research

On large-sample estimation and testing via quadratic inference functions for correlated data

Abstract

Hansen (1982) proposed a class of "generalized method of moments" (GMMs) for estimating a vector of regression parameters from a set of score functions. Hansen established that, under certain regularity conditions, the estimator based on the GMMs is consistent, asymptotically normal and asymptotically efficient. In the generalized estimating equation framework, extending the principle of the GMMs to implicitly estimate the underlying correlation structure leads to a "quadratic inference function" (QIF) for the analysis of correlated data. The main objectives of this research are to (1) formulate an appropriate estimated covariance matrix for the set of extended score functions defining the inference functions; (2) develop a unified large-sample theoretical framework for the QIF; (3) derive a generalization of the QIF test statistic for a general linear hypothesis problem involving correlated data while establishing the asymptotic distribution of the test statistic under the null and local alternative hypotheses; (4) propose an iteratively reweighted generalized least squares algorithm for inference in the QIF framework; and (5) investigate the effect of basis matrices, defining the set of extended score functions, on the size and power of the QIF test through Monte Carlo simulated experiments.Comment: 32 pages, 2 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions