3,249 research outputs found

    On large-sample estimation and testing via quadratic inference functions for correlated data

    Full text link
    Hansen (1982) proposed a class of "generalized method of moments" (GMMs) for estimating a vector of regression parameters from a set of score functions. Hansen established that, under certain regularity conditions, the estimator based on the GMMs is consistent, asymptotically normal and asymptotically efficient. In the generalized estimating equation framework, extending the principle of the GMMs to implicitly estimate the underlying correlation structure leads to a "quadratic inference function" (QIF) for the analysis of correlated data. The main objectives of this research are to (1) formulate an appropriate estimated covariance matrix for the set of extended score functions defining the inference functions; (2) develop a unified large-sample theoretical framework for the QIF; (3) derive a generalization of the QIF test statistic for a general linear hypothesis problem involving correlated data while establishing the asymptotic distribution of the test statistic under the null and local alternative hypotheses; (4) propose an iteratively reweighted generalized least squares algorithm for inference in the QIF framework; and (5) investigate the effect of basis matrices, defining the set of extended score functions, on the size and power of the QIF test through Monte Carlo simulated experiments.Comment: 32 pages, 2 figure

    Adaptive Test of Conditional Moment Inequalities

    Full text link
    In this paper, I construct a new test of conditional moment inequalities, which is based on studentized kernel estimates of moment functions with many different values of the bandwidth parameter. The test automatically adapts to the unknown smoothness of moment functions and has uniformly correct asymptotic size. The test has high power in a large class of models with conditional moment inequalities. Some existing tests have nontrivial power against n^{-1/2}-local alternatives in a certain class of these models whereas my method only allows for nontrivial testing against (n/\log n)^{-1/2}-local alternatives in this class. There exist, however, other classes of models with conditional moment inequalities where the mentioned tests have much lower power in comparison with the test developed in this paper

    On the existence of most-preferred alternatives in complete lattices

    Get PDF
    If a preference ordering on a complete lattice is quasisupermodular, or just satisfies a rather weak analog of the condition, then it admits a maximizer on every subcomplete sublattice if and only if it admits a maximizer on every subcomplete subchainlattice optimization; quasisupermodularity

    Testing for Changes in Kendall's Tau

    Get PDF
    For a bivariate time series ((Xi,Yi))i=1,...,n((X_i,Y_i))_{i=1,...,n} we want to detect whether the correlation between XiX_i and YiY_i stays constant for all i=1,...,ni = 1,...,n. We propose a nonparametric change-point test statistic based on Kendall's tau and derive its asymptotic distribution under the null hypothesis of no change by means a new U-statistic invariance principle for dependent processes. The asymptotic distribution depends on the long run variance of Kendall's tau, for which we propose an estimator and show its consistency. Furthermore, assuming a single change-point, we show that the location of the change-point is consistently estimated. Kendall's tau possesses a high efficiency at the normal distribution, as compared to the normal maximum likelihood estimator, Pearson's moment correlation coefficient. Contrary to Pearson's correlation coefficient, it has excellent robustness properties and shows no loss in efficiency at heavy-tailed distributions. We assume the data ((Xi,Yi))i=1,...,n((X_i,Y_i))_{i=1,...,n} to be stationary and P-near epoch dependent on an absolutely regular process. The P-near epoch dependence condition constitutes a generalization of the usually considered LpL_p-near epoch dependence, p≄1p \ge 1, that does not require the existence of any moments. It is therefore very well suited for our objective to efficiently detect changes in correlation for arbitrarily heavy-tailed data
    • 

    corecore