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Abstract

This paper presents a combined experimental-numerical analysis to assess the strength and fracture toughness
of a glass-concrete interface. This interface is present in encapsulation-based self-healing concrete. There is
absence of published results of these two properties, despite their important role in the correct working of this
self-healing strategy. Two setups are used: uniaxial tensile tests to assess the bonding strength and four point
bending tests to get the interfacial energy. The complementary numerical models for each setup are conducted
using the finite element method. Two approaches are used: cohesive zone model to study the interface strength
and the virtual crack closure technique to analyze the interfacial toughness. The models are validated and used
to verify the experimental interpretations. It is found that a glass-concrete interface can develop a maximum

strength of approximately 1 N/mm? with fracture energy of 0.011 J/m?.

Keywords: self-healing concrete, material interfaces, debonding, cohesive zone model, virtual crack closure

technique, finite element method

1. Introduction

The general strategy of encapsulation-based self-healing materials relies on inserting small fluid-filled capsules
in a matrix. [1-10]. The working principle of this autonomic healing strategy depends upon an adequate release
of the capsule content whenever the matrix is internally damaged. When the capsules are intercepted by cracks
of the matrix, the stress at the crack tip is transferred to the capsule. This stress should trigger the capsule
breakage and, thus the internal fluid could spread into the crack space via capillarity. To complete the healing
process, this fluid is capable of curing after some reaction, in such a way that the crack path is sealed and the
final internal structure is partially repaired [11].

When this encapsulation-based self-healing strategy is applied to concrete structures, capsules made of glass
are often used [12-15]. This choice is mainly due to the brittleness matching of both materials at the scale size of
the concrete constituents. However, embedding a glass capsule in a concrete matrix always creates an interface
between both elements. If this interface is not able to bear the load transfer, an incoming crack will simply trigger
a premature debonding, similarly to what happens when a solid inclusion is weakly bonded to a matrix [16, 17].
As a consequence, although the debonding would create a hole-liked region where the crack would be attracted,
the crack would simply pass along the capsule perimeter and continue its path again through the matrix [18-20].
This situation would result in an intact capsule and thus the process of healing would not occur as expected. As
mentioned, this encapsulation-based strategy relies on the fact that the capsules should break immediately after
they are intercepted by a crack, however this is not always the case. This is a phenomenon that can be hardly

inferred from the overall mechanical response of the test. In fact, once the experimental test is finished, it is
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often very difficult to know if the capsules broke at the right moment just after the crack arrival, and not some
time later, after the crack has already propagated causing an excessive deformation which is difficult to repair.
To the author’s best knowledge, this situation is not treated in the literature and deserve further analysis. The
mechanical properties of this interface have received less attention, and its properties have not been the main
object of mechanical characterization. However, the current interest in this self-healing strategy is leading to an
increase of theoretical and numerical works with the aim of getting a better understanding of its mechanisms
and determining the key factors to improve efficiency and feasibility [8, 21-27]. These models assume either
perfect bonding or a certain range of typical values of the interface properties, which are selected as a function
of mechanical similarities given by composition or the degree of brittleness [28, 29]. Further assessment and
discussion of how this glass-concrete interface affects the self-healing efficiency lies out of the scope of the present
paper, and it will be treated in forthcoming publication.

The motivation of this work is twofold: first, to quantify the strength and brittleness of this type of in-
terface, whose values have been unknown so far, and second, to provide a consistent and robust combined
experimental-modeling procedure to get these values. Two fundamental properties of the glass-concrete inter-
face are characterized: its maximum tensile strength and its fracture toughness. Maximum tensile strength,
hereafter referred to as bonding strength, provides a measure of the static normal load required to separate
a piece of concrete fully adhered to a flat glass surface. This bonding strength corresponds to the mode I of
fracture. This measure is a material property (or interface property), which is independent of the geometrical
features of the interface (maximum allowable interfacial tensile stress). Effectively, in a real situation with
cylindrical capsules subjected to a multiaxial load, not only mode-I would occur, but mode-II (in-plane shear)
or mode-IIT (out-of-plane shear) might be also present. Nevertheless, from pull-out tests using borosilicate glass
capsules embedded in the same type of concrete, the shear strength values are in the same order of magnitude.

This shear mode was previously assessed by Van Tittelboom [30] and its value was determined from direct
pull-out testing of a glass capsule embedded in a mortar and concrete cylinders. However, this test is extremely
delicate and it presents many difficulties related to the clamping and the alignment of the capsule, among others.
This situation leads to a quite large data dispersion. On the other hand, fracture toughness provides a measure
of the difficulty to extend an existing interfacial crack between the two aforementioned adhered surfaces. The
four-point-bending test makes it possible to determine the total interface energy using a simple flat geometry,
where both modes-I and II are cooperating. This is an intrinsic property of the interface that depends on the
interface nature, but not on the geometric features. A similar treatment could have been performed using a
curved composed beam, although from the mathematical point of view, the derivation of an analytical formula
for the total fracture energy would have been much more tedious to obtain. For the sake of simplicity and as
a first approach, during the analysis of the propagation of the interfacial crack, this work considers an isotropic
behavior, and therefore, the energies related to mode I and mode II are equal.

Regarding the applicability of the results from the proposed methodology, several aspects of the fracture
process of capsules in self-healing based materials can be afforded from the simulation point of view. As an
example, the analysis of the effect of the capsule shape (e.g., spherical, tubular) and size (length, diameter,
thickness) on the capability of its debonding or fracture within the matrix can be carried out. The properties
obtained from the present paper can be directly used to feed traction-separation laws using cohesive elements in
finite element models [25, 27, 31, 32]. From the practical point of view, if the capsule-matrix interface strength
has to be increased but the capsules surfaces cannot be previously treated with additives, its geometrical features
could be chosen in such a way that it triggers the capsule breakage more easily under certain types of stress
fields. This type of analyzes are very suitable for numerical simulations, where the ratio between the capsule
strength to the bonding interface also has to be taken into account as a function of the capsule dimensions.

This work is organized as follows. Two blocks are well distinguished: section 2 is entirely devoted to the
experimental part, whereas section 3 deals with the numerical modeling. Within the experimental part, three
sections have been differentiated: section 2.1 presents the complete process to produce the concrete material as
well as its mechanical characterization, section 2.2 describes the experimental setup required to determine the
interfacial bonding strength and section 2.3 deals with the setup to assess the interfacial fracture toughness.
Likewise, these two last sections share the same structure: firstly, the design and the sequence performed to

prepare the specimens are described, second, the details of the mechanical setup and the instrumentation to



Constituent  Amount (kg/m?)

Sand 0/4 670
Gravel 2/8 490
Gravel 8/16 790
CEM 1525 N 300
Water 150

Table 1: Concrete composition.

carry out the measurements are shown, and finally, the obtained results are presented and briefly discussed.
In a similar fashion, the numerical part exposed in section 3 is composed of two sections dedicated to the two
numerical setups, namely section 3.1 treats the simulation model used to analyze the tensile bonding strength
and section 3.2 deals with the four point bending model to investigate the interfacial toughness. Within the
section for each model, a description of the interface modeling technique is provided, as well as complete
details about the adopted numerical approaches (axi-symmetry, 2D, 3D, boundary conditions, type of mesh and
element). In that sense, the reliability and accuracy for each model are thoroughly studied regarding the type
and size of the mesh. Finally, the results obtained from the models are compared to the experiments and some
additional insights provided by the simulations are also discussed regarding the experimental observations. This
work finishes providing a summary of the findings and with some remarks about the applicability of the results.

2. Experimental

2.1. Concrete characterization

The concrete characteristics, presented in this section, have been used as input to prepare the test samples
described in sections 2.2 and 2.3. In addition, the elastic properties of the concrete have been used as input data
for the simulation models developed to complement the experimental procedures to assess the glass-concrete

interface properties.

2.1.1. Composition

Concrete samples were prepared using the concrete composition shown in Table 1. The slump, air content
and density of the fresh concrete mixture were measured on the first batch which was prepared and amounted
to 15 mm, 1.9% and 2400 kg/m3, respectively. Samples were demolded one day after casting and subsequently
stored under water at a temperature of 20°C until they were 21 days old. Afterward, samples were stored in
standard laboratory climate at 20°C until the time of testing at the age of 28 days.

2.1.2. Elastic properties

For each concrete batch, the compressive strength was determined at the age of 28 days on three concrete
cubes with dimensions of 150 mm x 150 mm x 150 mm, according to the standard NBN EN 12390-3. Before
the start of this destructive test procedure, the density of the hardened concrete was determined on each of
these cubes using the sample dimensions and mass. The mean compressive strength and density amounted to
57 N/mm? and 2395 kg/m?, respectively, as reported in Table 2.

The concrete tensile strength was measured on cylinders with a diameter of 50 mm and a height of 150 mm
which were drilled from 150 mm x 150 mm x 600 mm prisms. At the age of 28 days, uniaxial tensile tests
were performed onto five concrete cylinders and resulted in a mean value of the tensile strength of 3.1 N/mm?
(Table 2). In order to determine the Young’s modulus and the Poisson coefficient of the concrete, three cylinders
with a diameter of 150 mm and a height of 300 mm were prepared. On each cylinder, three 120 mm long strain
gauges were attached in axial direction, at positions equally divided along the mantle surface (see Fig. 1). The
middle of each strain gauge was positioned at half height of the cylinders. Three more, identical, strain gauges
were attached to each cylinder in transverse direction. These were also positioned at half height of the cylinder
and covered altogether almost the complete periphery (see Fig. 1). All strain gauges were attached to the

concrete surface by means of methyl methacrylate based glue.



Figure 1: Setup used to determine the Young’s modulus and the Poisson coefficient.

Determination of the Young’s modulus (E.) was done according to the specifications given in the standard
NBN B 15-203. In short, at the age of 28 days, each cylinder was mounted in a compression test machine.
Each cylinder was loaded in a cyclic compression test as shown in Fig. 2. The load cycle consisted of the
following steps: load increase until 1/3 of the sample’s compressive strength (o,) (value estimated based on the
compressive strength determined on the concrete cubes), load maintained for 90 seconds, unloading at a speed
of 0.6 kN /s until the stress in the concrete amounts to 1.2 N/mm? (o}), load kept constant for 90 seconds. This
loading regime was repeated three times for each sample. As shown in Fig. 2, after the last unloading step,
samples were immediately reloaded until complete failure.
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Figure 2: Cyclic loading regime used to determine the Young’s modulus and the Poisson coefficient.

For the second and the third loading cycle, the strain (ey) was calculated based on the deformations measured
by each axial strain gauge, according to equation 1.
la — Uy

€0 = L—o (1)



Table 2: Concrete properties (n=number of repetitions).

Fresh properties

Property Unit Value n
Slump mm 15 1
Air content % 1.9 1
Density kg/m? 2400 1
. Hardened properties
Property Unit Value n
Deunsity kg/m? 2395 6
Compressive strength  N/mm? 57 6
Tensile strength N/mm? 3.1 5
Young’s modulus N/mm? 39567 3
Poisson’s ratio — 0.17 3

where Lg is the length of the strain gauge and I, and [, are the values measured by the strain gauges at oy
and o, stress levels, respectively. Subsequently, the mean value for the three axial strain gauges was calculated
(ém) and finally, the Young’s modulus of each cylindrical sample was calculated using equation 2.

Oq — Op

E. = (2)

€m

As shown in Table 2, a mean value of 39567 N/mm? was obtained for the Young’s modulus of the concrete
used within this study. Calculation of the Poisson coefficient (v.) was done using both the strain values obtained
from the axial and the transversal strain gauges. For each of the three loading cycles, the mean strain obtained
by the three axial and transversal strain gauges when samples were loaded at 1/3 of their compressive strength
was used for the calculation. The strain obtained in transverse direction was divided by the strain obtained
in axial direction to find the Poisson coefficient. These values were averaged for each loading cycle and each

sample to result in the final value of 0.17 as reported in Table 2.

2.2. Bonding strength: tensile test

In this section the bond strength between glass and concrete is experimentally determined by performing a
unidirectional tensile test onto a concrete cylinder casted on a circular glass plate. Since debonding between
the glass and concrete matrix is the only mechanism of failure, the maximum force measured during this test

can be used to calculate a characteristic value of the maximum tensile strength in a glass-concrete interface.

2.2.1. Specimen design and preparation

In order to prepare the samples, glass plates with a diameter of 100 mm and a thickness of 3.5 mm were
used as the bottom of a cylindrical mold. The glass capsules used to test large-scale self-healing concrete beams
are typically made of borosilicate glass [33, 34|, therefore the same type of glass was chosen for the glass plates
used in this work. Before use, the glass plates were degreased with acetone. Then, the molds of the samples
were further built up by the use of a polyvinylchloride (PVC) tube with an internal diameter of 100 mm and
a height of 53.5 mm. A saw cut was provided in the tubes in longitudinal direction to allow easy demolding
of the samples. The PVC tubes were clamped around the glass plates by means of a tie strap, after which the
molds were ready and casting of the concrete could start.

The concrete composition specified in section 2.1.1 was used to cast six glass-concrete cylinders as shown
in Fig. 3. By analogy with the previously mentioned samples, these cylinders were demolded after one day
and stored under water until the age of 21 days. Afterward they were stored in standard laboratory climate
at 20°C. Within the last week of storage, cylindrical metal dollies with a diameter of 100 mm were glued with
epoxy resin at both sides of the samples. Care was taken that no glue bridged the connection between the glass
plate and the concrete matrix. At the age of 28 days a uniaxial tensile test was performed on the samples as
described in the next section.



Figure 3: Glass-concrete cylinder after demolding of the sample.

2.2.2. Mechanical test setup

A first batch composed of three samples (labeled as I, IT and III) was tested in a hydraulic tensile test
machine with a capacity of 50 kN. Coupling devices with screw thread, which fitted inside the metal dollies,
were used to connect the samples to the test machine. During testing of this first batch only the maximum force
was registered for each sample. As expected, the failure process took place clearly at the glass-concrete interface,
and it occurred in a very brittle way. In order to get some additional insights of the debonding process, a second

Figure 4: (a) Setup of the uniaxial tensile test. (b) Samples after loading in the uniaxial tensile test showing debonding of the
glass-concrete interface.

batch of samples (labeled as IV, V and VI) were instead mounted in a servo-hydraulic tensile test machine.
These samples were similarly clamped to this machine using the same coupling devices used during the first
batch showed in Fig. 4a. For this second batch of samples, a load cell of 50 kN was also connected in between
the sample and the machine and they were loaded in a load-controlled tensile test with a speed of 0.17 kN/s.
However, in this occasion three LVDT’s (Solartron AX/0.5/S) with a measurement range of £500 ym and an
accuracy of 1 um were attached to these samples during loading, to measure the displacement between the glass
plate and the concrete in axial direction. A PVC block with a hole used to clamp the LVDT was glued at the
concrete surface just above the glass-concrete interface at three positions, equally divided along the sample’s
circumference. At these same positions a metal hook was glued onto the lower dolly. These were used to place
the tip of the LVDT.



Sample Bond strength [N/mm?]

1 1.15

11 0.92

111 0.70

v 0.79

\% 0.82

VI 1.36
Average 0.96+0.09

Table 3: Bond strength of a glass-concrete interface.

2.2.3. Results

Based on the maximum load measured for each sample at the moment of debonding and the sample’s cross-
section, the bond strength was calculated as shown in Table 3. Figure 4b shows the typical aspect of the samples
after testing. All samples exhibited a very clean debonding between the glass and concrete and there were no
decohesion fragments of concrete on the glass plate.

Figure 5 shows the load displacement curves obtained from the second batch composed of samples IV, V and
VI. As mentioned before, the samples failed in a very brittle way and thus the measured displacement between
the glass-concrete interface was really limited. For some LVDT’s even negative values were obtained due to the
fact that there were some imperfections in the position of the load.
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Figure 5: Load displacement diagrams obtained for samples IV, V and VI.

As it will be shown later, the simulation of this test predicts displacements which are below the accuracy of
the LVTD gauges (< 1um). Due to this reason, the reliability of the displacements registered during these tests
are for guidance only. On the other hand, the force measurements are reliably accurate. In that sense, in spite of
the fact that two batches were tested using two different mechanical test machines, the results have exhibited an

acceptable reproducibility taking into account the typical high uncertainty inherent to cementitious materials.

2.8. Interface energy: four point bending test

The aim of this test is to obtain a characteristic energy release rate value that quantifies the degree of
brittleness of a typical glass-concrete interface. This value can be used in numerical models that might contain
this combination of materials. To do that, four point bending tests were performed using composed beams
consisting of a lower layer of glass and an upper layer of concrete. This test setup triggers delamination of
the beam and makes it possible to assess the debonding fracture toughness. The energy release rate for this
configuration was obtained as demonstrated by Charalambides et al. [35]. It is important to note that the
assessment of the interfacial toughness involves bending the composed beam, however, the value of the applied
deflection itself is not required. As explained in ref. [35], only the value of the constant moment in which the
delamination regime takes place is required, namely, the plateau in the force-displacement curve. Section 2.3.4
presents a brief description of the mathematical relationships required to link the applied force to the interfacial
toughness energy.

2.3.1. Specimen design and preparation

Four composed beams were prepared and every beam consisted of two glass plates adhered to a thicker

concrete beam as is schematically depicted in Fig. 6. The glass plates used for these samples were of the same



type as those used in the previous test. In order to prepare the samples, four molds (see Fig. 7a) with internal
dimensions of 100 mm x 48 mm x 800 mm were used. At the bottom of these molds two glass plates with a
thickness of 8 mm and a length of 399 mm were positioned so that they covered almost the complete bottom
of the mold, as it is shown in Fig. 7a. These plates were first degreased with acetone. The small separation

Concrete F/2
EC7 I‘/C

Glass
E

9> Vg
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Figure 6: Dimensions of the composed beam.

of 2 mm in between both glass plates (see Fig. 7b) was filled by means of a dense foam strip which could be
removed at the moment of demolding. This gap prevents any contact between the edges of the glass plates in
case of debonding during testing. Introduction of a pre-crack (zone where there is no bonding between the glass

Figure 7: (a) Introduction of the glass plates in the molds. (b) Detailed view of the pre-crack preparation using a plastic spacer of
0.3 mm thickness. (c) Molds filled with fresh concrete. (d) Samples completed and ready to be tested.

and the concrete) was performed by means of a plastic spacer with a calibrated thickness of 0.3 mm, a width
of 100 mm and a length of 40 mm. As Fig. 7b shows, this plastic strip was symmetrically positioned over the
2 mm gap in between both glass plates. A water film between the glass plate and the plastic strip assured that
the strip remained at its position during concrete casting. The same concrete mix as described in section 2.1.1
was used here to cast four glass-concrete beams. Figure 7c shows the molds after they were filled to the top in
such a way that final beams consisting of a glass layer of 8 mm and a concrete layer of 40 mm were obtained. In
analogy with the other samples, demolding of the beams was performed one day later, after which the samples
were stored under water until the age of 21 days. Testing in four point bending was performed at the age of
28 days. Figure 7d shows the aspect of the samples fully prepared just before the testing process (from this

picture, the forth beam was already mounted in the testing machine).



2.3.2. Mechanical test setup

An Instron electro-mechanical machine (model 5885H) with a 200 kN load cell was used for loading the
composite beams. The beams were mounted in the four point bending configuration shown in Fig. 8. The
sample rested on an adjustable support to fit the span distance and a pivotal support ensured a uniform
bending load. The machine was programmed to impose a displacement rate of 0.04 mm/min. In that sense, to
guarantee a uniform contact between the anvil’s rollers and the top beam surface, two steel plates were placed
in between them. Fresh cement paste was used to accommodate and attach these steel plates in a way that
enabled to get complete contact applying a slight load. The setup was ready one hour after the cement paste
had cured. On the other hand, to prevent premature fracture of the glass plates in contact with the lower

rollers, a thin polymeric band was inserted in between them.

Pivotalsuport

Figure 8: Four point bending setup.

2.3.3. Test results

Figure 9 shows the load displacement curves obtained from four composed beams prepared in section 2.3.1.
The displacement represented in this figure corresponds to the total movement imposed to the moveable anvil
(see Fig. 8). This anvil is tightly connected to the crosshead of the machine and its displacement is continuously
recorded by the controller software.

These four samples have exhibited the same three-stage behavior. An initial linear dependence appears as
a consequence of the bending stiffness of the sample before any debonding. This slope finishes resulting in a
steady-state on the load response (see zoomed view in Fig. 9). This constant regime can be explained by the
existence of an interface crack that propagates between the loading lines, as it is demonstrated by Charalambides
et al. [35]. Once this plateau finishes, a new slope is generated until the breakage of the concrete beam. This
last region corresponds to the bending process undergone only by the concrete layer. During the generation
of this slope, the interfacial crack front stopped beneath the load line. The maximum force of this curves
provides the force required to break the concrete layer. The zoomed view in Fig. 9 shows the region around the
peak force produced at the beginning of the steady-state of the loading process. This peak might have several
reasons, for example, as a result of nucleation of interfacial cracks in a non-precracked sample [36] or due to
the formation of small cracks through the thickness that would connect the external surface of the sample with
internal interfacial pre-cracks [37]. However, in the present case, this peak could be explained by the presence of
some residual cement paste still existing in the 2 mm gap between glass edges (see Fig. 10a). As it is mentioned
in section 2.3.1, a dense sponge strip to fill it was inserted. Although the most of this strip was removed once
the concrete sample cured (this operation had to be executed very gently in order to prevent perturbation of
the pre-crack), some hardened rests could still be linking both glass edges. Similarly, the two lateral joint lines
formed between the glass plate and the concrete beam were also carefully cleaned, however, a gentler friction
around the gap could have left some residual cement paste. Figure 10b shows the aspect of one of the samples

at the end of the test, where both plates were debonded but only one side of the concrete broke.
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Figure 9: (Top) Force-displacement diagrams obtained from the four point bending setup. (Bottom) Zoomed view of the load
region that corresponds with delamination of glass plates.

2.8.4. Calculation of the interface fracture toughness

The interfacial precrack of the bimaterial beam shown in Fig.10a is subjected to a mixed mode loading in a
four point bending test. Mixed-mode conditions are quantified by a mode-mixity phase angle, which is 0° for
pure mode-I and 90° for pure mode-II. This test geometry produces mixed mode loading with an angle phase
of ~ 45° [35, 36, 38-41]. As it is shown by Charalambides et al. [35], to obtain the individual stress intensity
factors (K; and Kjy) an extra analysis is required. However, a quantitative distinction between both stress
intensity factors lies out of the scope of this work, and therefore only the glass-concrete interfacial toughness
is dealt with. Whilst the interfacial crack tip has not reached the region beneath the loading line, the portion
of the composed beam between both loading lines is subjected to a constant moment. Therefore, an expression

for the steady-state interfacial fracture energy can be obtained assuming that the material is linear elastic [35]

. 1—wv2(Fd\’ /(1 X
“ =%E (w> <II> )

where F' is the applied load, w is the sample width, d stands for the distance between the lower support and

given by

the line of load (see Fig.6), E is the Young’s modulus, v is the Poisson’s ratio and the subscript “c” stands for
concrete. Regarding I. and I*, they are the second moment of area of the concrete layer and the composed

beam, respectively, both given by

3
I = %
(4)
oo T8 Mhghelhy +ho)?
1212 A(hy + Ahe)

where h is the thickness, the subscript “g” stands for glass and A is the elastic ratio given by

E.(1-v})
MR ®)
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Figure 10: (a) Detailed view of the pre-crack during the initial stage of the loading process. (b) Test finalized when the concrete
beam breaks.

Sample Plateau force [N] G* [mJ/m?]

Beam 1 185.23 10.57
Beam 2 186.39 10.59
Beam 3 185.65 10.62
Beam 4 186.37 10.70
Average 185.940.2 10.6240.02

Table 4: Bending force and critical energy release rate of a glass-concrete interface obtained via four point bending setup.

Table 4 summarizes the results obtained from the glass-concrete debonding stages. The force values corre-
sponding to the plateau of every curve shown in Fig. 9 were calculated by means of linear fitting to a horizontal
segment. The length of every curve segment was determined detecting curvature changes. Then, energy release
rate G* corresponding to this critical load was calculated using the expressions 3, 4 and 5. The experimental
value of the interface toughness obtained was approximately 0.011 J/m?, which confirms the highly brittle
nature of this type of interface.

3. Finite element modeling

8.1. Simulation of the tensile test setup

According to the experimental setup presented in section 2.2, two simulation models using different ap-
proaches have been performed: a three-dimensional model (3D) and an axisymmetric model (Axi). The aim of
these models is twofold. First, these models are used to verify the correspondence between the experimental
force obtained from the tensile test and the bonding strength provided as input data in the traction-separation
law implemented via cohesive surfaces. Secondly, using two different approaches (namely, 3D and Axi) makes

it possible to analyze which model produces more reliable results.
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Table 5: Material properties: E - Young’s modulus, v - Poisson’s ratio, o* - maximum interface tensile strength and G* - interface
fracture toughness.

Region Material property Value
Concrete block i c ((_1)\1/ mm?) 3915767
Glass plate fgg ((_1)\1/ mm?) 8020100
Glass-concrete interface CCT; ((131?2;1)12) 83??

3.1.1. Geometry, boundary conditions, materials and interface

Figure 11 shows a schematic view with the geometrical details and the regions that compose the model. The
specimen geometry consists of a cylindrical concrete block of height h. and radius R attached to a cylindrical
glass plate of thickness hy and equal radius. The 3D model has been implemented as a quarter geometry of the
real problem, where planes XY and Y Z are symmetry planes. The Axi model corresponds with the geometry
in the plane XY, where the y-axis is the axis of revolution.

e
|

Concrete cylinder

EC?”C hC

T Concrete surface

Glass plate
Eg,uy

Figure 11: Model setup: geometric parameters, global system of reference, boundary conditions and detail of the surface regions
affected by the cohesive law.

Regarding the boundary conditions, similarly to the experimental setup, the bottom surface of the glass
plate is clamped to the machine and therefore its vertical movement is not allowed. The circular sides of the
concrete and glass plate are free-faces (or free-edges in the Axi model). The top face of the concrete cylinder
undergoes a uniform displacement parallel to the y-axis constantly increased as a linear function of time, so
that U = (Umaa/T) - t, with t € [0, T]. In all simulations the value T' = 1 has been set. As it has been observed
from the experimental results, the bonding interface has exhibited an extremely brittle behavior and therefore
a very low displacement has to be imposed. For all simulations presented in this section a total displacement
given by U,,q, = 0.004 mm has been used.

According to the experimental values of the material properties presented in previous section 2, Table 5

summarizes the values used in the models (3D and Axi). The value chosen for the maximum interface strength,
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o*, equals the value of sample II (these simulations were carried out before completing the tensile tests on the
second batch of samples). For the values of the concrete elastic properties and the interfacial fracture toughness,
average values of previous experimental tests have been used. Concerning the elastic properties of the glass
plates, values from the literature have been chosen [42].

In order to include the bonding between the concrete and the glass plate, two surface regions depicted
in Fig. 11 are distinguished: the bottom surface of the concrete block (blue) and the top surface of the glass
plate (red). The interaction that connects both surfaces has been implemented through a surface-based cohesive

behavior that follows the traction-separation law of Fig. 12. This traction-separation law is built using a bi-linear
g 4

o+

G*

[T ——

K*

| >

| I »
; o
Figure 12: Schematic representation of the traction-separation law and parameters involved.

cohesive zone model [43-47] that can be mathematically expressed as follows

K*§ if 0<6<4
A a*(gj:g) it §<8<or (6)
0 it &> 6"

where ¢* is the strength of the bonding interface, 6 is the crack opening displacement between surfaces at
o* and K* is the interface stiffness. The area below the curve defines the interface fracture energy given by
G* = %0*6*. This energy, also referred to as fracture toughness, represents the energy that has been dissipated
during the full detachment of the two initially attached surfaces. Regarding the interface stiffness K*, as it
has been checked previously [27], Abaqus calculates automatically the adequate value as a function of the two
solid material elements under interaction. This ensures that stiffness of the interface does not alter the global
stiffness of the system concrete-glass.

On the other hand, to establish the degree of mesh refinement, this work uses as a reference the critical

length given by
2EG*

lcrit = W 3 (7)

where F is the Young’s modulus of the more compliant material (concrete in this case). This length represents
the distance between the interfacial crack tip and the point on the interface where the maximum tensile strength
is developed [44, 48]. To obtain accurate results, the element size of the mesh, hereinafter referred to as lgem, has
to fulfill the condition lejem < lerit. This criterion can be obtained from the condition that establishes €* < €.on,

where €* = ¢*/E stands for the strain of the interface at the peak value of traction and €con = leon/leiem =

2G*/0* [leiem stands for a measure of the maximum cohesive strain allowed by the interface relative to the
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surface elements that form it.

3.1.2. Three-dimensional model

According to the definition of the critical element size given by eq.7 and the material properties presented

in Table 5, the current model requires an element size that fulfills [, < 1 mm. Taking into account the

size of the sample, this condition restricts the level of refinement admissible for 3D calculations because the

computational cost becomes unaffordable. In spite of that, simulations with elements with three different sizes,

letem = 0.5, 1 and 2.5 mm, have been performed in order to probe into the effect of lje., in the maximum force

required to break the glass-concrete interface.
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1 mm used for 3D models: (left) hexahedral elements and (right) wedge elements.

Figure 13: Example of meshes with lgjem

Figure 13 shows two types of meshes used for this model. The left mesh was created using 8-node hexahedral

This type of element

elements (hereafter denoted by Hex) using linear interpolation and full integration.

In order to get a regular mesh on the interface plane, an

corresponds to C3D8 in Abaqus notation [49].

As it will be shown later, this

regular mesh. Additionally, a conformal mesh

S.

additional partition was performed to obtain concentric layer of element

regularity exhibits an important difference compared to a non

was chosen to get one-to-one contact elements at the interface between the concrete block and the glass plate. On

hereafter denoted by Wed)

(

node wedge elements
with linear interpolation and full integration. In Abaqus notation this element is denoted by C3D6 [49]. The

the other hand, the right mesh in Fig. 13 was created using 6

s computationally less expensive than Hex elements

choice of this element type is twofold. Firstly, this element i

(and tetrahedral), although in occasions it requires a finer mesh in regions where the accuracy is critical. This

this element type led to an

element provides a good compromise between accuracy and performance. Secondly,

on the surfaces where the

and in particular,

)

unstructured triangular mesh along the cross section of the sample

ssible preferential direction imposed

s it possible to avoid any po

sh geometry make

S me

interface takes place. Thi

for example, radial and circumferential directions produced by the

(

case, a conformal mesh was also used to mesh the concrete block and the

by the particular geometry of the element

Hex mesh). Similarly to the previous

glass plate. The total number of elements generated for the finest meshes (l¢jer, = 0.5 mm) was about 8-10°

elements.

Figure 14 shows the force-displacement curves obtained from the 3D model comparing the usage of Hex

Based on the experimental value of the tensile bonding

and Wed elements as well as different element sizes.

strength introduced in the cohesive interaction and the cross section of the model, a peak force of 7250 N

is expected. This value is depicted in Fig. 14 using a thick horizontal line. A first inspection of the global

response, using different mesh and element size seems to provide little differences between them. However, all

cases have exhibited a peak force slightly lower than the expected value. In fact, looking in more detail into

the peak area (zoomed view in Fig. 14), some differences can be appreciated. This result shows that the finest

mesh (lger, = 0.5 mm) approaches better the expected result, but being still a 3% below. Additionally, using
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Figure 14: (Left) Force-displacement curves obtained from the 3D tensile test model. Two mesh types are tested: hexahedral (Hex)
and wedge (Wed) elements. (Right) Zoomed view around the peak force (same units as the left graph).

Hex elements seems to provide slightly better results than Wed elements. As a matter of fact, the Wed mesh
produced the same result for leje, = 1 mm and lgjep,, = 0.5 mm. This result suggests that the Wed mesh is less
sensitive to the element size.

S, S22

(Avg: 75%)
.43e+06
.22e+06
.01le+06
.80e+06
.59e+06
.38e+06
.17e+06
.62e+05
.53e+05
.43e+05
.33e+05
.23e+05
.62e+04

S, S22

(Avg: 75%)
.62e+06
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.17e+06
.94e+06
.72e+06
.49e+06
.26e+06
.04e+06
.12e+05
.86e+05
.60e+05
.35e+05
.11le+04

Figure 15: Stress distribution of vertical component (o) plotted on the deformed state during debonding (stress, in Pa, deformation
scale factor x 2000). (Top) Hex mesh. (Bottom) Wed mesh. Element size: lcjep, = 0.5 mm. (For interpretation of the references
to color in this figure legend, the reader is referred to the online version of this article).

Regarding the interfacial crack pattern obtained by the model, Fig. 15 shows the aspect of the sample in
an intermediate state during debonding. The top image corresponds to Hex mesh and the bottom one to Wed
mesh, both with l¢e;,, = 0.5 mm. For a better visualization, the displacement field has been magnified a factor
x 2000. The stress component perpendicular to the interface (oy,) is plotted over the sample geometry. The
model predicts a concentric-shaped interfacial debonding that is initiated in the most external circular line that
joins both material surfaces. This circular crack front advances homogeneously until reaching the center of the
sample. Although both meshes have produced similar patterns, the mesh created with Wed elements exhibits

a slightly more erratic stress profile in the area behind the crack front. This lack of homogeneity might be
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attributed to a less accurate description obtained by using Wed elements [49].

Wed, 2.5 mm Wed, 1.0 mm

CSDMG

+1.000e+00
+9.167e-01
+8.333e-01
+7.500e-01

+3.333e-01
+2.500e-01
+1.667e-01
+8.333e-02

+0.000e+00

Figure 16: Pattern of interfacial failure provided by the cohesive damage variable CSDMG (0=undamaged, 1=fully damaged). Hex
and Wed meshes are compared using different refinement levels. (For interpretation of the references to color in this figure legend,
the reader is referred to the online version of this article).

Figure 16 shows the cohesive damage variable associated to the glass-concrete interface. Hex and Wed meshes
and the three element sizes are compared at the beginning of the debonding process. CSDMG is a continuous
variable whose values are within the interval [0,1]. A value equal to 0 indicates a fully intact interface. A
situation with 0 < CSDMG < 1 indicates a certain level of damage, although the interface can still carry
stresses. If CSDMG equals 1, the interface is fully damaged and stresses cannot be transferred anymore. The
results show an important effect of the element size when using a Wed mesh. This type of mesh has to be
refined below the size established by the [..;; in order to obtain accurate results. For inadequate element length,
the debonding initiation is triggered first on the two ends of the contact line and a non-concentric debonding
pattern is produced. Interestingly, despite this apparently strong mesh dependence, the total force calculated
at debonding only deviates 5.5% with respect to the expected value (see Fig. 14). On the other hand, the model
using a Hex mesh has exhibited less mesh dependence regarding the geometry of initiation and propagation of
the interface crack. This result suggests that its particular geometry (with circumferential and radial alignment
of elements) has had a beneficial effect even for coarse elements. This has not been the case for an unstructured
mesh, where the level of refinement has to be bigger.

Nevertheless, the smallest element size used in this 3D model could be considered yet not sufficiently fine, as
it is suggested by Turon et al. [50], where a ratio lrit/leiem > 3 is recommended to get accurate results. Since
the computational cost involved in further mesh refinement becomes prohibitive in this 3D model, a deeper
analysis for the axisymmetric model has been performed. However, it is worth mentioning that even using a
still relatively large element size for this 3D model, their predictions produce quite reliable values in comparison

to its more refined axisymmetric counterpart model (see next section).

8.1.3. Axisymmetric model

This section addresses the previous configuration assuming axisymmetric conditions. As before, two types
of mesh have been studied: one mesh, denoted by Qua, constructed using 4-node bilinear axisymmetric quadri-
lateral elements (CAX4), and another mesh, denoted by Tri, created using 3-node linear axisymmetric triangle
elements (CAX3). The calculations done in all cases were performed using linear interpolation and full inte-
gration. The axisymmetric approach makes it possible to work with much finer meshes, and therefore, for each
mesh type, five element sizes have been studied: l¢jem = 2, 1, 0.5, 0.25 and 0.1 mm. As example, Fig. 17 shows
the differences between a Qua mesh (left) and a Tri mesh (right), where both cases correspond to lejer, = 1 mm.
Again, regarding the glass-concrete interface, all meshes studied in this section have been set conformal. In this
case, the number of elements generated for the finest meshes (0.1 mm) was about 3-10° elements.

Figure 18 shows the force-displacement response from the axisymmetric model. Curves in black color
correspond to results obtained using a Qua mesh, whereas curves in blue color correspond to a Tri mesh.

Similarly to the previous case, the experimental force value required to debond both parts of the sample has
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Figure 17: Example of mesh with l¢je,, = 1 mm used for Axi models: Quadrilateral elements (left) and Triangular elements (right).
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Figure 18: (Left) Force-displacement curves obtained from the Axisymmetric tensile test model. Two mesh types are tested:
quadrilateral (Qua) and triangular (Tri) elements. (Right) Zoomed view around the peak force (same units as the left graph).

been indicated using a thick horizontal line. Also, on the right side of this figure, a zoomed view bounding the
area around the peak force has been plotted. In order to facilitate the comparison with the 3D model, this
figure and its zoomed view use the same scale as in Fig. 14. Results obtained from using a Qua mesh reveal
a very similar behavior to the 3D model. As it can be seen in the zoomed view of Fig. 18, using element sizes
of 1 mm and 2 mm produced essentially the same response, similarly to what happened in the 3D model when
sizes of 1 mm and 2.5 mm were used. Additionally, for l¢e,, = 0.5 mm the axisymmetric and 3D model have
produced very similar peak forces, 7060 N and 7040 N, respectively. In this occasion, a finer refinement of the
mesh has made it possible to reach the experimental value, as expected for l.,it/lciem > 3. This convergence to
the experimental value has been reached even sooner using a Tri mesh, particularly for lcjem & lerit. Moreover,
both Qua and Tri geometries meshed with the smallest element size (0.1 mm) have provided a peak force 0.8%
larger than the experimental value.

The distribution of the normal interfacial force between glass and concrete is presented in Fig. 19. The top
image shows this distribution when the total load undergone by the sample has reached the peak value that
triggers the debonding (see Fig.18). As it can be seen, the interface force exhibits a clear linear distribution
along the radial coordinate. A fast estimation to check whether this profile matches properly the total peak
force can be performed as follows. The element size used in this example is l¢jer, = 0.5 mm, which amounts to
a total of n = 101 nodes along the radius of the sample. The resulting linear distribution makes it possible to
write the force directly on the i-th node as F; & F,4, 1/n, where F,,, ~ 139 N is the maximum value of the
distribution shown in the scale. Also, it can be assumed that node i = 0 is located in the center of the sample

and node 7 = 100 is the last node located at the edge of the interface. Therefore, performing the sum over all

17



+1.387e+02
+1.213e+02
+1.040e+02
+8.666e+01

+6.933e+01 st L
+5.200e+01 AR
+3.467e+01
+1.733e+01
+0.000e+00

+2.276e402

+1.992e+02

+1.707e+02

+1.423e+02

+1.138e+02 L LT
SRR T T ST

+8.535e+01 '

+5.690e+01
+2.845e+01

+0.000e+00

+1.135e402 by

+9.932e+01

+8.513e401

+7.094e+01
+5.675e+01 ”HM -

+4.257e+01
+2.838e+01
+1.419%e+01
+0.000e+00

Figure 19: Example of distribution of normal force along the interfacial crack (Qua mesh, l¢jep, = 0.5 mm, force in N, displacement
scale factor x 2000). Three stages are shown: (top) beginning of debonding at the peak force, (center) intermediate state and
(bottom) state almost before total interfacial failure. (For interpretation of the references to color in this figure legend, the reader
is referred to the online version of this article).

nodes in the interface, the total force obtained is F' = F,q5(n + 1)/2 = 7090 N, whose value matches perfectly
the total peak force to initiate the debonding for this case (see zoomed view of Fig. 18). Once the interface
crack starts to propagate, the force distribution changes to a nonlinear function according to the acquired shape
of the crack opening [51, 52|, as it is shown in the central and bottom images of Fig. 19.
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Figure 20: Bonding strength values obtained from the axi-symmetrical model. Convergence analysis: element size, numerical
damping and type of mesh.

Implicit solvers dealing with discontinuities, softening processes or material degradation typically make use
of a viscous regularization to overcome convergence difficulties. Specific or advisable values of this regularization
are not usually found in the literature where numerical models are applied to engineering problems. Abaqus
solver is endowed with a built-in regularization scheme to reach convergence while having a minimal effect on
the response. The amount of regularization is governed by the parameter denoted here by v and it makes the
consistent tangent stiffness of the softening interaction law positive for sufficiently small time increments [49].
The amount of viscous regularization established by default in Abaqus is v = 107°. Nevertheless, this value
might change for specific problems and therefore it demands a preliminary analysis in order to understand and
delimit its influence, and consequently, the validity of the final results. This analysis has been carried out for
the present axisymmetric model. Results are depicted in Fig. 20. As stated in Abaqus specifications, damage
stabilization used to achieve convergence could affect the overall response and, in particular, the post peak region
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of the load-displacement curve. Looking at the force-displacement curves of Fig. 18, this stabilization has no
visible effects in the post-peak response, mainly due to the high brittleness of the interface, which produces a
very fast force drop. However, this stabilization seems to have a non-negligible effect on the peak force itself.
This result suggests that the value of v has to be chosen carefully, and not only as a function of the ratio

lerit/letem, but also considering the element type.

3.2. Simulation of the four point bending test setup

According to the analysis obtained from the previous models and taking into account the extreme brittle
nature of the glass-concrete interface, the present model has been built up using the Virtual Crack Closure
Technique (VCCT) [53]. As it will be shown in the next section, the approach of this formulation is energy-
based and does not require the usage of the maximum bonding tensile strength ¢*. With this situation it is
possible to evade the restrictions in terms of mesh size established by eq. 7 due to the dimensions involved in
the sample size. Similarly, the usage of viscous regularization has not been required, which makes it possible
to avoid its influence in the results. However, this approach is not exempted from mesh issues, and therefore
a convergence analysis has also been conducted to ensure the validity of the results and further interpretation.
On the other hand, due to the geometry, dimensions and symmetry of the problem, a two-dimensional plane
strain model has been adopted.

3.2.1. Interface modeling technique

The VCCT approach is based on the principles of the linear elastic fracture mechanics (LEFM) and is more
suitable to describe crack propagation in very brittle materials. The concept relies on calculating the strain
energy released directly from the calculated forces and displacements at the crack tip. As mentioned before,
this is an energy-based technique, therefore the existence of an initial pre-crack is required in order to start

the calculation process. As it is shown in Fig. 21, when a crack propagates a small increment distance Aa, the

a Aa
------------- > —
Force
p A
1 I:1,2
F1,2
) I 3 / G* Aaw
2
> S Displa?:ement

Figure 21: Schematic concept of the Virtual Crack Closure Technique. An interface crack of length a is extended a small amount
Aa when the energy released equals the interface toughness G*. This value of energy would be also required to close the same
amount of crack extension.

strain energy released, G*, is the same as the value of energy needed to close the same distance. Therefore,
the interface crack propagates whenever the mechanical condition in the crack tip nodes, denoted by 1 and 2 in

Fig. 21, fulfills the following relationship
1
2

where F} o is the force between the nodes at the front, ¢ is the crack node aperture behind the tip and w is the

F1)252G* Aaw (8)

width of the sample (see Fig. 6). Concerning Mode II, the same argument and equation apply in the tangential
direction. This work assumes isotropic interface crack propagation and therefore the same interfacial fracture
toughness has been provided for mode I and mode II. As it will be seen, this assumption has provided very

good results in comparison with the experimental tests.

3.2.2. Boundary conditions and mesh
Figure 22 shows the schematic representation of the model used to simulate the four point bending setup

described in section 2.3.1. This configuration has a symmetry plane located in the middle of the sample length.
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This symmetry is imposed by means of restricting the movement in x-direction for nodes of the concrete layer
that lie on this plane (dashed line). The lower support of the composite beam is introduced by restricting the
movement in y-direction in one point of the glass bottom surface. The composed beam undergoes a displacement-
controlled load applied in one point on the top surface of the concrete layer. The procedure to apply this load

‘U

g
Concrete

! L E | Glass A

X

Symmetry

Figure 22: Four point bending model setup: boundary conditions, system of reference, precrack and bonded surfaces affected by
the VCCT approach.

is the one described in section 3.1.1, where the maximum imposed displacement was U = 0.17 mm. Similarly
to the previous tensile test model, this configuration also requires to define two distinct initially bonded contact
surfaces between which the crack will propagate: the bottom surface of the concrete block (in blue) and the top
surface of the glass plate (in red). However, in this occasion a pre-crack has been included. Both constituents
are not connected along this pre-crack, and therefore the nodes that lie on this length are assumed as free faces.
Gravity has also been included in the calculation due to the dimension of the glass plate and the level of critical
load obtained from the experimental test. Otherwise, neglecting the weight of the plate might overestimate the

force required to debond both materials.

Figure 23: Example of mesh with l¢je,, = 2 mm used for the four point bending setup using the VCCT approach.

Figure 23 shows an example of the mesh geometry used for this model using an element size given by lejerm =
2 mm. Taking into account the results from the previous model, a 4-node bilinear plane strain quadrilateral
(CPE4) mesh element with full integration has been used. This type of element provides a good balance
between accuracy and computational effort. On the other hand, with the aim of producing more accurate
results, a conformal mesh has been chosen to get one-to-one contact elements at the bonded region between the
concrete layer and the glass plate (see red-colored node line in Fig. 23). To analyze the influence of the mesh
size in the VCCT approach, five element sizes have been used: [, =0.5, 1, 2, 3 and 4 mm. The number of
elements generated for the coarsest mesh was 1212, whereas the finest mesh produced 76768 elements.

Regarding the materials assigned to every part of the model, the properties presented in Table 5 have been
used. As mentioned, this model does not require o*. The density of the concrete was 2395 kg/m? (see Table 2)
and the density of the glass plate was 2500 kg/m? [42].

3.2.3. Results

Figure 24 shows the load displacement curves obtained from the four point bending model. Similarly to
the experimental results described in section 2.3.3, the simulation model also exhibits the same three-stage
behavior: (i) an initial linear bending response before debonding, (ii) a steady-state response where a constant
load is obtained and (iii) a second linear response that corresponds to the bending stage undergone only by
the concrete part. The steady-state response is depicted in the zoomed view of Fig. 24. In order to check
whether crack propagation truly occurs in this narrow interval of beam deflection, five points labeled from (1)
to (5) have been indicated. From these states, the profiles of horizontal stresses (0,,) have been represented in
Fig. 25. The mechanical state of point (1) lies in stage (i) where the bending stiffness of the composed beam
is active. The stresses are concentrated in the precrack tip but the forces involved along the interface are not
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Figure 24: (Top) Force-displacement diagrams obtained from the simulated four point bending model. (Bottom) Zoomed view of
the load region corresponding to glass plate debonding.

sufficient to trigger debonding. From point (2) the precrack initiates its propagation and the computed load
entered in the regime (ii). The load calculated in points (3) and (4) remains approximately at the same value
while the interface crack progresses until covering almost the total distance between the symmetry plane and
the loading line. At point (5), the glass plate has reached its maximum level of debonding, and the interfacial
crack tip can hardly advance once the location below the load line is reached. Thus, the load starts to increase
again and only the concrete part of the beam is resisting the effort of bending. This linear trend continues until
reaching the maximum level of imposed displacement. In the real situation, the concrete beam breaks once a
load about 2.1 kN is exceeded. In the present numerical model no failure mechanism was accounted for the
concrete material and therefore this failure cannot be seen. Nevertheless, the traction stresses in the concrete
computed after 2 kN exceed 3 N/mm?. This value matches closely the maximum tensile strength (3.1 N/mm?)
obtained experimentally for the concrete used in this study (see properties in Table 2).

It is worth mentioning that the displacement range obtained from the simulation is smaller than the exper-
imental one (about a factor of 10). This difference can be explained in terms of the accumulated deformations
present in the experimental setup (for example, the strip used at the supports to prevent glass breakage in
contact with the steel rollers). Therefore, the recorded displacement is affected by any extra elastic compliance,
including the machine’s own compliance. Due to this situation, a direct comparison in terms of displacement
between the experiment and the model is not possible. A better agreement in terms of displacements could
have been obtained if both strips were included at the contact points in the finite element model. In this case,
an additional experimental mechanical characterization of this material should have been performed in order to
include its Young’s modulus, Poisson’s ratio and its possible plastic response under higher loads in the model
as well. However, as showed in section 2.3, the determination of the interface energy does not require the
measurement of the displacement, but only the force (see eq. 3). This situation makes it possible to work with
a simpler and more comprehensible model. The computational effort required is also reduced noticeably (the
simulations using this model ran in few minutes).

On the other hand, the agreement with the experimental value of load during delamination is very good,

where a deviation less than 1% has been obtained. Moreover, this result confirms the suitability of assuming
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Figure 25: Delamination sequence of the glass plate during the steady-state response in force (see zoomed view of Fig. 24). The
profile of horizontal stress o4 is plotted on the deformed configuration (stress in Pa, displacement scale factor X 200). See animated
version in Fig. 26. (For interpretation of the references to color in this figure legend, the reader is referred to the online version of
this article).

isotropy for the propagation mode for this type of brittle interfaces. Regarding the effect of the mesh size, the
overlapping between curves from all used element sizes suggests that this simulation model based on the VCCT
approach seems to be mesh insensitive.

4. Conclusions

Two experimental setups have been designed to assess the tensile strength and the fracture energy of a
glass-concrete interface. This interface is created placing the glass component in contact with fresh concrete,
and allowing the bimaterial sample to cure as usually done with pieces only made of concrete. In that sense,
additives or special treatment to facilitate or to improve the adherence between both materials have not been
used. Every setup required a different design according to the test, however all the produced samples have
followed identical procedure and conditions to ensure the same mechanical properties of the concrete and the
same interface conditions. A detailed description of the sample designs and preparation processes are provided.

The maximum bonding strength has been obtained with cylindrical-shaped samples subjected to uniaxial
tensile loading, where a concrete cylinder is bonded to a thick glass plate. Six samples have been tested and all
of them showed a clean debonding between both parts. The average bonding strength obtained was 0.96 4+ 0.09
N/mm?. A companion numerical model has been developed to reproduce and to look more in detail into
the debonding process under tensile load. Two different models have been developed (three-dimensional and
axisymmetric) using the commercial software Abaqus. Both models are based on the combination of conventional
finite element method and cohesive zone model to account for the glass-concrete interface. A rigorous process
of numerical validation and mesh effect analysis has been performed with both models. It has been found
that the proposed experimental setup can be used to determine directly the maximum tensile strength required
by the cohesive zone model. Additionally, the models have provided several insights about the initiation and
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Figure 26: Animation of the delamination process (scale: o, in Pa, displacement scale factor x 200). (For interpretation of the
references to color and visualization of the animation, the reader is referred to the online version of this article).

propagation of the interfacial crack as well as the distribution of stresses and forces involved during the process.
Numerical recommendations regarding the mesh geometry, element size and viscous regularization are provided.

Regarding the interfacial fracture toughness, the critical energy release rate of the glass-concrete interface
has been obtained using a bimaterial beam loaded under four point bending test. The delamination process
between both materials is detected due to existence of a steady-state regime in the load-displacement curve. The
load recorded during this stationary regime, together with the beam geometry and its elastic properties have
been related to the interface energy release rate via an analytical equation. Four bimaterial beams have been
tested, and all of them have generated the same mechanical response. The results have revealed a very brittle
response of glass debonding, which occurs in a very narrow range of deflection of the beam. The average interface
fracture energy obtained was 10.62 + 0.02 mJ/m?. This brittle behavior has been reproduced and verified via
a companion numerical model. This model has also been developed using the finite element method, however,
in this occasion, the glass-concrete interface has been implemented using the virtual crack closure technique.
This technique is an energy-based approach that makes it possible to avoid some numerical drawbacks existing
in the cohesive zone model approach. Similarly to the tensile test, a mesh convergence analysis has also been
performed to guarantee the reliability of the results. Due to the load condition, symmetry of the geometry and
the size of the real sample, a two-dimensional plain strain model has been adopted. This model has shown
an excellent agreement with the experimental results, confirming the experimental observation about how and
when the initial interface precrack propagates until the total failure of the sample.

As a final remark (what has motivated this work) the results of this characterization study, supported
via numerical simulations, could be directly used as input data in simulation models dealing with self-healing
concrete, and also in any application in civil engineering or architecture, where concrete and glass usually
may coexist. Furthermore, the methodology presented in this work, which has proved to provide good results,
could also be adapted in principle to characterize other types of bimaterial interface (for example, any possible

combinations between ceramics, glass, composites, metals or polymers).
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