385 research outputs found

    Probabilistic Logic, Probabilistic Regular Expressions, and Constraint Temporal Logic

    Get PDF
    The classic theorems of Büchi and Kleene state the expressive equivalence of finite automata to monadic second order logic and regular expressions, respectively. These fundamental results enjoy applications in nearly every field of theoretical computer science. Around the same time as Büchi and Kleene, Rabin investigated probabilistic finite automata. This equally well established model has applications ranging from natural language processing to probabilistic model checking. Here, we give probabilistic extensions Büchi\\\''s theorem and Kleene\\\''s theorem to the probabilistic setting. We obtain a probabilistic MSO logic by adding an expected second order quantifier. In the scope of this quantifier, membership is determined by a Bernoulli process. This approach turns out to be universal and is applicable for finite and infinite words as well as for finite trees. In order to prove the expressive equivalence of this probabilistic MSO logic to probabilistic automata, we show a Nivat-theorem, which decomposes a recognisable function into a regular language, homomorphisms, and a probability measure. For regular expressions, we build upon existing work to obtain probabilistic regular expressions on finite and infinite words. We show the expressive equivalence between these expressions and probabilistic Muller-automata. To handle Muller-acceptance conditions, we give a new construction from probabilistic regular expressions to Muller-automata. Concerning finite trees, we define probabilistic regular tree expressions using a new iteration operator, called infinity-iteration. Again, we show that these expressions are expressively equivalent to probabilistic tree automata. On a second track of our research we investigate Constraint LTL over multidimensional data words with data values from the infinite tree. Such LTL formulas are evaluated over infinite words, where every position possesses several data values from the infinite tree. Within Constraint LTL on can compare these values from different positions. We show that the model checking problem for this logic is PSPACE-complete via investigating the emptiness problem of Constraint Büchi automata

    Logics for Unranked Trees: An Overview

    Get PDF
    Labeled unranked trees are used as a model of XML documents, and logical languages for them have been studied actively over the past several years. Such logics have different purposes: some are better suited for extracting data, some for expressing navigational properties, and some make it easy to relate complex properties of trees to the existence of tree automata for those properties. Furthermore, logics differ significantly in their model-checking properties, their automata models, and their behavior on ordered and unordered trees. In this paper we present a survey of logics for unranked trees

    The Second Order Traffic Fine: Temporal Reasoning in European Transport Regulations

    Get PDF
    We argue that European transport regulations can be formalized within the Sigma^1_1 fragment of monadic second order logic, and possibly weaker fragments including linear temporal logic. We consider several articles in the regulation to verify these claims

    Parameterized Linear Temporal Logics Meet Costs: Still not Costlier than LTL

    Full text link
    We continue the investigation of parameterized extensions of Linear Temporal Logic (LTL) that retain the attractive algorithmic properties of LTL: a polynomial space model checking algorithm and a doubly-exponential time algorithm for solving games. Alur et al. and Kupferman et al. showed that this is the case for Parametric LTL (PLTL) and PROMPT-LTL respectively, which have temporal operators equipped with variables that bound their scope in time. Later, this was also shown to be true for Parametric LDL (PLDL), which extends PLTL to be able to express all omega-regular properties. Here, we generalize PLTL to systems with costs, i.e., we do not bound the scope of operators in time, but bound the scope in terms of the cost accumulated during time. Again, we show that model checking and solving games for specifications in PLTL with costs is not harder than the corresponding problems for LTL. Finally, we discuss PLDL with costs and extensions to multiple cost functions.Comment: In Proceedings GandALF 2015, arXiv:1509.0685

    Satisfiability of CTL* with constraints

    Full text link
    We show that satisfiability for CTL* with equality-, order-, and modulo-constraints over Z is decidable. Previously, decidability was only known for certain fragments of CTL*, e.g., the existential and positive fragments and EF.Comment: To appear at Concur 201

    A Counting Logic for Structure Transition Systems

    Get PDF
    Quantitative questions such as "what is the maximum number of tokens in a place of a Petri net?" or "what is the maximal reachable height of the stack of a pushdown automaton?" play a significant role in understanding models of computation. To study such problems in a systematic way, we introduce structure transition systems on which one can define logics that mix temporal expressions (e.g. reachability) with properties of a state (e.g. the height of the stack). We propose a counting logic Qmu[#MSO] which allows to express questions like the ones above, and also many boundedness problems studied so far. We show that Qmu[#MSO] has good algorithmic properties, in particular we generalize two standard methods in model checking, decomposition on trees and model checking through parity games, to this quantitative logic. These properties are used to prove decidability of Qmu[#MSO] on tree-producing pushdown systems, a generalization of both pushdown systems and regular tree grammars
    corecore