4,776 research outputs found

    Poloidal-toroidal decomposition in a finite cylinder. II. Discretization, regularization and validation

    Full text link
    The Navier-Stokes equations in a finite cylinder are written in terms of poloidal and toroidal potentials in order to impose incompressibility. Regularity of the solutions is ensured in several ways: First, the potentials are represented using a spectral basis which is analytic at the cylindrical axis. Second, the non-physical discontinuous boundary conditions at the cylindrical corners are smoothed using a polynomial approximation to a steep exponential profile. Third, the nonlinear term is evaluated in such a way as to eliminate singularities. The resulting pseudo-spectral code is tested using exact polynomial solutions and the spectral convergence of the coefficients is demonstrated. Our solutions are shown to agree with exact polynomial solutions and with previous axisymmetric calculations of vortex breakdown and of nonaxisymmetric calculations of onset of helical spirals. Parallelization by azimuthal wavenumber is shown to be highly effective

    Determination of strength and debonding energy of a glass-concrete interface for encapsulation-based self-healing concrete

    Get PDF
    This paper presents a combined experimental-numerical analysis to assess the strength and fracture toughness of a glass-concrete interface. This interface is present in encapsulation-based self-healing concrete. There is absence of published results of these two properties, despite their important role in the correct working of this self-healing strategy. Two setups are used: uniaxial tensile tests to assess the bonding strength and four point bending tests to get the interfacial energy. The complementary numerical models for each setup are conducted using the finite element method. Two approaches are used: cohesive zone model to study the interface strength and the virtual crack closure technique to analyze the interfacial toughness. The models are validated and used to verify the experimental interpretations. It is found that a glass-concrete interface can develop a maximum strength of approximately 1 N/mm^2 with fracture energy of 0.011 J/m^2

    Generalized linear sampling method for elastic-wave sensing of heterogeneous fractures

    Get PDF
    A theoretical foundation is developed for active seismic reconstruction of fractures endowed with spatially-varying interfacial condition (e.g.~partially-closed fractures, hydraulic fractures). The proposed indicator functional carries a superior localization property with no significant sensitivity to the fracture's contact condition, measurement errors, and illumination frequency. This is accomplished through the paradigm of the F♯F_\sharp-factorization technique and the recently developed Generalized Linear Sampling Method (GLSM) applied to elastodynamics. The direct scattering problem is formulated in the frequency domain where the fracture surface is illuminated by a set of incident plane waves, while monitoring the induced scattered field in the form of (elastic) far-field patterns. The analysis of the well-posedness of the forward problem leads to an admissibility condition on the fracture's (linearized) contact parameters. This in turn contributes toward establishing the applicability of the F♯F_\sharp-factorization method, and consequently aids the formulation of a convex GLSM cost functional whose minimizer can be computed without iterations. Such minimizer is then used to construct a robust fracture indicator function, whose performance is illustrated through a set of numerical experiments. For completeness, the results of the GLSM reconstruction are compared to those obtained by the classical linear sampling method (LSM)

    Computational morphogenesis of free form shells: Filter methods to create alternative solutions

    Full text link
    p. 536-547Actual trends in numerical shape optimal design of structures deal with handling of very large dimensions of design space. The goal is to allowing as much design freedom as possible while considerably reducing the modelling effort. As a consequence, several technical problems have to be solved to get procedures which are robust, easy to use and which can handle many design parameters efficiently. The paper briefly discusses several of the most important aspects in this context and presents many illustrative examples which show typical applications for the design of light weight shell and membrane structures.Bletzinger, K.; Firi, M.; Linhard, J.; Wüchner, R. (2009). Computational morphogenesis of free form shells: Filter methods to create alternative solutions. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/654
    • …
    corecore