lack
of clear policy. The employer of Partici-
pant 11 (active) has a clear policy, that
leaves no doubt to the engineers.

High cost of
participation

“It‘s not easy to contribute and when
we do we get told it‘s not relevant or its
quality not good enough. This process
is very costly for us” (Participant 18)

“We are an integral part of the community.”
(Participant 11)

Participant 11 has integrated into the
community, learned its processes and ac-
cepted costs, including the initial hurdles.
See also the comment under IP above.

Unfamiliarity
with the
“system”

“When we hire cultural fit is very
important... It takes time to get familiar
with the system” (Participant 14)

“We look for past community engagement and partici-
pation. It is important to us the community exposure.”
(ROS QA working group member)

A cultural fit and familiarity with the
system is important to both inbound and
outbound FOSS adoption.

VIII. LIMITATIONS

We briefly discuss the limitations of this study. First, the
findings may not translate to other communities. Although,
ROS and Linux exemplify commercial participation in FOSS,
the behavior described in this paper may take different form
in other communities. Still note that we observed a saturation
of material with last interviews and events. Second, our
participatory data only covers ROS. This make the data skewed
toward ROS. But was valuable for triangulation. Third, robotics
and operating systems are two distinctly different domains
with two recognizably different populations of participants,
consumers and vendors. These products target different markets
with distinct dynamics. Interview and observation data reveal
participants perspective, but do not capture the market dynamics
and its influence on participation. In addition, with the exception
of three participants (co-founder, director and project manager),
most of our participants are developers. Finally, ROS and Linux
are different in their development journey. While the Linux
community is 28 years old, the ROS community is hardly 12.

IX. CONCLUSION

We have identified six participation barriers and discussed
how they affect the three participation models, discussing them
against known research. According to the body of knowledge on
open innovation, the four interlocking elements of the business
model are customer value proposition, profit formula, key
resources, and key processes [46]. Our data confirms that
these elements need to be understood and arranged in order
for the company to reach the maximum level of beneficial

involvement in FOSS. The high cost of participation prevents
success if the company’s value proposition is not sufficiently
linked to an open source project. IP protection rules out open
active participation for companies whose market advantage and
profit is based on technology confidence. Management needs
to devote resources and regulate participation to fully exploit
the collaboration with FOSS—not just download free source
code, but also to share the maintenance burden, receive bug
fixes and new features to the up-streamed code. Depending
on whether these conditions can be met, companies settle on
passive, active, and latent participation models.

While there is lots of speculation regarding FOSS-based
business models in open source advocacy writing, relatively
little solid and documented patterns can be found in research
works. This study has identified that active and latent
participants are a good source of subjects to systematically
collect and document such successful business models, to the
benefit of software companies considering FOSS involvement.

The robotics market has been extremely lively the last ten
years, when the technology begun to meet the wider commercial
applicability threshold. Most companies are small start-ups,
complemented by few established machine and automation
technology giants. Given the expected growth of commercial
robotics, it is very interesting to investigate the business models
for robotics companies adopting FOSS.

Acknowledgments: Work supported by the EU’s H2020
research and innovation programme, grant No 732287 ROSIN.
We thank the interviewees for making this research possible.

REFERENCES

[1] G. Anthes, “Open source software no longer optional,” Communications
of the ACM, vol. 59, no. 8, 2016.

[2] Ø. Hauge, C.-F. Sørensen, and R. Conradi, “Adoption of open source in
the software industry,” in IFIP International Conference on Open Source
Systems. Springer, 2008.

[3] M. Michlmayr, F. Hunt, and D. Probert, “Quality practices and problems
in free software projects,” in Open Source Systems, 2005.

[4] J. West and S. O’Mahony, “Contrasting community building in sponsored
and community founded open source projects,” in HICSS’05., 2005.

[5] A. Bonaccorsi and C. Rossi, “Why open source software can succeed,”
Research policy, vol. 32, no. 7, 2003.

[6] R. A. Ghosh, “Economic impact of open source software on innova-
tion and the competitiveness of the Information and Communication
Technologies (ICT) sector in the EU,” 2007.

[7] S. Goode, “Something for nothing: management rejection of open source
software in Australia’s top firms,” Information & Management, vol. 42,
no. 5, 2005.

[8] U. Nikula and S. Jantunen, “Quantifying the interest in open source
system: case south-east Finland,” in 1st International Conference on
Open Source Systems (Scotto, M. and Succi, G. Eds.), 2005.

[9] R. A. Ghosh, R. Glott, B. Krieger, and G. Robles, “Free/libre and open
source software: Survey and study,” 2002.

[10] D. A. Wheeler, “Why open source software/free software (OSS/FS,
FLOSS, or FOSS)? Look at the numbers,” 2007.

[11] T. Waring and P. Maddocks, “Open Source Software implementation in
the UK public sector: Evidence from the field and implications for the
future,” Intl. Journal of Information Management, vol. 25, no. 5, 2005.

[12] M. Välimäki, V. Oksanen, and J. Laine, “An empirical look at the
problems of open source adoption in Finnish municipalities,” in 7th
International Conference on Electronic Commerce. ACM, 2005.

[13] F. Hecker, “Setting up shop: The business of open-source software,”
IEEE software, vol. 16, no. 1, 1999.

[14] B. Fitzgerald and T. Kenny, “Developing an information systems
infrastructure with open source software,” IEEE Software, vol. 21, no. 1,
2004.

[15] A. Bonaccorsi, D. Lorenzi, M. Merito, and C. Rossi, “Business Firms’
Engagement in Community Projects. Empirical Evidence and Further
Developments of the Research,” in Emerging Trends in FLOSS Research
and Development, 2007. FLOSS’07. IEEE, 2007.

[16] Z. Obrenovic and D. Gasevic, “Open source software: All you do is put
it together,” IEEE software, vol. 24, no. 5, 2007.

[17] Ø. Hauge, “Adoption of Open Source Software in Software-Intensive
Industry,” Ph.D. dissertation, PhD thesis, 2010.

[18] M. Höst and A. Oručević-Alagić, “A systematic review of research on
open source software in commercial software product development,”
Information and Software Technology, vol. 53, no. 6, 2011.

[19] K. R. Lakhani, R. G. Wolf, and Others, “Why hackers do what they
do: Understanding motivation and effort in free/open source software
projects,” Perspectives on free and open source software, vol. 1, 2005.

[20] J. Henkel, “Selective revealing in open innovation processes: The case
of embedded linux,” Research policy, vol. 35, no. 7, 2006.

[21] B. Lundell, B. Lings, and E. Lindqvist, “Perceptions and uptake of open
source in swedish organisations,” in IFIP International Conference on
Open Source Systems. Springer, 2006.

[22] L. Dahlander and M. G. Magnusson, “Relationships between open source
software companies and communities: Observations from Nordic firms,”
Research policy, vol. 34, no. 4, 2005.

[23] H. Chesbrough et al., “Open innovation,” 2003.
[24] H. Munir, J. Linåker, K. Wnuk, P. Runeson, and B. Regnell, “Open

innovation using open source tools: a case study at sony mobile,”
Empirical Software Engineering, vol. 23, no. 1, 2018.

[25] H. Munir, K. Wnuk, and P. Runeson, “Open innovation in software engi-
neering: a systematic mapping study,” Empirical Software Engineering,
vol. 21, no. 2, 2016.

[26] E. van Burg, C. Giannopapa, and I. M. Reymen, “Open innovation in the
european space sector: Existing practices, constraints and opportunities,”
Acta Astronautica, vol. 141, 2017.

[27] S. Sofaer, “Qualitative methods: what are they and why use them?”
Health services research, vol. 34, no. 5 Pt 2, 1999.

[28] C. Robson and K. McCartan, Real world research. John Wiley & Sons,
2016.

[29] M. B. Miles, A. M. Huberman, and J. Saldana, Qualitative data analysis.
Sage, 2013.

[30] U. Lichtenthaler and E. Lichtenthaler, “A capability-based framework
for open innovation: Complementing absorptive capacity,” Journal of
management studies, vol. 46, no. 8, 2009.

[31] E. K. Huizingh, “Open innovation: State of the art and future perspectives,”
Technovation, vol. 31, no. 1, 2011.

[32] D. Kline, “Sharing the corporate crown jewels,” MIT Sloan management
review, vol. 44, no. 3, 2003.

[33] W. Scacchi, “Computer game mods, modders, modding, and the mod
scene,” First Monday, vol. 15, no. 5, 2010.

[34] M. L. Markus, “The governance of free/open source software projects:
monolithic, multidimensional, or configurational?” Journal of Manage-
ment & Governance, vol. 11, no. 2, 2007.

[35] S. W. van Rooij, “Open Source software in US higher education: Reality
or illusion?” Education and Information Technologies, vol. 12, no. 4,
2007.

[36] F. Van der Linden, B. Lundell, and P. Marttiin, “Commodification of
industrial software: A case for open source,” IEEE software, vol. 26,
no. 4, 2009.

[37] K. Wnuk, D. Pfahl, D. Callele, and E.-A. Karlsson, “How can open
source software development help requirements management gain the
potential of open innovation: an exploratory study,” in ESEM’12, 2012.

[38] W. Stam, “When does community participation enhance the performance
of open source software companies?” Research Policy, vol. 38, no. 8,
2009.

[39] R. Pavlicek and R. Foreword By-Miller, Embracing insanity: Open source
software development. Sams, 2000.

[40] J. West and S. Gallagher, “Challenges of open innovation: the paradox
of firm investment in open-source software,” R&d Management, vol. 36,
no. 3, 2006.

[41] J. Bosch, “Achieving simplicity with the three-layer product model,”
Computer, vol. 46, no. 11, 2013.

[42] F. Michelino, M. Caputo, A. Cammarano, and E. Lamberti, “Inbound
and outbound open innovation: organization and performances,” Journal
of Technology Management & Innovation, vol. 9, no. 3, 2014.

[43] E. G. Guba and Y. S. Lincoln, “Naturalistic inquiry (Vol. 75),” Beverly
Hills, CA: Sage, 1985.

[44] N. K. Denzin, Sociological methods: A sourcebook. Routledge, 2017.
[45] S. J. Tracy, “Qualitative quality: Eight “big-tent” criteria for excellent

qualitative research,” Qualitative inquiry, vol. 16, no. 10, pp. 837–851,
2010.

[46] T. Saebi and N. J. Foss, “Business models for open innovation:
Matching heterogeneous open innovation strategies with business model
dimensions,” European Management Journal, vol. 33, no. 3, 2015.

D
Appendix D: Paper D

164

Noname manuscript No.
(will be inserted by the editor)

A Tailored Participatory Action Research for FOSS Communities

Adam Alami · Peter Axel Nielsen · Andrzej Wąsowski

Received: date / Accepted: date

Abstract Participatory Action Research (PAR) is an established method to implement change in
organizations. However, it cannot be applied in the open source (FOSS) communities, without adaptation
to their particularities, especially the specific control mechanisms developed in FOSS. FOSS communities
are self-managed, and rely on community consensus to reach decisions. This study aims to propose a
PAR framework specifically tailored to FOSS communities. We successfully applied the framework to
implement a set of quality assurance interventions in the ROS community. The framework we proposed is
composed of three components, interventions design, democratization and execution. We believe that this
process will be amenable to other FOSS communities. We have learned that changing a particular aspect
of a FOSS community is arduous. To achieve success the change must rally the community around it for
support and attract motivated volunteers to implement the interventions.

Keywords Participatory Action Research · FOSS · Change implementation

1 Introduction

Many FOSS (Free and Open Source Software) projects have matured over the years to produce software
of considerable size, complexity and some have seen generational changes. The need to rediscover, re-
factor, and re-engineer existing code bases will thus increase over time [8], as will the need to deal with
technological changes, processes, infrastructure, dependencies, and deployment platforms. We can safely
assume that handling growth and maturity will require use of the best practices of software engineering
methods and tools. An increase in popularity of a FOSS project implies that the community has to
mature and improve its processes and practices. However, our understanding of how to change a FOSS
community is limited.

The objective of this study is to improve the Robot Operating System (ROS) community quality
assurance (QA) practices. Through the mechanisms of a participatory action research process, we intend
to introduce, and when necessary, reinvigorate best QA practices in the ROS community. We want to align
the ROS community QA with other FOSS communities’ practices and with modern software engineering
best practices. This will simultaneously yield a change in the affected community and new method to
work with FOSS communities.

How does a FOSS community carry out change implementation? Fitzgerald [12] asserts that as
communities increase maturity and size, they will adopt more formal decision making processes, such

A. Alami
Rued Langgaards Vej 7
DK-2300 Copenhagen S Denmark
E-mail: adaa@itu.dk

P. A. Nielsen
Aalborg University Selma Lagerlöfs Vej 300
9220 Aalborg Denmark
E-mail: pan@cs.aau.dk

A. Wąsowski
Rued Langgaards Vej 7
DK-2300 Copenhagen S Denmark
E-mail: wasowski@itu.dk

2 Adam Alami et al.

as voting in Apache, and establish meta-processes for creating such formal structures, and the steering
board in Gnome. However, not all FOSS communities have a governance mechanism in place and even if
they do, it is not understood what role these governance structures play in introducing change to the
community. Our subject of study, the ROS community (see Section 5) is self-managed. Recently, the
community has experienced a significant growth in its commercial participation including Amazon, Intel,
Bosch, and Toyota. Many other companies are associated in the ROS-Industrial Consortium 1. These
participants have become outspoken and brought their own requirements for change. We were approached
by ROS-Industrial to execute a quality assurance enhancement project in the ROS community. This
paper shares the experience of two years of a four year long endeavor.

To implement this change, we needed a process and a methodological framework. We opted for the
out of the box version of participatory action research (PAR). It is an appropriate choice given that
action research has proven to be a reliable tool to institute change in organizations. However, we quickly
realized that the PAR framework is not in tune with the ROS community values and norms and had
to be adapted. The challenge is how to adapt PAR for the ROS community? We want to address the
following research question:

RQ: How can participatory action research methods be adapted to carry out change in a FOSS community?

We designed PAR4FOSS a participatory action research process that caters for FOSS cultural traits.
We propose to use decision-making by consensus and democratization of interventions. We designed and
implemented a change process that caters for and embraces the ROS community uniqueness.

– We choose to democratize and gather a consensus around our actions via consultation and dissemination
in the community.

– The change process mandates transparency. Transparency is reflected in the dissemination of decisions
and solicitation of feedback from the community.

– The change process is self-managed. Although the process necessitates a facilitator, the structure is
flat and relationships are collaborative.

The audience of this work is action researchers, community managers and maintainers who plan to
introduce change to a FOSS community or other similar self-managed teams and organizations. We hope
that they can leverage the method to introduce change to other communities and subsequently enhance
and evolve the method.

We start the paper by providing a background on participatory action research and FOSS communities
(Section 2). In Section 3 we introduce PAR4FOSS, a tailored participatory action research for FOSS
communities. In Section 4, we highlight the research design. Section 5 is dedicated to the ROS community
and a discussion of its cultural fabric. In Section 6, we describe the process that led to the design of our
method. In Section 7, we evaluate the proposed method and we discuss its strengths and weaknesses. We
discuss the lessons learnt in Section 8. We conclude in section 9.

2 Background

We now introduce the two main concepts driving this paper, which are Free or Open Source Software
(FOSS) and Participatory action research (PAR).

2.1 Free and Open Source Software (FOSS)

Open source project refers to any software made public and open for others to modify. Bretthauer defines
Open Source as “software which is licensed to guarantee free access to the programming behind the
pre-compiled binary, otherwise called the source code” [6]. Open Source and source disclosure has always
co-existed as a software licensing agreement, until mid-80s. The Internet removed the physical barriers
and facilitated virtual collaboration accelerating software distribution. The traditional collocated software
development process is no longer the only option. In mid-90s open source has become a recognizable
software development and distribution model [2, 7]. The modern open source software movement began,
in 1976, with Richard Stallman. He created EMACS and became a free software advocate.

1 https://rosindustrial.org/ric/current-members/

A Tailored Participatory Action Research for FOSS Communities 3

In the upcoming subsections, we give an overview of what FOSS is about, and what is the social
structure of FOSS communities, who are the contributors of FOSS, and what is the predominant culture
of FOSS.

FOSS Structure

The structure of each FOSS community is unique, reflecting its principles, values, beliefs, and norms. The
roles of members in a FOSS community have been described as an onion, with horizonal layers, rather
than a vertical hierarchy. At the center are the core of developers, with the next layers consisting of the
informal community managers, project managers, developers, and passive users making up the outer
layer. Individuals generally move inward through merit, nominated by another member of the community,
based on code contributions, facilitating others in their work, mediating conflicts, and solving problems
in the community [18].

FOSS Demographics and Motivation

The scientific community investigated who FOSS participants are. Well-elaborated surveys report that
the population is predominately young males, with educational or occupational background in computing,
software engineering or programming. Although, the sampling of these surveys varied in sizes, the depiction
of the population demographic is consistent. Around 98% of FOSS contributors are male, aged between
20 and 30 years of age [9, 14,15].

The motivation of members to join a FOSS community is the desire for control of their work. This “free
choice” of assignments is important to members of a FOSS community. The members identify with the
work they produce, and it is a source of pride for them. In addition, the members of an FOSS community
have free choice in work assignments. Being able to pursue one’s own passions and interests is a great
advantage for members of the community [11].

The underlying motivation, to participate in FOSS are either intrinsic or extrinsic [5, 16, 23]. Intrinsic
motivation refers to behavior that is driven by internal rewards [29]. The participation is based on internal
satisfaction and self-enjoyment [23]. Ryan and Deci [29] explain that the motivation to engage in an
intrinsic behavior arises from within the individual because it is naturally satisfying. This contrasts with
extrinsic motivation, which involves engaging in a behavior in order to earn external rewards [23,30]. This
type of motivation arises from outside the individual. It can involve tangible or psychological rewards.
Psychological forms of extrinsic motivation can include praise and public acclaim [30].

FOSS Meritocracy

FOSS communities are meritocratic where people are valued by the quality and quantity of their
contributions [13, 21]. The community members’ self-image includes the traits of desiring “geek fame”,
a desire to build trust and reputation within the community, generosity of time, expertise, and source
codes, and the desire to create reliable and quality software [31].

In a social arrangement where meritocratic filtering is a norm, people with higher merit are placed
into positions of highest authority [35]. Sociologists argue that meritocratic systems encourage the most
talented into the most functionally important positions [35]. Open source communities are almost entirely
meritocratic. Reputation in an open source community is gained by valuable and innovative contributions
to the community. A meritocracy is not merely a desire to be recognized with a higher community status.
It is a complex mechanism of control and structure. Scacchi [33] defined this social community conduct
as “interlinked layered meritocracies operating as a dynamically organized but loosely coupled virtual
enterprise.”

Our societies and communities rely on social orders, or the links found among institutions, traditions,
values and morals that work cooperatively to keep societies moving forward instead of falling apart [35].
Scacchi’s [33] definition resembles a social order. He explains that “layered meritocracy” is a system to
control, structure and oversee the development activities. It implies certain form of authority legitimized by
the gained reputation, experience and accomplishment in the community [33,34]. There is also an implicit
hierarchy where core developers are ranked higher. However, this social order is not authoritarian [32].
Consent is sought among core developers and contributors in the decision-making process [33, 34].
Leadership, in FOSS communities, is earned through experience. Core developers are usually the early
contributors to the community and some of them are the founders.

4 Adam Alami et al.

2.2 Participatory Action Research

Participatory action research (PAR) is a set of consecutive actions and reflections [20]. It is a collaborative
approach to research whereby the researcher partners with the subject being studied to achieve a
particular outcome. The environment where the research occurs has a great influence on the course of
action. Participatory research varies from conventional methodologies by focusing and acknowledging
the “local” perspective and knowledge. Participatory research seeks to empower people to find solutions
according to their priorities [20].

Action research becomes participatory action research when the researchers and participants are
engaged collaboratively in the inquiry [20]. Participatory action research is defined by three reiterative
phases: inquiry, action, and reflection [20]. The iterative nature of the process provides opportunities
for improvements to the knowledge, methods, and better understanding of the subject of the inquiry.
However, Kemmis and McTaggart [19] argue that the stages may amalgamate in practice as the learning
experience of the inquiry progresses. PAR differs from action research by its principles of democratic
participation and communal reflection. The power is distributed equally between the researchers and the
participants. Participants are actively engaged in the research process. By empowering the participants of
the study, PAR promotes validity. Communal reflection provides an avenue to collectively address any
bias or pre-established assumptions that the researchers may have [20].

Participatory action research includes analysis of what people do, how they interact with the en-
vironment and others, what people mean in their language, what they value, and their understanding
and interpretation of their world. Understanding material, social, and historical circumstances that
people create and then recreate in social settings allows ideas of changes that can improve the problem.
Participatory action research helps people change their practices, their understandings of these practices,
and the situations in which people live and work by self-reflection. Foundations of participatory action
are the following [20]:

– It is a social process that explores the realms of the individual and the social.
– It is participatory, and it engages people in examining their knowledge.
– It is practical and collaborative.
– It is emancipatory, helping people to release themselves from constraints that are irrational or

unproductive.
– It is critical in that it allows people to contest and reconstitute unproductive, unjust, or unsatisfying

ways of interpreting their world.
– It is reflexive in that it allows people to investigate reality in order to change it.
– It attempts to transform both theory and practice.

Participatory action research is context-specific, fluid, and inclusive [19]. Participatory action research
analysis focuses attention on the central issues. The control lies, not in the researcher or the participants,
but is shared, in the form of a zig-zag pathway with greater or less participation at various stages [19].

2.3 Related Work

Change of FOSS communities has, received little attention from researchers, with the exception of
Krafft’s [22] and Özbek’s [27] PhD dissertations. While Krafft looks at influencing factors on innovation
adoption in the Debian community, Özbek [27] focuses on concepts related to the introduction of
innovations to FOSS communities. Although these studies are the closest to our work, both do not propose
a working method, but rather demonstrate the lack of a specific method dedicated to change of FOSS
communities.

Krafft followed the Delphi method. In the Debian community, innovations are built on consensus
among the community. First, pioneers work on innovation, always ready to improve the tools and products.
Pioneering usually begins inside the project or is carried into the project by a member who picked up the
concept externally in order to address a need [22]. Krafft recommends as many as 15 factors affecting
adoption of technology and tools in the Debian community. The three most relevant to our work are: (1)
Sedimentation: awareness of available tools, (2) Marketing: active promotion of tools, and (3) Peercolation:
acceptance by peers [22]. These factors can inform a change implementation process, but do not depict a
working method to implement change.

Özbek [27] studied how innovation is introduced to FOSS communities. Proprietary software orga-
nizations use pain points and monetary incentives to encourage change, but since FOSS are voluntary
organizations, finding ways to encourage change is important [27]. An innovation is a tool, method

A Tailored Participatory Action Research for FOSS Communities 5

Fig. 1 The PAR4FOSS Method

or practice which can become part of a software process created by volunteers who are distributed
geographically. Using grounded theory, Özbek analyzes 83 episodes of innovation in 13 FOSS projects; 37
failures, 30 successes, and 16 with an unknown outcome. Success is defined as an innovation used on a
routine basis that solved a problem and attained its goal. When innovations are introduced, the result can
be no adoption, no goal attainment, and failure or postponement in lieu of adoption. Partial migrations
occur as well, which is when an existing innovation is replaced by a newly introduced one [27].

3 Participatory Action Research for FOSS (PAR4FOSS)

In this section, we introduce and discuss our participatory action research framework for FOSS communi-
ties.

Conscious of the FOSS communities uniqueness, we designed and executed a participatory action
research process tailored for FOSS. The method (Fig. 1) we propose is composed of three components:
interventions design, democratization and execution. The method (PAR4FOSS) is a three activities
iterative process where transparency and open decisions were implemented. The structure is influenced by
the self-management and collaborative aspects of the FOSS communities. We believe that this process will
be amenable to other FOSS communities and will thus help introducing change in other FOSS projects.

Interventions are designed and enhanced iteratively. They are obtained from four different sources: (1)
community requirements, (2) similar communities precedents, (3) best practices and (4) problems:

– Community requirements: These are legitimate needs to improve a situation or meet certain objectives.
– Similar communities precedents: Something other FOSS communities succeeded at doing and had a

positive impact.
– Best practices: These are industry practices to turn into community practices in order to enhance a

situation of align the community with industry practices.
– Problems: It is a specific community problem related to the scope of the change. Simply, a problem

can be defined as the difference between what is happening (as is), and what should be happening
(should be). The misalignment between the as-is and should-be is the “problem.”

6 Adam Alami et al.

Fig. 2 PAR4FOSS Iterations

The democratization of interventions is to legitimize the interventions. As shown in Fig. 1, This
legitimization is gained from community consultation and dissemination. Community consultation is
a process by which the community’s inputs on the interventions is sought. It aims at gathering local
knowledge to test the interventions for cultural sensitivity, social effectiveness and appropriateness. The
output of this activity is a set of decisions (i.e. tuned interventions and an action plan for each intervention).
This consultation may occur with a selected community advocates, enthusiasts for the change and experts
on the subject matter (i.e. consultative body). To ensure transparency, a wider community dissemination
is recommended to gather feedback, consensus and support for the interventions. When feedback is
received from the community, there is an obligation to act upon it. Feedback is communicated to the
consultative body for deliberation and another iteration of interventions enhancement. At one stage,
interventions will stabilize and become candidate for execution.

Execution is the actual implementation of the interventions. This process leverage existing community
capabilities to implement the interventions. This is not the end point. Eventually, there will be learning
from this activity that should be shared with the consultative body for knowledge acquisition and future
considerations.

The PAR research is designed to be executed iteratively. Iterations consist of a set of aggregated
interventions to implement change in the FOSS community. We propose a PAR process (Fig. 2) in two
consecutive phases: (1) the pre-interventions phase and (2) the interventions phase were we went through
four iterations [3, 4].
Pre-interventions phase: This is iteration zero in Fig. 2. We began with an empirical investigation of the
research environment [10], the identification of problems and issues related to the proposed change. This
is an exploratory phase which aims to discover the scope of interventions, the problem space, and the
relationship between these two components. During this phase, the design of interventions should take
place.

Interventions implementation phase: The interventions will be executed in iterations (four iterations
in Fig. 2). Each iteration is the execution of PAR4FOSS method. Upon the completion of each iteration,
we suggest conducting a reflection session to draw learned lessons and revise the list of interventions.

4 Application of PAR4FOSS in ROS community

4.1 The Project Context

ROS managed to attract a wide global community of users and contributors. ROS-Industrial is a branch of
ROS with a specific industrial application focus. Incepted in 2012, ROS-Industrial Consortium has secured
the collaboration of key players in the robotics industry (ABB, Yaskawa, Siemens, John Deere, BMW,
Bosch, etc.) ROS-Industrial ambition is to become the worldwide open-source standard for industrial
robots. ROS-Industrial stakeholders commenced raising their concerns regarding the quality assurance

A Tailored Participatory Action Research for FOSS Communities 7

practice in ROS not being aligned with FOSS communities and software engineering best practices.
Although, we were originally external to the community, the motivation for the project came from within
the community. Thanks to the push from the ROS-Industrial Consortium, the H2020 project ROSIN
was established to enhance ROS quality assurance practices and to promote ROS as a reliable robotic
platform for industrial users. This work is one of the results of this community inspired project.

Access to the research setting. During the inception of the project, we contacted the ROS core team and
we entered a dialogue regarding the idea of the project. The core team assigned one of its members to
the project and we recruited another contributor with over ten years experience in the community. Both
have distinguished reputations in the community. We asked our informants to lead the recruitment of
participants for a quality assurance working group. The aim was to leverage our informants’ meritocratic
status in the community for credibility. This approach worked well.

Our proposed PAR4FOSS (Fig. 1) advocates community consultation for change introduction. We
contextualized this guideline in the ROS community by instituting a community working group. The
group’s mission is to collaboratively promote an extended array of quality assurance best practices in the
ROS community, so that it may endeavor to carefully construct a cultural environment where quality is
part of the fabric of the community. The scope of the group work is to promote and implement quality
assurance initiatives, for example testing, code reviewing, continuous integration, and code scanning. The
group became the problem owner and the project conduit in the community.

Defining the problem. The inquiry stage of PAR is the identification of a shared practical problem by
collaborators, and methods to address the problem [19]. We conducted a qualitative study [1] during the
inquiry phase, to understand the problem and the underlining causes. We present a summary of this
study in Section 5.1.

Interventions. During the inquiry phase we identified the problems and proposed solutions. Each solution
is an intervention. Community intervention encompasses the creation, implementation, and evaluation of
best practices designed to affect the community as a whole. Table 2 lists the interventions. The list of
interventions was presented to the working group for review and validation. A final list was agreed upon
and published in the QA forum for a wider community consultation.

4.2 Participatory Action Research in ROS

8 Adam Alami et al.

Fig. 3 ROS Community Participatory Action Research Time Line and Iterations

The PAR process (Fig. 3) typically includes two broad steps. First, research implies the participation
of the community in the process of elucidating and analyzing the problems (Phase I) [20]. This process
resulted in new understanding. The second phase of the research process is cyclic (Phase II). It is
implemented through iterations of planning, acting, observing, and reflecting [20, 36]. We were unable to
execute this phase as prescribed in the literature. In order to succeed in the community, we had to design
a change process tailored for the ROS community that still embraces the principles of PAR. Section 6
presents the process we deployed to execute the implementation of interventions.

Phase I — Pre-Interventions: The process began with the identification of QA problems and issues. The
objective was to discover the scope of interventions, the problem space, and the relationship between
these. This was an empirical investigation of the current environment [10]. The aim was to understand
the cultural characteristics of the community and the quality practices taking place in the community.
This phase of the study identified the current challenges in implementing quality processes, methods, and
practices in the community (see Section 5).
ROS Quality Assurance Working Group: PAR advocates for active engagement of the community [20, 36].
Participation is a democratic principle to overcome the researchers’ dominance in the process and build
on the knowledge of the community necessary to implement the interventions.

To this end, we established a quality assurance working group. The aim of the group is to serve as a
conduit in the community for the change initiative. Its role is consultative. The first step to gain community
consent for the interventions. It has been decided to implement this group as an implementation tool as
it is a community cultural norm to reach consensus regarding changes in the community. The group had
23 active members. The group has been meeting monthly and has accumulated a total of 18 meetings.
Minutes of each meeting were taken and published in the community forum 2.
Interventions Design: Intervention comes from the Latin intervenire, meaning “to come between, interrupt.”
The intention of an intervention is to make things better or to remediate a situation. In the context of
this research, we define an intervention as a combination of action elements or strategies designed to
produce behavior changes and improve quality assurance practice in the ROS community. Interventions
may include educational programs, new or enhanced practices, improvements to the processes, or a quality
promotion campaign. This research interventions create change by:

1. Influencing individuals’ knowledge, attitudes, and beliefs.
2 https://discourse.ros.org/c/quality

A Tailored Participatory Action Research for FOSS Communities 9

2. Increasing QA infrastructure and tools.
3. Creating supportive environments for QA practices and resources.

Interventions (see Section 6) were designed based on the findings of the phase I analysis. These
interventions have been put forward to the working group for the community’s deliberation and advice.

Phase II — Implementation of Interventions: The interventions have been implemented iteratively. As
shown in Fig. 3, four iterative cycles have been proposed. The scope of each cycle is dictated by the
interventions’ priorities. The priorities have been assigned by the community working group. Members
were asked to assign high, medium, or low priority for each intervention. The interventions with the
highest number of high votes were assigned to the early iterations’ cycles. Subsequent cycles’ scope is
interventions that received lesser votes for high than for medium and low priorities.

To carry out the implementation of the interventions we faced a conundrum. We had to reflect and
design a process that caters for the community cultural and social specifics without disturbing the
community ecosystem (see Section 6 for the proposed method).

4.3 Data Collection and Analysis

This is a qualitative research using one subject community, where data is gathered using a combination
of techniques, a community working group, interviews, and participatory activities.
Data Collection. The empirical qualitative data has been captured using several techniques that were
selected based on the combination of the methods and the nature of the data collected. Table 1 maps
methods to their respective data collection techniques.

Methods Data Collection Technique Data Analysis Key contributions
Phase I:
Interviews &
Participatory
Activities

1. Ten interviews have been recorded and
transcribed.

2. One researcher attended 29 community
events (i.e. Conferences, meetings, etc.).
Notes were taking during these events and
field notes were compiled, thereafter. A to-
tal of 30 field notes have been accumulated.

Thematic Coding
1. A cultural understanding of

the ROS community.
2. Definition of the problem

space (see section 5.1)

Phase II:
Participatory
Activities 1. Field notes have been used to capture obser-

vations and interaction with the community.
This applies to both real-life and virtual
activities. Emails, and other forms of in-
teraction with the community (i.e. Forums
discussions) are captured in field notes.

2. Working group meetings and workshops
have been recorded and transcribed. At
this stage of the project, 18 meetings for
the working group have been conducted.
In addition, other ongoing meetings with
volunteers working on the implementation
of interventions have taken place.

Thematic Coding
1. Successful implementation

of two iterations of QA in-
terventions.

2. A change method tailored
for the ROS community.

Table 1 Data Collection and Analysis Methods

Data Analysis. We used thematic coding, grounded in the interpretative philosophy. Following the
guidelines of Robson & McCartan [28] and Miles, et al. [26]. The aim is to examine the meaning and
symbolic content of qualitative data. The process involves the identification of themes and coding. We used
line-by-line coding of the data, identifying meaningful parts of the text and assigning labels to them that
indicate they are the thematic idea. This labeling or coding process enabled us to retrieve and aggregate
together all the text that has been linked with a particular thematic idea. The collation of themes and
association with text unveil patterns of thoughts and ideas that contribute to the understanding and
later was used to formulate theories about the ROS community.

10 Adam Alami et al.

5 The ROS Community

In 2000, Stanford University began working toward integration of embodied artificial intelligence (AI),
such as the Stanford AI Robot and the Personal Robots Program. They created flexible, dynamic software
systems for robotic use. In 2007, Willow Garage, a visionary robotics incubator started by Scott Hassan
to accelerate the advancement of non-military robotics, gave significant resources to extend and create
implementations. Many researchers from various institutions and labs began to contribute time and
resources to core Robot Operating System (ROS) ideas and software, all in the open BSD license. Willow
Garage became a for-profit company, and ROS is maintained by the Open Source Robotics Foundation
(OSRF). Over the years, the developed model has been seen as one of the strengths of ROS. This model
allows any group to start their own ROS code repository that they maintain control and ownership of,
and if they make their code public, they can receive recognition and credit, and they benefit from the
open source software projects.

ROS is an open-source meta-operating system providing a flexible framework for writing robot
software. It is a collection of tools and libraries that help to simplify creation of robotic platforms. The
collaboration of researchers enables robotic products to be more robust. ROS provides a communications
infrastructure as middleware. It offers asynchronous message passing, recording and playback of messages,
request and response remote procedures, and a distributed parameter system. In addition to middleware
communication, ROS provides robot specific features, such as standard message definitions, a robot
geometry library, robot description language, diagnostics, pose estimation, localization, mapping, and
navigation. The ROS toolset is one of its strongest features, and this toolset enables debugging, plotting,
and visualizing the state of the system with rviz and rqt tools.

All together, over 3,000 ROS packages are available publically. These packages cover everything from
proof of concept implementations to new algorithms for industrial quality drivers and capabilities. The
ROS community has over 1,500 participants on the mailing list and 3,300 users on the Q&A forum, with
22,000 Wiki pages and over 30 edits per day.

Recently the community has embarked in an overhaul project called ROS 2 to re-engineer and
re-architecture the current software. ROS 2 is under heavy development and attracted the participation
of some heavy industry players (e.g. Amazon, Intel). The project has become the focal focus of the
community. This enthusiasm had some consequences on ROS. The community attention and effort is
shifted away from the current software to ROS 2.

5.1 The State of Quality Assurance in ROS

The ROS community is large and diverse, and it is different from other FOSS communities, as most
ROS developers are not software engineers. The ROS community has awareness of quality, and has
implemented a well-defined development process, defects management processes and tools, code review,
continuous integration, unit testing, and knowledge sharing. However, the efforts for quality are constrained
by participation motives, community priorities, meritocratic culture, sustainability, complexity, and
adaptability [1].

Most robots are complex distributed systems, encompassing many fields of engineering. Thus, it is
critical to implement a successful quality assurance management strategy. The scope of our engagement
in the ROS community has been focused in creating sustainable QA practices.

Before this project, ROS was not without QA practices. It had a continuous integration infrastructure
in place, an issue tracker and process of managing defects. However, they did not live up to the expectations
of industrial participants. We do not imply that ROS is low quality. The collective intelligence of the
community has produced a remarkable software platform that powers various industrial applications.
Even though the popularity of ROS testifies for its quality, industrial stakeholders have been calling for
visible and concrete community practices to raise the confidence in ROS even further. Hence the initiative
of this project which is to bring ROS QA inline with other FOSS communities and software engineering
best practices.

Once we became accustomed with the ROS community, we realized that its cultural fabric has to
be accommodated. We needed a method because it was important to us to implement the interventions
without disturbance. Executing the intervention blindly would have been naive, likely clash with the
community and possibly failing.

A Tailored Participatory Action Research for FOSS Communities 11

5.2 ROS Community Cultural Traits

The ROS community over the years embraced the FOSS values, believes and norms. The ROS community
is a meritocratic social system. It values transparency, freedom of choice, collaboration, self-management
and innovation. We summarize its main cultural traits based on one year and a half worth of participatory
observation in the community [1].

Meritocracy. Meritocracy is a social system in which success and status depend primarily on individual
talents, abilities, and effort. The ROS community is a highly meritocratic system. Meritocracy is
implemented via two mechanisms: the “Karma” system and reputation. The “Karma” system is a
virtual rating system, where points are allocated to contributors by other community members for helping
answering and resolving technical questions and challenges. The “Karma” points showcase the contributor’s
technical expertise and her engagement in the community. The more “Karma” points, a contributor has,
the more important is hers status in the community. Contributors also have an additional “reputation”
outside the “Karma” system. While the “Karma” system is an indication of the technical expertise and
knowledge, reputation is the community’s believes and opinions held about a member. Contributors are
conscious of their reputation in the community and they thrive to maintain it.

In an early meeting with the community to set up the project infrastructure, a community member
warned us: “This is a meritocratic community. Anything you do must take in consideration this community
aspect.” In a community meeting, the attendees stopped and congratulated a member of the community
with high “Karma” points. One attendee said: “Congratulations man! 40 thousand karmas. That’s
impressive.”

The challenge that ROS meritocracy poses to participatory action research projects is that of the
researcher being new to the community and without “reputation” or “Karma”. Our strategy was to enter
into partnerships with community members enthusiastic about quality and with distinguished reputation
in the community. The partnerships gave us leverage in initiating the project and establishing a community
working group to be the owner of QA problems.

Transparency. The ROS community believes that decisions should be based on what is best for the
entire community, not just a small group of developers and members. Transparency is ingrained in the
community conducts. Decisions, opinions, concerns and ideas are publicized in the community forums.
The aims is to increase participation and inclusiveness in decisions making.

In the first meeting of the quality assurance working group, a member of the group asserted: “The
meeting must be minuted and published in the forum. We want the community to know what we [are]
doing.” Another member went further to suggest: “The meeting should be video recorded and put up in the
forum for the community.”

Transparency does not pose a direct challenge to the implementation of PAR. However, it is an
important cultural trait that should be embedded in the process to ensure success. As per the community
tradition, we publicized every decision, discussions and outcomes during the working group deliberations
in the community quality assurance forum.

Freedom of choice. Contributors, in the ROS community, have the freedom to select the type of work
they would do in the community. Tasks allocation is informal; there is no pre-defined process to assign
tasks and roles.

A participant in the ROSCon 2017 conference commented about our project during a poster session:
“I’m not sure how you gonna do this? The ROS community likes to code and they participate because of
the freedom they get. You may struggle to find people to join this project.”

Although this cultural trait is not a barrier for PAR, it can constrain the execution of actions.
Especially, if the actions are not popular amongst contributors. For example, QA is deprioritized and
consequently QA tasks are regarded mundane [1] in the ROS community,.

Collaboration. The ROS community is a collaborative social system. Collaboration is the bedrock of
creative solutions and innovation in the community. Its members value joining forces to achieve goals.
Community collaboration is essential to effective development of the community’s product. Ideas and
projects are announced in the community forums. Interested members join the discussion or volunteer to
contribute to the project. Since its transition to a community structure, ROS software has been developed
and grown from collaborative work. In the ROS community, initiatives are not handed down from a role

12 Adam Alami et al.

with a certain power. They are shared through collaborative channels where the initiator has equal power
to the rest of the community contributors.

During the planning of our project, in a meeting with members of the community to discuss an
approach to execute the project, a project member suggested to form a “task force” and start implementing
our interventions. A community member opposed, he stated: “That would be disastrous and calls for
failure. This community doesn’t operate like that! We need to engage the community.” Another community
member concurred: “I agree. We shouldn’t bypass the community. We risk to alienate ourselves.”

This cultural trait is in line with PAR principles of democratic participation and communal reflection.
However, PAR literature does not specify how to operationalize collaboration in large and distributed
communities. We established a working group dedicated to oversee the work. The community working
group serves as our main means of collaboration. To ensure inclusiveness of the larger community, we
publicize the group meetings notes and decisions in the community QA forum.

The group members were recruited democratically. One of our collaborators, a community member
with over ten years of experience in the community and high karma points and distinguished reputation,
put a post in the community forum asking for volunteers to join the group. We succeeded attracting 23
members. However, the group meetings attendance has on average approximately 16 attendees.

Self-management. Another norm of the ROS community is informal self-management. The ROS community
has one horizontal path of mobility, and members move from one role to another fluidly. At the center of
the community are the core developers. The core team is managed by OSRF, a non-profit organization
that has the responsibility of community stewardship. We entered the community with no prior exposure
or engagement with the community. We worked on establishing our own reputation. We attended
six community events and we showcased our work through presentations and posters. We adopted
self-management in our PAR process by ensuring an equal distribution of power amongst participants.

Innovation. The ROS community has an innovative culture. The community environment cultivates
and nurtures unconventional and creative thinking. It subscribes to the belief that innovation is not the
province of an elite but the effort of the collective and that anyone in the community can be innovative.
The energy of the community is directed toward creating new features and the depth and breadth of
the ROS platform. In our earlier study of the ROS community [1], we observe that innovation drives
the community and remains the centre of attention. Over time, this led to the deprioritization of QA
practices.

A participant in the ROSCon 2018 conference commented, privately during the reception, after a
presentation made by one of the authors of this paper. He said: “This is a tough project to execute. Not
only because people are not under the same roof, but because this community likes to innovate. They prefer
working on new features rather than developing their processes.”

Our agenda is to push QA practices in the ROS community. The focal point of the community though
is innovation. The QA tasks are seen as mundane. This misalignment of priorities is a challenge for our
PAR implementation. PAR assumes that collaboration, authority and control facilitate the execution of
actions. However, in an open source community, the implementation of actions relies on volunteers.

6 The Change Process and the Experience

In the following sections, we discuss how we tailored PAR4FOSS (Fig. 1) for the ROS community.

6.1 Tailoring of PAR4FOSS for the ROS Community

Figure 4 depicts PAR4FOSS for ROS and the infrastructure we put in place to carry out interventions.
Upon the design of the interventions, we established a working group, ROS Quality Assurance Working
Group, to be the problem owner and a platform for initial consultation. We started the process by a
prioritization exercise. The outcome was a list of prioritized QA interventions (see Tbl. 2).

The group has been meeting on a monthly basis. The scope of each meeting was to discuss the specifics
and details of the implementation of one of the interventions, according to the order of their priorities.
The discussions are, then, summarized and publicized in the community quality assurance forum (3).
This is an opportunity to engage the wider ROS community and be transparent about the group work.

3 https://discourse.ros.org/t/ros-quality-assurance-working-group-october-2019-meeting-notes/10891

A Tailored Participatory Action Research for FOSS Communities 13

Fig. 4 PAR4FOSS Tailored for the ROS Community

Feedback then an is received from the community and communicated back to the working group for
further discussion and deliberations. Once an intervention is stabilized (i.e. unlikely change in the design
and the requirements of the intervention), a call for volunteering is made in the QA forum. This is the
start of the execution phase (i.e. effectively implementing the interventions). The implementation of
interventions is overseen by the group.

6.2 The Method

The tailored method (Fig. 4) has four dependent activities: (1) Interventions design, (2) Consultation and
decision making, (3) Dissemination, and (4) Execution. These activities have inputs and outputs and
some of them are iterative sub-processes. They are interlinked to constitute a method that substitutes
management and authority and caters for the cultural specifics of the ROS community.

Activity 1: Intervention design. This activity is a pre-requisite to launch the implementation activities
(activities 2, 3, and 4). However, the initial list of interventions has been subject of iterative review at the
end of each PAR iteration (see Fig. 3), the group conducted a review session for the list of intervention.
Table 2 represent the list, after one review at the end of Iteration 1.

The design of the interventions followed a systematic approach. Interventions are derived from four
distinct sources: community requirements, similar communities precedents, best practices and problems
(i.e. opportunities). During the inquiry phase, we identified opportunities for improvement and solutions
for them. Each solution is an intervention. Interventions are composed of a set of actions (small actionable
tasks). The implementation of actions will lead to full implementation of interventions. Actions are either
an initiative or a corrective measure. Initiatives are new actionable changes with no prior precedent in
the community. Corrective measure is a change to something existing but dysfunctional or unsuccessfully
implemented. Each intervention should generate an outcome, i.e creating a QA capability and behavioral
change. Failed intervention will not have an outcome and consequently no impact.

This is an iterative activity. The first version of the interventions was proposed to the working group
(part of activity 2) for discussion and validation. There were no objections to the interventions proposed
by the researcher. But, the group requested clarifications and definitions of some interventions. Then, the
list was put in the QA forum for dissemination. Feedback was received from the wider community (part
of activity 3) and discussed in the working group. Consequently, action were taken to amend the list.

14 Adam Alami et al.

Iterations Interventions Description
Iteration 0 Establishing a Quality Assurance Working

Group
This is to establish ownership for QA problems. The
QA working group has become the owner of QA.

Quality Assurance Forum The aim of this intervention is to create a forum for
promoting dialog on quality, and the development of
quality practices.

Iteration 1 Make ROS packages’ quality visible (Part 1) Create a process and tool where packages quality can
be measured, assigned and displayed.

Appoint ownership Appoint ownership for quality assurance tools and
processes.

Energize the code review process Code review is an existing process; unfortunately, it
is loosely implemented and practiced. The aim of this
intervention is to bring this practice back to ROS QA
core quality practices.

Implement a code scanning method and tool Identify and implement state of the art code scanning
and analysis techniques and tool.

Maintenance issues The objectives of this intervention is to attract and
recruit new maintainers.

Iteration 2 Make ROS packages’ quality visible (Part 2) This is a continuation of part 1. During this part, we
will develop the QA dashboard.

Quality Hub website A central “go-to” place for QA knowledge sharing (doc-
umentation of QA practices).

Formalize the code ownership process Define and implement a code ownership process. Own-
ership in general establishes the responsibility rela-
tionship for a software component, and a responsible
developer.

On-boarding process for core and non-core com-
munity members

Description. Define an on-boarding process for core
and non-core community members.

Iteration 3 Model-in-the-loop (MIL)testing. Identify a functional MIL testing setup that is to be
used as an integral part of the CI services.

Automated unit test generation The goal of this intervention is to automate the creation
of the tests.

QA promotion events Regular community campaigns to promote QA prac-
tices or support a particular community need.

Iteration 4 Model Driven Development (MDD) Identify and demonstrate opportunities to use the
paradigm of MDD for code generation.

User Rating of packages Implement a rating of packages feature. The ability of
ROS users to rate packages quality.

Implement a continuous improvement process A continuous improvement process is ongoing efforts
to improve quality assurance practices. These efforts
are incremental review and improvement of practices
in place. This is a set of community activities and
processes to ensure the survival and the sustainability
of quality assurance practices.

Table 2 List of iterations and their corresponding interventions

Activity 2: Consultation and Decision Making. Community consultation is a reciprocal process and a
genuine partnership between the community and the researchers. This community engagement provides
guidance to researchers in order to make well informed, acceptable and sustainable decisions.

This is the first activity in the implementation of an intervention (Activity 2 in the process). The first
instance of consultation occurs with the working group meetings. Every meeting had a specific agenda
proposed by the facilitator (i.e. the researcher) and circulated to the group members for comments, one
week prior to the meeting. Then, a final agenda is put forward for the meeting. During the meeting, the
facilitator endeavors to balance contributions from the attendees. Each attendee is given the opportunity
to express his views.

The group initially agreed on seeking widespread or full agreement via consensus decision-making. In
the process all participants’ opinions are respected and their contributions are encouraged. The process in
which the decision is made is as important as the resulting decision. The facilitator ensures that the power
is distributed equally amongst the participants. We observed that no individual or group of individuals
attempted to leverage the group to gain power. To the contrary, we noticed that the participants are highly
respecting of each other opinions. No frictions in the group were observed either. Personal preferences are
less important than a broader understanding of how to work together to help the community.

A Tailored Participatory Action Research for FOSS Communities 15

Decisions are put forward for voting. We use voting to reach decisions. After deliberation, decisions
are put forward for voting. A simple majority is sought. We observed, irrespective of the direction a vote
takes, the group accommodate the outcome and moves forward. This support for the democratic process
has helped the overall process.

Activity 3: Dissemination. All decisions and the working group deliberations are publicized in the
community QA forum. We ask the community to provide feedback. In some instances, we received
feedback and in other instances, we did not receive any inputs beside “likes.”

The aim of the dissemination is to gain a community-wide acceptance of each intervention and
the decisions made by the working group. Community dissemination is communication with the wider
community through the provision of relevant information and material to ensure effective consultation and
transparency. The consultation and the dissemination are an opportunity to democratize the interventions
and gain a broader consensus around them. This inclusiveness ensures a democratic process where
community members get an opportunity to be heard and provide feedback.

The purpose of the dissemination is to democratize the interventions and gather a consensus around
them prior to implementation. Interventions democratization, making interventions information available
for everybody, empowers people in the community members to be part of the decision making process.

When feedback is received, it is communicated back to the working group for discussion and consid-
eration. Although, we received some feedback throughout the process, the overall volume has been low
(from no comments to ten comments). However, the views have been within the average of other ROS
community forums (i.e. the highest 809). This is not a surprise. Our preliminary study [1] shows that QA
does not trigger the enthusiasm of the community.

Activity 4: Execution. The execution is the actual implementation of a particular intervention. The
execution commences when the intervention requirements and implementation specifications have been
stabilized and there is a general positive sentiment for the intervention. This is achieved by consultation
and dissemination.

The first forum, we use, to recruit volunteers to implement the actions is the working group. However,
in some instances, we were not able to attract enough volunteers or to find volunteers with the right set
of skills. Then, we seek volunteers in the larger community by announcing it in the QA forum.

Sub-groups have been formed in some instances to work on particular interventions (i.e. Making ROS
packages quality visible). The facilitator attends all the meeting and reports the progress back to the
working group.

6.3 The Infrastructure

This process necessitates a simple infrastructure to operate: an (1) online forum, (2) conferencing tool,
and a (3) facilitation resource.

Online Forum. This is the platform needed to reach out to the wider community. Although, the community
has already multiple forums, we opted for a dedicated forum for QA 4. This has been seen before in
other communities with well-developed QA capabilities (e.g. Mozilla and Debian). In addition of being
a channel to disseminate the QA working group work and decisions, we wanted this tool to attract a
sub-community interested in our agenda (enhancing the community QA practices).

Conferencing tool. The ROS community is globally distributed. Organizing meetings with attendees from
three different continents has been challenging. However, the intrinsic motivation of some attendees has
been a main driver. One attendee stated in a meeting “I stay awake until 1AM to attend this meeting.”.

Facilitation Resource. The process requires a facilitator. Facilitation is the activity of ensuring the process
is operational at all times. This includes organizing the QA working group meetings, facilitating the
meetings, taking and publishing minutes, posting the meetings decisions and outcomes in the QA forum,
etc.

4 https://discourse.ros.org/c/quality

16 Adam Alami et al.

7 Evaluation of the Process

In this section, we evaluate the effectiveness of the method (Fig. 4). Effectiveness addresses the degree to
which the method has been successful in producing the desired result.

The tailored method (Fig. 4) is deemed successful when its effectiveness can be demonstrated.
Effectiveness is determined by (1) the method evaluation: the method activities have produced the desired
results, (2) evaluation of interventions: the output (i.e. interventions implementation) is accomplished,
and (3) stakeholders evaluation: are the stakeholders satisfied with the method? This can be conducted
throughout the life of the project.

Collaborative action research is deemed successful when both parties (Researchers and participants)
give and gain benefits, such as new knowledge or improved practical solutions [17]. Meyer explains that
action research arises from a different epistemological background than other research methods. This
imply, it cannot be evaluated using traditional evaluation criteria. Evaluation of action research is not
necessarily based on whether change can be positively demonstrated, but instead on what was learnt
from the experience of trying to change practice [25]. In the upcoming sections, we will demonstrate that
our participants judged the method being useful and the method has created a change.

7.1 The Method Evaluation

The method is a set of four interlinked activities. These activities exchange inputs and produce outputs
(i.e. results). In this section, we evaluate the degree to which the desired results have been produced.

Interventions Design. This activity commenced in the pre-intervention phase. The aim was to produce a
preliminary list of interventions for the QA working group to assess, enhance and approve. We designed an
initial list of interventions which we presented to the group for discussion and deliberation. We successfully
gained a community consensus for the interventions, including by the QA working group and the wider
community.

Consultation & Decision Making. This activity was implemented in the form of a consultative body, the
QA working group. The QA working group has been a constructive instrument to push the QA agenda
forward. The local expertise has been crucial in the review and adaptation of the QA interventions. We
observed that the democratic process fits the ROS community, and the process promotes a positive
organizational climate. The greater degrees of democratic openness, and transparency of governance,
allowed a better engagement with the community.

The QA working group had initially attracted 23 members and attendance has been in average
of 16 attendees in every meeting. However, after a year, this number dropped to seven attendees in
every meeting. This did not shake the foundation of the group. The remaining attendees are the highly
motivated and dedicated ones. We asked some participants to explain their absence from the group. Most
participants justified their absence due to other commitments being prioritized over attending the QA
working group. For example, a software engineer stopped attending the QA working group meetings. He
emailed the facilitator to convey that his company management reviewed their community engagement
and decided to reduce it due to other internal priorities.

Dissemination. We leveraged the QA Forum to disseminate the outcomes of consultations. We, also,
leveraged community conferences to promote our work. The facilitator gave three presentations in three
different community events (ROSCon 2017, ROSCon 2018, and ROS Industrial conference 2018). This
has been productive. The method and the facilitator have become known in the community. Being open
about the work with the method and decisions is appreciated in the community. In addition, it fits within
the community transparency tenet.

Execution. ROS is a volunteer-based community. Implementing interventions requires volunteers. We
attracted a modest number of volunteers to collaborate in implementing the interventions. We learned
that volunteers, for this type of contributions, can be unreliable. This, because, they all have a full time
employment and their commitment, to contribute to implement interventions, is during their spare time.

A Tailored Participatory Action Research for FOSS Communities 17

7.2 Evaluation of Interventions

The interventions implementation is the output of the method. Every successful implementation of
an intervention is a testimony to the usefulness of the method. In this section we evaluate the nine
implemented interventions and the change created with the tailored PAR4FOSS. Using the method, we
executed two iterations (iteration 0 and 1) and we are half way through iteration 2. Below, we discuss the
results of the interventions:

Iteration 0. Establishing a Quality Assurance Working Group. The aim of this intervention was to establish
a community body to assume the ownership of QA. This was successfully implemented and the body
has become a consultative structure for implementing QA interventions and a community reference for
QA. In two separate instances community members reached out to the facilitator to attend the group
and pitch their ideas. In another instance, the core team contacted the facilitator and requested to add a
new intervention to the list, which is the migration of the current community Wiki to a new upgraded
instance.

Quality Assurance Forum: The aim of this intervention was to create a focal place for QA collaboration
and a channel to disseminate the QA working group’s decisions. This was successfully established and
became an active forum for QA-related discussions. The forum receives a steady flow of contributions
within the topic of QA. It also created an awareness and visibility for the QA agenda in ROS. The official
statistics reveal that in September 2017 the forum had 365 active users and 441 posts.

Iteration 1. Make ROS packages’ quality visible (Part 1). The analyses conducted in the pre-intervention
phase of PAR and the QA working group identified the lack of visibility into the existing test results as
one of the main issues to address. The outcome of the first few meetings of the QA group underlined the
importance of reporting Continuous Integration (CI) infrastructure test results. Prior to this intervention,
the results of various tests and checks were hidden behind interfaces that require numerous clicks to
navigate through. This intervention consolidated the CI test results into a badge (Fig. 5 where the results
can be accessed by a simple click. A drop-down menu provides access to a configurable number of historical
results, which allow developers to assess a package’s health based on trends rather than rely on just the
most recent results. This enhancement has produced the following results:
1. We gave ROS wiki visitors insights into the status of tests run by the CI system for a particular ROS

package.
2. We provided ROS wiki visitors with a direct way to access package status by consulting test results

via UI elements that do not require additional clicks.
3. We enabled ROS wiki visitors to access, by a single-click, the test results stored in the CI system.
4. We provided ROS wiki visitors with the ability to view historical trends in testing results for a

particular ROS package.
5. We introduced an element of gamification (i.e. reward developers by showing green badges, checkmarks

and other achievement in the form of UI elements). Packages for which all tests are succeeding are
rewarded with a green badge with a checkmark. This is the desired situation for all packages.

Fig. 5 Green (all tests passed) and Red badge (not all tests passed) and drop-down displaying build history

Appoint ownership. The aim of this intervention is to appoint ownership for ROS quality assurance
processes, tools and infrastructure. The QA working group agreed to appoint a default owner to each QA

18 Adam Alami et al.

initiative. A default owner is the individual, group of individuals or institution who worked to implement
the initiative. If the default owner objects to the ownership, then the QA working group will look in the
community to recruit an owner. Ownership was originally suggested to safeguard the sustainability and
to ensure the continuous improvement of these interventions. We successfully appointed owners to the
implemented interventions.

Energize the code review process. ROS has introduced code review to its quality assurance practices,
but this could not be sustained due to various influencers (e.g. prioritizing innovation over quality). The
aim of this intervention was to this bring back to ROS. The QA working group selected three ROS
repositories, ros-comm, rviz and MoveIt, to pilot code review, before an incremental roll out to the rest of
ROS repositories and projects. Disappointingly, we learned that the core team has pulled out resources
from ros-comm and rviz maintenance due to shifting focus to work on the ROS2 project. For MoveIt,
we observed that only maintainers review code which strains the maintenance resources in the project.
We approached eight contributors to investigate why they did not review code. We learned that the
most common reason was lack of expertise. One contributor stated: “It took me a long time to feel like I
understood MoveIt enough to contribute, and it definitely takes longer to be able to understand someone
else’s contribution, especially if it’s in a part of the code that you aren’t familiar with. MoveIt is a very big
project, so this happens pretty frequently: personally, I don’t feel like I have enough knowledge to review
anything outside of MoveIt Core and the OMPL interface, and don’t do so often.”

Consequently, the QA working group decided to pilot code review in the ROS2 project where there is
enthusiasm and resources. We currently negotiate with the ROS2 team the implementation of the pilot.
This intervention will be cycles of trial, errors and learning before it will be implemented successfully.
ROS is a complex ecosystem and its technology is not beginner friendly either. This constrains the
participation in code review, only experienced maintainers and contributor can review code. This will
have some implications at the community level. ROS may need to consider lowering its entry barriers to
attract a steady flow of newcomers. During the discussion of this intervention in the QA working group a
participant stated: “we [ROS community] have to rethink our participation model, if we want to sustain
these practices [QA practices]. Currently, newcomers face a complex ecosystem to understand, before they
can contribute. This chases away newcomers and impacts our sustainability.”

Even though some members start thinking that some of the interventions are beyond what the group
is able to deliver, the majority of the group members are determined to persist. At this stage, this
intervention is a work in progress. But, it already demonstrates signs of success. The method has shown
the ability to adapt to its environment constraints and obstacles.

Implement a code scanning method and tool: This intervention is executed by researchers. Two angles
of attack were considered. First, we have studies quality challenges faced by ROS users and contributors
as observed in the issue tracking system of several packages from the distribution. Based on this analysis,
we agreed to develop several project specific linters that can detect these ROS-specific issues (mostly
build-time, load-time, and run-time dependencies of various kinds). While the checkers are fairly easy to
build, the community still needs to work on how to embed them in the code-review and approval process.
Second, we have used seed funding available to sponsor a one-time dedicated security scan of ROS and
ROS2 packages performed by Alias Robotics. This work resulted in proposing a method of scanning ROS
and ROS2 packages in an effort to create a secure codebase.

Maintenance. ROS is suffering from orphaned packages and lack of volunteers to maintain code.
Researchers proposed to design and implement a funding model for unfunded maintenance activities.
However, this proposal was strongly rejected by the group. A participant commented, “we are not bringing
money in. That’s not what we are here for.” This view was strongly supported by other group members.
This issue was discussed in-depth during two consecutive sessions. The QA working group concluded that
this is a community problem that cannot be addressed by the effort of the QA working group. There
was a consensus to de-scope the intervention. Although this can be classified as a failed intervention, the
experience has some merits. The group has demonstrated its ability to critically evaluate the interventions
and make practical judgments about their faiths. The group concluded that addressing this issue is beyond
its mandate. The problem is deeply rooted in the community make-up. ROS is a complex ecosystem. The
learning curve for newcomers is long and difficult. Consequently, the community does not attract a steady
flow of newcomers, which strains its participation model. This cascades to all aspect of participation in
the community, including maintenance.

Iteration 2. Making ROS packages quality visible (Part 2). This is the second phase of making ROS
packages quality visible. The intent of this intervention is to roll out a “Quality Dashboard” for every
ROS and ROS-Industrial package. The QA working group spent multiple session defining and designing

A Tailored Participatory Action Research for FOSS Communities 19

the quality dashboard. The group defined a set of software engineering quality metrics 5 6 (e.g. Unit test
coverage, code style violations, number of closed issues, etc.). Haros, a framework for static analysis of
ROS-based code, was extended by volunteers to generate these metrics. This will be integrated into the
ROS BuildFarm to generate an output file, which will be presented in a Wiki UI for ROS developers to
consult, similarly to the CI Badge (Part 1 of the intervention). This will enhance further the visibility of
packages’ quality. This work is in progress.

Quality Hub website. ROS Quality Hub is an online community knowledge base. It is a go-to-place
for QA knowledge (e.g. articles, tutorials, etc.). The content will be volunteered contributions from
community members. The website has been setup. The QA working group compiled the initial content.
The group is yet to define a strategy to encourage the wider community to contribute.

7.3 Stakeholders Evaluation

This evaluation sought stakeholders assessment of the method and its facilitation. To this end we organized
a reflection session. After one year, the QA working group dedicated one of its meetings to a reflection on
the group work and the method.

The attendees were asked to provide feedback on the method and its facilitation. We observed that
the community portrays the method as the facilitator. Over time, the facilitator personifies the method.
This association was reflected in the feedback received from the QA working group participants.

The feedback was overwhelmingly positive. In regards to the method, attendees expressed their
satisfaction with its implementation and fitness for the ROS community. One participant said: “The
process works well for the community. But we cannot fix every problem! They [the community] can’t except
us to fix everything. There are unfixable things and we need to admit it.” Another participant echoed the
previous opinion. He stated: “I think the process works fine for the community. You’ve done a great job
... but we need to divide the work into actionable items that we can achieve in a month. If we commit
ourselves every month to small achievable items, we will move faster and achieve more.”

We have not noticed any resentments or objections to our work or the method. To the contrary, the
community is appreciative of the method and our achievements. The facilitator occasionally receives emails
from the community members praising the work being done. In one email from an engineer, he stated:
“I appreciate the work you do for the community. I wish, I could help. Unfortunately, our management
restricted our involvement in the community to certain tasks. I wish you luck in these initiatives you
taken.”

8 Discussion

Action research is designed for conventional organizations. We proved that its adaptability for a FOSS
community and applicability to software engineering. The primary novelty of this work (i.e. the PAR4FOSS
method) is the ability to introduce change to a FOSS community. The method has proven to be successful
in the ROS community. To the best of our knowledge, an adaptation of PAR for FOSS communities has
not been attempted previously. The difficulties experienced currently are a natural manifestation of a
method in practice. Once a method is deployed in the real world, it would face obstacles and suffer from
the influence of various forces.

Given this is a process improvement endeavor, we considered software process improvement (SPI)
as an alternative. However, this proposition was dismissed. SPI mandates change in a less participatory
style. We wanted a method that engages the community and leverages local knowledge, which we did not
have at the beginning.

We now reflect on the main challenges and difficulties observed when working with the proposed
method.

The QA working group is at the core of the method, leveraged for consultation and decision making,
it is crucial to sustain the participation. Attendance declined due to other priorities, conditions and
motivation. This issue was put forward for discussion in a meeting. The group decided to work on the
motivation to participate. It has been suggested to change the meeting structure. Instead of dedicating
the whole hour to discussing the interventions, the group suggested to dedicate the first 30 minutes for

5 https://discourse.ros.org/t/ros-quality-assurance-working-group-meeting-minutes-april-2018-meeting/
4473

6 https://docs.google.com/spreadsheets/d/1Ujwc2rjmywWpiamCGNRAdD3USNurXLqunIvgSrSbwvM/edit#gid=0

20 Adam Alami et al.

a presentation by guests, experts and contributors on a relevant topic to the group, followed by a ten
minutes discussion. Then, the remaining 20 minutes is dedicated to interventions implementation. We
recently implemented this new format; we are yet to learn how it enhances the participation in the QA
working group.

Lesson 1: Competing priorities hinder the motivation to participate in the process (i.e. participation in
the QA working group) by the community contributors. Motivation to participate should be nurtured
throughout the process.

We learned that volunteers can be unreliable. The volunteers we recruited have full time jobs. Their
involvement in the project takes place in their limited spare time. This has decelerated the execution of
interventions and may have an impact on the time line of interventions’ implementation. We recognize
that these are the means available in the community. The method operates with the resources available
in the community and it inherits the community constraints and conditions. The interventions need to be
regulated and tailored to the available resources.

Lesson 2: Most volunteers in the ROS community are affiliated. They have full time employment and
their commitment to the project is during their spare time. This constrains the implementation of
interventions.

We learned that the whole method should remain flexible and adaptive. The community is fluid and
its priorities keep changing. Few months after we started our project, the community launched the ROS2
project, a dramatic re-architecturing of the current ROS platform. ROS2 is meant to address some of the
fundamental technical design issues found over time in ROS. Upon the completion of ROS2, it will be up
to each ROS user to decide whether to migrate their code to ROS2. ROS2 has attracted the attention and
the enthusiasm of the community. The core team has shifted most of its resources to the development and
the maintenance of ROS2. The project also attracted the participation of large and influential companies
(e.g. Intel, Amazon, and Bosch). This shift of priority has consequences on the portfolio of interventions.
The QA working group is facing a challenging question, whether to re-design the interventions to reflect
the community focus on ROS2 or remain as is. The group does not seem to have the urgency to shift
the focus toward ROS2, because interventions are universal, and can apply to both ROS and ROS2.
However, the enthusiasm for ROS2 has impacted the project. For example, one of the attendees of the QA
working group, a member of the core team, has stopped attending the group meetings. When asked about
the reasons behind his absenteeism, he replied “we were instructed to not spend time and effort outside
ROS2.” This does not have a direct impact on the design of the method. The portfolio of interventions
can be refreshed to reflect the focus on ROS2 if needed. But, this shows that the method in use has to be
adaptable to its changing environment.

Lesson 3: The method should be flexible and willing to adapt to its changing environment. This
quality ensures the method will continue to deliver.

We learned that managing resources for an open source project is a challenge. Some of our interventions
require advanced skills in the community software tools and infrastructure. Finding available volunteers
with such skill is difficult. Even though we managed to secure the participation of a contributor with
in-depth knowledge of the community tools and infrastructure, his commitment to the project has been
fluctuating.

Lesson 4: Securing the participation of resources with the right skills is a challenge. FOSS projects
should ensure a steady participation from contributors with skills matching the needs of interventions.

The QA working group occasionally reflects upon these lessons. While this endeavor is a delivery
process, it is at the same time a learning journey.

Limitations We identified some limitations of this study. First, the method relies heavily on the facilitator
to ensure the operations of the method. This role can be undertaken by a change enthusiast in the
community. Second, the interventions design requires a skilled analyst or researcher. Not all FOSS
communities can warrant the presence of a researcher to conduct the analysis required to compile a
portfolio of interventions. However, this is an inherent feature of PAR. Third, the commitment to the

A Tailored Participatory Action Research for FOSS Communities 21

working group can fluctuate. Members of the group have left the group, due to their other working
obligations and new members joined half way through. This fluctuation disturbs the process. Finally,
the group priorities may change in a long four year project. This will compromise the execution of the
designed interventions.

This method is evaluated in one FOSS community. Ideally, for a method to mature, it needs to go
through multiple evaluations and ongoing improvements. We hope this work would inspire other action
researchers to implement, evaluate and improve the method in other FOSS communities. We also intend
to commence similar projects in others communities.

We have only used the method in a FOSS community. FOSS communities are a type of self-managed
teams. Thus, we believe this method can be abstracted to cover other self-managed organizations and
teams. The aim of the abstraction is to offer a method that can be instantiated in different circumstances
and communities that share similar cultural traits to ROS.

9 Conclusion

We initiated a project in the ROS community with the objective to enhance the current quality assurance
practices in the community. We opted for the native form of PAR but we quickly stumbled. We reflected
upon the situation and we draw conclusions. These conclusions shaped the process (PAR4FOSS) we put
in place. According to Mathiassen, uncertainty, instability, uniqueness, and contradiction exist in action
research [24]. Reflection and learning are key elements in action research, and researchers must open their
mind to engage in reflections, dialogues, and research efforts [24].

We proposed a participatory action research method tailored specifically for the ROS community.
We have found that the ROS community shares its core values, believes and culture with other FOSS
communities. Hence, we suggest that the proposed method can be leveraged to introduce change in other
FOSS communities.

The strengths and the value of PAR4FOSS is that it provides a powerful means of improving and
enhancing practice. It also untackles complexities of the situation. What we proposed is a first building
block in a long journey to build a method for introducing change to FOSS communities. Methods building
requires experimentation and errors. Learning from the errors strengthen the method and push toward
maturity. We hope that others will be able to build on this experience.

Acknowledgments

This work is supported by the EU’s H2020 research and innovation programme, grant No 732287 ROSIN.
We thank the volunteers for their work in the implementation of interventions. We thank the ROS quality
assurance working group members for their ongoing inputs, advice and participation in the process.

References

1. Adam Alami, Yvonne Dittrich, and Andrzej Wąsowski. Influencers of quality assurance in an open source community. In
Proceedings of the 11th International Workshop on Cooperative and Human Aspects of Software Engineering, CHASE
’18, New York, NY, USA, 2018. ACM.

2. Gary Anthes. Open source software no longer optional. Communications of the ACM, 59(8), 2016.
3. Richard Baskerville and A Trevor Wood-Harper. Diversity in information systems action research methods. European

Journal of information systems, 7(2), 1998.
4. Richard L Baskerville. Investigating information systems with action research. Communications of the AIS, 2(3es):4,

1999.
5. Jürgen Bitzer, Wolfram Schrettl, and Philipp J. H. Schröder. Intrinsic motivation in open source software development.

Journal of Comparative Economics, 35(1), 2007.
6. David Bretthauer. Open source software: A history. Information Technology and Libraries, 21(1), 2002.
7. Martin Campbell-Kelly. Historical reflections Will the future of software be open source? Communications of the ACM,

51(10), 2008.
8. Andrea Capiluppi and Karl Beecher. Structural complexity and decay in floss systems: An inter-repository study. In

Software Maintenance and Reengineering, 2009. CSMR’09. 13th European Conference on. IEEE, 2009.
9. Paul A. David, Andrew Waterman, and Seema Arora. FLOSS-US the free/libre/open source software survey for

2003. Stanford Institute for Economic Policy Research, Stanford University, Stanford, CA (http://www. stanford.
edu/group/floss-us/report/FLOSS-US-Report. pdf), 2003.

10. Yvonne Dittrich, Kari Rönkkö, Jeanette Eriksson, Christina Hansson, and Olle Lindeberg. Cooperative method
development. Empirical Software Engineering, 13(3), 2008.

11. Margaret S Elliott and Walt Scacchi. Mobilization of software developers: the free software movement. Information
Technology & People, 21(1), 2008.

22 Adam Alami et al.

12. Brian Fitzgerald. The transformation of open source software. Mis Quarterly, 2006.
13. Daniel M German. The gnome project: a case study of open source, global software development. Software Process:

Improvement and Practice, 8(4):201–215, 2003.
14. Rishab A. Ghosh. Understanding free software developers: Findings from the FLOSS study. Perspectives on free and

open source software, 2005.
15. Rishab A. Ghosh, Ruediger Glott, Bernhard Krieger, and Gregorio Robles. Free/libre and open source software: Survey

and study, 2002.
16. Alexander Hars and Shaosong Ou. Working for free? Motivations of participating in open source projects. In System

Sciences, 2001. Proceedings of the 34th Annual Hawaii International Conference on. IEEE, 2001.
17. Robert Home and Niels Rump. Evaluation of a multi-case participatory action research project: The case of solinsa.

The Journal of Agricultural Education and Extension, 21(1):73–89, 2015.
18. Chris Jensen and Walt Scacchi. Role migration and advancement processes in ossd projects: A comparative case study.

In Proceedings of the 29th international conference on Software Engineering. IEEE Computer Society, 2007.
19. Stephen Kemmis and Robin McTaggart. Participatory Action Research: Communicative Action and the Public Sphere.

Sage Publications Ltd, 2005.
20. Stephen Kemmis, Robin McTaggart, and Rhonda Nixon. The action research planner: Doing critical participatory

action research. Springer Science & Business Media, 2013.
21. Bruce Kogut and Anca Metiu. Open-source software development and distributed innovation. Oxford review of economic

policy, 17(2):248–264, 2001.
22. Martin F Krafft. A Delphi study of the influences on innovation adoption and process evolution in a large open source

project: the case of Debian. PhD thesis, University of Limerick, 2010.
23. Karim R. Lakhani, Robert G. Wolf, and Others. Why hackers do what they do: Understanding motivation and effort in

free/open source software projects. Perspectives on free and open source software, 1, 2005.
24. Lars Mathiassen. Collaborative practice research. Information Technology & People, 15(4):321–345, 2002.
25. Julienne Meyer. Evaluating action research. Age and ageing, 29(suppl_2):8–10, 2000.
26. Matthew B Miles, A Michael Huberman, Michael A Huberman, and Michael Huberman. Qualitative data analysis: An

expanded sourcebook. sage, 1994.
27. Sinan C. Özbek. Introducing innovations into Open Source projects. PhD thesis, Freie Universität Berlin, 2011.
28. Colin Robson and Kieran McCartan. Real world research. John Wiley & Sons, 2016.
29. Richard M. Ryan and Edward L. Deci. Intrinsic and extrinsic motivations: Classic definitions and new directions.

Contemporary educational psychology, 25(1), 2000.
30. Richard M. Ryan and Edward L. Deci. Self-determination theory and the facilitation of intrinsic motivation, social

development, and well-being. American psychologist, 55(1), 2000.
31. Walt Scacchi. Understanding the requirements for developing open source software systems. IEE Proceedings-Software,

149(1), 2002.
32. Walt Scacchi. Free and open source development practices in the game community. IEEE software, 21(1), 2004.
33. Walt Scacchi. Socio-technical interaction networks in free/open source software development processes. In Software

Process Modeling. Springer, 2005.
34. Walt Scacchi. Free/open source software development: Recent research results and methods. Advances in Computers,

69, 2007.
35. Maureen A Scully. Meritocracy. Wiley Encyclopedia of Management, pages 1–2, 2015.
36. Ernest T Stringer. Action research. Sage publications, 2013.

E
Appendix E: Paper E

187

How Do FOSS Communities Decide to Accept Pull Requests?
Adam Alami

IT University of Copenhagen
Copenhagen, Denmark

Marisa Leavitt Cohn
IT University of Copenhagen

Copenhagen, Denmark

Andrzej Wąsowski
IT University of Copenhagen

Copenhagen, Denmark

ABSTRACT
Pull requests are a method to facilitate review and management
of contribution in distributed software development. Software de-
velopers author commits, and present them in a pull request to
be inspected by maintainers and reviewers. The success and sus-
tainability of communities depends on ongoing contributions, but
rejections decrease motivation of contributors. We carried out a
a qualitative study to understand the mechanisms of evaluating
PRs in open source software (FOSS) communities from developers
and maintainers perspective. We interviewed 30 participants from
five different FOSS communities. The data shows that acceptance
of contributions depends not only on technical criteria, but also
significantly on social and strategic aspects. This paper identifies
three PR governance styles found in the studied communities: (1)
protective, (2) equitable and (3) lenient. Each one of these styles has
its particularities. While the protective style values trustworthiness
and reliability of the contributor, the lenient style believes in creat-
ing a positive and welcoming environment where contributors are
mentored to evolve contributions until they meet the community
standards. Despite the differences, these governance styles have a
commonality, they all safeguard the quality of the software.

CCS CONCEPTS
• Software and its engineering→Open sourcemodel; •Human-
centered computing →Collaborative and social computing.

KEYWORDS
Open source software, code review, pull request, decision making,
FOSS governance, community management
ACM Reference Format:
Adam Alami, Marisa Leavitt Cohn, and Andrzej Wąsowski. 2020. How Do
FOSS Communities Decide to Accept Pull Requests?. In Evaluation and
Assessment in Software Engineering (EASE 2020), April 15–17, 2020, Trond-
heim, Norway. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3383219.3383242

1 INTRODUCTION
FOSS projects are collaborative ventures organized as communities
that produce software using specific coding processes and tools
such as GitHub. Contributors submit code changes, such as a bug
fix or a new feature, in form of a pull request which undergoes an
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EASE 2020, April 15–17, 2020, Trondheim, Norway
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7731-7/20/04. . . $15.00
https://doi.org/10.1145/3383219.3383242

evaluation for appropriateness and quality. The evaluation process
is not simple; it involves specific technical and social rituals. Various
evaluation patterns (governance styles) emerge in communities.
Only 13% of pull requests are rejected due to technical reasons [15]
and “the toughest and most frequent challenges encountered by
contributors are social in nature.” [16]. We attempted to determine
the factors affecting pull requests being accepted or rejected by
asking the following questions:

RQ1: How do FOSS communities decide to accept pull requests?

RQ2:What are the principles of evaluating pull requests?

We define PR governance as the system of rules, practices, and
norms by which a community directs and control assessment of
PRs. It ensures management of the interests of the community and
the integrity of its products. Because of the importance of PRs and
the effect the governance of FOSS communities has on PRs, this
study was designed to investigate PR evaluation governance styles
in FOSS communities, using a qualitative approach. We determine
the decision-making mechanisms in evaluating PRs based on ex-
tensive data transcribed from interviewing 30 FOSS contributors
and maintainers from five communities.

The PR evaluation process is a socially loaded practice. Intervie-
wee 25 explains: “... how contributions are rejected is a major factor
in a project’s success. The structure of PRs acceptance process is such
that it can easily be used to bully people, assert dominance, engage in
various forms of emotionally abusive behavior”. If project’s success
depends greatly on how PRs are evaluated; then, it is important to
understand how communities evaluate PRs.

In this work we identify existing PR governance styles and their
underlying believes and norms. We also extract lessons for com-
munity leaders and maintainers. For example, our interviewees
prefer a governance style that values technical merits over social
connections. We highlight the main contributions below.

(1) In response to RQ1 we propose to distinguish the following
three governance models:

(a) Protective: A defensive style of governance where the
project leader and his subordinates have absolute power
over what is merged into the code. This is known in the
FOSS circles as “no by default.” This attitude requires prior
commitment and trust from the contributor to win the
approval of the gatekeeper before the evaluation can take
place.

(b) Equitable: A style of governance based on fairness and the
ascendancy of evaluation principles. It focuses on a bal-
anced and technically grounded decision. The community
principles overrule any leniency toward contributors.

(c) Lenient: A style of governance based on creating a positive
and welcoming environment for contributors. This style
tolerates some errors and mediocrity. The foundational
belief here is that a contribution is an asset that should

EASE 2020, April 15–17, 2020, Trondheim, Norway Alami, et al.

not be taken lightly. A contributor carries an enthusiasm
that should be leveraged for the benefit of the community.
In order not to compromise on quality, the contributor
is guided to evolve his or her PR to mergeable quality
through mentoring. Our data shows, despite their funda-
mental differences in governing code changes, these style
of governance have one thing in common, safeguarding
code quality and ensuring the evolution of the software
as per the community roadmap.

(2) In response to RQ2, we identified criteria that fit into three
categories: (1) Software engineering practices and require-
ments, (2) social norms, and (3) strategic vision for the prod-
uct. First, the software engineering criteria include specific
rules and recommendations, which contributors need to ad-
here to in order for their PRs to be of “mergeable” quality.
Atomicity is an example. The studied communities require
that a PR addresses a single atomic concern. Second, social
community norms, like trustworthiness, guide behavior of
developers. A contribution from a trustworthy community
member, who demonstrated prior commitment, might be
prioritized. Third, the product vision must be met, or at least
not contradicted, by the intent of the contribution.

FOSS communities are unique social systems and their PRs gov-
ernance models will reflect this uniqueness. Understanding the
values, norms and rituals that are taken into consideration in the
PRs evaluation governance, enhances our insight into the evolution,
growth, and lifecycle of open source software communities.

To best of our knowledge, all key contributions of this paper
(the governance models and the analysis of social and technical
interactions in pull request evaluations) are entirely new. We re-
vealed how communities collectively judge and decide on the fate
of a code change submission; while previous work focused on
chances of acceptance and the factors affecting acceptance and
rejections [16, 17, 23, 33, 34, 40].

The paper proceeds by introducing the studied communities in
Sect. 2. In Sect. 3, we define our research method and discuss the
rationale behind it. Section 4 presents the key findings, and Sect. 5
interprets them. Related work is discussed in Sect. 6. We conclude
in Sect. 7.

2 SUBJECT COMMUNITIES
We now present the studied communities. We intentionally sought
diversity in our selection. Our subjects build different products, have
different participation demographics and history. Each community
was selected for a particular reason. FOSSASIA was selected for
having a predominately southeast Asian contributors and having
an agenda beyond software development. Odoo and DuckDuckGo
were selected because both of them are a blend of a community
and a commercial enterprise. The Coala community is relatively
young (5 years old at the time of the study), but has shown strong
signs of growth. While the above communities are rarely studied,
many have investigated the Linux Kernel community. Previous
studies of the community [2, 20] have shown that the community
has its own particularities. Being different culturally and socially
from other communities, inspired us to include the Linux Kernel

in our selection of communities. Table 1 summarizes the selected
communities and the dimensions used for the selection.

FOSSASIA. FOSSASIA was founded in 2009, as a community com-
mitted to creating “social change” by using a wide range of tech-
nologies. The community projects range from free and open source
software, to design, graphics and hardware. Amongst its successful
projects, SUSI.AI and EventYaY. SUSI.AI is an artificial intelligent
application that provides functionality for personal assistance, Help
Desks and Chatbots. EventYaY offers features for organizers to cre-
ate and manage events.

FOSSASIA welcomes developers to contribute using Github. The
PRs management process uses the default Github features of man-
aging PRs. Changes, new features and bug fixes are raised as “issues”
and discussed by the community. Contributors voluntarily select
and work on issues. Once the code and its companion artifacts (i.e.
Test, documentation, etc.) are available, the contributor raise a PR
to resolve the issue. The PR is assessed using a set of technical and
non-technical criteria.

Odoo. Founded in 2005, Odoo is both a company and a commu-
nity. The community develops software to manage and record sales,
inventory, procurement, and accounting functions: a business in-
telligence engine with an all-in-one business suite program. The
company markets an “enterprise” version of the community plat-
form. The Community version is the open source version. The
company version supplements the community version with ad-
ditional features and services. The community attract developers
worldwide.

DuckDuckGo. Similarly to Odoo, DuckDuckGo is a company and
a community. Developing an independent search engine and web
browser. The company opened source the software to attract a
community around it; but their indexing algorithm remains closed
source. DuckDuckGo was founded in February 2008. By 2013, there
were over 3 million users on DuckDuckGo. In 2014, DuckDuckGo
was included in Safari, and it was built into Mozilla.

Coala. Coala is a tool for developersmade by developers, a language-
independent Linter and analysis toolkit. The primary goal of coala
is to make it easier for developers to create rules for a project’s
code. Coala emphasizes reusing code and the ability to use plugins.
Coala provides a unified interface for linting and fixing code with
a single configuration file. The software was first released in July
2015. Six additional releases were made in 2016, and two additional
versions were released in 2017. The community positions itself as a
beginner friendly environment. Coala outlines exactly how to get
started as a member of the community, and the first step to meet
the community.

Linux Kernel. The Linux Kernel is a free and open source operating
system. Now, Linux is the most popular and versatile operating
system kernel. It is used on super computers and web-servers,
powering up cloud infrastructure, and controlling lots of mobile
and embedded devices including all Android devices.

How Do FOSS Communities Decide to Accept Pull Requests? EASE 2020, April 15–17, 2020, Trondheim, Norway

Communities Dimensions

Product(s)
Size

(estimated # of
contributors in GitHub)

Age
(years) Leadership

FOSSASIA
The Open Event Organizer,
SUSI.AI, PSLab Android App,
and NeuroLab Android

1500 10 Meritocratic system

Odoo Enterprise resource planning (ERP) 1000 15 Meritocratic system
DuckDuckGo Search engine 186 11 Meritocratic system
Linux Kernel Operating system kernel 15,600 [13] 25 "Benevolent dictator" [2]
Coala Language independent linter 437 contributors 5 Meritocratic system

Table 1: Selected Communities and the Dimensions used for Selection

3 METHODS
We want to understand the process that takes place in the assess-
ment of PRs in FOSS communities; the what and how of a PR evalu-
ation and decisions are taken to merge or reject PRs. We wanted to
explore the human and social aspects of the PR evaluation process.
For this reason, we choose a qualitative research method, suitable
for exposing and gaining participants’ experiences and perspec-
tives, giving rich data. This allows us to gain breadth and depth
of understanding. We conducted interviews with contributors and
maintainers from five communities, (see section 2).

Interviews. We opted to use semi-structured interviews as they
allow the researcher to add questions arising during the interview.
A semi-structured interview is suitable for assembling rich data for
a qualitative study, as qualitative studies explore topics with a goal
of gaining insights into individual beliefs and behaviors.

The questions (Tbl. 2) in our interview fall into three categories:
introductory, core, and probing questions. The introductory ques-
tions were used to set the tone for the interview and make the
interviewee comfortable. The core questions are directly related to
the research questions. The probing questions are aimed at exposing
details and concrete facts.

in
tr
o Can you talk to me about your community?

What first motivated you to participate in this community?

co
re

Can you describe the PR evaluation process in your community?
Can you talk to us about the experience of having a PR rejected?
Can you talk to us about the experience of having a PR accepted?
When you evaluate a PR, how do you go about it?
What is your community attitude and philosophy regarding evaluating
PRs?

pr
ob

in
g What were the reasons for rejecting your PR?

How did you feel about the rejection?
What were the reasons for accepting your PR?
How did you feel about the acceptance?
What is the maintainer role in the process?

Table 2: Key parts of the interview framework

Subject Selection. We selected five FOSS communities that we felt
would give us a deep understanding of the phenomena under
study. Section 2 summarizes the choice and the selection process of
the communities. We interviewed 30 participants from FOSSASIA,
Odoo, DuckDuckGo, Linux and Coala communities. We searched

Interviewee Community Role Experience [Y] Country

1 FOSSASIA Maintainer 4 India
2 FOSSASIA Maintainer 5 India
3 FOSSASIA Maintainer 4 India
4 FOSSASIA Contributor 3 India
5 FOSSASIA Maintainer 4 India

6 Odoo Contributor 10 India
7 Odoo Contributor 10 Greece
8 Odoo Contributor 12 Belgium
9 Odoo Contributor 3 Italy
10 Odoo Contributor 5 India
11 Odoo Contributor 8 USA
12 Odoo Contributor 15 Belgium

13 DuckDuckGo Contributor 6 USA
14 DuckDuckGo Contributor 8 UK
15 DuckDuckGo Contributor 5 North Macedonia
16 DuckDuckGo Contributor 11 India
17 DuckDuckGo Maintainer 12 USA
18 DuckDuckGo Contributor 9 Finland
19 DuckDuckGo Contributor 3 India

20 Linux Kernel Contributor 12 Finland
21 Linux Kernel Contributor 10 USA
22 Linux Kernel Contributor 5 Ukraine
23 Linux Kernel Contributor 6 India
24 Linux Kernel Maintainer 8 North Macedonia
25 Linux Kernel Contributor 30 USA

26 Coala Contributor 5 India
27 Coala Contributor 4 South Korea
28 Coala Contributor 6 India
29 Coala Maintainer 4 India
30 Coala Maintainer 6 India

Table 3: The population of the interviewees

for participants on GitHub repositories with the exception of the
Linux and FOSSASIA communities. We randomly (indiscriminately,
without a method, or conscious decision) searched for contributors
and maintainers with valid emails in their GitHub profiles. Then,
we sent them an invite to participate in the study. For the Linux and
FOSSASIA communities, we used our contacts in the community
to recruit participants. A snowball sampling effect took place in the
recruitment of participants. We asked our contacts to introduce us
to contributors and maintainers for the purpose of this study. Table
3 summarizes the demographics of the population of the intervie-
wees. The experience is the number of years the interviewee spent
in contributing to open source. Maintainers have final responsibil-
ity to merge the code and ensure an adequate review has occurred
before the merge. They also direct the contributors and reviewers,

EASE 2020, April 15–17, 2020, Trondheim, Norway Alami, et al.

making sure that they connect to each other appropriately, often
serving as dispatcher. Contributors are developers and sometimes
volunteer to review other developers’ code.

Data Collection. As the subjects were distributed geographically,
all interviews were conducted using Google Meet (a video confer-
encing tool). The interviews lasted from 40 minutes to an hour, and
they generated, in average, 12 pages of verbatim. All interviews
were transcribed from recorded interviews.

Analysis. We used thematic coding [6, 14] to analyze the data, fol-
lowing the guidelines of Robson and McCartan [30] and of Miles
and coauthors [24]. The iterative analysis begun in the early stages
of the data collection and continued throughout the study. The
responses were coded by examining the data line-by-line through
the lens of the following questions: what is this saying? What does
it represent? What is happening here? What are they trying to
convey? What is the process being described? Once the responses
were coded, we could find patterns in statements and ideas that
were then suggestive of a theme (i.e. a concept or implied topic
that organizes a group of repeating ideas that help to understand
the responses related to the research question). After identifying
and giving names to the basic meaning units, we grouped them in
categories by similarity. Table 4 shows examples of our codes and
their categories.

We stopped conducting interviews, when we attained saturation
so when (1) all the data are accounted for, with no outlying codes
or categories; (2) every category is sufficiently explained in depth
by the data that support it; and (3) there is enough data to ensure
the research questions can be answered.

4 FINDINGS
4.1 RQ1: Decision Making in PR Evaluation
We identify three styles of governance for pull requests in our data:
(1) protective, (2) equitable, and (3) lenient. Each of these styles has
certain characteristics and qualities. Table 5 represents the studied
communities governance styles.

4.1.1 Protective. This style is defensive; it values trust, relation-
ships and reliability of the contributor. The Linux Kernel community
describe this style of pull request evaluation as “no, by default.” In
this community, the contributions are often either not thoroughly
evaluated or rejected without due diligence. Interviewee 24 stated,
“I communicate with the maintainer a lot. In general, he says no, unless
he cannot say no. You know that is kind of his philosophy. I saw this
view elsewhere in the Linux community”. Winning the approval of
the gatekeeper is critical. It requires persistence and accumulated
trust (reputation). Interviewee 20 said, “It’s easy for me to get patches
in because people in this community trust me and know who I am.
Basic patches just go in easily because the maintainer trusts me. He
knows that I will be around. If I submit a big chunk of code, and he
does not know me, I may just disappear. Maintainers are very con-
scious about whether I know this guy ... the maintainer has to trust
that the person will be around”.

This attitude appears to be a gate that signals specific beliefs,
such as the fact that commitment to the community must be demon-
strated by the potential contributor, and winning the approval of

the gatekeeper is critical. This necessary trust between contributor
and gatekeeper comes from an ongoing relationship between the
two individuals that exhibits trustworthiness. Once the contributor
succeeds in dealing with the “no”, then, the contribution is evalu-
ated for its technical merits as explained by this interviewee, “On
some parts of the kernel building trust is essential, and there is a clear
social entry barrier. It has some downsides for beginners. Yet it’s un-
derstandable, as changes in the kernel always come with some kind of
maintenance overhead, and maintainers want people that have proven
to take ownership of their contributions ... However, once a patch is
considered, then it goes through thorough vetting.” (interviewee 24)

Protective is the PR governance style that relies on trust, rela-
tionship building and the contributor’s reliability.

The interviews data shows that the Linux Kernel community PRs
evaluation process exhibits the characteristics of a protective style.
It appears that the protective style of governance is distinctive to
the Linux kernel community that prioritize trust, reliability, and
the contributor-maintainer relationship.

4.1.2 Equitable. The equitable governance style is about being fair
and impartial regardless of who is the contributor. It is transac-
tional in nature. The PRs submission evaluation is concerned with
technicalities and less with social aspects. Interviewee 3 stated, “We
try to be very impartial, we try not to make interactions very personal
because code change isn’t about friends it’s not about being friendly
it’s about managing a technology. And so there is a very straightfor-
ward mechanism of submitting code changes”. This was echoed by
many interviewees in several communities. Another interviewee
stated, “It’s very transactional, and that’s just one way of doing it
and it’s a way that we like because it keeps personalities out of it and
it makes rejections not personal ... Yes we tend to keep personalities to
minimum” (Interviewee 9).

In this style, the community principles overrule any leniency
toward contributors. Rejection is not loosely applied, but it is a social
responsibility. Interviewee 7 stated, “Rejections of pull requests are
a social responsibility and are taken with a fairness in mind”. The
community exhibiting an equitable style applies a set of principles
seriously during the evaluation process. Interviewee 8 stated, “There
are principles for evaluating pull requests, and we religiously obey
them...and we will usually reject a pull request if it doesn’t hold up to
these principles”. FOSSASIA and Odoo communities appear to be
equitable.

Equitable is the PR governance styles that values fairness and
rigorous application of community principles.

4.1.3 Lenient. The lenient style of pull request reviews is a tol-
erant and compassionate style of governance prioritizing growth
and openness of the community. The lenient governance style was
prominent in the data collected from the Coala community. Intervie-
wee 27 explained, “We accept errors. Instead of rejection, we embrace
the enthusiasm of the contribution”. “My first PR was reviewed 65
times but not rejected” (Interviewee 26). The community is willing
to invest in the contributors abilities by mentoring them to learn
how to submit PRs that meet the community standards. This in-
vestment has to pay off at one stage, as this interviewee explains,

How Do FOSS Communities Decide to Accept Pull Requests? EASE 2020, April 15–17, 2020, Trondheim, Norway

Category Code or Theme Definition Example of verbatim

Software Engi-
neering Princi-
ples

Quality Quality is a subjective concept to FOSS contributors.
This subjectivity is offsetted by reaching a consen-
sus about when a piece of code make a “quality”
contribution.

I am not sure there is a specific way to assess quality. We can
read through the code and we know good code from bad code.
It is quite subjective. However, in our community, there is a
requirement for a minimum 3 reviewers to approve code. That
makes it objective. Interviewee 28

Avoid Technical Debt Technical debt is the owing inherited from a con-
tribution when it doesn’t meet certain quality and
design requirements.

I will not add something that increases my maintenance burden
unless it’s very compelling functionality or an obvious bugfix.
I can’t maintain a system I don’t fully understand, so I like
keeping things lighter and cutting off edge cases rather than
adding technical debt I don’t have time to pay off. Interviewee 8.

Social Norms Trust Trust is the unyielding belief that the person is
truthful and reliable.

There are obviously criteria that have to do with the contributor,
I would mainly look for reliability and trustworthiness of the
contributor. Interviewee 9.

Mentoring Mentoring is establishing a support relationship
between a mentor and a newcomer. A mentor is
someone who partners with a newcomer during
his or her early period of engagement with the
community. The mentor offers advice and guidance
to help foster and promote the development of a
newcomer. The mentor knows the community, its
products and processes, and can be an effective
source of advice and encouragement.

I had a mentor for 3 years. He helped me to become a better
developer and an effective member of the community Intervie-
wee 27

Product Vision Feature within the commu-
nity vision for the product

Some FOSS communities set a vision for their prod-
ucts. Contributions have to fit within the defined
vision and goals.

My pull request have been rejected because generally, the main-
tainer does not find the feature aligned with the goals of the
project. Interviewee 16

PR Governance Protective Protective means designed or intended to guard or
shield the code base from undesired and low quality
contributions. It operates based on trust, relation-
ship building and the contributor’s reliability.

It’s easy for me to get patches in because people in this commu-
nity trust me and know who I am. Interviewee 20

Equitable Equitable means fair and impartial, all contribu-
tions are judged for their technical merits and suit-
ability for the community product’s vision.

Contributions are assessed fairly and based on their quality not
the contributor. Sometimes, it feels transactional and unsup-
portive. Interviewee 9

Lenient Lenient means tolerant for errors but at the same
time it does not compromise quality. Contributors
are mentored to elevate the quality of their contri-
bution to mergeable standards.

When I joined the community, my pull requests were not re-
jected. Instead, I was shown by the mentor how to improve them
and make them mergeable. Now, I produce high quality code,
because I learned. Interviewee 27

Table 4: Examples of Categories and Themes with definitions

Communities Protective Equitable Lenient

FOSSASIA ✓
Odoo ✓
DuckDuckGo ✓
Linux Kernel ✓
Coala ✓

Table 5: The studied communities PR governance styles

“You can’t spoon-feed the developers all the time either. They have to
demonstrate their abilities” (Interviewee 27).

The lenient governance is based on the belief that any contribu-
tion is an asset that should not be ignored. A contribution carries an
enthusiasm that should be leveraged for the benefit of the commu-
nity. Interviewee 26 stated, “We have a rule in our community that
we never, ever reject a PR. Instead, we manage the contribution and
improve it. We make every PR mergeable”. Another said, “Rejections

kill motivation and, it is a rude thing. We instead steer the contribution
to a positive direction by making it better, and get it merged” (Inter-
viewee 18). However, this is not a compromise of quality. Lenient
communities ensure quality by mentoring contributors to elevate
their contributions to mergeable standards. We observed that the
DuckDuckGo and Coala communities appear to be lenient.

Lenient is the PR governance style that reduces social barri-
ers and assumes that every contribution can be elevated to a
mergeable state.

The literature suggests that socio-technical factors interfere with
these perceived strategic styles of governance. FOSS reviewers re-
view social signals more than they reported they did [12]. Ford,
et al. report that, while reviewers reviewed code most (64%), they
also reviewed technical (28%) and social signals (17%). Even when
they do not realize it, reviewers consider social signals. Developers

EASE 2020, April 15–17, 2020, Trondheim, Norway Alami, et al.

should stay aware of their image on various social networks. Shar-
ing one’s image on social networks makes one trust that a person
is who they say they are. If one feels unsure about revealing their
own identity, they should use a pseudonym frequently enough to
make it recognized. Completing the online profile is also impor-
tant. In summary, identity is very important in today’s open source
communities [12].

The protective and lenient PR governance styles show that in
some instances, the person and the code matter, while, the equitable
style focuses on the code quality. Interviewee 6 stated “the quality is
more important than the person”. The commonality across these PR
governance styles is safeguarding quality. Interviewee 25 explains,
“the willingness to insist on quality is key to the success of PRs processes
in FOSS projects”. “The process in place seeks the best. The best code
quality possible” (Interviewee 20). PR governance delivers good
outcomes. It is achieved by both the creation and use of systems
that ensure consistency and repeatability of processes.

Each PR governance reduces the threat of poor code. Consis-
tency and governance create a culture of excellence. “The quality is
the main driver that drive our decision to either accept or reject a PR.
The processes are there to support and control the decision-making”
(Interviewee 2). This perspective contribute to the sustainability
of software quality in FOSS. Interviewee 2 further explains, “first
reliability of the code. Open source is ever changing, people come and
go. High quality code and the ability to read the code and understand
it is critical”. This belief was echoed across the various PR gov-
ernance styles. A voice from a lenient community said, “We keep
contribution’s code quality in the check, but at the same time we are
trying to be lenient towards contributors to really help them out to
get the codes to the level where it can be merged” (Interviewee 29).
These beliefs and behavior create a sustainable culture for quality.

4.2 RQ2: Principles of Evaluating Pull Requests
4.2.1 Software Engineering Principles. In the three styles of gov-
ernance, once the PR is considered, it goes through an evaluation
against a set of software engineering principles. The proposed
change must also add clear value to the project. As this interviewee
explained, “We measure the success of a pull request by its ability to
add value to the application or the community. It could be for example
a legitimate feature, a payment of technical debts, etc.” (Interviewee
27).

There is a strong belief among the studied communities that
quality is supreme, and quality is seen as a necessary quality of
pull requests. Interviewee 15 stated, “In open source projects, we like
to achieve higher code quality because it is open source and we will
need to get good quality code”. Another one asked how he evaluates
PRs, he replied, “quality, quality, quality ... it always comes first”
(Interviewee 3). Interviewee 20 went so far as to claim that “there
are people who give up; not everybody can write the required quality
of code.”

In the studied communities, quality is constructed of seven prin-
ciples: (1) PR atomicity, (2) maintainability, (3) avoiding technical
debt, (4) passing peer code review, (5) Compliance with best prac-
tices, (6) documentation, and (7) passing tests. These principles are
not always documented and communicated. However, reviewers
are aware of them and claim to rigorously apply them. Interviewee

8 stated, “we have a well-established set of principles by which we
evaluate PRs and we say ’no’ when a PR doesn’t meet our standards”
(Interviewee 8).

PR Atomicity. Atomicity is a requirement that the PR should be
composed from relatively independent parts that can be understood
separately and (possibly) reused. Our interviewees were aware of
the evaluation criteria for PR atomicity, and they made it clear
that atomicity is a key aspect of quality. Interviewee 27 stated, “a
pull request should be addressing one atomic concern and not more”.
The concept of atomicity is a common belief. Interviewee 9 stated,
“messy and bulky code is no good in open source”. That it seems
atomicity is ingrained in FOSS contributors’ behavior. “Anything
more than 50 lines of changes, and my brain doesn’t have the capacity
to do a good code review” (Interviewee 8).

Maintainability. Coleman, et al. [5] define maintainability as “the
ease with which a software system of component can be modified
to correct faults, improve performance or other attribute, or adapt
to a change environment”. The interviewees strive to achieve code
maintainability. Interviewee 8 states “this is open source, we have to
keep maintainability in mind all the time. The code must be neat and
tidy and caters for long term changes”. Maintainability also includes
looking after the long-term of the project. Interviewee 24 states
“so many projects get derailed by accepting too many new features
without evaluating them for long-term maintainability, and it is a
problem that is avoided by a simple two-letter word - no.”

Technical Debt. The term “technical debt” describes a universal
problem that software engineers face, which is the problem of how
to balance immediate value with long-term quality. The term refers
to a shortcut made for expediency, bad code, or inadequate code.
This “debt” accumulates and causes increasing costs, or interest,
to system quality in maintenance and evolution. This debt can be
taken on deliberately, and then monitored and managed as principal
repaid in order to achieve business value. Architectural choices are
the major source of technical debt and often occur as a result of
emphasis on fast delivery of features and limited budget [11].

Some interviewees in this study indicate an awareness of tech-
nical debt and its effects. They actively look at avoiding it. “I will
not accept something that increases my maintenance burden ... I can’t
maintain a system that I don’t fully understand, so I like keeping
things lighter and cutting edge. I strive to avoid technical debt, which
we do not have time to pay off” (Interviewee 17). Our data shows that
maintainability and avoiding technical debts are tightly connected.
Avoiding technical debts enhances maintainability and assuring
maintainability encompass avoiding technical debt. Technical debt
is a contingent liability with impact on the internal software quali-
ties, primarily, maintainability and the evolution of the software.

Peer review. Before a code contribution can be added to the code
repository, it must receive a positive review by a pre-determined
number of reviewers, usually three to five. “We have a definite prin-
ciple that we have five reviewers that must approve the pull request”
(Interviewee 4). Each reviewer examines the code visually and sub-
jectively to assess its quality. Reviewers provide necessary feedback
concerning the code review. If they submitted code that does not
meet the reviewers’ judgment of quality code, then the code goes
through cycles of iterative improvements until it is deemed good

How Do FOSS Communities Decide to Accept Pull Requests? EASE 2020, April 15–17, 2020, Trondheim, Norway

enough for the code repository [1]. The studied FOSS communi-
ties believe that peer review is the mechanism that assures quality,
that it is a valuable quality assurance practice. Peer code review
is religiously adopted in the studied FOSS communities. “There is
no PR assessment without code review obviously. We have this non-
negotiable rule that every PR must pass code review” (Interviewee 1).

Best practices. The studied communities have agreed on best prac-
tices for the programming languages they use. During the evalua-
tion of PRs, reviewersmake sure that these best practices are applied.
“Pull requests reviews must follow the community best practices” (In-
terviewee 4). In some communities, best practices go beyond the
coding conventions and guidelines. For example, in FOSSASIA, the
contributors’ conduct is also covered with a best practice evaluation.
“First thing is when we sign up for FOSSASIA contributing, there is
a list of rules that we have to follow, and these include being nice to
people who are around you, and secondly is the code and standards
for the code. The next thing is that we do not merge anything and
everything that comes to the repositories” (Interviewee 5).

Documentation. In FOSS, the documentation usually explains how
the code operates, how decisions are made during the program-
ming, and how to use and amend the code. “We really focus on
documentation because we believe a project can strive in a community
with knowledge being documented” (Interviewee 3).

Tests. The communities that we studied use various types of testing,
such as unit testing, continuous integration, and integration testing.
During pull request reviews, reviewers look to see if the PR has
passed the necessary tests. “We make sure there are proper tests to
verify that a pull request works as expected. Pull requests will not be
accepted without the proper tests” (Interviewee 27).

Once a PR is considered for a review, a set of software engineer-
ing principles are applied to assess its eligibility to be merged.

4.2.2 Social Norms. “Norms are properties of a group, they de-
scribe the typical or desirable behavior of a certain social group.”
Individuals know what behaviors are expected of them because
social norms are communicated through verbal messages and mod-
eled behaviors. Those not abiding by social norms are identified
informally by social cues such as being isolated or rejected. So-
cial norms are powerful and effective, and they are less resource
intensive than incentive based or punishment systems [26]. We
identified three social norms:

Trust. Trust is defined as the willingness of the community to rely
on the contributor, the principle of trusting the contributor as a
precondition for considering his or her code change. We observed
this in the Linux Kernel community. This principle is unique to the
protective governance style. Interviewee 24 stated, “Changes to the
kernel can be complex! I need to be able to trust the contributor to the
point that I know he will be around to take ownership of the code”.

Establishing trust requires time. This time element makes it
an entry barrier for newcomers. Other communities seem to have
addressed this type of barrier and aligned the process to work solely
with community principles. Interviewee 30 stated, “We don’t have
entry barriers, but we ask the newcomers to obey our principles”.

Contributor-Maintainer Relationship. Having a relationship with
the maintainer is an advantage in the process of getting a pull
request accepted. Interviewee 21 stated, “What helped is that I meet
these people in person. It’s a basic human thing. When you meet a
person, it’s not like a mailing list. Actually, it’s a physical thing; you
release a chemical called oxytocin”.

Mentoring. Mentoring is a practice put in place by some communi-
ties to help less experienced contributors to meet the community
standards. Experienced contributors and evaluators take the time
to work with the contributor to improve her submission. This ac-
tion encourages additional submissions by that person and other
observers as well.

Mentoring was observed in FOSSASIA, Coala, and DuckDuckGo
among others. Interviewee 13 described mentoring, “Pull requests
that cannot be merged require mentoring. We have enough patience to
work with the contributor to get it into a mergeable state. We mentor
the contributor to do so” (Interviewee 13).

Trust, the contributor-maintainer relationship and mentoring
are norms that take place during the evaluation process of PRs.

4.2.3 Product Vision. Some communities define a roadmap for
their product and document it. During the evaluation of PRs, the
proposed change is assessed whether it fits within the defined
roadmap. “We do not like to say no but we do to protect the evolution
of the project” (Interviewee 9).

Pull requests proposed changes must adhere to the community
roadmap for its products, in order to increase their chances of
being accepted.

4.3 Trustworthiness and Limitations
Qualitative researchers pursuit trustworthiness for validity and
credibility [31]. Trustworthiness is ensured by the establishment
of these four traits: credibility, transferability, confirmability and
dependability. Credibility refers to the confidence that the qualita-
tive researcher includes the truth in the research study’s findings.
Transferability is the quality of the research demonstrating how
the qualitative research can be applied to other contexts, that is
similar situations, similar populations, and similar phenomena. Con-
firmability refers to how neutral the findings of the research study
are, or how true the premise is that the responses are neutral and
do not show any potential bias or personal motivations of the re-
searcher. Dependability refers to the assurance that the study could
be repeated by other researchers and that the findings would be
consistent [18].

To establish credibility we used peer debriefing and member
checking. One author conducted the coding and the other two
authors validated the emerging codes and categories against the
raw data. Six debriefing sessions were organized. We also used
members checks to enhance the validity. We used it for narrative
accuracy checks, and interpretive validity. We sent the interviews
transcripts and description of the findings to the participants for
validation. We collected data from five communities. This should
strengthen the transferability of the findings.

EASE 2020, April 15–17, 2020, Trondheim, Norway Alami, et al.

We also used an audit trail to document and track the decisions
we made throughout the study. This allowed us to meet confirma-
bility requirements. An audit trail is the details of the process of
data collection, data analysis, and interpretation of the data. To
ensure dependability we compiled a research method that is s log-
ical, traceable, and clearly documented [38]. When the research
process is described thoroughly, the research audience is in a better
position to judge the dependability of the research. If the process of
the research can be audited, then it can ensure dependability [18].

Limitations. Linux and FOSSASIA intervieweeswere recruited through
our contacts in the community. This make the Linux and FOSSA-
SIA participants sample convenient. Convenience sampling has its
criticism; it may not be representative of the targeted population.

5 DISCUSSION
The pull request governance styles have a reason to exist. Some
are legacy, a result of years of ingrained culture and practice. Some
are well crafted strategies put in place after years of trial and er-
ror learning. In all cases, these governance styles impacts their
respective communities.

5.1 Protective
The protective governance style may create a “clique” culture diffi-
cult to access for newcomers. Newcomers may feel less important
than the established core members of the community. Yet the com-
munity always needs newcomers, as creativity requires fresh minds
and an ongoing flow of ideas and new contributions. Ostracizing
those who are not inside the community may hinder its evolution
and sustainability.

However, the protective style remains a good fit in some circum-
stances, such as when the FOSS project requires tight control over
its code. It may be the appropriate style for a community to choose
when they have an ongoing project where an influx of newcom-
ers is not important, or when it is high anyways. Tsay et al. write
that well-established and mature projects are more conservative
in accepting pull requests [39]. The Linux community is a success-
ful and mature project. Berger and coauthors note that the Linux
community is a “closed platform” using heavy-weight processes.
They also describe it as being a “centralized” structure; patches
have to pass thorough reviews through the maintainer hierarchy
[3]. They find it a justified practice when the project is developing
a highly technical system, with a high barrier of entry, and high
risk of introducing critical problems.

The protective style assigns relatively higher importance to com-
mitment, relationships, and trust. Dabbish et al. report that both
the contributor and the community look for signals of commit-
ment. Frequency of recent submissions and the volume of activity
by developers is a useful signal to the maintainer, while historical
activity allows potential contributors to infer how well the project
was managed. Visible actions on artifacts indicate the intentions,
competence, and experience of the developers. Community support
is inferred from the attention given, such as following, watching,
and comment activity [7, 8, 23].

Relationships were shown to influence the evaluation of PRs.
A chance of acceptance is higher for submitters already known
to the core members of a project [40]. Also, maintainers interact

more politely in discussions with core members than with new
submitters [40]. The social connections between members of each
of these groups can be measured on social distance and prior in-
teraction values. Strong social connections increase the likelihood
of acceptance, as they are markers of trust and allow to lower the
assessment and coordination costs [33, 39].

5.2 Equitable
Although an equitable style of governance focuses on fair assess-
ment, it does remain quite rigid. It is not a suitable style for commu-
nities that want to grow fast and attract new contributors, especially
those with limited programming experience. Yet, this is the most
preferred style of governance among the respondents overall.

The equitable style is suitable for communities aiming to attract
experienced developers who are able to understand and incorporate
advanced software engineering principles into their contributions.
However, it does entry barriers for newcomers. Steinmacher et
al. identified a list of barriers for newcomers, amongst them the
need for orientation and technical hurdles [35, 36]. Communities
which opt for this style of governance should communicate their
evaluation principles clearly to contributors. They should educate
contributors about their software engineering principles in their
documentation.

5.3 Lenient
Mentoring contributors is a key part of the lenient governance style.
This style is particularly well suited to communities with contribu-
tors with varied but limited experience in software development.
An acceptance of the first contribution is an important step in a
newcomer’s socialization. She or he can learn the conventions and
contribution rules through observation, lurking, and direct men-
toring from more experienced members. Successful socialization
allows potential contributors to learn the project norms and to iden-
tify the core members, where newcomers need to recruit allies [40].
After an initial period of observation, lurking, newcomers can as-
similate the norms and values of the community. Then they begin
to build an identity and become more visible to the core members,
enrolling allies in the community. Once they demonstrate that they
have the technical expertise, they are accepted by a community.
Then they become an insider, not simply crafting material arti-
facts, but maintaining social relationships as well. They become
a maintainer of the project, coaching and mentoring newcomers
[10].

Attracting newcomers to communities is a major challenge. Fear
of rejection that may harm reputation hinders some from contribut-
ing [16]. Lenient communities are aware of this issue and employ a
strategy that minimizes rejections. Project members should show
empathy toward new contributors, be engaged, and demonstrate
fairness and positive attitude as mentors. Responsiveness and clear
roadmap have also been identified by others as important factors
encouraging newcomers [16, 17]. Berger et al. define variability
encouragement as an open attitude to contributions from a broader
ecosystem [3], and observed that some very fast growing ecosys-
tems have openly and actively designed their processes and archi-
tectures to encourage external innovation.

How Do FOSS Communities Decide to Accept Pull Requests? EASE 2020, April 15–17, 2020, Trondheim, Norway

Sim and Holt explain that a major downside of mentoring is
that it is very time consuming for the senior developers in the
community [32]. To some extent, the time required is compensated
by attracting newcomers more easily.

5.4 Community Governance Vs. PR
Governance

“Every development organization makes decisions and has some
form of governance – this may be done explicitly or implicitly” [4].
FOSS projects are characterized by a specific framework through
the lens of transactional cost economics called “bazaar” governance.
This mode of governance is neither market nor hierarchy nor net-
work, but is a governance system in its own right [9, 19].

FOSS governance is seen as the means of achieving the direction,
control and coordination of autonomous individuals or organiza-
tions [22]. Community managed governance features are indepen-
dence, pluralism, representation, decentralized decision making,
and autonomous participation. The communities have a diverse
group of participants that rests with the members of the community
itself. An independent community allows decisions to be made at
the lowest levels of the hierarchy, volunteers who may not be paid
for their work. An independent community is deemed independent
by its basis of material support, decision making structure, and
independence from authority. A pluralistic community has a geo-
graphically diverse base of developers, community members who
use a variety of ways to manage conflict, and leaders that emerge.
Decision making occurs at the code level, the sub-project level, and
the community wide level. Examining how members gain code
level access rights, decision making rights, and the degree to which
project communications and activities are publicly available lets
one determine the mode of decision making [25].

PR governance is a process governance. Richardson [28] charac-
terizes process governance as “consists of the set of guidelines and
resources that an organization uses to facilitate collaboration and
communication when it undertakes enterprise process initiatives.”
PR governance is the set of rules and controls that take place during
the process of pull requests evaluations. It is doing what is required
to assure that quality is produced by the process in themost efficient
and effective manner possible. This is governance at the operational
level of the community. Whether there is a link between community
level governance and operational level governance is not something
we explored.

6 RELATEDWORK
The topic of PR-based collaboration has attracted some attention
recently [16, 17, 21, 23, 27, 33, 34, 41–44]. To our best knowledge, no
prior work attempts to conceptualize and distinguish the different
governance styles in PR-based collaboration.

Soares and coauthors [33] find that the chance of a merge is 32%
lower for first time contributions, supporting our intuition that
the protective and equitable styles of governance are unfriendly to
newcomers. In general, the chance of acceptance for a PR is 17%
higher when tests are included, and 26.2% lower whenmany lines of
code are changed [39]. This is inline with our findings, that passing
tests and modularity of contributions are key criteria applied in
evaluating PRs. The study has also shown that social distance and

prior interaction with the maintainer are key influencers on ac-
ceptance chances [39]. This is consistent with our observation that
social connections, trust, relationship building and commitment to
the community, are considered in the PR evaluation processes.

Tsay et al. [40] note that maintainers were particularly concerned
with the appropriateness of the contribution’s actual content and
direction. Appropriateness in this study is defined as fitting the
product vision set by the community. We concur that adhering to
the product vision is one of the evaluation criteria for PRs in the
studied communities.

Marlow, et al. [23] study examines how interpersonal impres-
sions influence evaluations of others’ contributions. The analysis
identified three scenarios where users sought out more information
about each other. These scenarios are discovery, informing inter-
action, and skill assessment. Individuals form impressions about
specific areas of expertise so that they can assess ways the coder
can assist the project. They also make judgments about individual’s
personality. Arguments or rudeness in posting often are seen as in-
dicators of uncooperativeness or arrogance [23]. This study concurs
and complement our findings. It confirms that social inferences are
part of the PR evaluation process. It complements our findings by
suggesting that GitHub social signals are leveraged to make social
inferences about contributors.

In FOSS communities, proper evaluation is seen as more im-
portant than addition of a feature. Developers prefer to postpone
reviews rather than rush through them [29]. We observed similar
attitude amongst our interviewees. They prefer investing great care
and attention to detail rather than following a pre-defined check-
list. This rigour coupled with the passion for the project lead to
excellence in the evaluation process.

7 CONCLUSION
Modern software engineering heavily relies on open-source soft-
ware. FOSS communities mostly emerges and organizes organ-
ically [37]. Measuring and tracking the organizational structure
type and characteristics of an observable community is critical
to achieve quality because identification of these systems provide
organization problems that recur, such as motivation or trust, iso-
morphism, software failures, lack of centralized management of
leadership, and stagnation. Software engineering research still lacks
reference quality and models, but measuring community quality
models can improve quality of software [37].

The PR governance styles foster a productive development and
ensures high code quality. The controls and rules aim to improve
the quality of source code changes made by developers, and it is a
transparent process.

The PR evaluation process has a significant impact on contrib-
utor’s motivation, so it is important to understand it. There is
much more to learn from contribution evaluation than just sim-
ply whether the contribution is accepted or rejected, for instance
we can understand better how to behave as community managers,
reviewers, members, and how to enter communities more effec-
tively. PR governance styles can be protective, with tight control
of contributions; equitable, with a focus on technical fairness; and
lenient, prioritizing community growth and retention by means of
mentorship. Clearly, software engineering principles are not the

EASE 2020, April 15–17, 2020, Trondheim, Norway Alami, et al.

only criteria applied in PR evaluation; social and strategic criteria
are also of high importance.

ACKNOWLEDGMENTS
Work supported by the XYZ programme, grant No 999999. We
thank the interviewees for making this research possible.

REFERENCES
[1] Adam Alami, Marisa Leavitt Cohn, and Andrzej Wasowski. 2019. Why does code

review work for open source software communities?. In Proceedings of the 41st
International Conference on Software Engineering. IEEE Press, 1073–1083.

[2] Maria Antikainen, Timo Aaltonen, and Jaani Väisänen. 2007. The role of trust in
OSS communities—case Linux Kernel community. In IFIP International Conference
on Open Source Systems. Springer, 223–228.

[3] Thorsten Berger, Rolf-Helge Pfeiffer, Reinhard Tartler, Steffen Dienst, Krzysztof
Czarnecki, Andrzej Wąsowski, and Steven She. 2014. Variability mechanisms
in software ecosystems. Information and Software Technology 56, 11 (2014),
1520–1535.

[4] Sunita Chulani, Clay Williams, and Avi Yaeli. 2008. Software development
governance and its concerns. In Proceedings of the 1st international workshop on
Software development governance. ACM, 3–6.

[5] Don Coleman, Dan Ash, Bruce Lowther, and Paul Oman. 1994. Using metrics to
evaluate software system maintainability. Computer 27, 8 (1994), 44–49.

[6] Daniela S Cruzes and Tore Dyba. 2011. Recommended steps for thematic synthesis
in software engineering. In 2011 International Symposium on Empirical Software
Engineering and Measurement. IEEE, 275–284.

[7] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social coding
in GitHub: transparency and collaboration in an open software repository. In
Proceedings of the ACM 2012 conference on computer supported cooperative work.
ACM, 1277–1286.

[8] Paul B De Laat. 2010. How can contributors to open-source communities be
trusted? On the assumption, inference, and substitution of trust. Ethics and
information technology 12, 4 (2010), 327–341.

[9] Benoit Demil and Xavier Lecocq. 2006. Neither market nor hierarchy nor network:
The emergence of bazaar governance. Organization studies 27, 10 (2006), 1447–
1466.

[10] Nicolas Ducheneaut. 2005. Socialization in an open source software community:
A socio-technical analysis. Computer Supported Cooperative Work (CSCW) 14, 4
(2005), 323–368.

[11] Neil A Ernst, Stephany Bellomo, Ipek Ozkaya, Robert L Nord, and Ian Gorton.
2015. Measure it? manage it? ignore it? software practitioners and technical
debt. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. ACM, 50–60.

[12] Denae Ford, Mahnaz Behroozi, Alexander Serebrenik, and Chris Parnin. 2019.
Beyond the code itself: how programmers really look at pull requests. In Pro-
ceedings of the 41st International Conference on Software Engineering: Software
Engineering in Society. IEEE Press, 51–60.

[13] Linux Foundation. [n. d.]. 2017 Linux Kernel Report
Highlights Developers’ Roles and Accelerating Pace of
Change. https://www.linuxfoundation.org/blog/2017/10/
2017-linux-kernel-report-highlights-developers-roles-accelerating-pace-change/

[14] Graham R Gibbs. 2007. Thematic coding and categorizing. Analyzing qualitative
data 703 (2007), 38–56.

[15] Georgios Gousios, Martin Pinzger, and Arie van Deursen. 2014. An exploratory
study of the pull-based software development model. In Proceedings of the 36th
International Conference on Software Engineering. ACM, 345–355.

[16] Georgios Gousios, Margaret-Anne Storey, and Alberto Bacchelli. 2016. Work
practices and challenges in pull-based development: the contributor’s perspective.
In 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE).
IEEE, 285–296.

[17] Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie Van Deursen.
2015. Work practices and challenges in pull-based development: the integra-
tor’s perspective. In Proceedings of the 37th International Conference on Software
Engineering-Volume 1. IEEE Press, 358–368.

[18] E. G. Guba and Y. S. Lincoln. 1985. Naturalistic inquiry (Vol. 75). Beverly Hills,
CA: Sage (1985).

[19] Kieran Healy and Alan Schussman. 2003. The ecology of open-source software
development. Technical Report. Technical report, University of Arizona, USA.

[20] Guido Hertel, Sven Niedner, and Stefanie Herrmann. 2003. Motivation of software
developers in Open Source projects: an Internet-based survey of contributors to
the Linux kernel. Research policy 32, 7 (2003).

[21] Jing Jiang, Yun Yang, Jiahuan He, Xavier Blanc, and Li Zhang. 2017. Who should
comment on this pull request? analyzing attributes for more accurate commenter
recommendation in pull-based development. Information and Software Technology
84 (2017), 48–62.

[22] M. Lynne Markus. 2007. The governance of free/open source software projects:
monolithic, multidimensional, or configurational? Journal of Management &
Governance 11, 2 (2007).

[23] Jennifer Marlow, Laura Dabbish, and Jim Herbsleb. 2013. Impression formation
in online peer production: activity traces and personal profiles in github. In
Proceedings of the 2013 conference on Computer supported cooperative work. ACM,
117–128.

[24] Matthew B Miles, A Michael Huberman, and Johnny Saldana. 2014. Qualitative
data analysis: A methods sourcebook. 3rd. Thousand Oaks, CA: Sage.

[25] Siobhán O’Mahony. 2007. The governance of open source initiatives: what does
it mean to be community managed? Journal of Management & Governance 11, 2
(2007), 139–150.

[26] Elizabeth Levy Paluck and Laurie Ball. 2010. Social Norms Marketing to Reduce
Gender Based Violence. IRC Policy Briefcase (2010).

[27] Mohammad Masudur Rahman and Chanchal K Roy. 2014. An insight into the
pull requests of github. In Proceedings of the 11th Working Conference on Mining
Software Repositories. ACM, 364–367.

[28] Clay Richardson. 2006. Process governance best practices: Building a BPM center
of excellence. Business Process Trends (2006).

[29] Peter C Rigby and Margaret-Anne Storey. 2011. Understanding broadcast based
peer review on open source software projects. In 2011 33rd International Confer-
ence on Software Engineering (ICSE). IEEE, 541–550.

[30] Colin Robson and Kieran McCartan. 2016. Real world research. John Wiley &
Sons.

[31] Andrew K. Shenton. 2004. Strategies for ensuring trustworthiness in qualitative
research projects. Education for information 22, 2 (2004).

[32] Susan Elliott Sim and Richard C Holt. 1998. The ramp-up problem in software
projects: A case study of how software immigrants naturalize. In Proceedings of
the 20th international conference on Software engineering. IEEE, 361–370.

[33] Daricélio Moreira Soares, Manoel Limeira de Lima Júnior, Leonardo Murta, and
Alexandre Plastino. 2015. Acceptance factors of pull requests in open-source
projects. In Proceedings of the 30th Annual ACM Symposium on Applied Computing.
ACM, 1541–1546.

[34] Daricélio Moreira Soares, Manoel L de Lima Júnior, Leonardo Murta, and Alexan-
dre Plastino. 2015. Rejection factors of pull requests filed by core team developers
in software projects with high acceptance rates. In 2015 IEEE 14th International
Conference on Machine Learning and Applications (ICMLA). IEEE, 960–965.

[35] Igor Steinmacher, Tayana Conte, Marco Aurélio Gerosa, and David Redmiles.
2015. Social barriers faced by newcomers placing their first contribution in open
source software projects. In Proceedings of the 18th ACM conference on Computer
supported cooperative work & social computing. ACM, 1379–1392.

[36] Igor Steinmacher, Gustavo Pinto, Igor Scaliante Wiese, and Marco Aurélio Gerosa.
2018. Almost there: A study on quasi-contributors in open-source software
projects. In 2018 IEEE/ACM 40th International Conference on Software Engineering
(ICSE). IEEE, 256–266.

[37] Damian A Tamburri, Fabio Palomba, Alexander Serebrenik, and Andy Zaidman.
2019. Discovering community patterns in open-source: A systematic approach
and its evaluation. Empirical Software Engineering 24, 3 (2019), 1369–1417.

[38] Sarah J Tracy. 2010. Qualitative quality: Eight “big-tent” criteria for excellent
qualitative research. Qualitative inquiry 16, 10 (2010), 837–851.

[39] Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. Influence of social and
technical factors for evaluating contribution in GitHub. In Proceedings of the 36th
international conference on Software engineering. ACM, 356–366.

[40] Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. Let’s talk about it: evaluat-
ing contributions through discussion in GitHub. In Proceedings of the 22nd ACM
SIGSOFT international symposium on foundations of software engineering. ACM,
144–154.

[41] Yue Yu, Huaimin Wang, Vladimir Filkov, Premkumar Devanbu, and Bogdan
Vasilescu. 2015. Wait for it: determinants of pull request evaluation latency on
GitHub. In 2015 IEEE/ACM 12th Working Conference on Mining Software Reposito-
ries. IEEE, 367–371.

[42] Yue Yu, Huaimin Wang, Gang Yin, and Charles X Ling. 2014. Who should review
this pull-request: Reviewer recommendation to expedite crowd collaboration. In
2014 21st Asia-Pacific Software Engineering Conference, Vol. 1. IEEE, 335–342.

[43] Yue Yu, Huaimin Wang, Gang Yin, and Tao Wang. 2016. Reviewer recommenda-
tion for pull-requests in GitHub: What can we learn from code review and bug
assignment? Information and Software Technology 74 (2016), 204–218.

[44] Jiaxin Zhu, Minghui Zhou, and Audris Mockus. 2016. Effectiveness of code
contribution: From patch-based to pull-request-based tools. In Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, 871–882.

F
Appendix F: Paper F

198

The 7 Habits of Good Pull Request Evaluation
Adam Alami

IT University of Copenhagen
Marisa Leavitt Cohn

IT University of Copenhagen
Andrzej Wąsowski

IT University of Copenhagen

ABSTRACT
There are over two million organizations actively using Github.
This number grew by 40% from last year. This year, more than 96
million of the world’s software projects collaborate in Github. This
collaboration is managed by a process known as pull request (PR)
where a contribution is proposed and discussed. PRs are evaluated
by the receiving community for appropriateness and correctness
before a decision can be made whether to merge or not. It may
sound that the process is straightforward, but it’s not—It is loaded
with social norms and technical judgments. In this study, we aim
at understanding contributors’ experience during the course of PR
evaluations. We collected 58 cases of fairly and unfairly assessed
PRs. We find that a small number of good practices (habits) result in
a positive experience for the contributor. The obtained framework
suggests a set of good practices to enhance the PR evaluation expe-
rience for all stakeholders. It aims to help communities to improve
guidelines for PR evaluation.

CCS CONCEPTS
• Software and its engineering→Open sourcemodel; •Human-
centered computing →Collaborative and social computing.

KEYWORDS
Open source software, pull request, Code review
ACM Reference Format:
Adam Alami, Marisa Leavitt Cohn, and Andrzej Wąsowski. 2020. The 7
Habits of Good Pull Request Evaluation. In ,. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Over two hundreds million pull requests have been submitted to
GitHub, the third of this number only in 2018. These pull requests
are the product of the collaboration of over 31 million developers.1
A strong testimony for the growth and the popularity of pull-based
development model. Pull-based development is a model of software
development where the project’s main repository is not shared
among potential contributors, but contributors fork the repository
and make their changes independently. The role of the integrator
who merges the forks is a critical. The integrator acts as a guardian
for quality while keeping many contributors actively involved in
1https://octoverse.github.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEM’2020, Empirical Software Engineering and Measurement (ESEM)
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

the community. She must facilitate consensus and timely evaluation
of the contributions, while enforcing online discussion etiquette
and on-boarding of new contributors. The two key factors that
integrators are concerned with are quality and prioritization [11].
The most frequent challenges encountered by contributors to a
project are social in nature, specifically lack of responsiveness from
integrators and a lack of empathy from integrators, along with
difficulties in communicating change rationale [10].

The evaluation process can have an important impact on con-
tributor motivation, so it is important to understand the factors
affecting evaluation [35]. The outcome of an evaluation is farther
reaching than just whether the contribution is accepted. It impacts
themotivation of a new contributor to contribute again. Only 15.38%
of newcomers continue to contribute to FOSS projects [32]. The
acceptance rate of contributions to FOSS projects is ca. 31%-40%
depending on the community [2, 16, 20, 31, 36]. Lee et al. cite dis-
satisfaction with the process of submission as key reason why one
time contributors abandon communities after the first accepted con-
tribution [17]. The picture of PR evaluation found in FOSS studies
is not rose. Most contributors see the integration as a process with
an unpredictable outcome [16]. The objective of this study is to
identify the contributors’ experience when they submit a PR. To
understand this we pose the following research question:

RQ:What do contributors experience when submitting a pull request?

To answer this question, we asked contributors to show us examples
of pull requests evaluated fairly and unfairly (in their personal opin-
ion), and to argue why they have selected those PRs. We performed
a qualitative analysis of the comments and the PR discussions. Seven
qualities emerged as determinants of good contributor’s experience
in pull requests evaluation.

We identified a set of seven habits (tongue in cheek)—good prac-
tices for pull request evaluations. When these practices are inte-
grated into a PR evaluation, the process is deemed fair by contribu-
tors.When they aremissing or violated, the evaluation is considered
unfair. For example, we identified engagement as a good practice.
When a PR receives the adequate engagement level, the process is
likely to be considered fair, but engagement is difficult to achieve
as it requires intensity. Intensity is the number of community mem-
bers on top of the maintainer who are involved in reviewing and
commenting. When the number of comments and reviews exceeds
two, the PR review process exhibits a vibe and energy, generates
strong motivation for the change.

Another example of a good practice is communication. The com-
munication tone adopted during the evaluation process is critical
for the success of establishing engagement when reviewing pull
requests. When the tone of the communication is positive and pro-
fessional, it steers the evaluation process in a positive direction.
In addition to engagement and communication, we found that ap-
propriateness, simplicity, compliance, support, and honest decision
support the evaluation process positively.

ESEM’2020, Empirical Software Engineering and Measurement (ESEM) Alami, et al.

Good Practices Contributor Maintainer Community

Engagement ✓
Communication ✓ ✓ ✓
Appropriateness ✓
Simplicity ✓
Compliance ✓
Support ✓
Decision ✓

Table 1: PR evaluation practices and involved stakeholders

Figure 1: FOSS PR Evaluation Good Practices Framework

2 FINDINGS
For a contributor, submitting a PR is a journey with unexpected
course of events and outcomes. Unknowns and barriers unfoldwhen
the stakeholders bring deficient practices into the process. Making
the experience unpleasant and demotivating. Still, the journey can
be smooth, with minimal breaks, no sudden changes and shifts, if
stakeholders adhere to a small number of good practices.

Based on an analysis of past pull request discussions, we suggest
a framework of good practices for PR evaluation to implement,
document and communicate in FOSS communities. In this section,
we present and discuss the framework (Fig. 1). The framework
is stretched over two dimensions: (1) accountables and (2) good
practices. Accountables are the stakeholders responsible for certain
conducts. Good practices are the expected qualities and behaviours
to take place during the PR evaluation process or conditions that
the PR itself need to fulfill.

Figure 2: Example of a PR with good engagement

Our findings (Fig. 1) suggest that in order for contributors to
enjoy their journey, the stakeholders of the PR evaluation process
should habitualize several practices: (1) engagement, (2) communi-
cation, (3) appropriateness, (4) simplicity, (5) compliance, (6) sup-
port, and (7) honest decisionmaking. These practices are the respon-
sibility of either the contributor, the maintainer, or the community
in general. Table 1 illustrates the distribution of responsibilities
across the PR evaluation stakeholders.

We collected the data, that was the base of our analysis, through
a survey. We asked respondents to supply two pull requests, one
fairly and one unfairly assessed. We collected a total of 58 cases. We
also asked the respondents to argue for their selection. The details
of the methods are summarized in Sect. 3.

In this report, we borrow names from Lewis Carroll [5]. Let Alice
be the contributor. The uncertainty that Alice is confronted with
throughout her time in Wonderland is akin to the environment
inhabited by the PR evaluation process. To an external onlooker,
submitting a PR may appear rooted in cold and hard facts. However,
just like Alice, the contributor will be tested by the complexity
of the working environment and its decision process. The culture
of FOSS communities may be predicated on the assumption of an
overall collective togetherness, hinging upon shared goals and val-
ues. However, each individual member is susceptible to the erratic
behavior, conflicts of values and norms.

We use Queen of Hearts to name the maintainer. The Queen of
Hearts exemplifies a dominant, authoritarian who wields a great
deal of power when it comes to the implementation of change. Our
intent is not to portray communities maintainers as authoritarian
individuals with poor communication skills, but to attribute power
clearly. The Cheshire Cat represents the PR reviewers. Through her
interaction with the Cheshire Cat, Alice gains valuable insight into
the nature of pull request evaluation.
2.1 Engagement
Figure 2 shows an example of a PR evaluation where Alice received
an enthusiastic and engaging reception from the community. The
PR discussion became animated and lively.

The 7 Habits of Good Pull Request Evaluation ESEM’2020, Empirical Software Engineering and Measurement (ESEM)

Figure 3: A pull request discussion lacking engagement

Engagement, designated as important by our respondents, is the
involvement of the community with the contribution. A respondent
writes, “The community showed interest in the PR. More than three
reviewers and the maintainers reviewed the PR. This was really
motivating.” Engagement acknowledges the contributor’s effort,
and motivates her. Engagement is the level of participation from
the community that a PR receives.

In the example of Fig. 3, Alice has experiences a rather cold and
unengaged reception. This could be due to many reasons; Alice
could be a newcomer to the community or her suggestion for change
was not appealing to the community. She explains, “No one has
shown interest in my PR. Worse! It was closed abruptly by the
maintainer without explanation. I left this community because of
this.” The lack of engagement is demotivating, and being a very
high costs: the loss of contributors, who are vital of the community.

Lack of engagement is demotivating. A respondent said: “It is the
maintainer not engaging the community. The pull request has a fair
number of people commenting that the change would be beneficial
and more people giving thumbs up as feedback. There has been no
maintainer feedback for more than two years. It is very unlikely that
other contributors will attempt to provide updates to this repository
in the future.” Another respondent associated unfairness to lack of
engagement, “most of the PR that I consider unfair are the good
ones that get unnoticed.” Various factors contribute to this behavior.
It may be that the contributor does not have a relationship with
members of the community, the PR’s scope is not interesting or
not a good fit for the community’s needs. Regardless of the reason,
the contribution should be acknowledged, and the reason why the
community is not willing to invest time in the PR should be given
to the contributor. Otherwise Alice experiences the “Mad Tea Party”
where the attendees are oblivious to her presence.

Intensity. The participation of an appropriate number of commu-
nity members is important to the contributor. One respondent
commented, “This PR got input from several people. Friendly and
open discussion focusing on technical points.”

Intensity is the number or reviewers who interact with the PR.
The right intensity brings momentum and energy to the PR evalua-
tion process. It signals acknowledgement and appreciation for the
value of the contribution and for the effort invested by the contribu-
tor. However, excessive intensity encourages divergence and delays
of the finalization of a contribution. Intensity is also demonstrated
by the depth of the discussions of the PR and a positive attitude to-
ward the contribution. Sometimes, keeping the discussion technical
is the sign of a motivated reviewer.

Enthusiasm shown by the reviewers and the maintainer for the
change and its value give Alice a positive experience. Helping her
to move the process forward. Enthusiasm can also be shown with
other signals like emoticons.

Engagement. Every contribution carries enthusiasm, which
should be rewarded in the form of acknowledgement, feedback,
and a decision. It is a good habit for maintainers and senior com-
munity members to ensure that new contributions are discussed
timely, that feedback is provided, and decisions are made.

2.2 Communication
The Mad Tea Party [5] event completely contradicts the expected
flow of a rational social situation. The erratic changes in conversa-
tion and unpredictable topics defy expectations and violate social
norms. Abrupt changes of subject prevent a constructive conver-
sation. Figures 4 and 5 show examples of a constructive and toxic
communication respectively. A participant in Fig. 5 opens an abrupt
verbal attack on the maintainer, which encouraged another partic-
ipant to follow up with a profanity. These toxic comments have
incited others to engage in a cascade of hostile and divergent com-
ments. Although, the rejection of the PR was due to an ideological
polarization in the community, the communication style adopted
by the participants exacerbated the situation. In Fig. 4, however,
the Cheshire Cat (i.e. one of the reviewers) showed enthusiasm and
positive attitude toward the contribution, which helped to set a
positive and constructive tone.

The style of communication adopted by the participants in the
PR evaluation is critical to the success of the evaluation process.
Alice (in Fig. 4) explains: “The tone of the conversation was con-
structive. In the end, improvements were made to the software.”
It is advisable to keep the discussion technical. Alice elaborates:
“The comments were valid, and the discussion was technical.” Main-
taining a technical discussion throughout the evaluation process
is seen as objective conduct. Respondents prefer a communication
tone that is professional, constructive, and supportive.

Communication.Maintainers and reviewers should develop
a habit to communicate objectively, clearly and professionally.

2.3 Appropriateness
Contributed features must meet the needs and plans of the commu-
nity. Appropriateness is explained in a comment by a respondent
who states: “The changes suggested were necessary. We obviously,
don’t like unicorn features! We like to invest our energy in some-
thing that adds value. As soon as the code quality and correctness
were good, it got merged and got appreciated.” The adherence to
the community’s needs and standards, whether a required feature

ESEM’2020, Empirical Software Engineering and Measurement (ESEM) Alami, et al.

Figure 4: Example of a Constructive Communication

within the scope of the product or fixing a bug, is valued in the
process. A maintainer replied to the frustration of a contributor
when his PR was not merged: “PR cannot be merged on your sen-
timental. Please respect the mentor’s feedback. If your PR is not
fulfilling the requirements, it cannot be merged, simple as that.” This
uncompromising position shows the significance of this practice.

Appropriateness. Contributors should develop a habit to con-
sult the community issues list and the product vision docu-
mentation when available, to ensure that their contribution
addresses a legitimate need. Communities should document
their product vision and promote it towards contributors.

2.4 Simplicity
Simplicity makes one feel in control, apt to judge and to act. It
makes things elegant, obvious, and transparent. To succeed in FOSS
communities, Alice should be able to translate complexity into
credible familiar simplicity. When Alice represents things in under-
standable form, that is, in the universal language of common sense,
she diminishes uncertainty.

This practice is well supported in the PRs we examined, and in
the comments left by our respondents. Alice stated, “the history
is messy because of the number of times it was rejected, but it
was fairly rejected, which resulted in a more modular, better-tested
code than the initial commit.” Another respondent praised a PR
for its simplicity. He stated, “This is a good example for a modular
and straightforward PR.” Another respondent explained that his PR
was unfairly judged because of the risk it may induce to the code

Figure 5: Example of a PR with Toxic Communication

base. Alice explained “Reviewers didn’t evaluate the PR based on
the improvements it would make, but based on fear it would break
things. IMHO we should’ve worked towards making the PR more
robust, if the reviewers had concerns.” Complicated changes are
risky, and communities are not willing to take such risks.

FOSS communities prefer straightforward and modular changes.
Modular changes are easy to review and their quality is easy to
assess. The reviewers can efficiently understand the context and
the reason of a straightforward contribution. Alice may need to
spend more time breaking down the problem while solving it. Cum-
bersome pull requests also increase the risk of introducing defects
since the changes are so big. It is hard to test large monolithic
change sets for bugs and regressions.

Simplicity. This quality is highly appreciated in the contribu-
tions. Contributors should develop a habit of developing and
submitting easy to understand and modular submissions.

2.5 Compliance
FOSS communities like rules. Rules agreed upon are strictly en-
forced. Compliance is mainly the adherence to the community pro-
gramming best practices and other non-programming guidelines.
Most communities have implemented guides and best practices. The
scope of these guides varies amongst communities. While some are
limited to programming language guidelines, other are extended
to cover conduct, communication and community culture. Follow-
ing best practices enhances the chances of a PR being accepted.
This respondent explains, “it was following good practises, was

The 7 Habits of Good Pull Request Evaluation ESEM’2020, Empirical Software Engineering and Measurement (ESEM)

Figure 6: A pull request that has received support

reviewed by two contributors where one of them was main project
maintainer. And it got merged.”

Compliance. Contributors should ensure that their submission
is compliant with community guidelines and rules. Compliance
signals competence of the contributor and recognition of the
competence of the community.

2.6 Support
In FOSS communities, receiving support to improve a code change
submission is not guaranteed. Figure 6 illustrates an example where
Alice received support from the Cheshire Cat (i.e. reviewer). This
support produced a productive outcome, a compliant andmergeable
quality PR. Unfortunately, not all Cheshire Cats are supportive.
Figure 7 demonstrates a transactional and cold encounter with the
Cheshire Cats. Navigating through the unknowns for newcomers
can be daunting. Alice asks for help, but receives brisk technical
critique with no clear direction.

One respondent stated, “Even though I was unable to understand
and follow the guidelines, the maintainers helped me ...” Another
participant in the survey describes support with this comment, “the
contributor was guided through steps to make the code better and
more useful than what have been initially created. The code was
reviewed and put to the test.” Support does not only enhance team
cohesion, but also help elevating the quality of the submission.

“No one helped me.” This is how Alice defined an unfair PR eval-
uation. When we examined the PR history and course of events,
we observed that the PR lacked engagement and support. Lack
of support is characterized by minimalist feedback and focus on
communicating the errors and not on how to fix them. The com-
munication tone is usually rigid and lacks empathy toward the

Figure 7: A pull request that has received little support

contributor. Respondents have clear preference for a supportive
evaluation process and a constructive feedback that help steering
the PR toward a mergeable quality.

Support. A supportive evaluation process creates a positive at-
mosphere and gives a good experience to contributors. Review-
ers and maintainers should develop a habit of being constructive
and collegial.

2.7 Decision
Alice could not find meaning in Wonderland but hopes that she
will find logic and order in the trial. She thought that Wonderland
court is a true court of justice, viewing the institution of law as a
refuge of sanity in which an objective and undeniable truth will
prevail. However, the trial was a disappointment.

Unfair decisions are common experience in FOSS communities.
We observed from our data that contributors expect a logical deci-
sion based on technical merits. Figure 9 demonstrates an example
of unfair decisions. Alice, enthusiastically, raised a PR to address, an
apparently legitimate issue. She was faced by a cold reception, no
Cheshire Cat attended her PR for a year, when someone spoke, but
haven’t advanced the discussion. Alice has been repeatedly asked to
sign the contributor license agreement (CLA), which she already did
shortly after submitting the PR. The PR was closed automatically by
a bot after one year and five months. Alice perceived the decision as
unfair, and it does not seem to help that it was made automatically.
She invested great effort in writing a PR of mergeable quality and

ESEM’2020, Empirical Software Engineering and Measurement (ESEM) Alami, et al.

Figure 8: Example of a PR with a Fair Decision

praised by another reviewer for its appropriateness: “This patch
fixes my current problem. Any chance this can be merged soon?”
The decision, not to merge, was not based on technical grounds but
rather a procedural failure.

Figure 8 shows an exemplary case of a PR that embraced good
practices, which resulted in an orderly evaluation. Alice’s PR re-
ceived a great engagement from the community and the communi-
cation remained professional and within the scope of the PR. Once
two Cheshire Cats approved the PR, the PR became a candidate for
merger. The PR was merged accordingly.

One contributor describes an appropriate evaluation experience
saying, “It was judged on technical merit, the contributor was
guided and the PR was merged in the end.” The belief that fair
evaluations are focused on technical merit is common. The basis of
a decision from the evaluators is important to contributors and the
health of the community. The decision is the conclusion about the
fate of the PR after consideration. Decisions grounded on technical
rationales are perceived as good practice by our respondents.

Executed in the style of the Queen of Hearts: Thoughtless, base-
less in decision, can be easily be interpreted as a personal rejection.
It is not a pleasant experience for the contributor and it may have
negative impact on the contributor retention.

Decision. Decisions should be based on technical grounds.
Maintainers should develop a habit of communicating the deci-
sion rationale clearly, in technical language.

3 METHODS
Subject Communities. We selected eight communities for this study,
ROS, FOSSASIA, Coala, Plone, Apache Spark project, OpenSUSE,

Figure 9: Example of a PR with an Unfair Decisions

Linux Kernel, and OpenGenus. These are well established open,
and growing communities. ROS is creating a flexible framework for
robots, including a collection of tools, libraries, and conventions
to simplify the task of creating robot technology across platforms.
FOSSASIA develops, among others, SUSI.AI, an artificial intelli-
gent application that provides functionality for personal assistance,
Help Desks and Chatbots and EventYaY, an events management tool.
Coala is building an open source linting tool for developers. Plone
is an open source software content management system. Plone has
a long list of high-profile users, including the U.S. Federal Bureau
of Investigation, Brazilian Government, United Nations, City of
Bern (Switzerland), New South Wales Government (Australia), and
European Environment Agency. Apache Spark is a unified analytics
engine for large-scale data processing, built by developers from over
300 companies. OpenSUSE builds open-source tools for software
developers and system administrators, such as openQA, an auto-
mated testing service; OSEM, an event management tool; Jangouts,
a videoconferencing tool; YaST, the installation and configuration
tool; and Kiwi, an application for making a wide variety of image
sets available for Linux supported hardware. The Linux Kernel is a
free and open source operating system. Nowadays, likely the most
popular and versatile operating system kernel. OpenGenus is a
FOSS community whose goal is to enable longer off-line working
conditions and to reduce the time spent on search. Its project Quark
enables people to work offline for a longer stretch of time, and its
search engine reduces the time spent on searching.

The 7 Habits of Good Pull Request Evaluation ESEM’2020, Empirical Software Engineering and Measurement (ESEM)

Data Collection. We collected the data through a survey where re-
spondents were invited to participate based on emails from GitHub.
Some participants were found on community forums and mailing
lists. We asked the respondents to provide two cases of pull re-
quests, one where they felt the pull request was assessed fairly,
and a second one where they felt that it was evaluated unfairly. In
both cases, we asked for justification of the choice. We received
48 cases of fairly assessed PRs and 10 unfairly evaluated PRs (we
studied N=58 cases). Participation in the survey was voluntary, so
no compensation in any form was given to the respondents.

Instruments. The survey consisted of a set of multiple-choice ques-
tions and questions that can be answered with open ended text.
There were a total of twelve questions. This paper reports the find-
ings of the data collected from the questions mentioned above.

Data Analysis. We conducted a thematic analysis of the explana-
tions for the categorization of the decisions as fair or unfair and
the PRs contents. The comments and the PRs contents were coded
following the guidelines of Robson and McCartan [25] and of Miles
et al. [19] concerning qualitative analysis. The text were examined
line-by-line and coded. Once all the text were coded, we looked for
patterns amongst the codes to propose themes that emerged from
the data. These themes share meaning across data items and are
underpinned by a central concept that answers a specific research
question. Once labels are given to each of these concepts, then we
were able to place them in categories, or a family of codes.

Trustworthiness. When performing qualitative research, researchers
must establish that the findings are credible, transferable, depend-
able, and able to be confirmed. Once these four qualities are estab-
lished, trustworthiness is achieved [12].

To establish credibility, we used data triangulation and peer
debriefs [7]. Triangulation is the combination of at least two data
sources. The aim of using triangulation is to decrease the deficiency
of a single strategy, thereby increasing the ability to interpret the
findings. We have two sources of data, the comments left by the
respondents in the survey and the PR’s discussions. To triangulate
the data, we compared the findings across the data sources. We
ensured that our findings are supported by the two data sources. We
conducted a couple peer debriefing sessions. One author conducted
the analysis, and the other authors validated the theory that is
emerging with the raw data.

Transferability is the degree to which the results of a study can
be transferred to other contexts, sites, or settings [12]. The quality
of transferability refers to case-to-case transfer [34]. We thoroughly
documented our research methods and the analysis process which
would helps others to judge transferability [12].

To ensure dependability, information that is logical, traceable,
and clearly documented is given. When the research process is
described completely, readers are able to judge the dependability of
the research by auditing the research [12]. We maintained an audit
trail throughout the study to ensure the traceability of our work.

Confirmability is the characteristic of the match between the
researcher’s interpretations and findings and the data itself, which
requires the researchers to explain how the conclusions and in-
terpretations were made [34]. In addition, it is helpful for the re-
searchers to compile an audit trail, specifically documentation that

explains the rationale for the decisions and choices that were made
including both theoretical and methodological issues. This audit
trail enables other researchers to follow the decision trail and reach
the same conclusions.

4 DISCUSSION
PR nonacceptance might result in demotivation of the contributor,
potentially preventing further contributions [26, 31]. There is a
high turnover rate in communities, recruitment and maintaining
new contributors is critical for the success of a community and its
projects [9, 15]. Many FOSS projects fail [6]. Coelho and Valente
seek to find out why [6]. They suggest that successful projects
follow maintenance practices, while failed products did not. The
maintenance practices that set successful projects apart from failed
oneswere the issuing of templates, code of conduct, and PR template
documentation, continuous integration, contributing guidelines,
and licensing were relevant to the success of a project [6]. However,
the PR evaluation good practices are not documented and commu-
nicated in the communities we studied. This is an important and
critical process to the continuity of a community.

4.1 All Stakeholders
Communication is the only good practice shared across all stake-
holders. How to communicate a message is as important as the
message itself. In the context of PR discussion, a message has two
attributes, the content and the delivery. Both have to show certain
qualities. While the content has to remain within the topic and con-
structive, the delivery should remain professional and friendly. Still,
the process is highly social. Communication can be derailed for vari-
ous reasons. But, in this instance, the maintainer has to demonstrate
leadership and steer the process back to a positive course.

Geographically distributed teams experience more miscommuni-
cations and misunderstandings, have more difficulty sharing infor-
mation, providing feedback and face more challenges in attempting
to develop and maintain a shared team identity [14]. Members of
a team can be categorized as constructive, passive, and aggressive
styles. The constructive style is a balanced concern for personal
and group outcomes, cooperation, creativity, free exchange of in-
formation and respect for others. This style enables members to
fulfill both needs for personal achievement and affiliation. The pas-
sive style places greater emphasis on fulfillment of affiliation goals,
maintaining harmony, and limited information sharing, with main-
taining harmony as a goal. The aggressive style places emphasis
on personal achievement, with personal ambitions placed above
concern for the group. The aggressive team member demonstrates
competition, criticism, interruptions, and impatience [21].

Constructive groups produce solutions that are superior in qual-
ity to those produced by passive groups and superior in acceptance
to either group. Passive styles produce solutions that are inferior,
and aggressive individuals produce solutions not as high in quality
[21]. Lack of communication or trust between patch writers and
reviewers lead to the rejection of the PR [33].

Recommendation 1. FOSS communities should document, com-
municate and implement guidelines for contributors on how to com-
municate constructively. Maintainers should enforce the guidelines
and exercise leadership when communication failure occurs.

ESEM’2020, Empirical Software Engineering and Measurement (ESEM) Alami, et al.

4.2 Contributor
Simplicity. The principle benefit of simplicity is that it provides
conditions that are more conducive to the acceptance of the PR.
Tao, et al. suggest that when the patch is difficult to read or maintain
or the size is too large, then it is rejected [33]. Baysal, et al. report
that smaller patches are more likely to be accepted and accepted
more quickly [3].

Rigby et al. [23] found that small, independent, complete patches
aremost successful in the Apache server community, whereas, Jiang,
et al. [16] found that size only influences the reviewing time. Rigby
and Storey suggest that the file change should be short so developers
can instantly see if they have the time, skill, and interest to perform
a detailed review and if the patch is of sufficient quality to warrant
a review [24]. More than half of all patches in FLAC change only
one or two lines and small patches get accepted more frequently
than average, at 57%. Large patches, more than 15 lines of code, are
less likely to be accepted, with only 3.6% being accepted [36].

However, this is a problem for newcomers. Newcomers often lack
confidence choosing the first task. Often they are not sure about
what is easy or not. They do not know how to reduce the scope of a
task. Documentation issues are part of the difficulty, specifically lack
of documentation and incomplete or outdated tutorials. Another
project problem is the information provided in the issues, there are
outdated issues, lack of information about required skills, and lack
of information about difficulty level. Sometimes newcomers choose
a wrong or large task [29].

Recommendation 2. Maintainers should guide the contributors
how to break down large changes into sequences of smaller ones.
Thus, uncertainty is reduced. Simplicity can be implemented into
the change by focusing on a few, but decisive must-win battles. FOSS
communities should promote this practice amongst their contributors.
This can be done via documentation, tutorials and mentoring.

Appropriateness. The relevance of the PR is as important as the
other attributes (e.g. quality, compliance, etc.). According to Tao,
et al., deviation in focus or scope can lead to rejection in the FLAC
and OpenAFS projects [33]. In the Linux community, patches first
need to pass a gatekeeper who performs a review of the code before
the code is merged. The review will fail a patch when it does not
implement a relevant, working feature or bug fix, or when it does
not follow guidelines of the community [16].

Although, some communities have put instruments in place to
enhance the transparency of the community vision for its products,
other communities still struggle to define and communicate their
products’ roadmaps. Some of the communities we studied maintain
a vision document (VISION.md) that describes the bigger-picture
goal of a project and the overall philosophy. The advantage of
this approach is that community members have the opportunity
to submit PRs for the vision document to propose changes to the
global roadmap. This transparency allows contributors not only
to understand the global vision but also to propose features that
contribute to its breadth.
Recommendation 3. Communities should document and promote
a vision document amongst their contributors. Contributors
should consult available documentation and list of issues prior to
submitting a PR.

Compliance. Adherence to a computing language coding guidelines
and conventions is an important element in reviewing code. Inte-
grators consider style conformance the top factor, along with code
quality, as key to acceptance. Newcomers are requested to better
conform to coding standards than experienced developers, and ex-
perience in writing patches for a project leads the contributor to
adhere more to the project’s style [13].

Most communities we studied have guidelines for the program-
ming languages, artifacts and processes they use. However, not all
contributors follow the guidelines literally. This impacts the course
of PRs evaluations. It delays the review and create tension between
the author and the reviewers.

Recommendation 4. To avoid this type of hiccup, FOSS commu-
nities should include educational materials in their onboarding ac-
tivities to create awareness of the compliance requirements. The PR
template is also a good opportunity to remind contributors of their
compliance obligations.

4.3 Community
Engagement. Engagement is critical to the PR to continue to ex-
ist from inception to a decision. Lee et al. studied why one time
contributors do not continue participating in projects. They cited
unresponsiveness as the major negative trait [17]. Some patches are
ignored because of the limited time that developers have to spend
on a specific project and developers wish to maintain quality. Proper
reviewing is seen as more important than addition of a feature. The
contributor is expected to ping the community if reviews are de-
layed. Some authors become frustrated with the wait and leave the
community. Others may become rude or appear overconfident or
angry, and these are hallmarks for rejection [24].

Steinmacher and coauthors identified four barriers related to
reception issues. The first barrier is the individual not receiving a
reply to their posts. Newcomers who got a reply to their first posts
were 12% more likely to post again. Other barriers are delayed
answers to posts, impolite responses, and receiving too advanced
or complex responses to posts. To offset these barriers, community
members ought to be attentive to newcomers’ reception period,
sending welcomingmessages, assistance, and constructive criticism,
as these increase the retention of newcomers [30].

Jensen and King studied newbies first interactions with a com-
munity through a mailing list. They suggest that the feedback given
to those who comment on a mailing list has a strong effect on future
participation. Slightly more than 55% of new members only made
one comment before leaving the community. If they did not receive
a response, which occurs around 10% of the time, they were likely
to leave the community. The responses to newbies were helpful
nearly 70% of the time. Only 7% of the replies were polite, and the
rest were rated as neutral [15].

However, social factors influence this practice [1, 13]. For ex-
ample, developer’s reputation affects the outcome of code review
requests [4]. That is, developers in the core have a better reputation
than those in the periphery. The first feedback interval is the time
from the submission of a code review request until the first real
review comment. Core developers have a shorter first feedback
interval than peripheral developers. Reasons given may be that the
developers know which teammates could best review a submission,

The 7 Habits of Good Pull Request Evaluation ESEM’2020, Empirical Software Engineering and Measurement (ESEM)

that their position in the core group lead reviewers to provide a less
thorough review, and their prior interactions and good relationships
encourage other members to prioritize their code [4].

Recommendation 5. To ensure that every PR is equally treated
at the inception and creating an engagement from the start, we
recommend the implementation of the triage technique and service
level agreement (SLA). Both practices have been proven to be efficient
in other industries, i.e. health and incidents management for large
information technology systems.

In the health industry, triage is deciding the order of treatment
for patients and casualties. In the context of FOSS PR evaluation,
triage is deciding when (i.e. when the PR will be reviewed) and who
(who are the reviewers of the PR). At the time of the submission (or
shortly after), a community member (e.g. maintainer) should attend
the PR, assign reviewers (e.g. pin reviewers with expertise in the
PR topic) and set a timeframe for the evaluation process. This task
can be also done by a bot.

Support. Not all contributors have the level of expertise required
to present a PR of mergeable quality. Inexperienced contributors
sometimes need assistance to overcome technical hurdles or to
elevate their contribution to meet community requirements.

Steinmacher, et al. suggest that the reasons for nonacceptance
varied, they identified 19 reasons for rejection of PRs named by
quasi-contributors. The most common reason was that someone
else made a similar PR that was accepted. Next frequent reason
was a mismatch between developer and team’s vision and contrib-
utor’s vision. Another reason was lack of interest from integrators,
and another was that the community was not perceived as being
supportive enough [31].

Support is the essence of communitarian philosophy [22]. It is
surprising that contributors do not always receive the support they
need. This could be enhanced by encouraging contributors to be
more assertive about it. This could be as simple as an emoji that
signals to the community the need for assistance. In the human
aspect of the process, communities should encourage reviewers
to be warm, welcoming and supportive. The tool supporting the
process (e.g. GitHub) could be also enhanced to encourage support.
This can be, for instance, by implementing a “Support” feature
in the contributor profile similar to the “Stars” and “Followers”
features. Contributors can vote up or down reviewers when they are
being supportive or unsupportive. This shall showcase reviewers’
supportive attitude in their GitHub profile. This may encourage
reviewers to be more supportive during the review process.

Recommendation 6. Communities should advise their reviewers
to be supportive and contributors to be assertive and ask for help
when needed. The supporting platform (e.g. GitHub) can introduce
profile attributes to encourage reviewers to be supportive.

4.4 Maintainer
Decision. In most communities we studied, maintainers have the
commit privileges and the final decision on the destiny of the PR.
Ultimately, once the reviewers’ feedback is addressed and the re-
viewers approve the PR, then the maintainers determines its fate.
It is expected from the maintainer (or committer) to follow the

recommendations of the reviewers. However, it is not always the
case. Maintainers override the reviewers decisions occasionally.

The decision is the conclusion (i.e. close or merge) reached after
consideration. This event is critical to the contributor’ experience.
She or he may experience disappointment (e.g. if the PR is closed)
or a fulfilment and achievement (e.g. if the PR is merged). Our
conclusion is decision should be based on technical grounds, irre-
spective of what the decision is. Technical grounds implies that
the PR meets the community requirements on quality, appropri-
ateness, compliance with community standards (e.g. programming
languages guidelines) and other software engineering principles
(e.g. passing test, maintainability, etc.).

Every time a person evaluates another’s work, the social ten-
sions that arise can produce negative emotions. In OpenStack, par-
ticipants were asked about fairness. Twenty-four percent of par-
ticipants subject to reviews stated that they are treated unfairly
occasionally and fifteen percent feel they are treated unfairly often.
Reviewers who were questioned stated that they conduct reviews
fairly (60%), but some stated that they conduct reviews unfairly
occasionally (40%) [8].

It would be naive to assume that a set of good practices would
eliminate conflicts, rudeness and clashes of values and norms. How-
ever, implementing these practices will make a community stand
out from other communities and consequently attracting more
contributors. Implementing and sharing good practices nurtures a
culture of quality and values.

Recommendation 7. Decisions should be on technical grounds.
The rational behind the decision must be communicated clearly
and professionally. Contributors should be given the opportunity to
appeal decisions deemed unfair.

5 RELATEDWORK
Several existing works have identified factors affecting acceptance
of pull requests in addition to findings discussed in this study.
Soares, et al. found that the most relevant factors were quality
of source code, including code style. If the code is in a mergeable
state, it is more likely to be accepted. In addition, project fit, techni-
cal fit and inclusion of tests were important positive factors [27].
This concurs with our findings. We identified that keeping the dis-
cussion on the technical grounds of the PR and obeying by the
community principles are good PRs evaluation practices.

Soares and coauthors identified the level of the experience of the
contributor as relevant to the rejection of the contribution. A first PR
by a junior contributor is more likely to be rejected. The size of the
pull request affects rejection too. Longer pull requests with several
commits are more likely to be rejected as well. Pull requests that
modify several files are most likely to be rejected, and pull requests
without documentation have a smaller change of acceptance [28].
This is inline with our findings. We suggested that PR simplicity
is a quality that enhances the chance of a PR being accepted.

While some believe that technical merit, which includes correct-
ness, scope, style, design choices, and priorities is the only factor
that influences contributions’ acceptance in open source projects,
it is known that social factors affect acceptance. Tsay, et al. report
that contribution acceptance is higher for submitters with existing

ESEM’2020, Empirical Software Engineering and Measurement (ESEM) Alami, et al.

relationships with core members of a project [35]. Our subjects
suggest that decision to merge based on social connections is not a
good practice: fair evaluations are based on technical merits.

Other social factors that affect acceptance of a pull request are
personality and interaction style. Marlow and coauthors observed
that developers often make stereotypical judgments about a con-
tributor. These judgements include a belief about a user’s coding
ability and his or her personality. They found that developers view
contributors as newcomers or competent peers. Newcomers are dis-
tinguished with lack of activities. Competent peers have a breadth
and depth of the project and languages that they use. Personality
assessments are made based on arguments or rudeness in posting,
which often reveals an uncooperative attitude or arrogance [18]. We
also find some good practices of social nature. For example, support
for the contributor and a good atmosphere during the course of the
evaluation are signs of a healthy evaluation process.

6 CONCLUSION
Social coding environments are changing the way software is cre-
ated in FOSS communities. Incoming PRs can be rejected or asked
for resubmission after improvement. Both scenarios interrupt the
workflow of patch writers and reviewers, increase their workload,
and potentially delay the general development process. We identi-
fied a set of good practices for FOSS communities to document, and
implement to enhance the contributor’s experience. We believe the
implementation of these practices will distinguish communities for
being a welcoming and friendly environment. This may attract and
retain more contributors.

Good experience is definitely not about eradicating rejections. Re-
jections will remain an inherent part of the process. But a rejection
after a fair, engaging and positive experience is not as demotivating
as a rejection after an experience filled with setbacks. Contributions
carry an enthusiasm and a motivation with it. The community has
an obligation to reward this enthusiasm. This exchange does not re-
quire quantification and measurement. In contrast with our present
economy system, which is based on quantifiable and measurable
exchange transactions using money as unit for measurement. Even
though, there is an inherent “moral” obligation to reciprocate the
gesture of giving, communities should nurture this unselfish be-
havior, especially when the participation is based on internal satis-
faction and self-enjoyment, by ensuring the contributor experience
is positive. This is key for their sustainability and growth.

REFERENCES
[1] M. Y Allaho and W. Lee. 2013. Analyzing the social ties and structure of contrib-

utors in open source software community. In ASONAM.
[2] O. Baysal, R. Holmes, and M. Godfrey. 2012. Mining usage data and development

artifacts. In MSR.
[3] O. Baysal, O. Kononenko, R. Holmes, and M. W Godfrey. 2013. The influence of

non-technical factors on code review. In WCRE.
[4] A. Bosu and J. C Carver. 2014. Impact of developer reputation on code review

outcomes in oss projects: An empirical investigation. In ESEM.
[5] L. Carroll. 2011. Alice’s adventures in wonderland. Broadview Press.
[6] J. Coelho and M. Valente. 2017. Why modern open source projects fail. In FSE.
[7] N. K Denzin. 2017. Sociological methods: A sourcebook. Routledge.
[8] D. German, G. Robles, G. Poo-Caamaño, X. Yang, H. Iida, and K. Inoue. 2018.

"Was My Contribution Fairly Reviewed?" A Framework to Study the Perception
of Fairness in Modern Code Reviews. In ICSE.

[9] M. Gharehyazie, D. Posnett, B. Vasilescu, and V. Filkov. 2015. Developer initiation
and social interactions in OSS: A case study of the Apache Software Foundation.
Empirical Software Engineering 20, 5 (2015).

[10] G. Gousios, M. Storey, and A. Bacchelli. 2016. Work practices and challenges in
pull-based development: the contributor’s perspective. In ICSE.

[11] G. Gousios, A. Zaidman, M. Storey, and A. Van Deursen. 2015. Work practices
and challenges in pull-based development: the integrator’s perspective. In ICSE.

[12] E. G. Guba and Y. S. Lincoln. 1985. Naturalistic inquiry (Vol. 75). Beverly Hills,
CA: Sage (1985).

[13] V. Hellendoorn, P. T Devanbu, and A. Bacchelli. 2015. Will they like this?:
Evaluating code contributions with language models. In MSR.

[14] P. Hinds and C. McGrath. 2006. Structures that work: social structure, work
structure and coordination ease in geographically distributed teams. In CSCW.

[15] C. Jensen, S. King, and V. Kuechler. 2011. Joining free/open source software
communities: An analysis of newbies’ first interactions on project mailing lists.
In HICSS.

[16] Y. Jiang, B. Adams, and D. M German. 2013. Will my patch make it? and how
fast?: Case study on the Linux kernel. In MSR.

[17] A. Lee, J. C Carver, and A. Bosu. 2017. Understanding the impressions, motiva-
tions, and barriers of one time code contributors to FLOSS projects: a survey. In
ICSE.

[18] J. Marlow, L. Dabbish, and J. Herbsleb. 2013. Impression formation in online peer
production: activity traces and personal profiles in github. In CSCW.

[19] M. B Miles, A. M Huberman, and J. Saldana. 2014. Qualitative data analysis: A
methods sourcebook. 3rd. Thousand Oaks, CA: Sage.

[20] R. Padhye, S. Mani, and V. Sinha. 2014. A study of external community contribu-
tion to open-source projects on GitHub. In MSR.

[21] R. E Potter and P. A Balthazard. 2002. Virtual team interaction styles: Assessment
and effects. International Journal of Human-Computer Studies 56, 4 (2002).

[22] Rory Ridley-Duff. 2007. Communitarian perspectives on social enterprise. Cor-
porate governance: an international review 15, 2 (2007).

[23] P. C Rigby, D. M German, and M. Storey. 2008. Open source software peer review
practices: a case study of the apache server. In ICSE.

[24] P. C Rigby and M. Storey. 2011. Understanding broadcast based peer review on
open source software projects. In ICSE.

[25] C. Robson and K. McCartan. 2016. Real world research. John Wiley & Sons.
[26] A. Schröter, J. Aranda, D. Damian, and I. Kwan. 2012. To talk or not to talk:

factors that influence communication around changesets. In CSCW.
[27] D. Soares, M. de Lima Júnior, L. Murta, and A. Plastino. 2015. Acceptance factors

of pull requests in open-source projects. In SAC.
[28] D. Soares, M. L de Lima Júnior, L. Murta, and A. Plastino. 2015. Rejection factors

of pull requests filed by core team developers in software projects with high
acceptance rates. In ICMLA.

[29] I. Steinmacher, T. Conte, and M. Gerosa. 2015. Understanding and supporting the
choice of an appropriate task to start with in open source software communities.
In HICSS.

[30] I. Steinmacher, T. Conte, M. Gerosa, and D. Redmiles. 2015. Social barriers faced
by newcomers placing their first contribution in open source software projects.
In CSCW.

[31] I. Steinmacher, G. Pinto, I. Wiese, and M. Gerosa. 2018. Almost there: A study on
quasi-contributors in open-source software projects. In ICSE.

[32] I. Steinmacher, I. Wiese, A. Chaves, and M. Gerosa. 2013. Why do newcomers
abandon open source software projects?. In CHASE.

[33] Y. Tao, D. Han, and S. Kim. 2014. Writing acceptable patches: An empirical study
of open source project patches. In ICSME.

[34] S. J Tracy. 2010. Qualitative quality: Eight “big-tent” criteria for excellent qualita-
tive research. Qualitative inquiry 16, 10 (2010).

[35] J. Tsay, L. Dabbish, and J. Herbsleb. 2014. Let’s talk about it: evaluating contribu-
tions through discussion in GitHub. In FSE.

[36] P. Weißgerber, D. Neu, and S. Diehl. 2008. Small patches get in!. In MSR.

G
Appendix G: Pull Request Survey

209

4/14/2020 LimeSurvey Professional - Your online survey service - IT University of Copenhagen

https://icse2020.limequery.com/admin/printablesurvey/sa/index/surveyid/913965 1/19

IT University of Copenhagen
This is a survey set by the IT University of Copenhagen. The aim of the survey is to understand the
pull requests assessment process in open source software communities. We are a group of
researchers from the IT University of Copenhagen. We part of a quality research group called
SQUARE (https://square.itu.dk). The group aims at enhancing our understanding of building quality
software. This research is led by Professor Andrzej Wąsowski (http://www.itu.dk/~wasowski),
Associate Professor Marisa Leavitt Cohn, and PhD Fellow Adam Alami. This project is supported
by the Horizon 2020 initiative. If you interrupted during the survey, you can resume later. If you
have any question, please contact Adam Alami at: {ADMINEMAIL}

Thanks for participating in this survey. The results will be shared with your community by the end of
Sept. 2019. We will post the result in your community forum or mailing list.

There are 15 questions in this survey.

Your role in your community
Please, tell us what is your role in your community?

Are you an open source contributor or maintainer? Please,
select the options that apply to you. E.g. if you are a
contributor and a maintainer, then tick both. *
 Please select from 1 to 2 answers.
Please choose all that apply:

 Contributor (Authored and submitted pull requests)

 Maintainer (I have the responsibility of merging PRs in my community)

 Not an open source contributor (neither a contributor nor a maintainer)

Your community
Your current community.

4/14/2020 LimeSurvey Professional - Your online survey service - IT University of Copenhagen

https://icse2020.limequery.com/admin/printablesurvey/sa/index/surveyid/913965 2/19

Which community are you currently contributing to? Please,
select a community you predominitaly contribute to. This
community will be referred to as "My community", in the rest
of the survey. *
Only answer this question if the following conditions are met:
Answer was 'Maintainer (I have the responsibility of merging PRs in my community)' or
'Contributor (Authored and submitted pull requests) ' at question '1 [Q1]' (Are you an open
source contributor or maintainer? Please, select the options that apply to you. E.g. if you are
a contributor and a maintainer, then tick both.) and Answer was 'Maintainer (I have the
responsibility of merging PRs in my community)' or 'Contributor (Authored and submitted
pull requests) ' at question '1 [Q1]' (Are you an open source contributor or maintainer?
Please, select the options that apply to you. E.g. if you are a contributor and a maintainer,
then tick both.)

 Please select one answer
Please choose all that apply:

 FOSSASIA

 Odoo

 DuckDuckGo

 Linux Kernel

 Coala

 ROS

 Plone

 ReactJS

 AngularJS

 NodeJS

 OpenGenus

 Mozilla

 OpenSUSE

 jQuery

 Apache

Other:

4/14/2020 LimeSurvey Professional - Your online survey service - IT University of Copenhagen

https://icse2020.limequery.com/admin/printablesurvey/sa/index/surveyid/913965 3/19

Main question for maintainer
Main question for maintainer

4/14/2020 LimeSurvey Professional - Your online survey service - IT University of Copenhagen

https://icse2020.limequery.com/admin/printablesurvey/sa/index/surveyid/913965 4/19

As a maintainer, in your community, how strongly do you
agree with the statements listed below? *
Only answer this question if the following conditions are met:
Answer was 'Maintainer (I have the responsibility of merging PRs in my community)' at
question '1 [Q1]' (Are you an open source contributor or maintainer? Please, select the
options that apply to you. E.g. if you are a contributor and a maintainer, then tick both.) and
Answer was 'Maintainer (I have the responsibility of merging PRs in my community)' at
question '1 [Q1]' (Are you an open source contributor or maintainer? Please, select the
options that apply to you. E.g. if you are a contributor and a maintainer, then tick both.)

 Please select 11 answers
Please choose the appropriate response for each item:

I strongly
agree I agree Neutral

I
disagree

I strongly
disagree

In general I say no to
most pull requests
(PR)/patches. The
contributor has to be
persistent and prove
that the PR/patch worth
evaluating.

I don't consider a pull
request/patch, unless I
trust the contributor.

I don't consider a pull
request/patch, unless
the contributor is
reliable.

I don't consider a pull
request/patch, unless I
have a strong
relationship with the
contributor.

4/14/2020 LimeSurvey Professional - Your online survey service - IT University of Copenhagen

https://icse2020.limequery.com/admin/printablesurvey/sa/index/surveyid/913965 5/19

I strongly
agree I agree Neutral

I
disagree

I strongly
disagree

I assess every pull
request/patch in the
same manner
irrespective of the
contributor.

I assess pull
requests/patches
purely on technical
grounds.

I never say no to a pull
request/patch. If the
quality of the PR/patch
is not mergeable, then I
mentor the contributor
to elevate his/her
PR/patch to a
mergeable state.

My subjective
assessment of quality
is more important than
the consensus of the
reviewers.

I always follow the
reviewers opinion.

I do not hesitate to
confront well
established community
members during the
review, if it is based on
technical grounds.

I'm careful during the
review process. I don't
like to alienate
contributors who don't
handle rejections.

4/14/2020 LimeSurvey Professional - Your online survey service - IT University of Copenhagen

https://icse2020.limequery.com/admin/printablesurvey/sa/index/surveyid/913965 6/19

Main question for contributors
Main question for contributors

4/14/2020 LimeSurvey Professional - Your online survey service - IT University of Copenhagen

https://icse2020.limequery.com/admin/printablesurvey/sa/index/surveyid/913965 7/19

As a contributor, in your community, how strongly do you
agree with the statements listed below? *
Only answer this question if the following conditions are met:
Answer was 'Contributor (Authored and submitted pull requests) ' at question '1 [Q1]' (Are
you an open source contributor or maintainer? Please, select the options that apply to you.
E.g. if you are a contributor and a maintainer, then tick both.) and Answer was 'Contributor
(Authored and submitted pull requests) ' at question '1 [Q1]' (Are you an open source
contributor or maintainer? Please, select the options that apply to you. E.g. if you are a
contributor and a maintainer, then tick both.)

 Please select 5 answers
Please choose the appropriate response for each item:

I strongly
agree I agree Neutral

I
disagree

I strongly
disagree

I prefer to be declined
by default, when I
submit my pull
request/my patch.

My pull request/My
patch shouldn't be
assessed until I prove
my commitment to the
community.

My pull request/My
patch shouldn't be
assessed until I prove
my trustworthiness to
the community.

I prefer an assessment
of my pull request/my
patch based on
technical ground,
irrespective of my
status in the
community.

4/14/2020 LimeSurvey Professional - Your online survey service - IT University of Copenhagen

https://icse2020.limequery.com/admin/printablesurvey/sa/index/surveyid/913965 8/19

I strongly
agree I agree Neutral

I
disagree

I strongly
disagree

I prefer not to be
rejected at all times;
instead I should be
mentored on how to
make my contribution
mergeable.

4/14/2020 LimeSurvey Professional - Your online survey service - IT University of Copenhagen

https://icse2020.limequery.com/admin/printablesurvey/sa/index/surveyid/913965 9/19

How strongly do you agree with the statements listed below:
*
Only answer this question if the following conditions are met:
Answer was 'Maintainer (I have the responsibility of merging PRs in my community)' or
'Contributor (Authored and submitted pull requests) ' at question '1 [Q1]' (Are you an open
source contributor or maintainer? Please, select the options that apply to you. E.g. if you are
a contributor and a maintainer, then tick both.) and Answer was 'Maintainer (I have the
responsibility of merging PRs in my community)' or 'Contributor (Authored and submitted
pull requests) ' at question '1 [Q1]' (Are you an open source contributor or maintainer?
Please, select the options that apply to you. E.g. if you are a contributor and a maintainer,
then tick both.)

 Please select 2 answers
Please choose the appropriate response for each item:

I strongly
agree I agree Neutral

I
disagree

I strongly
disagree

I would consider
changing my
community, if I strongly
disagree with how
PRs/patches are
evaluated.

I'm loyal to my
community irrespective
of the pull
requests/patches
evaluation practice in
place.

4/14/2020 LimeSurvey Professional - Your online survey service - IT University of Copenhagen

https://icse2020.limequery.com/admin/printablesurvey/sa/index/surveyid/913965 10/19

I have you, in the past, left or changed communities because
of the pull requests/patches evaluation practice? *
Only answer this question if the following conditions are met:
Answer was 'Contributor (Authored and submitted pull requests) ' or 'Maintainer (I have the
responsibility of merging PRs in my community)' at question '1 [Q1]' (Are you an open
source contributor or maintainer? Please, select the options that apply to you. E.g. if you are
a contributor and a maintainer, then tick both.)

Please choose only one of the following:

 Yes

 No

Please, explain the last question answer: *
Only answer this question if the following conditions are met:
Answer was 'Contributor (Authored and submitted pull requests) ' or 'Maintainer (I have the
responsibility of merging PRs in my community)' at question '1 [Q1]' (Are you an open
source contributor or maintainer? Please, select the options that apply to you. E.g. if you are
a contributor and a maintainer, then tick both.) and Answer was 'Yes' at question '6 [Q13]' (I
have you, in the past, left or changed communities because of the pull requests/patches
evaluation practice?)

Please write your answer here:

Software Engineering Principles
Software Engineering Principles

4/14/2020 LimeSurvey Professional - Your online survey service - IT University of Copenhagen

https://icse2020.limequery.com/admin/printablesurvey/sa/index/surveyid/913965 11/19

How important are the criteria listed below in reviewing pull
requests/patches in your community? *
Only answer this question if the following conditions are met:
Answer was 'Maintainer (I have the responsibility of merging PRs in my community)' or
'Contributor (Authored and submitted pull requests) ' at question '1 [Q1]' (Are you an open
source contributor or maintainer? Please, select the options that apply to you. E.g. if you are
a contributor and a maintainer, then tick both.) and Answer was 'Maintainer (I have the
responsibility of merging PRs in my community)' or 'Contributor (Authored and submitted
pull requests) ' at question '1 [Q1]' (Are you an open source contributor or maintainer?
Please, select the options that apply to you. E.g. if you are a contributor and a maintainer,
then tick both.)

 Please select 7 answers
Please choose the appropriate response for each item:

Very
important Important Neutral

Not
important

Not
important

at all

Code Quality (my
subjective assessment
of quality as a reviewer)

Code modularity

Maintainability (the
ease with which a
program code can be
changed in order to:
correct defects or
enhance the code)

Comply with the
community best
practices of
programming
languages

Contain documentation

Avoid technical debt

4/14/2020 LimeSurvey Professional - Your online survey service - IT University of Copenhagen

https://icse2020.limequery.com/admin/printablesurvey/sa/index/surveyid/913965 12/19

Very
important Important Neutral

Not
important

Not
important

at all

Pass tests

Social Principles
Social Principles

4/14/2020 LimeSurvey Professional - Your online survey service - IT University of Copenhagen

https://icse2020.limequery.com/admin/printablesurvey/sa/index/surveyid/913965 13/19

How strongly do you agree with these principles in the
assessment of pull requests/patches in your community? *
Only answer this question if the following conditions are met:
Answer was 'Maintainer (I have the responsibility of merging PRs in my community)' or
'Contributor (Authored and submitted pull requests) ' at question '1 [Q1]' (Are you an open
source contributor or maintainer? Please, select the options that apply to you. E.g. if you are
a contributor and a maintainer, then tick both.) and Answer was 'Maintainer (I have the
responsibility of merging PRs in my community)' or 'Contributor (Authored and submitted
pull requests) ' at question '1 [Q1]' (Are you an open source contributor or maintainer?
Please, select the options that apply to you. E.g. if you are a contributor and a maintainer,
then tick both.)

 Please select 4 answers
Please choose the appropriate response for each item:

I strongly
agree I agree Neutral

I
disagree

I strongly
disagree

Trust is more important
than the contribution of
the PR/patch during the
assessment of
PRs/patches.

Past reliability of the
contributor is more
important than the
contribution of the
PR/patch during the
assessment of
PRs/patches.

A good
contributor/maintainer
relationship is more
important than the
contribution of the
PR/patch during the
assessment of
PRs/patches.

4/14/2020 LimeSurvey Professional - Your online survey service - IT University of Copenhagen

https://icse2020.limequery.com/admin/printablesurvey/sa/index/surveyid/913965 14/19

I strongly
agree I agree Neutral

I
disagree

I strongly
disagree

I believe that
contributors must be
able to decouple their
ego from the technical
assessment of the
PR/patch.

Product Vision
Product Vision

4/14/2020 LimeSurvey Professional - Your online survey service - IT University of Copenhagen

https://icse2020.limequery.com/admin/printablesurvey/sa/index/surveyid/913965 15/19

How strongly do you agree with the statements below? *
Only answer this question if the following conditions are met:
Answer was 'Maintainer (I have the responsibility of merging PRs in my community)' or
'Contributor (Authored and submitted pull requests) ' at question '1 [Q1]' (Are you an open
source contributor or maintainer? Please, select the options that apply to you. E.g. if you are
a contributor and a maintainer, then tick both.) and Answer was 'Maintainer (I have the
responsibility of merging PRs in my community)' or 'Contributor (Authored and submitted
pull requests) ' at question '1 [Q1]' (Are you an open source contributor or maintainer?
Please, select the options that apply to you. E.g. if you are a contributor and a maintainer,
then tick both.)

 Please select 2 answers
Please choose the appropriate response for each item:

I strongly
agree I agree Neutral

I
disagree

I strongly
disagree

I have rejected pull
requests/patches
because they do not fit
within the roadmap set
by the community.

I have accepted pull
requests/patches even
though they do not fit
within the roadmap set
by the community.

Impact
Impact

4/14/2020 LimeSurvey Professional - Your online survey service - IT University of Copenhagen

https://icse2020.limequery.com/admin/printablesurvey/sa/index/surveyid/913965 16/19

What do you think is the impact of the current pull
requests/patches assessment strategy put in place in your
community? *
Only answer this question if the following conditions are met:
Answer was 'Maintainer (I have the responsibility of merging PRs in my community)' or
'Contributor (Authored and submitted pull requests) ' at question '1 [Q1]' (Are you an open
source contributor or maintainer? Please, select the options that apply to you. E.g. if you are
a contributor and a maintainer, then tick both.) and Answer was 'Maintainer (I have the
responsibility of merging PRs in my community)' or 'Contributor (Authored and submitted
pull requests) ' at question '1 [Q1]' (Are you an open source contributor or maintainer?
Please, select the options that apply to you. E.g. if you are a contributor and a maintainer,
then tick both.)

Please write your answer here:

PR example
PR example

4/14/2020 LimeSurvey Professional - Your online survey service - IT University of Copenhagen

https://icse2020.limequery.com/admin/printablesurvey/sa/index/surveyid/913965 17/19

Please, share with us the link to a pull request/patch that you
think was assessed fairly? (put na if you don't have time) *
Only answer this question if the following conditions are met:
Answer was 'Maintainer (I have the responsibility of merging PRs in my community)' or
'Contributor (Authored and submitted pull requests) ' at question '1 [Q1]' (Are you an open
source contributor or maintainer? Please, select the options that apply to you. E.g. if you are
a contributor and a maintainer, then tick both.) and Answer was 'Maintainer (I have the
responsibility of merging PRs in my community)' or 'Contributor (Authored and submitted
pull requests) ' at question '1 [Q1]' (Are you an open source contributor or maintainer?
Please, select the options that apply to you. E.g. if you are a contributor and a maintainer,
then tick both.)

Please write your answer here:

Why, in your opinion, the PR/patch (you shared with us in the
last question) was assessed fairly? *
Only answer this question if the following conditions are met:
Answer was 'Maintainer (I have the responsibility of merging PRs in my community)' or
'Contributor (Authored and submitted pull requests) ' at question '1 [Q1]' (Are you an open
source contributor or maintainer? Please, select the options that apply to you. E.g. if you are
a contributor and a maintainer, then tick both.)

Please write your answer here:

4/14/2020 LimeSurvey Professional - Your online survey service - IT University of Copenhagen

https://icse2020.limequery.com/admin/printablesurvey/sa/index/surveyid/913965 18/19

Please, share with us a link to a pull request/patch that you
think was assessed unfairly? (Put NA if you don't have time)
*
Only answer this question if the following conditions are met:
Answer was 'Maintainer (I have the responsibility of merging PRs in my community)' or
'Contributor (Authored and submitted pull requests) ' at question '1 [Q1]' (Are you an open
source contributor or maintainer? Please, select the options that apply to you. E.g. if you are
a contributor and a maintainer, then tick both.) and Answer was 'Maintainer (I have the
responsibility of merging PRs in my community)' or 'Contributor (Authored and submitted
pull requests) ' at question '1 [Q1]' (Are you an open source contributor or maintainer?
Please, select the options that apply to you. E.g. if you are a contributor and a maintainer,
then tick both.)

Please write your answer here:

4/14/2020 LimeSurvey Professional - Your online survey service - IT University of Copenhagen

https://icse2020.limequery.com/admin/printablesurvey/sa/index/surveyid/913965 19/19

Why, in your opinion, the PR/patch (you shared with us in the
last question) was assessed unfairly? (Put NA if you don't
have time) *
Only answer this question if the following conditions are met:
Answer was 'Maintainer (I have the responsibility of merging PRs in my community)' or
'Contributor (Authored and submitted pull requests) ' at question '1 [Q1]' (Are you an open
source contributor or maintainer? Please, select the options that apply to you. E.g. if you are
a contributor and a maintainer, then tick both.)

Please write your answer here:

Thanks for completing the survey. If you have any questions regarding the survey please contact
Adam Alami at adaa@itu.dk
17/06/2019 – 08:32

Submit your survey.
Thank you for completing this survey.

	Abstract (English)
	Abstract (Danish)
	Acknowledgments
	Contents
	List of figures
	List of tables
	Introduction
	Context
	Background
	Terminology
	Contributions
	The Project Context
	Outline

	Problem Definition & Research Question
	Motivation
	Defining Software Quality
	Problems
	Research Question
	Theses

	State of the Art
	Introduction

	Quality in FOSS: The Case of the ROS Community (Paper A)
	Summary
	Context and Motivation
	Methods
	Results
	Contributions

	Personal Motivation for Quality (Paper B)
	Summary
	Motivation
	Methods
	Results
	Contributions

	Affiliated Participation (Paper C)
	Summary
	Motivation
	Methods
	Results
	Contributions

	Continuous Improvement (Paper D)
	Summary
	Motivation
	Methods
	Results
	Contributions

	Governance for Quality (Paper E)
	Summary
	Motivation
	Methods
	Results
	Contributions

	Pull Requests Good Practices (Paper F)
	Summary
	Motivation
	Methods
	Results
	Contributions

	Governing Pull Requests in FOSS (Quantitative Study)
	Introduction
	Methods
	Subject Communities
	Findings
	Discussion
	Conclusion

	Discussion
	Personal Motivation for Quality
	Active Commercial Participation
	Ability to Improve
	Governance for Quality
	Retention to Sustain Quality
	Chapter Summary

	Conclusion and Future Work
	Future Work

	Bibliography
	Appendices
	Appendix A: Paper A
	Appendix B: Paper B
	Appendix C: Paper C
	Appendix D: Paper D
	Appendix E: Paper E
	Appendix F: Paper F
	Appendix G: Pull Request Survey

