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Chapter 1

Introduction

A formal language is an abstract concept in theoretical computer science denoting

an arbitrary set of words, trees, or even more complex data structures. A particular

interesting class of formal languages is composed of the regular, or recognizable,

languages. �ese are the languages which can be described by �nite automata.

Since their introduction for �nite words by McCulloch and Pi�s [MP43], �nite

automata have been generalised to a wide spectrum of di�erent structures including

in�nite words by Büchi [B60] and Muller [M63], �nite trees by Doner [D65; D70]

and �atcher and Wright [TW65; TW68], and in�nite trees by Rabin [R69].

In this thesis, we investigate two extended models of formal languages:

Probabilistic series Instead of a binary decision whether an element is contained

in a language, probabilistic series assign a probability value to each element.

Data languages �e positions of a word or tree are labelled by a �xed number of

arbitrary data values from some domain.

Let us outline our research results and the contents of this thesis:

In the �rst part, we investigate how classical formalisms for specifying formal

languages, like regular expressions or monadic second order logic, can be trans-

ferred to the probabilistic se�ing. We give probabilistic variants of both formalisms

over �nite and in�nite words. We show in each case that our probabilistic regular

expressions and probabilistic MSO logic are expressively equivalent to probabilistic

automata. In the case of �nite trees it turns out that the standard, top-down, pro-

babilistic automaton model is not powerful enough to capture probabilistic MSO

logic. �us, we introduce bo�om-up probabilistic tree automata, which are strictly

more expressive than the top-down model. See Section 1.1 for details on this.

In the second part, we turn to languages of in�nite, multi-dimensional data

words, i.e., in�nite words with a �xed number of data values at each position. We

study linear temporal logic over data words where each data value is a position in

the in�nite tree. We give a reduction of the model checking problem for this logic to

the emptiness problem of constraint Büchi automata. �erea�er, we show that this
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Chapter 1 Introduction

problem can be solved in space polynomial in the dimension and logarithmic in the

size of the automaton. �is implies PSPACE-completeness of the model checking

problem for constraint LTL. An extended introduction can be found in Section 1.2.

1.1 Specification of Probabilistic Series

Since the beginning of research on formal languages investigating other formalisms,

besides �nite automata, to specify regular languages has always been a key topic. In

1956 Kleene [K56] introduced regular expressions and showed that this formalism

allows us to specify the same class of languages as �nite automata. Instead of

giving a machine-like speci�cation, regular expressions permit the speci�cation

of a language from �nite sets using the operations set union, concatenation, and

Kleene-iteration, i.e., the concatenation of a language with itself arbitrarily o�en.

Regular expressions have been generalised to �nite trees by �atcher and Wright

[TW68], to the weighted se�ing by Schützenberger [S61]. More recently, weighted

regular expressions have been extended to �nite trees by Droste, Pech and Vogler

[DPV05], and to valuation monoids, which are an extension of semirings, by Droste

and Meinecke [DM11]. A probabilistic variant of regular expressions on �nite words

has been given by Bollig, Gastin, Monmege and Zeitoun [BGMZ12].

Another formalism well-known is monadic second order (MSO) logic. MSO

logic is a restricted form of predicate logic allowing only quanti�cation over single

positions and sets of positions, but not over relations or even higher order objects.

At the beginning of the 1960s Büchi [B60; B62] showed that the class of languages

that can be de�ned using MSO logic is exactly the class of regular languages. �is

result has later been extended to �nite trees by �atcher and Wright [TW68], and

to in�nite trees by Rabin [R69].

In 2005 Droste and Gastin [DG05] gave a weighted extension of MSO logic on

words and proved its equivalence to weighted automata. �is result was extended

to �nite trees by Droste and Vogler [DV06] and to valuation monoids by Droste

and Meinecke [DM10].

Around the same time as Schützenberger, Rabin [R63] investigated probabilis-

tic automata. In this automaton model, the next state is chosen according to a

probability distribution. An extended introduction to this model was given by

Paz [P71]. Probabilistic automata have proven very successful and have nowadays

a broad range of applications including speech recognition [RST96], prediction

of climate parameters [MMST02], or randomized distributed systems [CLSV06].

�e model de�ned by Rabin works for �nite words only. At the beginning of the

1970s probabilistic automata were extended to �nite trees by Magidor and Moran

[MM70] and Ellis [E71]. Probabilistic tree automata have plentiful applications in
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1.1 Speci�cation of Probabilistic Series

the �eld of natural language processing, including parsing, deep language models,

and machine translation. In 2005, probabilistic automata were extended to in�nite

words by Baier and Grösser [BG05]. �is concept gained manifold further research

interest [BBG08; CSV11; CDH09; CH10; CT12; TBG09].

Contributions

In this thesis, we develop probabilistic variants of MSO logic and regular expressions

that work over �nite and in�nite words, and over �nite ranked trees. We prove that

these formalisms are equivalent to an appropriate probabilistic automaton model.

We begin Part I with a Nivat-like theorem for probabilistic series in Chapter 3.

�is result is used later in Chapter 4 and may also be of independent interest. �e

classical Nivat theorem [N68] characterises rational transductions by decompos-

itions in a regular language and homomorphisms. Nivat characterisations have

a�racted recent interest [BD15; DP14]. We give a probabilistic variant of this result

characterising the behaviours of probabilistic automata by regular languages and

homomorphisms using operations like image, preimage, and the application of

a simple probability measure. �is characterisation works for �nite and in�nite

words. In the case of �nite trees it turns out that standard, top-down, probabilistic

tree automata are not powerful enough to capture all functions which can be given

using such a Nivat-representation. �erefore, we use the more powerful model

of bo�om-up probabilistic tree automaton. As probabilistic tree automata form a

generalisation of deterministic top-down tree automata, bo�om-up probabilistic

tree automata provide a generalisation of deterministic bo�om-up tree automata.

�ough this approach seems natural, we found only one other reference to this

model [L94]. Furthermore, restricting the Nivat-representation, we also obtain

a characterisation of top-down probabilistic tree automata. �is shows that the

bo�om-up model is strictly more expressive than the top-down model.

Next, we introduce probabilistic monadic second order logic in Chapter 4. For this,

we extend classical MSO logic by a new second order “expected value” quanti�er

and close the logic under Boolean operations and expected value. Within the scope

of such a quanti�er Ep X , formulas x ∈ X are true with constant probability p.

Intuitively, this corresponds to choosing a set X by tossing an unfair coin for each

position to decide whether this position is included in the set or not. Using this logic

one can de�ne additional new operators like a �rst order expected value quanti�er

or a probabilistic universal �rst order quanti�er like in weighted MSO logic. We

show that the semantics of probabilistic MSO sentences are exactly the functions

which can be described by a Nivat-representation. �us, we obtain expressive

equivalence results for probabilistic MSO logic on �nite words and probabilistic

automata, for probabilistic MSO logic on in�nite words and probabilistic Muller-
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Chapter 1 Introduction

automata, and for probabilistic MSO logic on �nite ranked trees and bo�om-up

probabilistic tree automata, respectively.

A�er having investigated probabilistic MSO logic in Part I, we now turn to

regular expressions in Part II. In Chapter 6, we introduce probabilistic regular

expressions on in�nite words. �ese expressions extend the expressions introduced

in [BGMZ12] in two ways: �rst, we de�ne a suitable probabilistic ω-operator. In-

tuitively, given a probabilistic series S , Sω(w) is the probability that the word w
starts with arbitrarily many words from S . Second, we add a placeholder symbol

to the syntax. �is placeholder marks the points in expressions, where other ex-

pressions can be appended. In contrast to variables in regular tree expressions, this

placeholder is purely syntactic and does not occur anywhere in the semantics of an

expression. We show that our probabilistic regular expressions are expressively

equivalent to probabilistic Muller-automata, a model which is expressively equival-

ent to probabilistic Rabin-automata. Baier and Grösser [BG05] already showed that

probabilistic Rabin-automata are strictly more expressive than probabilistic Büchi-

automata. Whereas our construction of an automaton from a given expression

is based on the ideas in [BGMZ12], we give a new construction for the converse

direction, which unambiguously decomposes the runs of the automaton.

In Chapter 7, we introduce a probabilistic variant of regular tree expressions.

We keep the approach from the word case of using a restricted sum operator, but

instead of the Kleene-star operator, we use a new iteration operator, which we call

in�nity-iteration. In Kleene iteration, there is a choice at every step to substitute a

variable or not, thus the iteration may stop at any point. �is choice is removed in

in�nity iteration: every occurrence of the iterated variable has to be substituted

until the variable does not occur any more. �is modi�ed iteration can be modelled

much simpler probabilistically than Kleene-iteration with its nondeterministic

choices since probabilistic automata do not allow nondeterministic choices, only

probabilistic ones. We show that our probabilistic regular tree expressions are

equivalent to probabilistic tree automata.

Future Research

Future research might look into extending these results to di�erent structures.

Unranked trees do not restrict the branching structure of a tree like ranked trees

do. A characterisation of the recognizable languages of unranked trees by MSO

logic has been given by Neven and Schwentick [NS02]. In 2011 this result was

extended to the weighted se�ing by Droste and Vogler [DV11]. For regular tree

expressions there already exist forest expressions by Bojańczyk [B07], or one could

extend unweighted ranked regular tree expressions to the unranked case. None of

these concepts directly �t into the probabilistic se�ing.

4



1.2 Model Checking LTL over Data Words

Di�erent, interesting structures are in�nite ranked trees. Probabilistic tree auto-

mata for in�nite trees have been given by Carayol, Haddad and Serre [CHS14].

Extending both, probabilistic regular tree expressions and probabilistic MSO logic

to in�nite trees poses new challenges. For regular tree expressions, there are un-

countably many ways to cut an in�nite tree into subtrees. �us, the introduction

of measures to regular tree expressions seems necessary. For probabilistic MSO

logic there does not seem to be a proper automaton model. All existing models are

top-down based, and thus probably not expressive enough to capture probabilistic

MSO logic. Nevertheless, one could still get the equivalence to the tree series

de�ned by the Nivat decomposition from De�nition 3.12 similar to the proof of

�eorems 5.22 and 5.23.

A di�erent notion of probabilistic regular expressions on trees has been given

by Monmege [M13]. �ese expressions use pebbles and are tree-walking. It has

been shown by Bojańczyk, Samuelides, Schwentick and Segou�n [BSSS06] that

in the unweighted case pebble tree-walking automata are strictly less expressive

than regular tree languages. It remains to be seen if this inclusion also holds in the

probabilistic case.

Another direction of research might look into fragments of probabilistic regular

expressions or MSO logic. �ere is ongoing research on subclasses of probabilistic

automata with be�er properties regarding decidability. Notable examples are #-

acyclic automata by Gimbert and Oualhadj [GO10], and leaktight automata by

Fijalkow, Gimbert and Oualhadj [FGO12]. It would be interesting to see how these

subclasses translate to our formalisms. Obtaining equivalence results for these

formalisms would allow for easy speci�cation of a well-behaved class of probabilistic

automata. Conversely, there may be “natural” fragments of probabilistic regular

expressions or probabilistic MSO logic, which admit good decidability properties.

1.2 Model Checking LTL over Data Words

Temporal logics like LTL or CTL
∗

are nowadays standard languages for specifying

system properties in veri�cation. �ese logics are interpreted over node labelled

graphs, where the node labels (also called atomic propositions) represent abstract

properties of a system (for instance, a computer program). Clearly, such an ab-

stracted system state does not in general contain all the information of the original

system state. �is may lead to incorrect results in model checking.

In order to overcome this weakness, extensions of temporal logics by atomic

(local) constraints over some structure A have been proposed (cf. [Č94; DG08]).

For instance, LTL with local constraints is evaluated over in�nite words where the

le�ers are tuples over A of a �xed size. For instance, for A = (Z, <), this logic is
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Chapter 1 Introduction

standard LTL where atomic propositions are replaced by atomic constraints of the

form X
i xj < X

l xk . �is constraint is satis�ed by a path π if the j-th element of the

i-th le�er of π is less than the k-th element of the l-th le�er of π .

While temporal logics with integer constraints are suitable to reason about

programs manipulating counters, reasoning about systems manipulating push-

down stores requires constraints over words over a �xed alphabet and the pre�x

relation (which is equivalent to constraints over an in�nite k-ary tree with descend-

ant/ancestor relations, where k is the �xed size of the push down alphabet). �ere

are numerous investigations on satis�ability and model checking for temporal

logics with constraints over the integers (cf. [Č94; BG06; DG08; G09; BP14; CKL]).

On the contrary, temporal logics with constraints over trees have not yet been

investigated much, although questions concerning decidability of the satis�ability

problem for LTL or CTL
∗

with such constraints have been asked for instance in

[DG08; CKL13]. A �rst (negative) result by Carapelle et al. [CFKL15] shows that a

technique developed in [CKL13; CKL] for satis�ability results of branching-time

logics (like CTL
∗

or ECTL
∗
) with integer constraints cannot be used to resolve the

decidability status of satis�ability of temporal logics with constraints over trees.

Contributions

Our goal is to show that satis�ability of LTL with constraints over the trees is

decidable. At �rst, we analyse the emptiness problem of T -constraint automata

(cf. [G09; DD07]) where T is the in�nitely branching in�nite tree with pre�x

relation. �ese automata are Büchi-automata that process (multi-)data words where

the data values are elements of T and applicability of transitions depends on the

order of the data values at the current and the next position. Our technical main

result shows that emptiness for these automata is NL-complete for �xed dimension

and PSPACE-complete if the dimension is part of the input. Having obtained an

algorithm for the emptiness problem, we can easily provide algorithms for the

satis�ability and model checking problems for LTL with constraints over T . We

exactly mimic the automata based algorithms for standard LTL of Vardi and Wolper

[VW94] noting that the constraints in the transitions are precisely what is needed

to deal with the atomic constraints in the local constraint version of LTL. It follows

directly that satis�ability of LTL with constraints over T and model checking

models de�ned by constraint automata against LTL with constraints over T is

PSPACE-complete.

Finally, we extend our results to the case of constraints over the in�nite k-ary

tree for every k ∈ N by providing a reduction to LTL with constraints over T . �us,

satis�ability and model checking for LTL with constraints over the in�nite k-ary

tree is also in PSPACE.

6



1.2 Model Checking LTL over Data Words

In a parallel work Demri and Deters [DD15] showed above mentioned results

on satis�ability using a reduction of constraints over trees to constraints over the

integers. Even though the main results of both papers seem to coincide, there are

major di�erences.

1. Demri and Deters’ result extends to satis�ability of the corresponding version

of CTL
∗
, but Demri and Deters do not consider the model checking problem.

2. Demri and Deters’ result holds even if the logic is enriched by length con-

straints that compare the lengths of the interpretations of variables. Since our

approach abstracts away the concrete length of words, we cannot reprove

this result. On the other hand, we can enrich the logic with constraints using

the lexicographic order on the tree as well. Demri and Deters’ approach can

not deal with this order. �us, the logics of both papers are incomparable to

each other.

3. Demri and Deters conjecture that the (branching-degree) uniform satis�abil-

ity problem is in PSPACE. �is problem asks, given a formula andk ∈ N∪{∞},

whether there is a model with values in the k-ary in�nite tree that satis�es

the formula. We con�rm Demri and Deters’ conjecture.

4. Finally, our proof is self-contained. In contrast, Demri and Deters’ proof

seems to be more elegant and less technical, but this comes at the cost of

relying on the decidability result for satis�ability of LTL with constraints

over the integers [BP14], which is again quite technical to prove (In fact, our

proof can be easily adapted to reprove this result).

Chapters 8 and 9 are joint work with Alexander Kartzow.

Future Research

Our result opens several further research directions. Firstly, Demri and Deters’

result on CTL
∗

with constraints over trees does not yield any reasonable complexity

bound because the complexity of their algorithm relies on the results of Bojańczyk

and Toruńczyk [BT12] on weak monadic second order logic with the unbounding

quanti�er. �us, without any progresses concerning the complexity of this logic,

Demri and Deters’ approach cannot be used to obtain be�er bounds. In contrast,

the concept of T -constraint automata can be easily li�ed to a T -constraint tree-

automaton model. Complexity bounds on the emptiness problem for this model

would directly imply bounds on the satis�ability for CTL
∗

with constraints over T .

�us, investigating whether our techniques transfer to a result on the emptiness

problem of T -constraint tree-automata might be a fruitful approach. Secondly, it

7



Chapter 1 Introduction

may be possible to li� our results to the global model checking problem similar to

the work of Bozelli and Pinchinat [BP14] on LTL with constraints over the integers.

Finally, it is a very challenging task to decide whether Demri and Deters’ result

and our result can be uni�ed to a result on LTL with constraints over the tree with

pre�x order, lexicographic order and length-comparisons (of maximal common

pre�xes).
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Chapter 2

Preliminaries

We establish basic notations and de�nitions in this chapter and recall standard

results that can be found in the literature.

�e set of all natural numbers, starting with 1, is denoted by N. �e set of all

non-negative integers is wri�en as N0. �e set of integers is denoted by Z, the set

of rational numbers by Q, and the set of real numbers by R.

Given any set M , we denote its power set by P(M). Furthermore, for any subset

A ⊆ M , we write 1A for the characteristic function of A, i.e., the function 1A : M →
{0, 1} de�ned by 1A(m) = 1 if and only ifm ∈ A for allm ∈ M .

2.1 Words and Automata on Words

2.1.1 Finite and Infinite Words

Any non-empty set is called an alphabet. Unless explicitly noted otherwise, we

assume that every alphabet is �nite. �e elements of an alphabet are called le�ers
or symbols. Let Σ be an alphabet. A �nite, possibly empty, sequence w = a1 · · ·an
of elements of Σ is called a �nite word. �e length of w is |w | = n. �e empty word
is denoted by ε and we set |ε | = 0. We denote the set of all �nite words over Σ by

Σ∗ and the set of all non-empty, �nite words over Σ by Σ+, i.e., Σ+ = Σ∗ \ {ε}.

An in�nite sequence of elements of Σ is called an in�nite word or an ω-word over

Σ. We write Σω for the set of all in�nite words over Σ. For convenience, we de�ne

|w | = ∞ for everyw ∈ Σω . Moreover, we set Σ∞ as the set of �nite or in�nite words

over Σ, i.e., Σ∞ = Σ∗ ∪ Σω .

We will use of the set of positions in a word. Given a �nite word w ∈ Σ∗ let

pos(w) = {1, . . . , |w |}, and for an in�nite word w ∈ Σω we de�ne pos(w) = N. For

a set Γ ⊆ Σ and a word w = (ai)i∈pos(w), we set posΓ (w) = {i ∈ pos(w) | ai ∈ Γ }
and |w |Γ = |posΓ (w)|. If Γ is singleton, we just use the single le�er as index, i.e.,

|w |a instead of |w |{a}.
Any subset L ⊆ Σ∞ is called a formal language or just a language.

9



Chapter 2 Preliminaries

Operations on Languages

Given a �nite wordu and a �nite or in�nite wordv we writeuv for the concatenation
of u and v . �e concatenation of two �nite words is again a �nite word, whereas

the concatenation of a �nite and an in�nite word is an in�nite word.

We use the usual rational operations on formal languages. �ese are union,

concatenation, Kleene-iteration, and ω-iteration. �e de�nition of these operations

is given below for languages L ⊆ Σ∗ and K ⊆ Σ∞:

L · K = {uv ∈ Σ∞ | u ∈ L, v ∈ K },
L∗ =

⋃
i≥1

Ln = {u1 · · ·un ∈ Σ
∗ | n ≥ 0, ui ∈ L for i = 1, . . . ,n},

Lω = {u1u2 · · · ∈ Σ
ω | ui ∈ L \ {ε} for all i ≥ 1},

where L0 = {ε} and Ln+1 = L · Ln. We also de�ne the ω-operator for a single word

w ∈ Σ+ bywω = www · · · ∈ Σω , i.e,wω
is the single word in the language {w}ω .

Partial Orders on Words

�ere are two natural orders on words, that we are interested in:

�e pre�x order � on Σ∞ is de�ned byu � v if and only if there is a wordw ∈ Σ∞

such that uw = v . �is order is a partial order, but it is not linear.

To de�ne the lexicographic order v on Σ∞ we �rst �x a linear order ≤Σ on Σ. We

set u v v if either u � v or there are words x ∈ Σ∗, u′,v′ ∈ Σ∞ and le�er a,b ∈ Σ
such that u = xau′, v = xbv′, and a <Σ b holds. It can be shown that v is a linear

order on Σ∞.

Homomorphisms on Words

Let Σ and Γ be two alphabets. We call any function h : Σ∞ → Γ∞ a homomorphism
if it satis�es h(ε) = ε , and h(uv) = h(u)h(v) for all u ∈ Σ∗ and v ∈ Σ∞. A

function f : Σ → Γ ∗ can be extended to a homomorphism f ′ : Σ∞ → Γ∞ by se�ing

f ′(u) = �
f (ui)�i∈pos(u) for every word u = (ui)i∈pos(u) ∈ Σ∞. It can be shown that f ′

is the unique homomorphism which extends f . If a homomorphism h : Σ∞ → Γ∞

satis�es h(a) ∈ Γ for all a ∈ Σ, we call h a relabelling.

Homomorphisms on Σ∗ are de�ned completely analogously by replacing the

symbol∞ with the symbol ∗.

2.1.2 Finite Automata on Words

A�er stating fundamental de�nitions on words, we next de�ne automata as ac-

ceptors of formal languages of words. �e standard notion of a �nite automaton

only recognizes languages of �nite words. Common extensions to in�nite words

include Büchi-automata and Muller-automata. As we want to deal with languages

10
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containing both �nite and in�nite words, we use Muller-automata to accept in�nite

words and add a set of �nal states to handle �nite words.

Definition 2.1. A Muller-automaton over Σ is quintuple A = (Q,T , I , F ,R) such

that

1. Q is a �nite, non-empty set – the set of states,

2. T ⊆ Q × Σ ×Q is any relation – the transition relation,

3. I ⊆ Q is any set of states – the set of initial states,

4. F ⊆ Q is any set of states – the set of �nal states,

5. R ⊆ P(Q) is any system of subsets of states – the Muller acceptance condi-

tion.

A run of A on a word w = (ai)i∈pos(w) is a sequence of states ρ = (qi)|w |
i=0

such that

(qi−1,ai ,qi) ∈ T for all i = 1, . . . , |w |. If |w | < ∞, we call a run ρ = (qi)|w |
i=0

successful
if q0 ∈ I and q|w | ∈ F . For |w | = ∞, the run ρ is successful if q0 ∈ I and inf(ρ) ∈ R,

where inf(ρ) denotes the set of states that occur in�nitely o�en in ρ. �e language
L(A) accepted by the automaton A consists of all �nite and in�nite words w such

that there exists a successful run of A on w .

An automatonA is called deterministic if |{q ∈ Q | (p,a,q) ∈ T }| ≤ 1 for all p ∈ Q
and a ∈ Σ, and |I | ≤ 1, i.e., in any state, there is at most one possible subsequent

state when reading any le�er and there is at most one initial state. �e automaton

A is complete if |{q ∈ Q | (p,a,q) ∈ T }| ≥ 1 for all p ∈ Q and a ∈ Σ, and |I | ≥ 1,

i.e., in any state, there is at least one possible subsequent state when reading any

le�er and there is at least one initial state. If the automaton A is deterministic

and complete, we can replace the transition relation T by the transition function
δ : Q × Σ → Q , which is uniquely de�ned by (p,a,δ (p,a)) ∈ T for all p ∈ Q and

a ∈ Σ.

A language L ⊆ Σ∞ is called recognizable or regular if there is a Muller-automaton

A with L(A) = L.

A �nite automaton is a Muller-automaton A = (Q,T , I , F ,R) with R = ∅. We

just write A = (Q,T , I , F ) in this case. A Muller-automaton on in�nite words is a

Muller-automaton A = (Q,T , I , F ,R) with F = ∅. We write A = (Q,T , I ,R) for a

Muller-automaton on in�nite words.

Example 2.2. Let Σ = {a, b} and consider the automaton A shown in Fig. 2.1. Note

that the depicted automaton is deterministic and complete, i.e., in every state there

is exactly one reachable state for every possible edge label.

11
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q1 q2 q4 q5

q3

a

b

b

a b

a

ab

a, b

Figure 2.1: �e automaton A with R =
�{q2,q4}, {q2,q3,q4}	

�e automaton accepts all �nite words of length at least 2 that start and end

with the le�er a and for which every consecutive sequence of b’s has even length.

�is can be seen as follows: starting from state q1, the le�er b leads to state q5,

which is not accepting and cannot be le�. �us, the �rst le�er of an accepted word

must be a. A�erwards, the automaton can read an arbitrary number of a’s reaching

state q2 or q3. In both cases a�er reading a le�er b, another le�er b has to follow

directly, otherwise the automaton would enter state q5 from q4. �us, the number

of consecutive b’s has to be even. In order to reach the accepting state q3 the last

le�er has to be a. Conversely, the run of every �nite word of the claimed form

is accepting. For in�nite words, the automaton has to stay in the middle triangle

forever, visiting at least q2 and q4 in�nitely o�en. �us, every in�nite word accepted

by A has to contain in�nitely many b’s. In total we obtain

L(A) =�
aua ∈ Σ∗

�
u ∈ Σ∗, every maximal sequence of b’s in u has even length

	

∪
�
aw ∈ Σω

� |w |b is in�nite

	
.

�e existence of a deterministic Muller-automata recognizing the same language

for any non-deterministic ω-automaton on in�nite words is a classical result going

back to McNaughton [M66]. It was later improved by Safra [S88]. �e result still

holds if the automaton accepts �nite and in�nite words, as this case can be reduced

to the in�nite word case.

Lemma 2.3. Let A be a Muller-automaton. �ere is a deterministic and complete

Muller-automaton A′ with L(A) = L(A′).

12
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Proof. Let A = (Q,T , I , F ,R). Furthermore, let # < Σ be a new symbol. We

de�ne a Muller-automaton on in�nite words A1 = (Q1,T1, I ,R1) over Σ ∪ {#} where

Q1 = Q ∪ {q#}, R1 = R ∪ {{q#}}, and

T1 = T ∪ {(q#, #,q#)} ∪ {(q, #,q#) | q ∈ F }.

�us, for every in�nite words w ∈ Σω we have w ∈ L(A) if and only if w ∈ L(A1),
and for �nite words w ∈ Σ∗ we conclude w ∈ L(A) if and only if w#

ω ∈ L(A1).
By McNaughton’s theorem [M66], there is a deterministic and complete Muller-

automaton on in�nite words A2 = (Q2,T2, I2,R2) with L(A2) = L(A1). We obtain

the automaton A′ by de�ning A′ = (Q′,T ′, I ′, F ′,R′) withQ′ = Q2, I ′ = I2, R′ = R2,

T ′ = T2 ∩Q
′ × Σ ×Q′, and by le�ing F ′ consist of all states q ∈ Q′ such that there

is a run ρ of A2 on #
ω

starting in q with inf(ρ) ∈ R2. Intuitively, we obtain A′ from

A2 by removing all transitions that are labelled with # and by making every state

�nal for which there exists an accepting run on #
ω

starting in q. One shows that

L(A′) ∩ Σω = L(A2) ∩ Σω and w ∈ L(A′) if and only if w#
ω ∈ L(A2) for every �nite

word w ∈ Σ∗. �

2.2 Probabilistic Automata and Measures on

Words

Our goal is to introduce probabilistic ω-automata as de�ned by Baier and Grösser

[BG05]. For this, we recall some basic probability theory in Section 2.2.1. Readers

familiar with probability theory can skip this section. To motivate probabilistic

ω-automata we give the de�nition of probabilistic automata on �nite words, as

introduced by Rabin [R63], below.

For the rest of this section, let Σ be an alphabet. In the following, let for any

�nite or countable, non-empty set M , ∆(M) be the set of all distributions on M , i.e.,

all functions d : M → [0, 1] such that

∑
m∈M d(m) = 1.

Definition 2.4. A probabilistic automaton is a quadruple A = (Q,δ , µ, F ) where

1. Q is a �nite, non-empty set – the set of states,

2. δ : Q × Σ → ∆(Q) is a function – the transition probability function,

3. µ ∈ ∆(Q) is a distribution – the initial distribution,

4. F ⊆ Q is any subset of states – the set of �nal states.

13
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We sometimes write δ (p,a,q) instead of δ (p,a)(q). �e behaviour ofA is the function

‖A‖ : Σ∗ → [0, 1] which is given by

‖A‖(w) =
∑

q0,...,qn−1∈Q
qn∈F

µ(q0)
n∏
i=1

δ (qi−1,wi ,qi) (2.1)

for all w = w1 · · ·wn ∈ Σ
∗
. A function S : Σ∗ → [0, 1] is called recognizable if there

is a probabilistic automaton A with ‖A‖ = S .

Next, we would like give the extension of De�nition 2.4 to in�nite words. �e

behaviour of probabilistic ω-automata is a generalisation of (2.1). As there may be

uncountably many runs on an in�nite word, this behaviour cannot be modelled

by the means of a simple sum any more. Instead, one has to make use of measure

theory to obtain meaningful semantics. We will only give a brief introduction to

measure theory in the next section.

2.2.1 Measures on Words and Runs

For the convenience of the reader, we recall the notions of a σ-algebra and a measure

in this section. We state some standard results that we will use later in this work.

At the end, we give the Ionescu-Tulcea theorem which is crucial for the de�nition

of probabilistic ω-automata. For a comprehensive introduction into probability

theory see, e.g., [K08]. A chapter about topology on �nite and in�nite words can

be found in [PP04].

Definition 2.5. Let Ω be an arbitrary, non-empty set. We make the following

de�nitions:

1. A σ-algebra over Ω is system of sets A ⊆ P(Ω), which contains the empty

set, and is closed under complement and countable union. An element of A
is called a measurable set. �e pair (Ω,A) is called a measurable space.

2. Given any system of sets X ⊆ P(Ω), we denote the smallest σ-algebra A with

X ⊆ A by σ (X ). Given a σ-algebra A, we say that the set E ⊆ A generates
A if σ (E) = A.

3. A measure on a measurable space (Ω,A) is a function µ : A → R+, where

R+ = R+ ∪ {∞}, such that µ(∅) = 0 and µ(⋃i≥1
Ai) = ∑

i≥1
µ(Ai) for all

pairwise disjoint families of measurable sets A1,A2, . . . ∈ A. �e triple

(Ω,A, µ) is called a measure space. In case µ(Ω) < ∞, we say that µ is �nite.

�e measure µ is called a probability measure if µ(Ω) = 1. In this case we call

(Ω,A, µ) a probability space.

14



2.2 Probabilistic Automata and Measures on Words

4. IfΩ is at most countable, we call any functiond : Ω → [0, 1] with

∑
x∈Ω d(x) =

1 a probability distribution or just a distribution on Ω. Any distribution

uniquely determines a measure µd on (Ω,P(Ω)) by le�ing µd(M) = ∑
x∈M d(x)

for all M ⊆ Ω. To ease notation, we write d for µd . �us, we view every

distribution on Ω also as a measure on (Ω,P(Ω)).
�e set of all distributions on Ω is denoted by ∆(Ω).

Our goal is to construct a probability measure on the set of all in�nite runs.

�erefore, we need to de�ne two things: �rst, a suitable σ-algebra on the set of

runs, which contains the set of accepting runs. Second, a way to construct a unique

probability measure from the transition probabilities of an automaton. We also

want our de�nition to be a real extension of the �nite word case and thus be able

to deal with �nite and in�nite words.

A standard way to de�ne a σ-algebra is to start with a metric space and consider

the σ-algebra generated by the open sets. Hence, we de�ne the usual metric on

words. See [PP04] for an extended introduction to topology on the set of words.

Definition 2.6. Let Σ be a �nite alphabet. We de�ne the metric dΣ on Σ∞ by

dΣ(u,v) =



2
−min(D(u,v))

if u , v

0 if u = v,

where

D(u,v) = {i ∈ pos(u) ∩ pos(v) | ui , vi } ∪ (pos(u) 4 pos(v)).
We will call this metric space just Σ∞ and assume dΣ is understood. Moreover, we

consider Σω and Σ∗ as metric subspaces of (Σ∞,dΣ).
One easily checks that (Σ∞,dΣ) is really a metric space. Intuitively, in this metric

space words are near to each other if they agree on a long pre�x. One can show

that Σ∞ with this metric is a compact metric space, i.e., if it is covered by a family

of open sets, then there is already a �nite subfamily which also covers the whole

space.

Next, we de�ne the notion of the Borel-σ-algebra, which arises from the open

sets. Recall that a subset A of a metric space (X ,d) is open if for every a ∈ A there

is an ε > 0 such that every x ∈ X with d(a,x) < ε is also contained in A.

A function f : X → X ′ between two metric spaces (X ,d) and (X ′,d′) is called

continuous if f −1(A) is open in (X ,d) for every open set A ⊆ X ′.

Definition 2.7. Let (X ,d) be a metric space. �e Borel-σ-algebra B(X ,d) is the

smallest σ-algebra such that the open sets of (X ,d) are measurable. In other words

B(X ,d) = σ ��
A ⊆ X

�
A open in (X ,d)	�

.
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If d is understood, we write B(X ) for B(X ,d).

�ough this de�nition is the standard de�nition of the Borel-σ-algebra, one might

like a more explicit representation. In the case of words, it su�ces to consider

so called cylinder sets, i.e., sets of the form uΣ∞ for u ∈ Σ∗, as generators of the

σ-algebra to obtain B(Σ∞).
Lemma 2.8. Let Σ be a �nite alphabet. �e following equations hold:

B(Σ∞) = σ ({uΣ∞ | u ∈ Σ∗}) and B(Σω) = σ ({uΣω | u ∈ Σ∗}).

Note that the Borel-σ-algebra on Σ∗ is just P(Σ∗), as Σ∗ is countable.

Proof. We only show the Σ∞ part, the second equation is analogous. Every set of

the form uΣ∞ is open: let x ∈ uΣ∞ and y ∈ Σ∞ with dΣ(x ,y) < 2
−|u |

. By de�nition

of dΣ , x and y agree at least on the �rst |u | le�ers. Hence, y ∈ uΣ∞. We conclude

σ ({uΣ∞ | u ∈ Σ∗}) ⊆ B(Σ∞).
Conversely, let A ⊆ Σ∞ open. By de�nition of open set and dΣ there is a ux ∈ Σ

∗

for everyx ∈ A such thatux is a pre�x ofx anduxΣ
∞ ⊆ A. �us,A =

⋃
x∈AuxΣ

∞
. As

the set of �nite words is countable, there is a countable subsetA′ ⊆ Awhich satis�es

A =
⋃

x∈A′ uxΣ
∞

. �erefore, A ∈ σ ({uΣ∞ | u ∈ Σ∗}). Hence, B(Σ∞) ⊆ σ ({uΣ∞ |
u ∈ Σ∗}). �

�e system of cylinder sets is easier to handle in most cases than the system of all

open sets. Nevertheless, the system of cylinder sets is still closed under intersection.

�erefore, the values of a measure on these sets uniquely determine the measure,

which is a standard result in measure theory.

Lemma 2.9. Let (Ω,A) be a measurable space and E ⊆ A such that σ (E) = A,

and A ∩ B ∈ E for all A,B ∈ E . Moreover, let µ and ν be �nite measures on (Ω,A)
such that µ(E) = ν (E) for all E ∈ E . �en µ(A) = ν (A) for all A ∈ A.

�is completes the de�nition of a suitable σ-algebra on the set of runs. Next, we

state the de�nition of a measurable function. �ese functions allow us to transfer

measures from one σ-algebra to another. Moreover, they are the function we can

use to de�ne a meaningful measure integral.

Definition 2.10. Let (Ω,A) and (Ω′,A′) be measurable spaces. A function f : Ω →
Ω′ is called (Ω,A)-(Ω′,A′)-measurable, or just measurable, if f −1(A′) ∈ A for all

A′ ∈ A′.
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Note that, as the preimage is compatible with union and complement, it su�ces

to show the relation f −1(A′) ∈ A for sets A′ ∈ E where E ⊆ A generates A. In

particular, given two metric spaces (X ,d) and (X ′,d′), every continuous function

f : X → X ′ is B(X )-B(X ′)-measurable.

If f is any function Ω → Ω′, then the system f −1(A′) = { f −1(A′) | A′ ∈ A′}
forms a σ-algebra on Ω. We call f −1(A′) the σ-algebra generated by f .

Measurable functions can not only be used to transfer σ-algebras to a di�erent

domain, but also measures. We will use the following construction in several proofs.

Proposition 2.11. Let (Ω,A) and (Ω′,A′) be measurable spaces, f : Ω → Ω′ a

measurable function, and µ a measure on (Ω,A). �en, µ′ de�ned by µ′(A′) =
µ(f −1(A′)) is a measure on (Ω′,A′). We write µ′ = µ ◦ f −1

.

Next, we state the Ionescu-Tulcea theorem, which allows us to construct measures

on an in�nite sequences from so-called transition kernels. Whereas the statement

of the theorem works on arbitrary σ-algebras, we only give a variant for �nite

σ-algebras, i.e., in the following X is always a �nite set and we consider P(X ) as

the σ-algebra on X .

Theorem 2.12 (Ionescu-Tulcea theorem for finite sets). Let X be a �nite set,

d a distribution onX , and κi : X 2 → [0, 1] be mappings such that κi(x , · ) ∈ ∆(X ) for

each x ∈ X and every i ≥ 1. �ere is a unique probability measure µ on (Xω ,B(X ))
such that

µ(x0 · · · xnX
ω) = d(x0)

n∏
i=1

κi(xi−1,xi), (2.2)

for all n ≥ 1 and x0, . . . ,xn ∈ X .

Note that �eorem 2.12 only yields a measure on in�nite words over X . As µ is

already a probability measure, every extension of µ to the �nite and in�nite words

would assign probability 0 to every �nite word. �is is due to the fact that the

kernels κi transfer the whole probability mass to the next position of the sequence.

�e following variant of �eorem 2.12 which deals also with �nite words will

become useful:

Corollary 2.13. LetQ be a �nite alphabet, d a distribution onQ andκi : Q2 → [0, 1]
be mappings such that

∑
b∈Q κi(a,b) ≤ 1 for every a ∈ Q and i ≥ 1. �ere is a unique

probability measure µ on B(Q∞) such that

µ(a0 · · ·anQ
∞) = d(a0)

n∏
i=1

κi(ai−1,ai), (2.3)

for all a0 · · ·an ∈ Q
+

.
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Proof. Let⊥ < Q be a new symbol andX = Q∪{⊥}. De�ne transition kernelsκ′i on

X byκ′i (a,b) = κi(a,b), κ′i (a,⊥) = 1−
∑

b∈Q κi(a,b), κ′i (⊥,b) = 0, andκ′i (⊥,⊥) = 1 for

all a,b ∈ Q and i ≥ 1. Moreover, letd′ ∈ ∆(X ) withd′(a) = d(a) andd′(⊥) = 0 for all

a ∈ Q . With these de�nitions, d′ and (κ′i )i≥1 satisfy the conditions of �eorem 2.12.

�us, there is a probability measure µ′ on B(X∞) such that (2.2) holds. Let π : Xω →

Q∞ be the homomorphism given by π (q) = q for all q ∈ Q and π (⊥) = ε . �is

function is measurable as π−1(q1 · · ·qnQ
∞) = {⊥}∗q1{⊥}∗ · · · {⊥}∗qnXω

. Explicit

calculation shows that the measure µ = µ′ ◦ π−1
satis�es (2.3). As the system of

cylinder sets is closed under intersection, µ is unique. �

We recall the de�nition of the measure integral. Let B(R) denote the Borel-σ-

algebra on the reals, where the usual topology on R is assumed. We only establish

the integral for cases that we actually use later, i.e., positive functions. For a

de�nition on general function see [K08].

Definition 2.14. Let (Ω,A, µ) be a measurable space. We make the following

de�nitions:

1. A function s : Ω → [0,∞) is called simple if s =
∑n

i=1
ri 1Ai for some values

r1, . . . , rn ∈ [0,∞) and measurable setsA1, . . . ,An ∈ A. We de�ne the integral

of s with respect to µ by∫
s(x) µ(dx) =

n∑
i=1

riµ(Ai).

2. Let f : Ω → [0,∞) be a measurable function. �e integral of f with respect

to µ is given by∫
f (x) µ(dx) = sup

{∫
s(x) µ(dx)

�����
s simple function with 0 ≤ s ≤ f

}
.

A shorter notation for the above integral is

∫
f dµ.

We call f integrable if

∫
f dµ < ∞.

3. For any measurable set A ∈ A and measurable function f , we de�ne∫
A
f dµ =

∫
1A ·f dµ .

4. If µ is a probability measure, the expected value of a measurable function

f : Ω → [0,∞) is given by

E[f ] =
∫

f dµ .
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2.2 Probabilistic Automata and Measures on Words

To conclude this section, we de�ne �nite product spaces and state Fubini’s

theorem.

Definition 2.15. Let (Ω1,A1, µ1), . . . , (Ωn,An, µn) be measurable spaces. We de�ne

the product σ-algebra A of A1, . . . ,An by

A =
n⊗
i=1

Ai = σ ({A1 × · · · ×An | Ai ∈ Ai for i = 1, . . . ,n}).

�e product measure µ of µ1, . . . , µn on A is then given by

µ(A1 × · · · ×An) =
n∏
i=1

µi(Ai),

for all sets Ai ∈ Ai for i = 1, . . . ,n.

Note that product spaces and preimages can be interchanged with each other:

Let (Ωi ,Ai , µi) be measure spaces, (Ω′i ,A′i) be measurable spaces and fi : Ω′i → Ωi

be measurable functions for i = 1, . . . ,n. We de�ne a function f : Ω′
1
× · · · ×Ω′n →

Ω1 × · · · ×Ωn by f (x1, . . . ,xn) = (f1(x1), . . . , fn(xn)). �is function is measurable in

the corresponding product spaces. Moreover, the following equalities hold:

n⊗
i=1

f −1

i (Ai) = f −1*
,

n⊗
i=1

Ai
+
-

and

n⊗
i=1

�
µ ◦ f −1

i

�
= *

,

n⊗
i=1

µi+
-
◦ f −1.

Fubini’s theorem states that integration in product spaces can be decomposed in

two integrations in the corresponding original measure spaces. Furthermore, the

order of this decomposition does not ma�er.

Theorem 2.16 (Fubini’s theorem). Let (Ω1,A1, µ1) and (Ω2,A2, µ2) be measure

spaces and f : Ω1 ×Ω2 → [0,∞) be a measurable function from A1 ⊗ A2 to B(R).
�en the functions x 7→

∫
f (x ,y) µ2(dy) and y 7→

∫
f (x ,y) µ1(dx) are measurable

and the following equalities hold:∫
f (x ,y) (µ1 ⊗ µ2)(d(x ,y)) =

∫ (∫
f (x ,y) µ2(dy)

)
µ1(dx)

=

∫ (∫
f (x ,y) µ1(dx)

)
µ2(dy).
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2.2.2 Probabilistic ω-Automata

In this section, we de�ne probabilistic ω-automata. �is model has �rst been de�ned

by Baier and Grösser [BG05]. Our de�nition extends Baier and Grösser’s de�nition

slightly: �rst, we use a Muller-acceptance condition and not a Rabin-acceptance

condition, and second, we allow also the acceptance of �nite words by adding a �nal

state set. Moreover, we add sink states to the automaton model, i.e., states where

no further transition is possible. �e de�nitions and proofs in Chapter 6 will rely

on these modi�cations. Note that the di�erent choice of the acceptance condition

does not change the expressive power of the automata model, cf. De�nition 3.6

and �eorem 3.9.

In the following the set ∆0(X ) contains in addition to all distributions on X , the

null function, i.e., ∆0(X ) = ∆(X ) ∪ {0} where 0(x) = 0 for all x ∈ X .

Definition 2.17. A probabilisticMuller-automaton over an alphabetΣ is a quintuple

A = (Q,δ , µ, F ,R) where

1. Q is a �nite, non-empty set – the set of states,

2. δ : Q × Σ → ∆0(Q) – the transition probability function,

3. µ ∈ ∆(Q) – the initial distribution,

4. F ⊆ Q – the set of �nal states,

5. R ⊆ P(Q) – the Muller-acceptance condition.

A state q ∈ Q is called a sink if δ (q,a) = 0 for all a ∈ Σ.

For every word w = (wi)i∈pos(w) ∈ Σ∞ let Pr
w
A be the unique probability measure

on (Q∞,B(Q∞)) given by

Pr
w
A (q0 · · ·qnQ

∞) =



µ(q0)∏n
i=1
δ (qi−1,wi ,qi) if n ≤ |w |

0 otherwise.
(2.4)

Given a measurable set M , we write PrA(M) for the function w 7→ Pr
w
A (M). �e set

of successful runs on words of length n ∈ N ∪ {∞} is given by

Sn =



QnF if n < ∞

{ρ ∈ Qω | inf(ρ) ∈ R} if n = ∞.

�e behaviour of A is the function ‖A‖ : Σ∞ → [0, 1] de�ned by

‖A‖(w) = Pr
w
A (S|w |)
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2.2 Probabilistic Automata and Measures on Words

for every w ∈ Σ∞.

A function f : Σ∞ → [0, 1] is called recognizable if there is a probabilistic Muller-

automaton A with ‖A‖ = f .

�e existence of the measure Pr
w
A in De�nition 2.17 is a direct consequence of

Corollary 2.13. Given a word w = (wi)i∈pos(w) ∈ Σ∞, let κi(p,q) = δ (p,wi ,q) if

i ≤ |w | and κi(p,q) = 0 if i > |w |. �is de�nition of the kernels κi satisfy the

requirements of Corollary 2.13. �us, there is a measure µ such that (2.3) holds. By

de�nition of the κi this is just (2.4).

Finally, we argue that Sn is a measurable set in B(Q∞). For n ∈ N we have

Sn = QnFQ∞ \ Qn+2Q∞. �us, Sn ∈ B(Q∞). In case n = ∞ we can rewrite S∞

using cylinder sets:

S∞ =
⋃

{r1,...,rk}=R∈R
*.
,

⋂
i≥1

⋃
j≥i

Q jr1Q
∗r2 · · · rk−1Q

∗rkQ
ω ∩

⋃
i≥1

⋂
j≥i

Q jRQω+/
-
.

As the set of �nite words over Q is countable, this showsSn ∈ B(Q∞).
Example 2.18. Let Σ = {a, b} and 0 < p < 1. We consider the probabilistic Muller-

automaton A = (Q,δ , µ, ∅,R) from Fig. 2.2a where R = {{I, F}, {F}}. We show

‖A‖(w) = 1 − p |w |a
by direct computation: let w = w1w2 · · · ∈ Σ

ω
.

‖A‖(w) = Pr
w
A ({ρ ∈ Qω | F ∈ inf(ρ)})

By the structure of the automaton, F can not be le� with positive probability. �us

Pr
w
A ({ρ ∈ Qω | F ∈ inf(ρ)}) = Pr

w
A (I∗Fω) = Pr

w
A (I∗FQω).

=
∑
n≥1

Pr
w
A ({q0q1 · · · ∈ Q

ω | qn = F, qi = I for all i < n})

=
∑
n≥1

wi=a

(1 − p)
n−1∏
i=1




p if wi = a
1 if wn = b

=
∑
n≥1

wn=a

(1 − p)p |w1···wi−1|a

= 1 − p |w |a,

where we set p∞ = 0.

Example 2.19. We consider a communication device for sending messages. At

every point of time either a new input message becomes available or the device
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I F

p a

b

(1 − p) a

a, b

(a) Example 2.18

E F O

w

(1 − p) i
p i p i

(1 − p) i

(1 − q)w
qw

w, i

(b) Example 2.19

Figure 2.2: Probabilistic Automata A from Examples 2.18 and 2.19. Transitions

without a probability value have probability 1.

is waiting for a new message. When a new message is available, the device tries

to send this message. Sending a message succeeds with probability p ∈ (0, 1). In

this case the message is stored in an internal bu�er. �e next time the device is

waiting for a new message, sending the stored message is retried. Intuitively, as

sending a bu�ered message has already failed once, it seems to be harder to send

this message. So sending a bu�ered message is only successful with probability

q ∈ (0, 1). �e bu�er can hold one message.

We model this device, using the two le�er alphabet Σ = {w, i} for the events

“wait” and “input message”. �e automaton A = (Q,T , I , ∅,R) given in Fig. 2.2b

assigns to every word w ∈ Σ∞ the probability that this sequence of “wait” and

“input message” events does not over�ow the bu�er. �e automaton has a Büchi

acceptance condition, i.e., R = {X ⊆ Q | X ∩ {E, F} , ∅}. We chose the states E, F,

and O corresponding to the conditions empty bu�er, full bu�er, and over�ow. �e

transitions model the behaviour explained in the �rst paragraph.

We consider the language L of words w ∈ Σω with ‖A‖(w) > 0, i.e., all event

sequences with a positive probability not to over�ow the bu�er. In contrast to �nite

words, where the language of words with positive acceptance probability is always

regular, the language L is not regular. �is can be seen as follows: let w = uvω be

an ultimately periodic word with |v |i > 0. Using Markov chain theory one shows

that the probability to be in state O a�er reading uvn+1
is at least 1 − λn for some

λ > 0. �us, intuitively, the probability to be in state O is 1, a�er reading uvω .

�erefore, ‖A‖(w) = 0. Nevertheless, there are wordsw with in�nitely many le�ers

i and ‖A‖(w) > 0. Consider a word w = iwn1 iwn2 iwn3 · · · . Using induction one

shows Pr
w
A (E{E, F}n1

E · · · E{E, F}nkQω) =∏k
i=1

(1 − (1 − p)(1 − q)ni ) for every k ≥ 1.

�erefore, we obtain

‖A‖(iwn1 iwn2 iwn3 · · · ) ≥
∏
i≥1

�
1 − (1 − p)(1 − q)ni �.
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2.3 Trees and Tree Automata

By choosing ni = i , i.e. iwiw2iw3 · · · = u, we obtain ‖A‖(u) > 0 since

∑
i≥1

(1−p)(1−
q)i < ∞, for details see [K51, chapter 7].

We can conclude that L is not regular: by the last paragraph, we know that L
contains at least one in�nite word. If L was a regular language, it would also contain

a lasso shaped word, but every lasso shaped word has probability zero. Hence, L
can not be regular.

We conclude this section with a useful proposition how to decompose Pr
w
A into a

measure on a su�x of w and values of δ .

Proposition 2.20. Let A = (Q,δ , µ, F ,R) be a probabilistic Muller-automaton and

Aq = (Q,δ , 1{q}, F ,R) for all q ∈ Q . Furthermore, let M ⊆ Q∞ measurable, w ∈ Σ∞,

and n ≤ |w |. �e following statement holds:

Pr
w
A (M) =

∑
q0,...,qn∈Q

µ(q0) · *
,

n∏
i=1

δ (qi−1,wi ,qi)+
-

· Pr
wn+1wn+2···

Aqn

��
ρ ∈ Q∞

�
q0 · · ·qnρ ∈ M

	�
. (2.5)

Proof. One checks that for �xed n and �xed states q0, . . . ,qn the mapping M 7→
Pr

wn+1wn+2···

A

��
ρ ∈ Q∞

�
q0 · · ·qnρ ∈ M

	�
is a �nite measure. �us, so is the complete

right side of (2.5). Let r0 · · · rmQ
∞

be a cylinder set. We have

�
ρ ∈ Q∞

�
q0 · · ·qnρ ∈ r0 · · · rmQ

∞
	
=




rn+1 · · · rmQ
∞

if qi = ri for all 0 ≤ i ≤ n

∅ otherwise.

�erefore, we obtain as right side of (2.5):

r.s. of (2.5) = µ(r0) · *
,

n∏
i=1

δ (ri−1,wi , ri)+
-
· Pr

wn+1···

Arn
(rn+1 · · · rmQ

∞)

= µ(r0) · *
,

n∏
i=1

δ (ri−1,wi , ri)+
-
·

*.
,

m∏
j=n+1

δ (rj−1,wj , rj)+/
-

= Pr
w
A (r0 · · · rmQ

∞).
As the system of cylinder sets is an intersection closed generating system, the proof

is complete. �

2.3 Trees and Tree Automata

�is section gives the basic de�nitions regarding trees and tree automata. Note

that we only consider �nite ranked trees here.
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2.3.1 Finite Ranked Trees

A ranked alphabet is an alphabet Σ with a function arity : Σ → N0. For every

n ∈ N0 let Σn = { f ∈ Σ | arity(f ) = n}. We just write Σ instead of (Σ, arity) if the

function arity is understood.

A tree over Σ is a mapping t : D → Σ, where D ⊆ N∗ such that

1. D is �nite and non-empty,

2. D is pre�x-closed, i.e., uv ∈ D implies u ∈ D for all u,v ∈ N∗,

3. {i | xi ∈ D } = {1, . . . , arity(f )} for all x ∈ D with f = t(x).
We write pos(t) for the set D. We identify a symbol a ∈ Σ0 with the tree a′

where pos(a′) = {ε} and a′(ε) = a. As in the word case, we set posA(t) = {x ∈
pos(t) | t(x) ∈ A} for some set A ⊆ Σ. For singleton sets A = {f }, we write

posA(t) = posf (t). �e set of all leaf positions leaf(t) contains all �-maximal

elements of pos(t), where � denotes the pre�x order. �e set of inner positions is

inner(t) = pos(t) \ leaf(t). We denote the set of all trees over Σ by TΣ .

Building Trees

We can construct new trees, by joining given trees under a new root node. For a

symbol f ∈ Σn and trees t1, . . . , tn ∈ TΣ we write f (t1, . . . , tn) for the tree t with

pos(t) = {ε} ∪⋃n
k=1

k pos(tk) and

t(x) =



f if x = ε

ti(y) if x = iy for i ∈ N and y ∈ N∗.

A second construction of a new tree from an existing one is by selecting the

subtree below a node. Let t ∈ TΣ and x ∈ pos(t), we write t |x for the tree t ′ de�ned

by pos(t ′) = {y ∈ N∗ | xy ∈ pos(t)} and t ′(y) = t(xy).
Substitutions in Trees

Given trees s, t ∈ TΣ and a position x ∈ pos(t) let the substitution t[x ← s] be the

tree obtained from t by replacing the subtree t |x at x in t by s . Formally, we de�ne

the tree t[x ← s] = t ′ by

pos(t ′) = (pos(t) \ xN∗) ∪ x pos(s)

t ′(y) =



s(y′) if y = xy′

t(y) otherwise.
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2.3 Trees and Tree Automata

When applying several substitutions in a row, the order of substitution may

ma�er if the positions of later substitutions fall within subtrees which have been

substituted before. �is cannot happen if all positions are pairwise incomparable

with respect to the pre�x order.

For a sequence of positions x1, . . . ,xn and trees s1, . . . , sn we de�ne

t[xi ← si]i=1,...,n = t[x1 ← s1][x2 ← s2] · · · [xn ← sn].
If the xi ’s are pairwise �-incomparable, the order of the substitutions does not

ma�er. For a �-antichain M ⊆ pos(t), i.e., x � y � x for all x ,y ∈ M , let

t[M ← s] = t[x ← s]x∈M .

2.3.2 Tree Automata

For the rest of this section let Σ be a �xed ranked alphabet. A tree automaton is

de�ned similar to a word automaton, but instead of considering two states and a

label in the transition relation, a tree automaton considers the state at a node, the

label of this node, and the states at all child nodes.

Definition 2.21. A tree automaton over Σ is a quadruple A = (Q,T , I , F ) where

1. Q is a �nite, non-empty set – the set of states

2. T ⊆
⋃

n≥1
Q × Σn ×Q

n
– the transition relation

3. I ⊆ Q – the set of initial states

4. F ⊆ Q × Σ0 – the acceptance condition.

Let t be any tree. A run of A on t is a mapping ρ : pos(t)→ Q that satis�es

�
ρ(x), t(x), ρ(x1), . . . , ρ(xnx )� ∈ T

for all x ∈ inner(t), where nx = arity(t(x)). A run ρ is successful if ρ(ε) ∈ I and

(ρ(x), t(x)) ∈ F for all x ∈ leaf(t). �e language L(A) of A is the set of all trees t
such that there exists a successful run of A on t .

�e automaton A is called top-down deterministic if |I | ≤ 1 and |{q ∈ Qn |
(p, f ,q) ∈ T }| ≤ 1 for all p ∈ Q and f ∈ Σn with n ≥ 1. We say A is top-down
complete if |I | ≥ 1 and |{q ∈ Qn | (p, f ,q) ∈ T }| ≥ 1 for all p ∈ Q and f ∈ Σn with

n ≥ 1. If A is both, top-down deterministic and top-down complete, we can regard

T as a function δ =
⋃

n≥1
δn with δn : Q × Σn → Qn

. We also write A = (Q,δ ,q0, F )
for a top-down deterministic and complete tree automaton.
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Figure 2.3: Automaton A from Example 2.22

Furthermore, A is bo�om-up deterministic if |{q ∈ Q | (q,a) ∈ F }| ≤ 1 for

all a ∈ Σ0 and |{q ∈ Q | (q, f ,p) ∈ T }| ≤ 1 for all f ∈ Σn and p ∈ Qn
. �e

automaton A is bo�om-up complete if |{q ∈ Q | (q,a) ∈ F }| ≥ 1 for all a ∈ Σ0

and |{q ∈ Q | (q, f ,p) ∈ T }| ≥ 1 for all f ∈ Σn and p ∈ Qn
If A is bo�om-up

deterministic and bo�om-up complete, T and F represent a function δ =
⋃

n≥0
δn

where δn : Σn × Q
n → Q with (δ (a),a) ∈ F for all a ∈ Σ0, and (δ (f ,p), f ,p) ∈ T

for all f ∈ Σn and p ∈ Qn
. We also write (Q,δ , F ′) with F ′ = I for a bo�om-up

deterministic and complete tree automaton.

A tree language L ⊆ TΣ is called recognizable or regular if there is a tree auto-

maton A with L(A) = L.

Example 2.22. Let Σ = {f, a, b} with arity((f )) = 2 and arity(a) = arity(b) = 0.

We consider the tree automatonA from Fig. 2.3. Ignore the dashed parts of the image

for now. �e picture is read as follows: circles represent states, whereas rectangles

represent transitions. Arrows from states to transitions mean that this transition

is applicable if the automaton is in the corresponding state and the symbol next

to the arrow is at the current position. Arrows from rectangles to states say that

if the transition of the rectangle is applicable, then the automaton transitions to

the corresponding state at the i-th child, where i is the number next to the arrow.

Single arrows into states denote initial states, whereas single arrow out of states

tell that the state with the le�er next to the arrow is accepting.

Figure 2.3 describes the automaton A = (Q,T , I , F ) with Q = {1, 2}, T =
{(1, f, 1, 2), (1, f, 2, 1), (2, f, 2, 2)}, I = {1}, and F = {(1, a), (2, a), (2, b)}. Note that

though the representation of A as tuple has no inherent direction, the picture

assumes a top-down approach. By reversing all arrows you obtain the same auto-

maton, but viewed as a bo�om-up automaton.

When in state 2, the automaton loops there and can exit at leaf nodes labelled

with any le�er. Hence, starting from state 2, all trees are accepted. In state 1 the

automaton guesses non-deterministically whether to stay in the le� or in the right
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child in state 1. �e other child enters state 2. �us, the automaton guesses a path

through the tree using state 1. At the end of this path, the automaton may only exit

state 1 in an a labelled leaf node. �erefore, we obtain as language of A:

L(A) = �
t ∈ TΣ

� |posa(t)| ≥ 1

	
.

Note that A is not top-down deterministic, since there are two transitions applic-

able in state 1 with f. In fact, this language is a standard example of a tree language

which cannot be recognized by a top-down deterministic tree automaton. �e

automaton A is is bo�om-up deterministic but not bo�om-up complete, as there is

no transition if both child states are in state 1 and a f is read. �is can be �xed by

adding the dashed transition to the automaton. �is way, we obtain a bo�om-up

deterministic and complete automaton for L(A).

Having two notions of determinism for trees, one may ask if both deterministic

automata models are equivalent to the general, non-deterministic model. It turns out

that only the bo�om-up deterministic model is as expressive as non-deterministic

tree automata. �ese results are stated in the next two lemmas. For the proofs of this

result, we refer the reader to [TATA], but also recall Example 2.22 for Lemma 2.24.

Lemma 2.23. Let A be a tree automaton. �ere is a bo�om-up deterministic and

bo�om-up complete tree automaton A′ such that L(A) = L(A′).

Lemma 2.24. �ere is an alphabet Σ and a regular tree language L ⊆ TΣ such that

L is not the language of any deterministic top-down tree automaton.

2.4 Probabilistic Automata on Trees

Probabilistic tree automata generalise top-down deterministic and complete tree

automata by replacing the single unique tuple of children states by a distribution

on all possible tuples of states. As we consider probabilistic tree automata only on

�nite trees, it is not necessary to employ measure theory in this case.

Definition 2.25. A (top-down) probabilistic tree automaton is a quadruple A =
(Q,δ , µ, F ) where

1. Q is a �nite, non-empty set – the set of states

2. δ =
⋃

n≥1
δn with δn : Q × Σn → ∆0(Qn) – the transition probability function

3. µ ∈ ∆(Q) – the initial distribution
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Figure 2.4: Automaton A′ from Example 2.26

4. F ⊆ Q × Σ0 – the acceptance condition.

�e behaviour ‖A‖ : TΣ(V )→ [0, 1] is given by

‖A‖(t) =
∑

ρ : pos(t)→Q
∀x∈leaf(t) : (ρ(x),t(x))∈F

µ(ρ(ε))
∏

x∈inner(t)
δ (ρ(x), t(x))(ρ(x1), . . . , ρ(xnx )),

for every t ∈ TΣ where nx = arity(t(x)).
We will make use of an alternative, recursive representation of ‖A‖: we de�ne

functions δq : TΣ → [0, 1] for every q ∈ Q by induction on the tree height. Let

t = f (t1, . . . , tn). We set

δq(t) =



1F (q, f ) if n = 0∑
q1,...,qn∈Q δ (q, f )(q1, . . . ,qn)∏n

i=1
δqi (ti) if n > 0.

Using induction one obtains for all t ∈ TΣ that the following equation holds:

‖A‖(t) =
∑
q∈Q

µ(q)δq(t).

Example 2.26. We return to Example 2.22. �e automaton depicted in the corres-

ponding picture Fig. 2.3 cannot be turned into a probabilistic automaton, as there

are two applicable transitions in state 1 with the same le�er f. Instead, we change

this non-deterministic choice into a probabilistic one by chosen each of the two

transitions with probability 1/2. �e resulting probabilistic tree automaton A′ is

shown in Fig. 2.4. Probability values are wri�en in front of the corresponding label,

a missing number means probability 1.
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In Example 2.22, we argued that the non-deterministic choice guesses a path in

the tree, which has to end in an a labelled node. Now, each direction is chosen with

probability 1/2. �us, a leaf node at position x ∈ pos(t) of a tree t is reached with

probability (1/2)|x |. As this applies to every leaf node in the tree we obtain

‖A‖(t) =
∑

x∈posa(t)

(
1

2

) |x |
.
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Probabilistic Nivat-Theorem and
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Chapter 3

Probabilistic Nivat Classes

In this chapter, we derive a probabilistic version of Nivat’s theorem for �nite and

in�nite words, as well as for �nite trees. �is result will allow us to characterise the

recognizable probabilistic word series and tree series by recognizable languages,

operations like homomorphic image and preimage, and application of a simple

probability measure.

In Section 3.1 we recall the statement of the classical theorem. A�erwards, we

introduce Bernoulli measures in Section 3.2 as measures that arise from sequences

of unfair coin tosses. In Sections 3.3 and 3.4 we give our probabilistic variant of

Nivat’s theorems for words and �nite trees, respectively.

�e results on words have been published in [W12] and the results on �nite trees

in [W15].

3.1 Classical Nivat-theorem

Nivat’s theorem, published in 1968 [N68], decomposes a rational transduction into a

regular language and applications of homomorphisms and inverse homomorphisms.

�us, we will �rst introduce rational transducers. �e following de�nitions and

results, and an in-depth introduction to the topic can be found in [MS97].

Definition 3.1. Let Σ and ∆ be two alphabets. A rational transducer from Σ∗ to

∆∗ is a quadruple R = (Q,T , I , F ) where

1. Q is a �nite, non-empty set – the set of states,

2. T ⊆ Q × (Σ ∪ {ε}) × (∆ ∪ {ε}) ×Q – the set of transitions,

3. I ⊆ Q – the set of initial states,

4. F ⊆ Q – the set of �nal states.
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A con�guration of R is a triple (q,u,v) ∈ Q × Σ∗ × ∆∗. We de�ne a relation→ on

the con�gurations by (p,au,v)→ (q,u,vb) if and only if (p,a,b,q) ∈ T . Using this

relation, we de�ne the transduction of R as function ‖R‖ : Σ∗ → P(∆∗) by

‖R‖(u) = �
v ∈ ∆∗

�
∃p ∈ I : ∃q ∈ F : (p,u, ε)→ (q, ε,v)	

.

�e transduction ‖R‖ can also be li�ed to languages: let L ⊆ Σ∗ we de�ne ‖R‖(L) =⋃
u∈L‖R‖(u).
Having de�ned rational transducers, we can now state Nivat’s theorem.

Theorem 3.2 (Nivat’s theorem). Let Σ and∆ be two alphabets, andT : P(Σ∗)→
P(∆∗) be any function. �ere is a rational transducer R from Σ∗ to ∆∗ with ‖R‖ = T
if and only if there exist an alphabet Γ , a regular language L ⊆ Γ ∗, and homomorph-

isms h : Γ ∗ → Σ∗ and д : Γ ∗ → ∆∗ such that

T (X ) = д(h−1(X ) ∩ L),
for all X ⊆ Σ∗.

One remarkable application of Nivat’s theorem is the closure of cones under

rational transductions. Let us �rst introduce cones. A family of languages is a

collection L of formal languages of �nite words such that L contains at least one

non-empty language. Each L ∈ L is a language over some �nite alphabet, but the

alphabets do not need to be the same for two languages from L. A cone is a family of

languages, that is closed under homomorphic images, homomorphic preimages and

intersection with regular languages. For example the family of regular languages

and the family of context-free languages are cones. As immediate consequence of

Nivat’s theorem one obtains the following result.

Corollary 3.3. Let L be a cone. �en, L is closed under rational transductions.

3.2 Bernoulli Measures on Words and Trees

Consider an experiment like tossing an unfair coin. �ere are two possible out-

comes: one with probabilityp and the other with probability 1−p. Such experiments

are called Bernoulli trials. A Bernoulli process consists of �nite or in�nitely many

independent Bernoulli trials all with the same probability p. �us, a Bernoulli pro-

cess can be seen as tossing the same unfair coin many times in a row independently

from each other.

Instead of considering only a binary outcome, one may be interested in any

�nite number of outcomes. So, instead of tossing an unfair coin, one could also

34



3.2 Bernoulli Measures on Words and Trees

roll an unfair die. �us, there is a �nite set M of outcomes. Every m ∈ M occurs

with probability pm and the mapping m 7→ pm is a distribution on M . A �nite or

in�nite sequence of such experiments is called a Bernoulli scheme. Whereas �nite

repetition of these trials results in a �nite probability space, an in�nite number of

experiments yields an uncountable probability space.

Note that the length of a trial or scheme is �xed in advance. �us, we only obtain

a measure on sequences of the same length.

Definition 3.4. Let M be a �nite set and d ∈ ∆(M) be a distribution on M .

1. For every n ∈ N, we de�ne a measure B
n
d

on P(Mn) by

B
n
d({m1 · · ·mn}) =

n∏
i=1

d(mi),

for allm1, . . . ,mn ∈ M .

2. We de�ne a measure B
ω
d

on B(Mω) by

B
ω
d (m1 · · ·mkM

ω) =
n∏
i=1

d(mi),

for allm1, . . . ,mk ∈ M and k ≥ 0.

In both cases we call B
n
d

the Bernoulli measure of d on Mn
for n ∈ N ∪ {ω}.

For any probability value p, we write B
n
p for the Bernoulli measure of dp on {0, 1}n,

where dp(1) = p and dp(0) = 1 − p. Moreover, we write Bd (Bp) for B
n
d

(B
n
p ) if n is

understood.

For an application to trees, considering a linear sequence of outcomes is not suf-

�cient. Instead, we extend the Bernoulli measure to arbitrary domains. As we only

consider �nite trees here, we only give the de�nition for �nite sets. Nevertheless,

an extension to countable domains is easily possible using techniques similar to

Section 5.1.

Definition 3.5. Let D be a �nite, non-empty domain, M a �nite, non-empty set,

and p a distribution on M . We de�ne a distribution B
D
d on the �nite set MD

by

B
D
d (u) =

∏
x∈D

d(u(x)),

for all u ∈ MD
. As before, we let B

D
p for p ∈ [0, 1] be the distribution B

D
dp

on {0, 1}D
where dp(1) = p and dp(0) = 1 − p. If D is understood, we just write Bd for B

D
d .

Note that we gave a de�nition of B
D
d as distribution MD → [0, 1], but recall that

this de�nition unique extends to a measure on (MD,P(MD)), as MD
is �nite. We

will also write B
D
p for this measure.
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Chapter 3 Probabilistic Nivat Classes

3.3 Nivat classes for words

Before we give the probabilistic Nivat theorem, we recall some notation. Given a

homomorphism h : Γ∞ → Σ∞, we write h(L) for the image of a language L ⊆ Γ∞

under h, and h−1(K) for the preimage of K ⊆ Σ∞. Moreover, for a measure µ on

B(Σ∞) and a set L ⊂ Γ∞ such that h(L) is measurable, we write (µ ◦h)(L) for µ(h(L)).
Note that µ ◦ h is not a measure. Recall that a homomorphism h : Σ∞ → Γ∞ is a

relabelling if h(a) ∈ Γ for all a ∈ Σ.

Definition 3.6. Let Σ be a �nite alphabet. �e Nivat-class N (Σ∞) consists of all

functions S : Σ∞ → [0, 1] such that there are

1. a �nite alphabet Γ and a �nite, non-empty set M ,

2. a regular language L ⊆ Γ∞,

3. relabellings h : Γ∞ → Σ∞ and д : Γ∞ → M∞,

4. a distribution d on M ,

with

S(w) = (Bd ◦ д)�h−1({w}) ∩ L�
, (3.1)

for all w ∈ Σ∞.

In the simple case that Γ = Σ ×M , and the functions h and д are the canonical

projections, (3.1) can be wri�en as

S(w) = Bd({u ∈ Mω | (w,u) ∈ L}),
where we use tuple notation for words over tuples: let w ∈ Σ∞ and u ∈ M∞ with

|w | = |u |. We consider the tuple (w,u) as word v over (Σ ×M)∞ where |v | = |w | and

vi = (wi ,ui)i∈pos(v) for w = (wi)i∈pos(u) and u = (ui)i∈pos(v).
Before we come to the main result of this section – the equivalence of Nivat classes

and recognizable functions – we still need to show that the de�nition is sound, i.e.,

that the set д(h−1({w})∩L) is measurable. As relabellings are essentially projections

and regular languages of words are Borel sets, any set of the form д(h−1({w}) ∩ L)
is an analytic set and therefore universally measurable, i.e., measurable in every

complete probability space. We show in the next lemma, that these sets are even

Borel sets. �is will be a consequence from the fact that every regular language is

a Borel set.

Lemma 3.7. Let L ⊆ Σ∞ be a regular tree language. �en, L is also measurable,

i.e, L ∈ B(Σ∞).
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3.3 Nivat classes for words

Proof. Let A = (Q,δ ,qι, F ,R) be a deterministic and complete Muller-automaton

with L(A) = L. Furthermore, letS = {ρ ∈ Qω | inf(ρ) ∈ R} the set of successful

runs on an in�nite word. As seen a�er De�nition 2.17, we already know thatS is

measurable in B(Qω).
Let r : Σω → Qω

map every word w to its unique run in A. Since the preimage of

a cylinder set p0 · · ·pnQ
ω

with p0 = qι under r is given by

r−1(p0 · · ·pnQ
ω) =

⋃
w1,··· ,wn∈Σ

δ (pi−1,wi )=pi for all i=1,...,n

w1 · · ·wnΣ
ω ,

we conclude that r is a continuous function. �erefore, r−1(S) is a Borel set. As

L = r−1(S) ∪⋃
w∈L∩Σ∗{w}, the proof is complete. �

Corollary 3.8. Let L ⊆ Γ∞ be a recognizable language, h : Γ∞ → Σ∞ and д : Γ∞ →
M∞ be relabellings, and w ∈ Σ∞. �en, д(h−1({w}) ∩ L) ∈ B(M∞).

Proof. Let π : Γ∞ → (Σ ×M)∞ be the homomorphism with π (v) = (h(v),д(v)).
As the regular languages are closed under homomorphic image, the language

L′ = π (L∩ Γω) is again regular. By Lemma 3.7 we also know that L′ ∈ B((Σ ×M)∞).
Fix w = w1w2 · · · ∈ Σ

ω
and consider the function κw : Mω → (Σ ×M)ω given by

κw (u) = (w,u) where (w,u) = (w1,u1)(w2,u2) · · · and u = u1u2 · · · . Clearly, this

function is continuous and hence measurable. �us, κ−1

w (L′) ∈ B(Σω). Moreover,

we obtain

κ−1

w (L′) = �
u ∈ Mω � (w,u) ∈ L′	

=
�
д(v) �

∃v ∈ Γω : h(v) = w 	

= д
�
h−1({w}) ∩ (L ∩ Γω)�.

As the image of �nite and in�nite words underд are disjoint, we obtainд(h−1({w})∩
L) = д(h−1(w)∩ L ∩ Γω)∪д(h−1({w})∩ L ∩ Γ ∗) which is measurable, as the second

term is at most countable. �

A�er having shown that the terms in De�nition 3.6 are well-de�ned, we show a

probabilistic version of �eorem 3.2. �is statement resembles the classical result,

only introducing an additional measure. Note that the empty word is handled

di�erently in probabilistic automata and Nivat classes: as B
0

d
is a probability measure

on ({ε}, {∅, {ε}}), the only possible outcomes for the empty word are 0 and 1. On

the other hand, probabilistic automata can assign any value to the probability of ε .
�erefore, we explicitly set the value of ε to 0 for Nivat classes in the next theorem.
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Theorem 3.9. Let Σ be an alphabet and S : Σ∞ → [0, 1] be a probabilistic series.

�e following statements are equivalent:

1. S = ‖A‖ for some probabilistic Muller-automaton A,

2. S+ ∈ N (Σ),
where S+(w) = S(w) for all w , ε and S+(ε) = 0. �e translations are e�ective in

both directions.

Before we can prove �eorem 3.9, we need two axillary results: In Proposition 3.10

we give a construction to embed several �nite distributions into a single one.

Proposition 3.11 shows the correctness of an automata construction we will use in

two places in the proof of �eorem 3.9.

Proposition 3.10. Let M1, . . . ,Mn be �nite sets and di be a distribution on Mi for

every i = 1, . . . ,n. �ere are a �nite set M , a distribution d on M , and functions

πi : M → Mi such that di(X ) = d(π−1

i (X )) for every X ⊆ Mi and i = 1, . . . ,n.

Moreover, the size of M is bounded by

∑n
i=1

|Mi |.
A simple construction with the above properties, except the size constraints,

would be de�ning (M,d) = ⊗n
i=1

(Mi ,di), but the size of M would be

∏n
i=1

|Mi |
which would cause an exponential blowup in upcoming constructions. �erefore,

we present a di�erent construction with only polynomial blowup.

Proof (of Proposition 3.10). We may assume Mi = {1, . . . ,mi} with mi ≥ 1 for

every i = 1, . . . ,n. Let Vi = {di({1, . . . ,k}) | 1 ≤ k ≤ mi } ∪ {0, 1} and V =
⋃n

i=1
Vi .

�us, |Vi | ≤ ∑n
i=1

mi . Let {v1, . . . ,v`} = V be an enumeration of V with vi < vj for

all 1 ≤ i < j ≤ `. We de�ne M = {1, . . . , `} and d({i}) = vi − vi−1 where we set

v0 = 0. As v` = 1, d is a distribution on M . We de�ne the functions πi : M → Mi by

πi(m) = min

�
k ∈ Mi

�
vm ≤ di({1, . . . ,k})	

.

We showdi = d ◦π
−1

i . Let k ∈ Mi . By de�nition of πi , we have π−1

i ({k}) = {m ∈ M |
di({1, . . . ,k − 1}) < vm ≤ di({1, . . . ,k})}. By de�nition of V there are a m−,m+ ∈
M ∪ {0} withvm− = di({1, . . . ,k − 1}) andvm+ = di({1, . . . ,k}). �us, d(π−1

i ({k})) =∑m+
m=m−+1

(vm − vm−1) = vm+ − vm− = di({1, . . . ,k}) − di({1, . . . ,k − 1}) = di({k}).
�is completes the proof. �

Proposition 3.11. Let Σ and M be alphabets and d a distribution on M . Let further

A′ = (Q,T , {qι}, F ,R) be a deterministic and complete Muller-automaton over

Σ ×M . �e probabilistic Muller-automaton A given by A = (Q,δ , 1{qι}, F ,R) and

δ (p,a,q) = d({m ∈ M | (p, (a,m),q) ∈ T } satis�es ‖A‖(w) = Bd({u ∈ Mpos(w) |
(w,u) ∈ L(A′)}) for all w ∈ Σ∞.
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3.3 Nivat classes for words

Proof. For a word w ∈ Σ∞ we de�ne a function κw : M∞ → Q∞ mapping a word

u ∈ M∞ to the unique run of (w,u) in A′. Fix a w ∈ Σ∞. We show Pr
w
A = Bd ◦κ

−1

w .

Let q0 · · ·qn ∈ Q
∗

with n ≤ |w |. We obtain

Pr
w
A (q0 · · ·qnQ

∞) = µ(q0)
n∏
i=1

δ (qi−1,wi ,qi)

= 1{qι}
n∏
i=1

d({m ∈ M | (qi−1, (wi ,m),qi) ∈ T })

By use of distributivity we obtain

= 1{qι}
∑

m1,...,mn∈M
∀i : (qi−1,(wi ,mi ),qi )∈T

n∏
i=1

d(mi)

= 1{qι}
∑

m1,...,mn∈M
∀i : (qi−1,(wi ,mi ),qi )∈T

Bd(m1 · · ·mnM
∞)

Note that κw (m1m2 · · · ) = r0r1 · · · with r0 = qι and (ri−1, (wi ,mi), ri) ∈ T for all i ≥ 1.

Furthermore, a run ρ = r0r1 · · · starts with q0 · · ·qn if and only if ρ ∈ q0 · · ·qnQ
∞

.

We conclude

= Bd({m1m2 · · · | κw (m1m2 · · · ) ∈ q0 · · ·qnQ
ω })

= (Bd ◦ κ
−1

w )(q0 · · ·qnQ
∞).

�us, Pr
w
A = Bd ◦ κ

−1

w . Let S ⊆ Q∞ be the set of accepting runs. We conclude

‖A‖(w) = Pr
w
A (S) = Bd(κ−1

w (S)). Note that κ−1

w (S) contains exactly the words

u ∈ M∞ with (w,u) ∈ L(A′). �is completes the proof. �

We are now ready to prove the equivalence of probabilistic automata and proba-

bilistic Nivat classes for words.

Proof (of Theorem 3.9). Let S be recognizable by some probabilistic Muller-auto-

maton. Using the standard construction one obtains a probabilistic Muller-auto-

maton with unique initial state and ‖A‖ = S+: given a probabilistic Muller-

automaton A = (Q,δ , µ, F ,R) recognizing S , one de�nes a new automaton A′ =
(Q ∪ {qι},δ ′, µ′, F ,R) with µ′(qι) = 1, µ(q) = 0, δ ′(qι,a,q) = ∑

p∈Q µ(p)δ (p,a,q),
δ ′(p,a,qι) = 0, and δ ′(qι,a,qι) = 0 for all p,q ∈ Q and a ∈ Σ. �en, ‖A′‖ = S+
holds. �us, we can assume a probabilistic Muller-automaton A = (Q,δ , µ, F ,R)
with µ(qι) = 1 for some qι ∈ Q , and ‖A‖ = S+.
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By Proposition 3.10, there is a �nite set M , a distribution d on M and for every

(p,a) ∈ Q × Σ a function πp,a : M → Q with δ (p,a)(X ) = d(π−1

p,a(X )) for all X ⊆ Q .

Let Γ = Σ × M , and h : Γ∞ → Σ∞ and д : Γ∞ → M∞ the canonical projections.

We de�ne a deterministic and complete Muller-automaton A′ = (Q,T ,qι, F ,R) by

T = {(p, (a,m),πp,a(m)) | p ∈ Q, (a,m) ∈ Γ }. �is de�nition implies δ (p,a,q) =
d(π−1

p,a({q})) = d({m ∈ M | (p, (a,m),q) ∈ T }). �us, by Proposition 3.11, we obtain

‖A‖(w) = Bd({u ∈ Mpos(w) | (w,u) ∈ L(A′)}) which is just (3.1). �us, S+ ∈ N (Σ).
Conversely, assume L, M , d , Γ , h, and д are given as in De�nition 3.6 such that

S+(w) = (Bd ◦ д)(h−1(w) ∩ L) for all w ∈ Σ∞. Let κ : Γ → Σ ×M be given by κ(a) =
(h(a),д(a)). �en, κ extends uniquely to a homomorphism κ : Γ∞ → (Σ × M)∞
and the language L′ = κ(L) is again regular. Moreover, we have д = π2 ◦ κ and

h = π1 ◦κ, where πi is the projection on the i-th component. Let A = (Q,T ,qι, F ,R)
be a deterministic and complete Muller-automaton with L(A) = L′. We construct

a probabilistic Muller automaton A′ over Σ by le�ing A′ = (Q,δ , 1{qι}, F ,R) with

δ (p,a,q) = d({m ∈ M | (p, (a,m),q) ∈ T }). We obtain the following:

S+(w) = (Bd ◦ д)(h−1({w}) ∩ L)
= Bd(π2(κ(κ−1(π−1

1
({w})) ∩ L)))

Using the general identity f (f −1(M) ∩ N ) = M ∩ f (N ) for all functions f : X → Y
and sets M ⊆ Y and N ⊆ X :

= (Bd ◦ π2)�π−1

1
({w}) ∩ κ(L)�

= Bd({u ∈ M∞ | (w,u) ∈ L′})
By Proposition 3.11 this is just the behaviour of A′:

= ‖A′‖(w).
�us, ‖A′‖ = S+. We still need to extend A′ to recognize S and not S+. Let λ = S(ε).
We de�ne A1 = (Q ∪ {qι,q f },δ1, µ1, F ∪ {qι}) where µ1(qι) = λ, µ1(q f ) = 1 − λ, and

µ1(q) = 0 for all q ∈ Q . Furthermore, let δ1(p,a,q) = δ (p,a,q), δ (q,a, r ) = 0, and

δ (r ,a,q) = ∑
p∈Q µ

′(p)δ (p,a,q) for r ∈ {qι,q f } and all p,q ∈ Q . By construction,

a�er reading at least one le�er, the probability to reach a state q ∈ Q in A′ is

the same as the probability to reach the same state q in A1. By choice of µ1 we

additionally have ‖A1‖(ε) = λ = S(ε). �erefore, we obtain ‖A1‖ = S . �

3.4 Nivat Classes for Trees

A�er having given the de�nition of probabilistic Nivat classes for words and having

shown their equivalence to the recognizable word series, we next look at �nite

trees and transfer these results on words to trees.
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3.4 Nivat Classes for Trees

It turns out that there is a di�erence for trees, whether the regular language,

which occurs in the de�nition of Nivat class, is recognizable by a top-down determ-

inistic tree automaton or not. �is is di�erent from the word case, as every regular

word language admits a deterministic word automaton that recognizes it.

A relabelling between to rank alphabets Σ and Γ is a function h : Σ → Γ with

arityΣ(a) = arityΓ (h(a)) for all a ∈ Σ. �en h extends to a function h : TΣ → TΓ by

pos(h(t)) = pos(t) and h(t)(x) = h(t(x)) for all x ∈ pos(t) and t ∈ TΣ .

We also use functions mapping tree labels to an arbitrary set M . A function

д : Σ → M extends to a function д : TΣ →
⋃

D : D tree domain
MD

by se�ing д(t) = τ
where τ : pos(t) → M with τ (x) = д(t(x)) for all x ∈ pos(t) and t ∈ TΣ . Note

that, д(t) is not a ranked tree though. As before, we write B
D
d ◦ д for the function

t 7→ B
D
d (д(t)).

Definition 3.12. Let Σ be a rank alphabet. �e Nivat-class N (TΣ) consists of all

tree series S : TΣ → [0, 1] such that there are

1. a rank alphabet Γ and a �nite, non-empty set M ,

2. a regular tree language L ⊆ TΓ ,

3. relabellings h : Γ → Σ and д : Γ → M ,

4. a distribution d on M ,

such that for all t ∈ TΣ we have

S(t) = (Bd ◦ д)�h−1({t}) ∩ L�
. (3.2)

�e deterministic Nivat-class ND(TΣ) comprises all tree series S such that condi-

tions 1. – 4. are satis�ed, Eq. (3.2) holds, and additionally:

5. L is recognizable by a deterministic top-down tree automaton,

6. the mapping Γ → Σ ×M given by a 7→ (h(a),д(a)) is injective.

Similar to the word case we consider the simple case that Γ is the ranked alphabet

Σ ×M with arityΓ ((f ,m)) = arityΣ(f ), and the functions h and д are the canonical

projections. �en, (3.2) can be wri�en as

S(t) = Bd({u ∈ Mpos(t) | (t ,u) ∈ L}),
where we use tuple notation for tree of tuples: let t ∈ TΣ and u ∈ Mpos(t)

. We

consider the tuple (t ,u) as tree t ′ over Σ ×M where pos(t) = pos(t ′) and t ′(x) =
(t(x),u(x)) for all x ∈ pos(t).

By de�nition, ND(TΣ) ⊆ N (TΣ) holds. We show that this inclusion is strict.
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Lemma 3.13. Let Σ be a rank alphabet with at least one symbol of arity at least 2,

and at least one leaf symbol. �en, there is a tree series S ∈ N (TΣ) \ND(TΣ).
If Σ only contains unary symbols and leaf symbols, tree languages over Σ are

e�ectively word languages, and N (Σ) = ND(Σ). �is can be seen from the proof of

�eorem 3.9.

Proof. �e argument is similar to the argument why deterministic top-down

automata do not recognize all regular tree languages. Let f ,a ∈ Σ with arity(f ) ≥ 2

and arity(a) = 0. We consider the two trees t1 = f (a, . . . ,a, f (a, . . . ,a)) and

t2 = f (f (a, . . . ,a),a, . . . ,a). Let S = 1{t1,t2} and assume S ∈ ND(TΣ). Let Γ , M , h, д,

L as in De�nition 3.12. As S(t1) > 0, there is a tree

s1 = u
�
v1

�
w1, . . . ,wn

�
,v2, . . . ,vn

�
∈ TΓ

with s1 ∈ L, h(s1) = t1, and d(д(u)) > 0, d(д(vi)) > 0, and d(д(wi)) > 0 for all

i = 1, . . . ,n. Moreover, as S(t2) = 1, there is a tree

s2 = u
�
v′

1
, . . . ,v′n−1

,v′n
�
w′

1
, . . . ,w′n

��
∈ TΓ ,

with s2 ∈ L, h(s2) = t2, and d(д(v′i )) > 0, and d(д(w′i )) > 0 for all i = 1, . . . ,n. Note

that the root symbol of s1 and s2 is the same. We can choose the same root symbol

for s2, as otherwise S(t2) < 1. Since L is top-down deterministic recognizable, L has

the subtree exchange property (see for example [MNS08]). �us, the tree s given by

s = (f ,u)�(a,v′
1
), (a,v2), . . . , (a,vn)�

is also contained in L. �is implies S(t) > 0 for t = f (a, . . . ,a). A contradiction to

the de�nition of S . �

3.4.1 Nivat Classes and Probabilistic Tree Automata

We give the relation of Nivat classes for trees to probabilistic tree automata. �ere

is a connection between deterministic Nivat classes and probabilistic tree automata:

both use the top-down model. �us, it is not surprising that probabilistic tree

automata correspond to the deterministic Nivat class and not to the full class.

Theorem 3.14. Let S : TΣ → [0, 1] a tree series. �e following statements are

equivalent:

1. S = ‖A‖ for a top-down probabilistic tree automaton A,

2. S ∈ ND(TΣ).
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�e translations are e�ective in both directions.

�e proof of this statement involves a technical di�culty: whereas the Bernoulli

distribution in the de�nition of N (TΣ) assigns a probability value to every position

in a tree, probabilistic tree automata employ a probability distribution only for

the root node and for the inner nodes, but not for leaf nodes. To overcome this

di�erence, we use probabilistic tree automata with additional �nal weights. �is

model allows us to assign a probability to leaf nodes. Nevertheless, PTA with �nal

weights are not more expressive than standard probabilistic tree automata.

Definition 3.15. A probabilistic tree automaton with �nal weights is a quadruple

A = (Q,δ , µ,γ ) whereQ , δ , µ are de�ned as in De�nition 2.25 andγ : Q×Σ0 → [0, 1]
is the �nal weight function.

�e behaviour of A is the function ‖A‖ : TΣ → [0, 1] given by

‖A‖(t) =
∑

ρ : pos(t)→Q

µ(ρ(ε))*.
,

∏
x∈inner(t)

δ (ρ(x), t(x))(ρ(x1), . . . , ρ(xnx )+/
-

·
∏

x∈leaf(t)
γ (ρ(x), t(x)),

where nx = arity(t(x)).
�e behaviour of a PTA with �nal weights can also be wri�en using induction

on the height of the input tree. For a PTA with �nal weights A = (Q,δ , µ,γ ) we set

δq(a) = γ (q,a)

δq(f (t1, . . . , tn)) =
∑

q1,...,qn∈Q

δ (q, f )(q1, . . . ,qn)
n∏
i=1

δqi (ti),

for a ∈ Σ0, f ∈ Σn, t1, . . . , tn ∈ TΣ , and n > 0. Using these de�nitions the behaviour

of A is given by ‖A‖ =
∑

q∈Q µ(q)δq .

Next, we show that �nal weights do not add expressive power to probabilistic

tree automata.

Lemma 3.16. Probabilistic tree automata and probabilistic tree automata with

�nal weights are equally expressive.

Proof. �e direction from PTA to PTA with �nal weights is straightforward: given

a PTA A = (Q,δ , µ, F ) we de�ne the PTA with �nal weights A′ = (Q,δ , µ, 1F ). �is

automaton recognizes the same tree series.
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Conversely, let A = (Q,δ , µ,γ ) be a PTA with �nal weights. We de�ne a probabi-

listic tree automaton which probabilistically chooses an acceptance condition in

every step and veri�es in leaf nodes that the chosen condition is actually satis�ed.

Let the probability distribution dγ on P(Q × Σ0) be given by

dγ (M) =
∏

(q,a)∈M
γ (q,a)

∏
(q,a)∈Q×Σ0\M

(1 − γ (q,a)).

�is distribution satis�es dγ ({P ⊆ Q × Σ0 | (q,a) ∈ P }) = γ (q,a) for all (q,a) ∈
Q × Σ0. Let A′ be the PTA A′ = (Q′,δ ′, µ′, F ′) where

Q′ = Q × P(Q × Σ0), µ′(p, P) = µ(p)dγ (P), F ′ =
�((p, P),a) � (p,a) ∈ P 	

,

δ ′((p, P), f )((r1,R1), . . . , (rn,Rn)) = δ (p, f )(r1, . . . , rn)
n∏
i=1

dγ (Ri).

We show

∑
P⊆Q×Σ0

dγ (P)δ ′(p,P)(t) = δp(t). First consider a tree a ∈ Σ0 of height 0.

We obtain ∑
P⊆Q×Σ0

dγ (P)δ ′(p,P)(a) =
∑

P⊆Q×Σ0

dγ (P) 1P (p,a)

= dγ ({P | (p,a) ∈ P }) = γ (p,a) = δp(a).
Next, we consider trees of height at least 1. Let t = f (t1, . . . , tn) with f ∈ Σn such

that the claim holds for every of the ti . We conclude for δp,P :

δ ′(p,P)(t) =
∑

(r1,P1),...,(rn ,Pn)∈Q ′
δ ′((p, P), f )((r1, P1), . . . , (rn, Pn))

n∏
i=1

δ ′(ri ,Pi )(ti)

=
∑

r1,...,rn∈Q

δ (p, f )(r1, . . . , rn)
n∏
i=1

∑
Pi⊆Q×Σ0

dγ (Pi)δ ′(ri ,Pi )(ti)

By induction hypothesis we have

∑
Pi⊆Q×Σ0

dγ (Pi)δ ′(ri ,Pi )(ti) = δri (ti) for all i =
1, . . . ,n.

=
∑

r1,...,rn∈Q

δ (p, f )(r1, . . . , rn)
n∏
i=1

δri (ti)

= δp(t).
As δ ′(p,P)(t) does not depend on P at all, we obtain the claimed equality since dγ is a

distribution on P(Q × Σ0). Using this equation, we can now derive the behaviour

of A′:

‖A′‖(t) =
∑

(p,P)∈Q ′
µ′(p, P)δ ′(p,P)(t) =

∑
p∈Q

µ(p)
∑

P⊆Q×Σ0

dγ (P)δ (p,P)(t)
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=
∑
p∈Q

µ(p)δp(t) = ‖A‖(t).

�is completes the proof. �

We can shi� the initial distribution to the �nal weights, thus obtaining an initial-

normalized PTA with �nal weights. �is is not possible with standard PTA.

Lemma 3.17. Let A be a PTA with �nal weights. �ere is a PTA with �nal weights

A′ such that the initial distribution µ′ of A′ is of the form µ′ = 1{qι} for some state

qι of A′.

Proof. Let A = (Q,δ , µ,γ ) and de�ne A′ = (Q′,δ ′, µ′,γ ′) where

Q′ = Q ∪ {qι}, µ′ = 1{qι}, γ ′(q,a) =



γ (q,a) if q ∈ Q

‖A‖(a) if q = qι,

δ ′(p, f )(q1, . . . ,qn) =



δ (p, f )(q1, . . . ,qn) if p,q1, . . . ,qn ∈ Q∑
q∈Q µ(q)δ (q, f )(q1, . . . ,qn) if p = qι and q1, . . . ,qn ∈ Q

0 otherwise.

Note that, by de�nition of A′, we have δ ′q(t) = δq(t) for all q ∈ Q and t ∈ TΣ . �us,

we obtain the following behaviour of A′ for a tree t = f (t1, . . . , tn) ∈ TΣ with n ≥ 1:

‖A′‖(t) = δqι (t) =
∑

q1,...,qn∈Q

*.
,

∑
q∈Q

µ(q)δ (q, f )(q1, . . . ,qn)+/
-

n∏
i=1

δ ′qi (ti)

=
∑
q∈Q

µ(q)δq(t) = ‖A‖(t).

Finally, for a tree t = a ∈ Σ0 we obtain ‖A′‖(a) = γ ′(qι,a) = ‖A‖(a) directly by

de�nition of A′. �

As in the word case, we show the correctness of a particular automata construc-

tion, that we will later use in the proof of �eorem 3.14.

Lemma 3.18. Let M be a �nite set, d a distribution on M , A = (Q,δ , 1{qι},γ )
be a probabilistic tree automaton with �nal weights and A′ = (Q,T ,qι, F ) a top-

down deterministic and top-down complete tree automaton over Σ ×M such that

δ (p, f )(q) = d({m ∈ M | (p, (f ,m),q) ∈ T }) for every (p, f ) ∈ Q × Σn with n ≥ 1,

and γ (p,a) = d({m ∈ M | (p, (a,m)) ∈ F }) for (p,a) ∈ Q × Σ0. �en,

‖A‖(t) = Bp({u ∈ Mpos(t) | (t ,u) ∈ L(A′)}),
for all t ∈ TΣ .
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Proof. We show δq(t) = Bp({u ∈ Mpos(t) | (t ,u) ∈ Lq }), where Lq = L(A′q) and

A′q = (Q,T ,q, F ) using induction on the tree height. Let a ∈ Σ0. �en,

δq(a) = γ (q,a) =
∑
m∈M

d(m) 1F (q, (a,m)) =
∑
m∈M

d(m) 1L(a,m)

= Bp({u ∈ Mpos(t) | (a,u) ∈ Lq }).
Next, consider the case t = f (t1, . . . , tn) with n > 0.

δq(t) =
∑

q1,...,qn∈Q

δ (q, f )(q1, . . . ,qn)
n∏
i=1

δqi (ti)

We replace δ by its representation using T , use the induction hypothesis for δqi (ti):

=
∑

q1,...,qn∈Q

∑
m∈M

d(m) 1T (p, (f ,m),q1, . . . ,qn)
n∏
i=1

∑
ui∈Mpos(ti )

d(ui) 1Lqi (ti ,ui)

Using distributivity, we merge the trees ui ∈ M
pos(ti )

for i = 1, . . . ,n and the symbol

m ∈ M into one tree u ∈ Mpos(t)
:

=
∑

u∈Mpos(t )
Bd({u})

∑
q1,...,qn∈Q

1T (q, (f ,u(ε)),q1, . . . ,qn)
n∏
i=1

1Lqi (ti ,u|i)

Since A′ is deterministic and complete, the second sum collapses to 1L(t ,u):
= Bp({u ∈ Mpos(t) | (t ,u) ∈ L}).

�is completes the proof. �

We now have established all results we need for the proof of �eorem 3.14. �e

proof actually shows the equivalence of ND(TΣ) to PTA with �nal weights, which

in turn are as expressive as probabilistic tree automata by Lemma 3.16.

Proof (of Theorem 3.14). Let S be the behaviour of a top-down probabilistic

tree automaton. By Lemmas 3.16 and 3.17 there is a PTA with �nal weights

A = (Q,δ , µ,γ ) such that ‖A‖ = S and µ = 1qι for some state qι ∈ Q . By Pro-

position 3.10 there is a �nite set M , a distribution d on M , functions π(p,f ) : M → Qn

for every (p, f ) ∈ Q × Σn
and n ≥ 1, and functions π(p,a) : M → {0, 1} for every

(p,a) ∈ Q × Σ0 such that δ (p, f )(q̄) = d(π−1

(p,f )({q̄})) for all (p,a) ∈ Q × Σn
, q̄ ∈ Qn

,

n ≥ 1 and γ (q,a) = d(π−1

(q,a)({1})) for all (q,a) ∈ Q × Σ0. For (p,a) ∈ Q × Σ0 we

considered the distribution d(p,a) on {0, 1} with d(p,a)(1) = γ (p,a).
Let Γ = Σ × M , and д : Γ → M and h : Γ → Σ be the canonical projections.

We de�ne the top-down deterministic and top-down complete tree automaton
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A′ = (Q,T ,qι, F ) by

T =
�(p, (f ,m),π(p,f )(m))

�
p ∈ Q, (f ,m) ∈ Γ 	

,

F =
�(q, (a,m)) ∈ Q × Γ0

�
π(p,a)(m) = 1

	
.

�en, the automata A and A′ satisfy the assumptions of Lemma 3.18. �erefore,

S = ‖A‖(t) = (Bd ◦ д)(h−1({t}) ∩ L(A′)) as claimed.

Conversely, assume S ∈ ND(TΣ). Let Γ , M , d , д, h, L as in De�nition 3.12. Let

κ : Γ → Σ ×M be given by κ(u) = (h(u),д(u)). By de�nition of ND(TΣ), we have

that κ is injective. �us, the tree language κ(L) ⊆ TΣ×M is also recognizable by a

top-down deterministic and complete tree automaton A′. Let A′ = (Q,T ,qι, F ). We

construct a PTA with �nal weights over Σ by A = (Q,δ , 1{qι},γ ) with

δ (p, f )(q̄) = d({m ∈ M | (p, (f ,m), q̄) ∈ T })
γ (q,a) = d({m ∈ M | (q, (a,m)) ∈ F }),

for all p ∈ Q , f ∈ Σn, and q̄ ∈ Qn
. As before, the automata A and A′ satisfy the

requirements of Lemma 3.18 and we obtain ‖A‖ = (Bd ◦ д)(h−1({t}) ∩ L(A′)) = S .�

3.4.2 Nivat Classes and Bottom-Up Probabilistic Tree

Automata

By Lemma 3.13 and �eorem 3.14 we know that top-down probabilistic tree automata

are not powerful enough to describe every function in N (TΣ). In order to obtain a

probabilistic automata model expressive equivalent to N (TΣ) we introduce bo�om-

up probabilistic tree automata. Whereas standard top-down probabilistic tree

automata generalise top-down deterministic tree automata, bo�om-up probabilistic

tree automata generalise bo�om-up deterministic tree automata. �ough this step

seems natural, the bo�om-up model has gained very li�le interest before. In fact

we could �nd just one other reference to it [L94].

Definition 3.19. A bo�om-up probabilistic tree automaton is a triple A = (Q,δ , F )
where

1. Q is a non-empty, �nite set – the set of states,

2. δ =
⋃

n≥0
δn where δn : Σn ×Q

n → ∆(Q) – the transition probabilities,

3. F ⊆ Q – the set of �nal states.
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For a tree t ∈ TΣ we de�ne the behaviour ‖A‖ of A by

‖A‖(t) =
∑

ρ : pos(t)→Q
ρ(ε)∈F

∏
x∈pos(t)

δ (t(x), ρ(x1), . . . , ρ(xnx ))(ρ(x)),

where nx = arity(t(x)).
As with top-down probabilistic-tree automaton, we can also de�ne the behaviour

inductively on the height of t : let distributions δt on Q be given by

δt (q) =
∑

q1,...,qn∈Q

δ (f ,q1, . . . ,qn)(q)
n∏
i=1

δti (qi),

for all t = f (t1, . . . , tn) ∈ TΣ where n ≥ 0. Note that the equation is also valid for

n = 0. In this case the sum is just over the empty sequence of states, and δt (q)
equals δ (t)(q) where t ∈ Σ0. �e behaviour ‖A‖ of A on t is then given by

‖A‖(t) =
∑
q∈F

δt (q) = δt (F ).

Bo�om-up probabilistic tree automata turn out to be exactly the right automata

class to describe the tree series in N (TΣ).
Theorem 3.20. Let S : TΣ → [0, 1] be a tree series. �e following statements are

equivalent.

1. S = ‖A‖ for a bo�om-up probabilistic tree automaton A.

2. S ∈ N (TΣ).
�e translations are e�ective in both directions.

We show the behaviour of an automata construction that we use in the proof of

�eorem 3.20.

Lemma 3.21. Let M be a �nite set, d a distribution on M , A = (Q,δ , F ) a bo�om-

up probabilistic tree automaton, and A′ = (Q,δ ′, F ) a bo�om-up deterministic

and bo�om-up complete tree automaton such that δ (f ,q)(p) = d({m ∈ M |
δ ′((f ,m),q) = p}). �en,

‖A‖(t) = Bd({u ∈ Mpos(t) | (t ,u) ∈ L}),
for all t ∈ TΣ .
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Proof. Let t ∈ TΣ and nx = arity(t(x)).

‖A‖(t) =
∑

ρ∈Qpos(t )
ρ(ε)∈F

∏
x∈pos(t)

δ (t(x), ρ(x1), . . . , ρ(xnx ))(ρ(x))

By the choice of M , d and δ ′ we obtain

=
∑

ρ∈Qpos(t )
ρ(ε)∈F

∏
x∈pos(t)

∑
m∈M

δ ′((t(x),m),ρ(x1),...,ρ(xnx ))=ρ(x)

d(m)

Rewriting the conditions on the indices as characteristic functions:

=
∑

ρ∈Qpos(t )
1F (ρ(ε))

∏
x∈pos(t)

∑
m∈M

d(m) 1{δ ′((t(x),m),ρ(x1),...,ρ(xnx ))}(ρ(x))

Using distributivity and commutativity we conclude

=
∑

u∈Mpos(t )

*.
,

∏
x∈pos(t)

d(m)+/
-

∑
ρ∈Qpos(t )

1F (ρ(ε))
∏

x∈pos(t)
1{δ ′((t(x),u(x)),ρ(x1),...,ρ(xnx ))}(ρ(x))︸                                                               ︷︷                                                               ︸
= 1L((t ,u))

Note that the second sum can only a�ain the values 0 or 1, since the automaton A′

is deterministic and complete. We continue

=
∑

u∈Mpos(t )
Bd({u}) 1L(t ,u)

= Bd({u ∈ Mpos(t) | (t ,u) ∈ L})
= (Bd ◦ д)(L ∩ h−1({t})). �

We are now ready to give the proof of �eorem 3.20.

Proof (of Theorem 3.20). �e proof of both directions is similar to the proof of

�eorem 3.14.

Let S = ‖A‖ for a bo�om-up probabilistic tree automaton A = (Q,δ , F ). By

Proposition 3.10 there is a �nite, non-empty set M , a distribution d on M and

functions π(f ,q1,...,qn) : M → Q for all f ∈ Σn, q1, . . . ,qn ∈ Q , and n ≥ 0 such

that δ (f ,q1, . . . ,qn)(q) = d(π−1

(f ,q1,...,qn)({q})) for all q ∈ Q . De�ne Γ = Σ ×M and

let д : Γ → M and h : Γ → Σ be the canonical projections. Furthermore, let the

bo�om-up deterministic and bo�om-up complete tree automaton A′ be given by

A′ = (Q,δ ′, F ) where δ ′((f ,m),q1, . . . ,qn) = π(f ,q1,...,qn)(m). Let L = L(A′).
�e automata A and A′ satisfy the requirements of Lemma 3.21. Hence, we obtain

S(t) = ‖A‖(t) = Bp({u ∈ Mpos(t) | (t ,u) ∈ L(A′)}) = (Bp ◦ д)(h−1({t}) ∩ L(A′)).
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Conversely, assume S ∈ N (TΣ). Let M , d , д, h, L as in De�nition 3.12 such that

(3.2) holds. Let κ : Γ → Σ ×M be given by κ(u) = (h(u),д(u)). As in the word case

we obtain

S(t) = Bp({u ∈ Mpos(t) | (t ,u) ∈ κ(L)}).
Let A′ = (Q,δ ′, F ) be a bo�om-up deterministic and bo�om-up complete tree

automaton with L(A′) = κ(L). Note that this automaton always exists as bo�om-

up tree automata are determinisable. We de�ne a bo�om-up probabilistic tree

automaton A by A = (Q,δ , F ) and δ (f ,q)(q) = d({m ∈ M | δ ′((f ,m),q) = q}) for

all f ∈ Σn and q ∈ Qn
. Again, by Lemma 3.21, we obtain ‖A‖(t) = Bp({u ∈ Mpos(t) |

(t ,u) ∈ L(A′)}) = Bp({u ∈ Mpos(t) | (t ,u) ∈ κ(L)}) = S(t). �is completes the

proof. �

Corollary 3.22. �e class of tree series recognizable by top-down probabilistic

tree automata is contained in the class of tree series recognizable by bo�om-up

probabilistic tree automata.

Furthermore, if Σ contains at least one symbol with arity at least 2 and at least

one symbol with arity 0, the inclusion is strict.

Proof. Let AT be a top-down probabilistic tree automaton, by �eorem 3.14, we

have ‖AT‖ ∈ ND(TΣ). As ND(TΣ) ⊆ N (TΣ), we obtain the existence of a bo�om-up

probabilistic tree automaton AB with ‖AB‖ = ‖AT‖ by �eorem 3.20.

Now assume there is a symbol f ∈ Σ with arity(f ) ≥ 2. By Lemma 3.13 we know

there is a tree series S ∈ N (TΣ) \ ND(TΣ). Again by �eorem 3.20 we conclude

there is a bo�om-up PTA AB with ‖AB‖ = S . Assume there is also a top-down PTA

AT with ‖AT‖ = S . By �eorem 3.14 this implies S ∈ ND(TΣ). A contradiction. �
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Chapter 4

Classical MSO Logic

Predicate logic can be considered as the lingua franca of mathematics and also of

theoretical computer science. An important fragment of predicate logic is monadic

second order (MSO) logic, where quanti�cation is allowed over elements of the

domain as well as over subsets of the domain, but not over relations of arity greater

than two.

In this chapter, we will recall the classical de�nition of MSO logic over arbitrary

signatures and give the corresponding semantics. We will also show how to apply

these de�nitions to words and trees. At the end of the chapter, we are ready to

recall Büchi’s famous theorem stating the equivalence of MSO de�nable languages

and recognizable languages.

4.1 Signatures and Structures

Before we introduce MSO logic itself we de�ne signatures and structures, which

will later be used to give a general de�nition of MSO logic and probabilistic MSO

logic independent of the actual domain and relations. For an in depth introduction

to model theory see for example [CK12].

Definition 4.1. A signature S = (S, arity) consists of
1

1. A set of relation symbols S ,

2. A function arity : S → N assigning an arity to every relation symbol.

Definition 4.2. Let S = (S, arity) be a signature. A S-structure is a tuple A =
(A, (RA)R∈S ) where

1. A is a set – the carrier set,

2. RA ⊆ Aarity(R)
is an arity(R)-ary relation over A for every R ∈ S .

1
To avoid confusion with “σ -algebra”, we use S for signature instead of σ .
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If we are only interested in the carrier set, or domain, of A, we write dom(A) for A.

As we are interested in the MSO formulas that work on words and trees, we give

the signatures and structures used to describe a single word or a single tree below.

The Structure of Words

Let Σ be a �nite alphabet. �e word signatureWΣ is given byWΣ = ({≤}∪{ labela |
a ∈ Σ }, arity) with arity(≤) = 2 and arity(labela) = 1 for all a ∈ Σ. For a �nite or

in�nite word w = (wx )x∈pos(w) ∈ Σ∞, we de�ne a WΣ-structure w̃ by

w̃ =
�
pos(w), ≤|

pos(w)2, (label
w
a )a∈Σ

�
,

where ≤ is the usual order on the integers, and label
w
a = {x ∈ pos(w) | wx = a}. It

is easy to see, that w̃ describes the word w uniquely.

The Structure of Trees

Now, assume Σ is a �nite ranked alphabet. Let N = max{n ≥ 0 | Σn , ∅}. �e tree

signature TΣ is given by

TΣ =
�{edgei , labela | i = 1, . . . ,N , a ∈ Σ }, arity�

,

where arity(edgei) = 2 and arity(labela) = 1 for every 1 ≤ i ≤ N and a ∈ Σ. �e

unary relations labela serve the same purpose as in the word case, whereas the

relations edgei model the branching structure of the tree. Formally, given a �nite

tree t ∈ TΣ , we de�ne the TΣ-structure t̃ by

t̃ =
�
pos(t), (edge

t
i )i=1,...,N , (label

t
a)a∈Σ

�
,

where

edge
t
i =

�(x ,xi) ∈ pos(t)2 �
x ∈ pos(t) 1 ≤ i ≤ N

	
,

label
t
a =

�
x ∈ pos(t) �

t(x) = a
	
.

4.2 Syntax and Semantics of MSO Logic

For the rest of this chapter �x two countable, disjoint sets V1 and V2 and let V = V1∪

V2. �ese sets contain the symbols which will be used as �rst order, second-order,

respectively, variable symbols in MSO logic. For the de�nition of the semantics of

an MSO formula, we need to assign values to these symbols: given an S-structure

A = (A, (RA)R∈S ), we say that a function α : V → A ∪ P(A) is an A-assignment if

α(V1) ⊆ A and α(V2) ⊆ P(A). For any A-assignment α , variable x ∈ V1, and value
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a ∈ A, we denote by α[x 7→ a] the updated assignment α ′, which assigns x to a
and agrees with α everywhere else. Likewise, α[X 7→ M] denotes the update for a

second order variable X ∈ V2 by the subset M ⊆ A.

Definition 4.3. Let S = (S, arity) be a signature. �e set of all MSO formulas φ
over S is given in BNF by

φ F R(x1, . . . ,xarity(s)) | x1 = x2 | x ∈ X | φ ∧ φ | ¬φ | ∀x .φ | ∀X .φ ,
where R ∈ S , x ,x1,x2, . . . ∈ V1 and X ∈ V2. �e set of all MSO formulas over S is

denoted by MSO(S).
Given a S-structure A and an A-assignment α , we de�ne the satisfaction relation

(A,α) |= φ inductively on the structure of φ:

(A,α) |= R(x1, . . . ,xarity(s)), ⇐⇒ (α(x1), . . . ,α(xarity(s))) ∈ RA,

(A,α) |= x1 = x2 ⇐⇒ α(x1) = α(x2),
(A,α) |= x ∈ X ⇐⇒ α(x) ∈ α(X ),
(A,α) |= φ1 ∧ φ2 ⇐⇒ (A,α) |= φ1 and (A,α) |= φ2,

(A,α) |= ¬φ ⇐⇒ (A,α) 6|= φ,
(A,α) |= ∀x .φ ⇐⇒ (A,α[x 7→m]) |= φ for allm ∈ A,

(A,α) |= ∀X .φ ⇐⇒ (A,α[X 7→ M]) |= φ for all M ⊆ A.

We associate with every MSO formula φ the set of free variables used in φ. �e

inductive de�nition is as follows:

Free(x1 = x2) = {x1,x2}, Free(s(x1, . . . ,xarity(s))) = {x1, . . . ,xarity(s)},
Free(x ∈ X ) = {x ,X}, Free(φ1 ∧ φ2) = Free(φ1) ∪ Free(φ2),

Free(¬φ) = Free(φ), Free(∀x .φ) = Free(φ) \ {x},
Free(∀X .φ) = Free(φ) \ {X}.

It can be shown that (A,α) |= φ ⇐⇒ (A,τ ) |= φ holds if α |
Free(φ) = τ |Free(φ). We

call a MSO formula φ a sentence if Free(φ) = ∅. �us, satisfaction of a MSO sentence

does not depend on the assignment at all. Hence, for a MSO sentence φ, we just

write A |= φ if (A,α) |= φ for any A-assignment α .

In order to de�ne the language de�ned by a MSO(S) sentence φ, we �x a set of

S-structures C and de�ne the language of φ relative in this set. Formally, for a set

C of S-structures and a MSO sentence φ, let the language de�ned by φ be

LC(φ) = �
A ∈ C

�
A |= φ 	

.
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IfC is understood, we just write L(φ). We say a language L ⊆ C is de�nable if there

is a MSO sentence φ with L = LC(φ).
When considering the structures that arise from words or �nite trees as intro-

duced in Section 4.1, we identify the WΣ-structure w̃ with the word w itself. �us,

for a MSO(WΣ)-sentence φ, we regard LC(φ), whereC = {w̃ | w ∈ Σ∞}, as a subset

of Σ∞. Likewise, we identify the TΣ-structure t̃ with the tree t itself, and consider

LC ′(φ′), where C′ = { t̃ | t ∈ TΣ }, as set of �nite trees.

Example 4.4. We want to describe the language L from Examples 2.2 and 6.4 using

an MSO formula φ. Recall that L = a(bb∪a)∗∪a(a∗b)ω . We split the formula in two

parts, one for �nite words, one for in�nite words. �e formula is not as succinct

as the regular expression. We noted below parts of the formula their intuitive

semantics. We de�ne two separate formulas: one for the �nite word part and one

for the in�nite word part.

φ1 = (∃y.∀x .x ≤ y)︸           ︷︷           ︸
�nite word

∧ (∃x . labela(x) ∧ ∀y.x ≤ y)︸                            ︷︷                            ︸
�rst le�er is a

∧ ∀X .
( �
cib(X ) ∧ ∀Y .cib(Y ) =⇒ (∀x .x ∈ Y =⇒ x ∈ X )�︸                                                             ︷︷                                                             ︸

X is maximal consequence sequence of b’s

=⇒ ∃Y .
( �
∃x .x ∈ X ∧ x ∈ Y ∧ ∀y.y ∈ X =⇒ x ≤ y

�︸                                                    ︷︷                                                    ︸
the �rst position of X (= u) is in Y

∧
�
∀x .∀y.y = x + 1 =⇒ (x ∈ Y ⇐⇒ y < Y )�︸                                                     ︷︷                                                     ︸

exactly every second position, counted from u, is in Y

∧
�
∃x .x ∈ X ∧ x < Y ∧ (∀y.y ∈ X =⇒ y ≤ x)�︸                                                       ︷︷                                                       ︸

last position in X is not in Y

))
φ2 = ∀x .∃y.y ≥ x ∧ y , x ∧ labelb(y)︸                                     ︷︷                                     ︸

in�nitely many b labelled positions

∧∃x . labela(x) ∧ ∀y.x ≤ y︸                          ︷︷                          ︸
�rst position is labelled with a

We used the following abbreviations for formulas (cib – closed interval of b’s):

cib(X ) = �
∃x .∃y.

�(∀z.(x ≤ z ∧ z ≤ y) ⇐⇒ z ∈ X )�
∧ (∀z.z ∈ X =⇒ labelb(z))

�
,

�
y = x + 1

�
=

�
x , y ∧ x ≤ y ∧ ∀z(x ≤ z ∧ z ≤ y) =⇒ (z = x ∨ z = y)�.

Note that any set M which contains every second position starting from some

position x , contains exactly the positions with even distance from x . �us, the

word from position x to some position y ∈ M including y, has odd length. De�ning

φ = φ1 ∧ φ2 yields the desired formula with L(φ) = L.
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Example 4.5. As in the previous example, we want to give an MSO sentence for

the tree language from Examples 2.22 and 7.3, i.e. the language L of all languages

over Σ = {f, a, b} with at least one a labelled node. Such an MSO sentence φ can

easily be given:

φ = ∃x . labela(x).
Note that, in contrast to the previous example, the MSO formula is much shorter

than the regular tree expression.

A famous result by J. R. Büchi states that the languages de�nable by MSO

sentences over words are exactly the recognizable word languages. �e original

statement became known as Büchi’s theorem [B60]. Other versions are provided

by Elgot [E61] and Trakhtenbrot [T61].

Theorem 4.6 (Büchi’s theorem). Let L ⊆ Σ∗. �e following statements are equi-

valent

1. L is recognizable.

2. L = L(φ) for some MSO(WΣ)-sentence φ.

�e same statement also holds in the se�ing of �nite trees. �is has been shown

by �atcher and Wright [TW68].

Theorem 4.7. Let L ⊆ TΣ . �e following statements are equivalent:

1. L is recognizable.

2. L = L(φ) for some MSO(TΣ)-sentence φ.
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Chapter 5

Probabilistic MSO Logic

In this chapter we extend MSO logic from Chapter 4 to a probabilistic logic. We

do so by adding probability constants and a new “expected value” second order

quanti�er to the logic.

In Section 5.1, we introduce a σ-algebra on sets of positions and transfer Bernoulli

measures, that were introduced in Section 3.2, to this algebra. With these de�nitions

set up, we can de�ne the syntax and semantics of probabilistic MSO logic in

Section 5.2. �is syntax is extended in Section 5.3 by additional �rst order quanti�ers

which do not add expressive power to the logic but allows us to write certain

formulas more succinctly. Finally, we show the equivalence of probabilistic MSO

logic and Nivat-classes in Section 5.4.

�e results on words have been published in [W12] and the results on �nite trees

in [W15].

5.1 Measuring Sets of Positions

In Section 3.2 we de�ned Bernoulli measures on words and trees over �nite (ranked)

alphabets. As the objects in MSO logic are not words, but subsets of an arbitrary

domain, we give a de�nition of Borel-σ-algebra and Bernoulli measure that works

on sets. For countable structures, we can assume an enumeration of the structure

and de�ne a metric similar to the metric on in�nite words, c.f. De�nition 2.6.

Let A be a countable set and �x an enumeration E = (a1,a2, . . . ) of A. We de�ne

a metric dE on P(A) by

dE(X ,Y ) =



2
−min{i≥1|ai∈X4Y }

if X , Y

0 if X = Y ,

where X 4 Y denotes the symmetric di�erence of X and Y . With this de�nition

(P(A),dE) becomes a compact metric space. �us, we can apply De�nition 2.7,

and de�ne the Borel-σ-algebra B(P(A),dE) over P(A). We will later see that this

σ-algebra does not depend on the enumeration E.
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Similar to Lemma 2.8 one shows that B(P(A),dE) is generated by the cylinder

sets of the following form:

Cyl
n
E(X ) = �

Y ⊆ A
�
Y ∩ {a1, . . . ,an} = X

	
,

for X ⊆ {a1, . . . ,an}. �e system of all cylinder sets is intersection closed. �us,

two probability measures that agree on all cylinder sets are already equal.

Using the cylinder sets, we can transfer the notion of Bernoulli measure, as

introduced in Section 3.2, to the subsets of A. Let p ∈ [0, 1], we de�ne the measure

B
P(A)
p,E on B(P(A),dE) by

B
P(A)
p,E (Cyl

n
E(X )) = p |X | (1 − p)n−|X |.

�e existence and uniqueness of a measure B
P(A)
p,E follows from standard measure

theory: either write B
P(A)
p,E as countable product measure of a binary distribution, or

apply Carathéodory’s extension theorem directly, see [K08] for details.

As usual, if A is understood from the context, we just write Bp,E for B
P(A)
p,E .

Up to now, the σ-algebra as well as the measure Bp,E depend on the choice of

the enumeration E. Whereas the metric dE certainly depends on E, we show that

B(P(A),dE) and Bp,E actually do not.

Lemma 5.1. Let A be a countable set and E, E′ be two enumerations of A. �en

B(P(A),dE) = B(P(A),dE ′) and Bp,E = Bp,E ′ .

Proof. Let E = (a1,a2, . . . ) and E′ = (a′
1
,a′

2
, . . . ). We show that every cylinder

set Cyl
n
E(X ) is contained in B(P(A),dE ′). Let N > 0 such that {a1, . . . ,an} ⊆

{a′
1
, . . . ,a′N }. We have

Cyl
n
E(X ) =

⋃
X ′⊆{a′

1
,...,a′N }

X ′∩{a1,...,an}=X

Cyl
N
E ′(X ′). (5.1)

�us, Cyl
n
E(X ) ∈ B(P(A),dE ′) for every n ≥ 1 and X ⊆ A. Hence, B(P(A),dE) ⊆

B(P(A),dE ′), as the cylinder sets generate B(P(A),dE). By exchanging primed and

unprimed symbols, one proves B(P(A),dE ′) ⊆ B(P(A),dE). �is shows the �rst

part of the lemma.

To show Bp,E = Bp,E ′ , we prove that the equality holds on all cylinder sets Cyl
n
E(X ).

We use the representation from (5.1). Note that the union in (5.1) is over pairwise
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disjoint sets.

Bp,E ′
�
Cyl

n
E(X )� =

∑
X ′⊆{a′

1
,...,a′N }

X ′∩{a1,...,an}=X

Bp,E ′(Cyl
N
E ′(X ′))

=
∑

X ′⊆{a′
1
,...,a′N }

X ′∩{a1,...,an}=X

p |X ′| (1 − p)N−|X ′|

Every set X ′ must satisfy X ⊆ X ′ and {a1, . . . ,an} \ X ⊆ {a1, . . . ,aN } \ X ′. �us,

|X | elements are �xed in X ′ and n − |X | entries are �xed in XC
. We continue

= p |X | (1 − p)n−|X |

= Bp,E

�
Cyl

n
E(X )�.

As the system of cylinder sets Cyl
n
E(X ) is an intersection-closed generating system

of B(P(A),dE), we obtain Bp,E = Bp,E ′ . �

By Lemma 5.1, we can omit the index “E” and just write B(P(A)) and Bp where

we assume an arbitrary enumeration on A.

�e Bernoulli measures on powersets introduced here and the Bernoulli measures

on words and trees introduced in Section 3.2 are connected via the characteristic

function and the support function, respectively.

Lemma 5.2. For any set D, let c : P(D)→ {0, 1}D map any subset to its character-

istic function. �e following statements hold:

1. Let D = {1, . . . ,n} for some n ∈ N, or D = N and n = ω. �en, it holds that

c−1(B({0, 1}N )) = B(P(D)) and B
n
p = B

P(D)
p ◦ c−1

.

2. Let D be a �nite tree domain. �en, it holds that c−1(B({0, 1}N )) = B(P(D))
and B

D
p = B

P(D)
p ◦ c−1

.

�e measures B
n
p and B

D
p denote the ones introduced in Section 3.2.

Proof. We �rst consider the �nite cases. Since the Borel-σ-algebra is just the whole

powerset of D and c is bijective, we immediately obtain that the Borel-σ-algebras

transfer. �e proof for the statement 2. is analogous to the case D = N, which is

given below.

Assume D = N and E = (1, 2, . . . ) the canonical enumeration of D. Let u1 · · ·uk ∈
{0, 1}∗. By de�nition, we have c−1(u1 · · ·uk{0, 1}ω) = Cyl

k
E(X ) where X = {i ∈

{1, . . . ,k} | ui = 1}. �us, B(P(N)) ⊆ c−1(B({0, 1}ω)). Conversely, for every
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cylinder set Cyl
k
E(X ) for some set X ⊆ {1, . . . ,k} de�ne ui = 1X (i) for i = 1, . . . ,k .

�en, Cyl
k
E(X ) = c−1(u1 · · ·uk{0, 1}ω) and thus B(P(N)) = c−1(B({0, 1}ω)).

We show B
n
p = B

P(N)
p,E ◦ c−1

. Let u1 · · ·uk{0, 1}ω be a cylinder set in B({0, 1}ω). Let

dp : {0, 1}→ [0, 1] with dp(1) = p and dp(0) = 1 − p. We conclude

B
ω
p (u1 · · ·uk{0, 1}ω) =

k∏
i=1

dp(ui)

= p |X | (1 − p)k−|X |
where X = {i ∈ {1, . . . ,k} | ui = 1}

= B
P(N)
p,E (Cyl

k
E(X ))

= B
P(N)
p,E (c−1(u1 · · ·uk{0, 1}ω)).

�is completes the proof. �

�e de�nitions above allow us to handle countable domains only. While this

is a restriction, most interesting structures in computer science have a countable

domain: all �nite structure, in�nite words, or in�nite trees. �erefore, we assume

for the rest of this chapter that every considered structure is countable. Since, our

probabilistic logic will permit application of a probability measure to a de�nable

set of subsets, we make the following assumption to ensure well-de�nedness.

Assumption 5.3. Let A be a S-structure with countable carrier set A. We say

that de�nable sets are measurable in A if for every n ≥ 1, MSO formula φ and

A-assignment α the set

�(M1, . . . ,Mn) ∈ (2A)n � (A,α[X1 7→ M1, . . . ,Xn 7→ Mn]) |= φ 	

is measurable in

⊗n
i=1

B(P(A)) for all X1, . . . ,Xn ∈ V2 and n ≥ 1.

From now on, for the rest of this chapter, we only consider countable structures,

where every tuple of de�nable sets is also measurable. Again:

We assume that every structure is countable and,
that de�nable sets are also measurable.

It can be shown that every such set is a so called projective set, i.e., built from a

Borel set in some Polish space using projection and complement. �ose sets are

universally measurable, if the axiom of projective determinacy (PD) is assumed.

Fortunately, we only consider cases, where we can directly show that every de�nable

set is measurable without additional axioms.
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Proposition 5.4. In the case of �nite or in�nite words and �nite trees, every

de�nable set is measurable.

Proof. �e statement is trivial in the �nite case, as B(P(A)) is just P(A) in this case

and every subset ofA is measurable. For in�nite words, letφ be an MSO formula, and

X1, . . . ,Xn ∈ V2. Let V′ = Free(φ) ∪ {X1, . . . ,Xn} and V′′ = Free(φ) \ {X1, . . . ,Xn},

i.e., V′ = V′′ ∪ {X1, . . . ,Xn} and the sets are disjoint. We encode a pair (w,α),
where α is aw-assignment, as word over NV ′ = Σ × {0, 1}V ′ as usual: the additional

components in NV ′ mark the positions which are included in the subsets, the

position which is assigned to a �rst order variable, respectively. By (the proof of)

Büchi’s theorem the language L ⊆ Nω
V ′, which contains all encoded pairs (w,α)

with (w,α) |= φ, is regular.

We apply Corollary 3.8 with Σ′ = Σ × {0, 1}V ′′ , M = {0, 1}{X1,...,Xn}
, Γ = Σ′×M =

NV ′, and д : Γ → M and h : Γ → Σ the canonical projections. �is yields that the

set

�(u1, . . . ,un) ∈ ({0, 1}n)ω � (w,α[X1 7→ supp(u1), . . . ,Xn 7→ supp(un)]) |= φ 	

is measurable, where supp maps every word (ui)i≥1 ∈ {0, 1}ω to the set of positions

i with ui = 1. Since ({0, 1}n)ω and ({0, 1}ω)n are homeomorphic to each other, i.e.,

there is a continuous bijective function which has a continuous inverse function,

and the characteristic function c : P(N)→ {0, 1}ω is Borel-measurable, we conclude

that {(M1, . . . ,Mn) ∈ (P(N))n | (w,α[Xi 7→ Mi]ni=1
|= φ } is measurable. �

Assumption 5.3 even holds for in�nite trees. �is result has recently been shown

by Gogacz, Michalewski, Mio and Skrzypczak [GMMS14].

5.2 Syntax and Semantics of Probabilistic MSO

Logic

At the beginning of this section, we give the de�nition of the syntax and the

semantics of probabilistic MSO logic. A�erwards, we give some basic semantic

equivalences and derive a normal form for probabilistic MSO formulas.

Definition 5.5. Let S = (S, arity) be a signature. �e set PMSO(S) of all probabi-
listic MSO formulas φ over S is given in BNF by

φ F ψ | p | φ ∧ φ | ¬φ | Ep X .φ,

whereψ is an MSO(S) formula, p a probability value, andX a second order variable.
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Let C be a set of S-structures. We de�ne the semantics of a probabilistic MSO

formula in φ in C as a function nφoC mapping a S-structure A ∈ C with A =
(A, (sA)s∈S ) and an A-assignment α to a probability value. If C is understood, we

just write nφo for nφoC . Formally we de�ne

nψo(A,α) =



1 if (A,α) |= ψ
0 otherwise,

npo(A,α) = p
nφ1 ∧ φ2o(A,α) = nφ1o(A,α) · nφ2o(A,α),

n¬φo(A,α) = 1 − nφo(A,α),
nEp X .φo(A,α) =

∫
M⊆A

nφo(A,α[X 7→ M]) B
A
p (dM).

In the case of �nite structures, no measure theory is necessary to de�ne the

semantics of Ep X .φ: assume A is �nite, then

nEp X .φo(A,α) =
∑
M⊆A

nφo(A,α[X 7→ M]) · p |M |(1 − p)|A\M |.

�e semantics of conjunction and negation are motivated from probability theory

as these correspond to the probability of the intersection of independent events,

respectively, to the probability of the complement of an event.

We still need to show that the semantics given in De�nition 5.5 is well-de�ned,

i.e., the integral in the semantics of Ep X .φ is only applied to measurable functions

and a�ains only values in [0, 1]. �e second statement is an easy consequence of

this �rst one: if nφo is bounded by 1, one obtains, by monotonicity of the integral,

‖Ep X .φ‖ ≤
∫

1 dB
A
p = 1. We show the measurability claim.

Lemma 5.6. Let φ be a probabilistic MSO formula, A be an S-structure, α an

A-assignment, and X1, . . . ,Xn second order variable symbols. �e function

(M1, . . . ,Mn) 7→ nφo(A,α[X1 7→ M1, . . . ,Xn 7→ Mn])
is a measurable function from

⊗n
i=1

B(P(A)) to B(R).
Proof. We use induction on the structure of φ. For MSO formulas the claim is just

the statement of Assumption 5.3. For constant functions, products and sums of

measurable functions the statement follows from standard measure theory.

Let φ = Ep X .φ
′
. By induction hypothesis, we know that the function f given by

f (N ,M1, . . . ,Mn) = nφ′o(A,α[X1 7→ M1, . . . ,Xn 7→ Mn][X 7→ N ]) is measurable.

We have

nφo(A,α[X1 7→ M1, . . . ,Xn 7→ Mn]) =
∫
N⊆A

f (N ,M1, . . . ,Mn) Pr
A
p (dN ),
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which is measurable by Fubini’s theorem (�eorem 2.16). �

�ough we only included conjunction and negation as Boolean connectives in

the de�nition of probabilistic MSO, one can obtain the other operators as usual. We

give two examples: let φ1 and φ2 be two PMSO formulas. We de�ne the following

abbreviations:

φ1 ∨ φ2 = ¬((¬φ1) ∧ (¬φ2)), and φ1→ φ2 = (¬φ1) ∨ φ2

�e explicit semantics are:

nφ1 ∨ φ2o = nφ1o + nφ2o − nφ1onφ2o and nφ1→ φ2o = 1 − nφ1o + nφ1onφ2o.
�e semantics of the disjunction can be interpreted as probability: given two events

A and B the probability of their union is Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(A ∩ B). If

furthermore A and B are independent, we obtain Pr(A)+Pr(B)−Pr(A) Pr(B), which

has the same structure as nφ1 ∨ φ2o. For a MSO formulaψ and a probabilistic MSO

formula φ, the semantics of ψ →φ selects the conclusion part of the implication

only if the premise is true:

nψ →φo(A,α) =



nφo(A,α) if (A,α) |= ψ
1 otherwise.

�e probabilistic connectives satisfy many laws which one would expect from

Boolean operators. We will give some equalities in the next lemma and state

additional equalities regarding the expected value quanti�er. Two probabilistic

PMSO(S) formulas φ1 and φ2 are called equivalent if nφ1o(A,α) = nφ2o(A,α) for

all S-structures A and A-assignments α . In this case, we write φ1 ≡ φ2.

Some equivalences are only valid for a particular set of S-structures. Let C be a

set of S-structures, we write φ1 ≡C φ2 if nφ1o(A,α) = nφ2o(A,α) for all A ∈ C and

A-assignments α . In this case φ1 and φ2 are called equivalent on C .

Lemma 5.7. �e following identities hold:

1. φ1 ∧ φ2 ≡ φ2 ∧ φ1 and φ1 ∨ φ2 ≡ φ2 ∨ φ1,

2. (φ1 ∧ φ2) ∧ φ3 ≡ φ1 ∧ (φ2 ∧ φ3) and (φ1 ∨ φ2) ∨ φ3 ≡ φ1 ∨ (φ2 ∨ φ3),
3. ψ ∨ (φ1 ∧ φ2) ≡ (ψ ∨ φ1) ∧ (ψ ∨ φ2) andψ ∧ (φ1 ∨ φ2) ≡ (ψ ∧ φ1) ∨ (ψ ∧ φ2)
4. > ∧ φ ≡ φ and > ∨ φ ≡ >,

5. ⊥ ∧ φ ≡ ⊥ and ⊥ ∨ φ ≡ φ,
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6. ¬Ep X .φ ≡ Ep X .¬φ,

7. φ1 ∧ Ep X .φ2 ≡ Ep X .(φ1 ∧ φ2) if X < Free(φ1),
8. Ep X .φ ≡ φ if X < Free(φ),
9. Ep X .Eq Y .φ ≡ Eq Y .Ep X .φ,

where φ, φ1, φ2 are probabilistic MSO formulas, ψ is a MSO formula, > is any

formula with n>o = 1, and ⊥ is any formula with n⊥o = 0.

Note that distributivity does not hold in the general case of three probabilistic MSO

formulas, but only if the factored out term is a MSO formula.

Proof. Statements 1 to 5 follow directly from the de�nition of the semantics.

Statements 6,7 and 8 are a consequence of the linearity of the integral. Statement 9

is Fubini’s theorem. �

Example 5.8. Let Σ = {a, b} and consider the following PMSO(WΣ) formula φ:

φ = Ep X .∀x .(labela(x) =⇒ x ∈ X ).
We explicitly compute the semantics of φ. Let w ∈ Σ∗.

‖φ‖(w) =
∫
M⊆pos(w)

n∀x . labela(x) =⇒ x ∈ Xo(w, {X 7→ M}) Bp(dM)
= Bp({M ⊆ pos(w) | {x ∈ pos(w) | wx = a} ⊆ M })
= p |w |a .

�e last equation can be seen as follows: every a-labelled position must always be

included in M with probability p. All other positions can or can not be included in

M , thus, their probability sums up to 1.

Example 5.9. We return to the communication device from Examples 2.19 and 6.16.

We give a PMSO(WΣ) formula φ with semantics ‖A‖ from Example 2.19, i.e., nφo is

the probability that the sequence of wait and input events described by the word

does not over�ow the bu�er.

φ = Ep X .Eq Y .∃Z .(∃x .(∀y.x ≤ y) ∧ x < Z ) ∧ ∀x .∀y.(y = x + 1) =⇒( �(x < Z ∧ labelw(x)) =⇒ y < Z
�
∧�(x < Z ∧ labeli(x) ∧ x ∈ X ) =⇒ y < Z

�
∧�(x < Z ∧ labeli(x) ∧ x < X ) =⇒ y ∈ Z

�
∧�(x ∈ Z ∧ labelw(x) ∧ x ∈ Y ) =⇒ y < Z
�
∧�(x ∈ Z ∧ labelw(x) ∧ x < Y ) =⇒ y ∈ Z

�
∧

�(x ∈ Z ∧ labeli(x)) =⇒ (y ∈ Z ∧ x ∈ X )�)
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�e set variables have the following meaning: X contains all positions where

sending a newly incoming message is successful without previously storing the

message in the bu�er, Y contains all positions where sending a bu�ered message

was successful, and Z contains all positions with full bu�er. �e second to the last

line of the equation encode the transition conditions as explained in Example 2.19.

Note the last line: if the bu�er is full and a new message is received, the bu�er is

still full a�er this step and the newly received message must be sent successfully,

since otherwise the bu�er would over�ow.

Example 5.10. In Examples 2.26 and 7.17 we considered the ranked alphabet Σ
with Σ2 = {f} and Σ0 = {a, b}, and the tree series S(t) = ∑

x∈posa(t)(1/2)|x |. We give a

PMSO(TΣ) formula φ with nφo = S .

φ = E1/2 X .∃x . labela(x) ∧ ∀y.(y , x ∧ y � x)
=⇒

�
y ∈ X ⇐⇒ (∃z. edge

2
(y, z) ∧ z � x)�,

where y � x denotes the pre�x relation. �is relation can be modelled in MSO(TΣ)
by

(y � x) = (
∀X .

�
x ∈ X ∧ ∀u .∀v .(v ∈ X ∧ (edge

1
(u,v) ∨ edge

2
(u,v))

=⇒ u ∈ X )� =⇒ y ∈ X
)
.

In φ the set X probabilistically chooses a leaf node by describing a path in the tree:

if x < X go le�, otherwise go right. �us, φ checks if the position at the end of the

path described by X path is labelled by a.

As last result of this section, we want to derive a normal form for probabilistic

MSO formulas, where all expected value quanti�ers are in front of a Boolean

MSO part and no probability constants occur. �is normalisation process involves

renaming of variables. �is is easily possible in classical MSO logic and we show

that this property carries over to probabilistic MSO logic.

Lemma 5.11. Let φ be a probabilistic MSO formula, A a S-structure and α a A-

assignment. Furthermore, let X and Y be both �rst order or both second order

variables. �e following identity holds:

nφo(A,α[X 7→ α(Y)]) = nφ[X ← Y]o(A,α),
where φ[X ← Y] is obtained from φ by replacing every free occurrence of X by Y.

In particular, for a probabilistic MSO formula φ and a second-order variable Y
that does not occur in φ, it holds that Ep X .φ = Ep Y .φ[X ← Y ].

65



Chapter 5 Probabilistic MSO Logic

Proof. �e second statement is a direct consequence of the �rst statement and the

de�nition of the semantics of Ep X . We prove the �rst statement by induction on the

structure of φ. For probability constants the statement is trivial. For MSO formulas

the statement is a standard result. For conjunction, the induction hypothesis directly

carries over:

nφ1 ∧ φ2o(A,α[X 7→ α(Y)]) = nφ1o(A,α[X 7→ α(Y)]) · nφ2o(A,α[X 7→ α(Y)])
IH

= nφ1[X ← Y]o(A,α) · nφ2[X ← Y]o(A,α)
= n(φ1 ∧ φ2)[X ← Y]o(A,α).

Negation is analogous to this case, and therefore omi�ed here.

Assume φ = Ep X .φ
′
. If X = X, then X is not free in φ. Hence, φ[X ← Y] = φ.

Furthermore, the value of X in α[X 7→ α(Y)] is immediately overwri�en by the

application of Ep X . �us, the claim follows.

Assume X , X. We obtain

nEp X .φ
′o(A,α[X 7→ α(Y)]) =

∫
nφ′o(A,α[X 7→ α(Y)][X 7→ M]) Bp(dM)

As X , X, we have α[X 7→ α(Y)][X 7→ M] = α[X 7→ M][X 7→ α[Y]. �is allows us

to apply the induction hypothesis:

=

∫
nφ′[Y← X]o(A,α[X 7→ M]) Bp(dM)

= nEp X .(φ′[X ← Y])o(A,α)
As X , X , every occurence of X is free in φ′ if and only if it is free in φ.

= nφ[X ← Y]o(A,α)
�is completes the proof. �

As second step towards a normal form for probabilistic MSO formulas, we want

to eliminate probability constants. �is is not possible for structures with an empty

domain, as ‖Ep X .φ‖(A,α) = ‖φ‖(A,α[X 7→ ∅]) holds in this case. �us, no true

probability values can be introduced by the sole use of the expected value operator.

�e situation is di�erent if the domain is non-empty. By �xing exactly one element

of the domain in a set, one obtains exactly the probability p of Ep X as constant

value. In the case of words one simply chooses the �rst position as �xed element.

For trees the root position is de�nable. For arbitrary structures, it may be the case

that no single position is de�nable. �us, we assume that such a MSO formula

exists.
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Assumption 5.12. Let S be a signature andC a set of S-structures. We say thatC
is pointed if there exists a MSO formula �x(x) such that Free(�x(x)) = {x} and for

every A ∈ C with dom(A) , ∅, there is an a ∈ dom(A) such that {a′ ∈ dom(A) |
(A,α[x 7→ a′]) |= �x(x)} = {a} for all A-assignments α .

�e assumption may be violated in structures like bi-in�nite words, where every

position is essentially the same with respect to their order, c.f. [PP04]. As we are

ultimately only interested in words and trees here, we assume that Assumption 5.12

holds for the rest of this chapter. �is allows us to express probability constants

using the expected value operator over non-empty domains.

Proposition 5.13. Let S be a signature and C a pointed set of S-structures. Fur-

thermore, let �x(x) be the formula from Assumption 5.12. �en

nEp X .∃x .x ∈ X ∧ �x(x)o(A,α) = p,
for all A ∈ C with dom(A) , ∅ and A-assignments α .

Proof. Let A = dom(A) and a ∈ A such that {a′ ∈ A | (A,α[x 7→ a′]) |= �x(x)} =
{a} for all A-assignments α . �us, (A,α) |= ∃x .x ∈ X ∧ �x(x) if and only if

a ∈ α(X ). �is yields for every A-assignment α that

nEp X .∃x .x ∈ X ∧ �x(x)o(A,α) = Bp({M ⊆ A | a ∈ M }) = p. �

We will now apply Lemmas 5.7 and 5.11 and Proposition 5.13 to transform every

probabilistic MSO formula into a form where all expected value quanti�ers are

at the front of the formula and no probability constants occur any more. As the

elimination of constants is only possible if the domain is non-empty, we can derive

the normal form only if we add an explicit guard which checks if the domain is not

empty.

Lemma 5.14. Let S be a signature and C be a pointed set of S-structures. Fur-

thermore, let φ be a probabilistic MSO formula. �ere are mutually distinct second

order variables X1, . . . ,Xn, probability values p1, . . . ,pn, and a MSO formulaψ such

that

φ ∧ η ≡C Ep1
X1. · · ·Epn Xn .ψ ,

where η = (∃x .x = x) is a check, whether the domain is empty.

Proof. We use induction on the structure of the formula. If φ is already a MSO

formula, there is nothing to prove: φ ∧ η is already in the claimed form. If φ = p,

we apply Proposition 5.13. Note that this formula is 0 on structures with empty

domain.
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Forφ = ¬φ′, assumeφ′∧η = Ep1
X1. · · ·Epn Xn .ψ

′
. We apply Lemma 5.7 and obtain

φ ∧ η ≡ ¬(φ′ ∧ η) ∧ η ≡ ¬(Ep1
X1. · · ·Epn Xn .ψ

′) ∧ η ≡ Ep1
X1. · · ·Epn Xn .(¬ψ ′ ∧ η).

In case φ = Ep X .φ
′
, again assume φ′ ∧ η = Ep1

X1. · · ·Epn Xn .ψ
′
. If X = Xi for

some i = 1, . . . ,n, then nφ′o does not depend on the value of X . �us, φ ∧ η ≡
φ′ ∧ η. If X , Xi for all i = 1, . . . ,n, we conclude (Ep X .φ

′) ∧ η = Ep X .(φ′ ∧ η) =
Ep X .Ep1

X1. · · ·Epn Xn .ψ
′
.

Finally, assumeφ = φ1∧φ2. By induction hypothesisφ1∧η ≡ Ep1
X1. · · ·Epn Xn .ψ1

and φ2 ∧ η ≡ Eq1
Y1.Eqm Ym .ψ2 for some p1, . . . ,pn,q1, . . . ,qm ∈ [0, 1], X1, . . . ,Xn,

Y1, . . . ,Ym ∈ V2 and MSO(S) formulas ψ1 and ψ2. Using the last statement of

Lemma 5.11 we may assume that the Xi ’s and Yj ’s are pairwise distinct and that

no Xi is free inψ2 and no Yj is free inψ1 by renaming the quanti�ed variables. By

Lemma 5.7 we have

φ ∧ η ≡ (φ1 ∧ η) ∧ (φ2 ∧ η) ≡ Ep1
X1 · · ·Epn Xn .Eq1

Y1 · · ·Eqm Ym(ψ ′1 ∧ψ ′2). �

5.3 Probabilistic Variants of First Order

Quantifiers

�e syntax of probabilistic MSO logic has been chosen quite minimal. Nevertheless,

one can de�ne additional logical operations as macros, i.e., they can be translated

into probabilistic MSO as given in De�nition 5.5.

5.3.1 Extended Universal First Order Quantifier

As in weighted logics, one can de�ne an extended version of the �rst order universal

quanti�er to be applicable not only to Boolean formulas, but also to formulas that

yield arbitrary values.

Definition 5.15. Let φ be a probabilistic MSO formula, we de�ne the semantics of

∀x .φ by

n∀x .φo(A,α) =
∏
a∈A

nφo(A,α[x 7→ a]),

for all S-structures A and A-assignments α .

A translation from this extended quanti�er to probabilistic MSO is only possible

if the quanti�ed formula is of a simple form that we call step formula. It can be

shown that, if ∀x .φ is allowed for arbitrary probabilistic MSO formulas φ, the

expressive power of PMSO is exceeded. �is can be seen as follows: consider a
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�nite structure A and a PMSO sentence φ = Ep1
X1. · · ·Epn Xn .ψ in normal form.

Whenever ‖φ‖(A) > 0 holds, then ‖φ‖(A) ≥ (c1 · · · cn)|A|
, where ci = min(pi , 1−pi)

for i = 1, . . . ,n. �us, ‖φ‖ decreases at most exponentially in the size of the

structure. On the other hand, let λ = ∀x .∀y.p. By de�nition, ‖λ‖(A) = p |A|2
. Hence,

‖λ‖ decreases exponential in the square of the structure size. �erefore, ‖λ‖ is

not equivalent to the semantics of any probabilistic MSO sentence. �is is the

same as for weighted logics, where the same restriction is necessary to preserve

recognizability of the formula’s semantics.

Definition 5.16. We call a probabilistic MSO formula φ a step formula if it does not

use the expected value operator Ep X , i.e., φ is a Boolean combination of Boolean

MSO formulas and probability constants.

Lemma 5.17. Let φ be a step formula. �ere is a probabilistic MSO formula η,

where “∀x .” is only applied to MSO formulas, with nηo = n∀x .φo.

Proof. As φ is built using only MSO formulas, probability constants, conjunction

and negation, there are MSO formulasψ1, . . . ,ψn and probabilities p1, . . . ,pn such

that

φ ≡
n∧
i=1

(ψi =⇒ pi).

We de�ne the formula η by

η = Ep1
X1. · · ·Epn Xn .∀x .

n∧
i=1

(ψi =⇒ x ∈ Xi),

where the second-order variables X1, . . . ,Xn are new variables not occurring in

φ. We show nηo = n∀x .φo: let A be a S-structure and α be an A-assignment. We

de�neΨi = {a ∈ A | (A,α[x 7→ a]) |= ψi } for every i = 1, . . . ,n. We compute

nηo(A,α) =
∫

Bp1
(dM1) · · ·

∫
Bpn (dMn)

n∏
i=1




1 if a ∈ Mi for all a ∈ A with (A,α[x 7→ a]) |= ψi
0 otherwise

By linearity of the integral, we can move the product in front of every integral:

=

n∏
i=1

∫
Bpi (dM)




1 ifΨi ⊆ Mi

0 otherwise

=

n∏
i=1

Bpi ({M |Ψi ⊆ M })

69



Chapter 5 Probabilistic MSO Logic

We postpone the proof of the next equality to the end of the proof.

=

n∏
i=1

p |Ψi |
i (∗)

=

n∏
i=1

∏
a∈A




pi if k ∈ (A,α[x 7→ a]) |= ψi
1 otherwise

=
∏
a∈A

nφo(A,α[x 7→ a])

= n∀x .φo(A,α).
Note that we can rearrange the (possibly in�nite) products as only real numbers

from the interval [0, 1] occur: a product

∏∞
i=1

λi converges to λ if and only if∑∞
i=1
− log(λi) converges to − log(λ). Here, all summands in this sum are non-

negative reals, hence if the series is convergent it is absolute convergent and

therefore unconditionally convergent. If λ = 0, the series converges to +∞ and so

does every rearrangement.

We still need to show (∗), i.e., Bp({M | X ⊆ M }) = p |X |
. For in�nite setsX , we use

the usual convention that p∞ = 0 if p < 1 and p∞ = 1 if p = 1. Let A = dom(A) and

�x an enumeration E = (a1,a2, . . .) of A. Let X ⊆ A. We conclude by the continuity

of measures:

Bp({M | X ⊆ M }) = lim

n→∞
Bp,E({M | X ∩ {a1, . . . ,an} ⊆ M })

= lim

n→∞

∑
M⊆{a1,...,an}

X∩{a1,...,an}⊆M

Bp,E(Cyl
n
E(M))

= lim

n→∞

∑
M⊆{a1,...,an}

X∩{a1,...,an}⊆M

p |M |(1 − p)n−|M |

= lim

n→∞
p |X∩{a1,...,an}| = p |X |.

Hence, by application of the above transformation to every occurrence of ∀x .η
in a probabilistic MSO formula, we can obtain a new probabilistic MSO formula,

where ∀x is only applied to MSO formulas. �

5.3.2 First Order Expected Value Quantifier

In De�nition 5.5 we only gave an expected value operator for second order variables.

We give a �rst order expected value operator in this section. Whereas the stochastic

process behind Ep X was to toss a coin for every position of the domain, we use
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the notion of probability of �rst success for Ep x . Fix some well order v on the

domain. We consider the �rst element, with respect to v, and toss an unfair coin.

With probability p the process stops and is successful at this element. Otherwise,

with probability 1 − p, the process moves on to the next element of the domain and

starts over. �is is also the model of the geometric distribution on N.

Definition 5.18. Let A be an S-structure and v a well order on A. We de�ne the

semantics of the formula Ep x .φ for any PMSO(S) formula by

nEp x .φo(A,α) =
∑

a∈dom(A)
nφo(A,α[x 7→ a]) · p(1 − p)Na ,

where Na = |{a′ ∈ A | a′ v a, a , a′}| ∈ N ∪ {∞}.

Like with the extended universal �rst order quanti�er, this operator does not

add any expressive to probabilistic MSO logic. It can be translated to the syntax of

De�nition 5.5. Whereas the well order v is inherent to the de�nition of Ep x .φ, it

must be de�nable in MSO(S) to obtain a PMSO(S) formula equivalent to Ep x .φ.

We say v is MSO de�nable over a set of S-structuresC if there is a MSO formula

τ (x ,y) with Free(τ (x ,y)) = {x ,y} such that a v a′ holds if and only if (A, {x 7→
a,y 7→ a′}) |= τ (x ,y) for all a,a′ ∈ A and A ∈ C .

For �nite or in�nite words one could use the natural order on the set of positions.

On �nite trees, the depth �rst search order is an example of a MSO de�nable linear

order.

Lemma 5.19. Let v be a MSO de�nable well order over some set of S-structuresC .

Let φ be a probabilistic MSO formula, x ∈ V1 and p ∈ [0, 1]. �ere is a probabilistic

MSO formulaφ′with ‖Ep x .φ‖(A,α) = ‖φ′‖(A,α) for allA ∈ C andA-assignments

α .

Proof. Let τ be the MSO formula modelling v as described below De�nition 5.18.

We de�ne the formula φ′ as

φ′ = Ep X .(φ̃ ∧ ∃x .x ∈ X ),
where X is a new variable symbol not in φ, and φ̃ arises from φ by replacing every

occurrence of R(x1, . . . ,xn) for any R ∈ S and x1, . . . ,xn ∈ V1 with

∃x̃1. · · · ∃x̃n .R(x̃1, . . . , x̃n) ∧
n∧
i=1




x̃i = xi if xi , x

x̃i ∈ X ∧ ∀y.y ∈ X → τ (x̃i ,y) if xi = x ,

where x̃1, . . . , x̃n,y are new variable symbols. Formulas of the form x ∈ X and

x1 = x2 are replaced in the same way. Using structural induction one shows that
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‖φ̃‖(A,α) = ‖φ‖(A,α[x 7→ minv(α(X ))]) for all A-assignment α with α(X ) , ∅,
where minv(M) for a set ∅ , M ⊆ A denotes the minimal element with respect to

v. �is element always exists as v is a well order.

We show ‖φ′‖ = ‖Ep x .φ‖. Let A ∈ C and α an A-assignment. We obtain

‖φ′‖(A,α) =
∫
M,∅

nφ̃o(A,α[X 7→ M]) Bp(dM)

=
∑
a∈A

∫
M,∅,min(M)=a

‖φ‖(A,α[x 7→ min(M)]) Bp(dM)

=
∑
a∈A

‖φ‖(A,α[x 7→ a])Bp({M | M , ∅, min(M) = a}).

�us, we need to show Bp({M | M , ∅, min(M) = a}) = p(1−p)Na
to complete the

proof, where Na = |{a′ ∈ A | a′ v a, a′ , a}|. If p = 0 the whole probability mass

is concentrated in {∅}. �us, Bp({M | M , ∅}) = 0 and the equation is satis�ed.

Assume p > 0. Let E = (a1,a2, . . . ) an enumeration of A with ai v ai+1 for all

i ≥ 1. In case Na = k < ∞, we have ak+1 = a. We obtain

Bp({M , ∅ | min(M) = a}) = Bp(Cyl
k+1

E ({a})) = p(1 − p)k .
If Na = ∞, there are in�nitely many elements less than a. As 1−p < 1, we conclude

Bp({M | M , ∅, minv(M) = a}) ≤ lim

n→∞
Bp({M | M ∩ {a1, . . . ,an} = ∅})

= lim

n→∞
Bp(Cyl

n
E(∅))

= lim

n→∞
(1 − p)n = 0.

Since (1 − p)Na = (1 − p)∞ = 0, the proof is complete. �

5.4 Equivalence to Nivat classes

In this section, we give the proof that probabilistic MSO logic is equally expressive

as probabilistic Nivat classes, and therefore, also equally expressive as probabilistic

Muller-automata, probabilistic bo�om-up tree automata, respectively.

Before we can show this statement, we need two preparatory results. In the �rst

result, we decompose Bernoulli measure over an arbitrary �nite set into a product

of binary Bernoulli measures. �e second result states that we can switch between

words/trees of tuples and tuples of words/trees without changing the probability.

�is is due to the independence of di�erent positions in Bernoulli measures.
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Lemma 5.20. Let M be a �nite set and d a distribution on M . �ere is a number

n ≥ 1, probability values p1, . . . ,pn ∈ [0, 1], and a function f : {0, 1}n → M such

that d = (⊗n
i=1

di) ◦ f −1
, where di is a distribution on {0, 1} with di(1) = pi and

di(0) = 1 − pi for all i = 1, . . . ,n.

Proof. Let M = {a1, . . . ,am}. De�ne n =m − 1 the values p1, . . . ,pn by

pi =
d(ai)

1 −
∑i−1

j=1
d(aj)

.

As

∑n
i=1

d(ai) = 1, we have pi ≤ 1 for all i = 1, . . . ,n. �e function f is given by

f (x1, . . . ,xn) =



ak if k = min{i | xi = 1} and {i | xi = 1} , ∅
am if xi = 0 for all i = 1, . . . ,n.

Before we show Bd = (⊗n
i=1

di) ◦ f −1
, we prove that

∏i
j=1

(1 − pj) = 1 −
∑i

j=1
d(aj)

via induction over i . For i = 1, the statement is clear. Assume the statement holds

for some i . We obtain for i + 1:

i+1∏
j=1

(1 − pj) = *.
,
1 −

i∑
j=1

d(aj)+/
-

*
,
1 −

d(ai+1)
1 −

∑i
j=1

d(aj)
+
-
= 1 −

i+1∑
j=1

d(aj).

Let ak ∈ M . First consider the case k < m. By de�nition of f we have f −1({ak}) =
{(x1, . . . ,xn) ∈ M | x1 = · · · = xk−1 = 0, xk = 1}. �us,

*
,

n⊗
i=1

di+
-
(f −1({ak})) = pk

k−1∏
i=1

(1 − pi) = d(ak)
1 −

∑k−1

i=1
d(ai)

*
,
1 −

k−1∑
i=1

d(ai)+
-
= d(ak).

For k = m, we have f −1({ak}) = {(0, . . . , 0)}. �erefore, (⊗n
i=1

di)(f −1({am}) =∏n
i=1

(1 − pi) = 1 −
∑m−1

i=1
d(ai) = d(am). �is shows that the distributions are equal.�

Proposition 5.21. Let n ≥ 1 and N , M1, . . . ,Mn be �nite sets, d a distribution on

N , di a distribution on Mi for i = 1, . . . ,n. Furthermore, let M = M1 × · · · × Mn,

d = d1 ⊗ · · · ⊗ dn, and f : M → N be a function such that d = d ◦ f −1
. �en the

following statements hold:

1. Let k ∈ N ∪ {ω}. �en (Bk
d1

⊗ · · · ⊗ B
k
dn
) ◦ (

f̃
)−1

= B
k
d

on B(Nn), where

f̃ : Mk
1
× · · · × Mk

n → N k
is given by f̃ (u(1), . . . ,u(n)) = (f (u(1)i , . . . ,u

(n)
i ))ki=1

where u(i) = (u(i)j )kj=1
for i = 1, . . . ,n.
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2. Let D be a �nite, non-empty set. �en (BD
d1

⊗ · · · ⊗ B
D
dn
) ◦ (

f̃
)−1

= B
D
d

on B(ND), where f̃ : MD
1
× · · · × MD

n → ND
is given by f̃ (t1, . . . , tn) =�

f (t1(x), . . . , tn(x))�x∈D for all ti ∈ M
D
i where i = 1, . . . ,n.

Note that if we choose N = M1 × · · · × Mn and f = idN in Proposition 5.21,

we obtain that we can switch from tuples of words/trees in the product space to

words/trees of tuples in the Borel space over tuples of le�ers.

Proof. We only show the in�nite word case of 1., the proof of the �nite word case

and the proof of 2. are analogous. Let A = w1 · · ·w`N
ω

be a cylinder set in B(Mω).
�en, the preimage of A is given by

f̃ −1(A) =
⋃

u
(i)
1
,...,u

(i)
`
∈Mi (i=1,...,n)

f (u(1)j ,...,u(n)j )=w j for all j≥1

n

×
i=1

u(i)
1
· · ·u(i)

`
Mω

i ,

where×n
i=1

is the n-ary Cartesian product. Let µ = B
ω
d1

⊗ · · · ⊗ B
ω
dn

. We obtain

µ
�
f̃ −1(A)� =

∑
u
(i)
1
,...,u

(i)
`
∈Mi (i=1,...,n)

f (u(1)j ,...,u(n)j )=w j for all j=1,...,`

n∏
i=1

∏̀
j=1

dj(u(i)j )

=
∏̀
j=1

∑
u(i)∈Mi (i=1,...,n)
f (u(1),...,u(n))=wi

n∏
i=1

dj(u(i))

=
∏̀
i=1

d(f −1({wi})) =
∏̀
i=1

d(wi)

= Bd(w1 · · ·w`N
ω) = Bd(A).

�erefore,

(
B
ω
d1

⊗ · · · ⊗ B
ω
dn

)
◦

(
f̃
)−1

= B
ω
d

on B(Nω) as claimed. �

We are now ready to state and prove the two main results of this chapter: the

expressive equivalence of probabilistic MSO logic and Nivat representations for

words and �nite trees. We will state these results as two separate theorems. As the

proofs only depends in small parts on the actual choice of the structure, we will

prove the follows two theorems together.

Theorem 5.22. Let Σ be a �nite alphabet and S : Σ∞ → [0, 1] be any function. �e

following statements are equivalent:
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1. S = nφo for a probabilistic MSO sentence φ ∈ PMSO(WΣ),
2. S+ ∈ N (Σ∞),

where S+(w) = S(w) if w , ε and S+(ε) = 0. �e translations are e�ective in both

directions.

Theorem 5.23. Let Σ be a �nite ranked alphabet and S : TΣ → [0, 1] be any func-

tion. �e following statements are equivalent:

1. S = nφo for a probabilistic MSO sentence φ ∈ PMSO(TΣ),
2. S ∈ N (TΣ).

�e translations are e�ective in both directions.

In order to get a uni�ed representation for words and �nite trees let S = WΣ

or S = TΣ . We de�ne for every S-structure A and function f : Σ → Γ , the image

of A by f (A) = (dom(A), (R f (A))R∈S) where label
f (A)
a =

⋃
a′∈Σ, f (a′)=a label

A
a′ and

R f (A) = RA
if R , labela for some a ∈ Γ .

�is de�nition corresponds to the homomorphic image of words and the image

under relabellings of trees, i.e. f (w̃) = If (w) and f (̃t) = f̃ (t) for all w ∈ Σ∞ and

t ∈ TΣ , where w̃ , t̃ , If (w) and f̃ (t) are the structures introduced in Section 4.1.

Proof. �e proof relies only in small parts on the actual choice of C . Paragraphs

that are only valid for words or trees are marked with w. or t., respectively.

Let S = nφoC for a probabilistic MSO sentence φ ∈ PMSO(S). By Lemma 5.14 we

may assume that φ1 = φ ∧ η, where η = ∃x .x = x , is of the form

φ1 = Ep1
X1. · · ·EpnXn .ψ ,

for probability values p1, . . . ,pn ∈ [0, 1], second order variables X1, . . . ,Xn, and a

Boolean MSO formulaψ . Note that ‖φ1‖ = S+. We show nφ1o ∈ N (C):

nφ1o(A) =
∫
· · ·

∫
nψo(A, {X1 7→ M1, . . . ,Xn 7→ Mn}) Bp1

(dM1) · · · Bpn (dMn)

By Fubini’s theorem, we can change the iterated integration to a single integral

over the product space:

=

∫
nψo(A, {X1 7→ M1, . . . ,Xn 7→ Mn})(Bp1

⊗ · · · ⊗ Bpn )(d(M1, . . . ,Mn))
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As nφo a�ains only values in {0, 1} the integral is just the measure of a set:

= *
,

n⊗
i=1

Bpi
+
-

��(M1, . . . ,Mn) ∈ P(dom(A))n �

(A, {X1 7→ M1, . . . ,Xn 7→ Mn}) |= ψ 	�

Using the measurable mappings P(dom(A))n → ({0, 1}dom(A))n
→ ({0, 1}n)dom(A)

we obtain, by Lemma 5.2 and Proposition 5.21, a single Bernoulli measure:

= Bd

��(u1, . . . ,un) ∈ Mdom(A) �

(A, {X1 7→ supp(u1), . . . ,Xn 7→ supp(un)}) |= ψ}),
(∗)

where we set M = {0, 1}n and the distribution d on M is given by d(a1, . . . ,an) =∏n
i=1

(aipi + (1 − ai)(1 − pi)).
w. In the case of words, consider the alphabet Γ = Σ ×M and the language

L = {(w,u1, . . . ,un) ∈ Γ∞ | (w, {X1 7→ supp(u1), . . . ,Xn 7→ supp(un)} |= ψ }.
By (the proof of) Büchi’s theorem, L is a regular language. Moreover, we have

Bd({u ∈ M∞ | (w,u) ∈ L}) = (∗). By se�ing д : Γ∞ → M∞ and h : Γ∞ → Σ∞

the canonical projections, we see that S+(w) = nφ1o = (Bd ◦ д)(h−1({w}) ∩ L). We

conclude S+ ∈ N (Σ∞).
t. Now, consider the case thatC = TΣ . We de�ne the ranked alphabet Γ = Σ ×M ,

i.e., arityΓ ((f ,m)) = arityΣ(f ) for all (f ,m) ∈ Γ . Again, we consider the tree

language

L = {(t ,u1, . . . ,un) ∈ TΓ | (t , {X1 7→ supp(u1), . . . ,Xn 7→ supp(un)} |= ψ }.
By (the proof of) �eorem 4.7, we obtain that L is a regular tree language. �us, by

le�ing д : TΓ → TM and h : TΓ → TΣ be the canonical projections, we obtain, as in

the word case, S+ ∈ N (TΣ).
Conversely, assume S+ ∈ N (C). Let Γ , M , d , д, h, L as in De�nition 3.6, De�ni-

tion 3.12 respectively. By Büchi’s theorem, there is a MSO sentenceψ ∈ MSO(WΓ ),
ψ ∈ MSO(TΓ ) respectively, such that L = LC(ψ ). Assume Γ = {a1, . . . ,am} and

let Y1, . . . ,Ym be new second order variables. We transformψ into a formula ψ̃ by

replacing every occurrence of labelai (x) with x ∈ Yi . �en, ψ̃ does not contain any

atomic formulas of the form labela . �us, we can regard ψ̃ as a MSO formula over

Σ. Using structural induction one shows

(A′,α[Yi 7→ label
A
ai ]mi=1

) |= ψ̃ ⇐⇒ (A,α) |= ψ , (5.2)

where A is a WΓ -structure, TΓ -structure respectively, and A′ is a WΣ-structure,

TΣ-structure respectively, such that A and A′ only di�er in their labela relations.
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By Lemma 5.20 there is a number n ≥ 1, probabilities p1, . . . ,pn and a function

f : {0, 1}n → M such that d = (⊗n
i=1

di) ◦ f −1
, where di ∈ ∆({0, 1}) with di(1) = pi .

Let X1, . . . ,Xn be new variables. We de�ne a probabilistic MSO sentence φ1 over S ,

where part(Y1, . . . ,Yn) is a MSO sentence stating that Y1, . . . ,Yn are a partition of

the domain:

φ1 = Ep1
X1. · · ·Epn Xn .∃Y1. · · · ∃Ym .

∧ part(Y1, . . . ,Ym) ∧ ∀x .
∧
ai∈Γ

x ∈ Yi =⇒ labelh(ai )(x) (5.3)

∧ ψ̃ (5.4)

∧ ∀x .
∧
ai∈Γ

x ∈ Yi =⇒
∨

(x1,...,xn)∈{0,1}n
f (x1,...,xn)=д(ai )




x ∈ Xi if xi = 1

x < Xi if xi = 0.
(5.5)

Letψ1 be the Boolean part of φ1, i.e. from (5.3) to (5.5). If S =WΣ , set S′ =WΓ .

Otherwise, if S = TΣ , let S′ = TΓ . Let A be a S structure and α an A-assignment.

We show that (A,α) |= ∃Y1. · · · ∃Ym .ψ1 if and only if there is a S′-structure A′ such

that the label relations of A′ are a partition of the domain, A′ |= ψ , h(A′) = A and

f (1α(X1)(x), . . . , 1α(Xn)(x)) = д(a) for all x ∈ label
A′
a and a ∈ Γ .

Assume there is a S-structure A ∈ C and a A-assignment α such that (A,α) |= ψ1.

Let Mai = α(Yai ) for i = 1, . . . ,m. By (5.3) we derive that (Ma)a∈Γ is a parti-

tion of dom(A). Moreover, Ma ⊆ label
A
h(a) holds for all a ∈ Γ . De�ne A′ =

(dom(A), (RA′)R∈S ′) with label
A′
a = Ma for all a ∈ Γ and RA′ = RA

for all R ∈ S′
with R , labela for all a ∈ Γ . From (5.3) we conclude h(A′) = A. By (5.2) we have

A′ |= ψ . Finally, f (1α(X1)(x), . . . , 1α(Xn)(x)) = д(a) for all x ∈ label
A′
a and a ∈ Γ is

just the statement of (5.5).

Conversely, assume there is a WΓ -structure, TΓ -structure respectively, A′ such

that the label relations in A′ partition the domain, A′ |= ψ , h(A′) = A, and

f (1α(X1)(x), . . . , 1α(Xn)(x)) = д(a) for all a ∈ Γ and x ∈ label
A′
a . By de�ning sets

Mi = label
A′
ai we conclude (A,α[Yi 7→ Mi]mi=1

) |= ψ1 directly from the de�nition of

ψ1 and using (5.2). �us, (A,α) |= ∃Y1. · · · ∃Ym .ψ1.

Using this correspondence we obtain for the semantics of φ1:

nφ1o(A) =
∫
· · ·

∫
n∃Y1. · · · ∃Ym .ψ1o(A,α[Xi 7→ Mi]ni=1

) Bp1
(dM1) · · · Bpn (dMn)

We apply Fubini’s theorem to switch to the product space:

=

∫
n∃Y1. · · · ∃Ym .ψ1o(A,α[Xi 7→ Pi]ni=1

) (⊗n
i=1

Bpi )(d(P1, . . . , Pn))
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�e integrated function a�ains only values in {0, 1}, thus, the integral is just the

measure of a set:

= *
,

n⊗
i=1

Bpi
+
-

��(M1, . . . ,Mn) ∈ P(dom(A))n �

(A,α[Xi 7→ Mi]ni=1
) |= ∃Y1. · · · ∃Ym .ψ1

	�

Moreover, we apply the correspondence between structures over Γ and partitions

of the domain that we established before. We continue

= *
,

n⊗
i=1

Bpi
+
-

��(M1, . . . ,Mn) ∈ P(dom(A))n �
∃A′ : h(A′) = A, A′ |= ψ ,

(label
A′
a )a∈Γ is a partition of dom(A′),

f (1M1
(x), . . . , 1Mn (x)) = д(a) for all a ∈ Γ , x ∈ label

A′
a

	�

Taking the preimages under the mappings ({0, 1}n)dom(A) → ({0, 1}dom(A))n and

({0, 1}dom(A))n → (P(dom(A))n, which are both measurable, we obtain

= *
,

n⊗
i=1

Bpi
+
-

��
u ∈ ({0, 1}n)dom(A) �

∃A′ : (A′) = A, A′ |= ψ
(label

A′
a )a∈Γ is a partition of dom(A′),

f (u(x)) = д(a) for all a ∈ Γ , x ∈ label
A′
a

	�

By application of Proposition 5.21 we get

= Bd

��
u ∈ Mdom(A) �

∃A′ : h(A′) = A, A′ |= ψ
(label

A′
a )a∈Γ is a partition of dom(A′)

u(x) = д(a) for all a ∈ Γ , x ∈ label
A′
a

	�
.

(5.6)

w. Assume A ∈ C is a WΣ-structure, i.e., A = w̃ for some w ∈ Σ∞. A WΓ struc-

ture A′ with label relations partitioning the domain and h(A′) = A corresponds

to the word w′ = (w′i )i∈pos(w) ∈ Γ∞ given by w′i = a i� i ∈ label
A′
a for a ∈ Γ and

i ∈ pos(w). From h(A′) = A we conclude that i ∈ label
A′
a implies i ∈ label

A
h(a) for

all i ∈ pos(w). �us, h(w′) = w . Moreover, for every wordw′ ∈ Γ∞ with h(w′) = w ,

we have h(w̃′) = w̃ . Furthermore, a function u : pos(w)→ M with u(x) = д(a) for

all a ∈ Γ and x ∈ label
w ′

a corresponds to a word in u′ ∈ M∞ with |u′| = |w′| and

д(w′) = u′. �us, we can rewrite (5.6) as

(5.6) = Bd({u ∈ M∞ | ∃w′ ∈ L : д(w′) = u ∧ h(w′) = w })
= (Bd ◦ д)(h−1({w}) ∩ L)
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= S+(w).
t. Let A ∈ C be a TΣ structure, i.e., A = t̃ for some t ∈ TΣ . For a TΓ -structure

A′ with label relations partitioning the domain and h(A′) = A, let t ′ ∈ TΓ be the

tree given by pos(t ′) = pos(t) and t ′(x) = f i� x ∈ label
A′
f . As in the word case, we

have that t ′(x) = f implies t(x) = h(f ). Since h is a relabelling, f and h(f ) have

the same arity. �erefore, t ′ is well-de�ned as a tree and h(t ′) = t . Moreover, for

every tree t ′ ∈ TΓ with h(t ′) = t , we have h(t̃ ′) = t̃ . We conclude

(5.6) = Bd({u ∈ Mpos(t) | ∃t ′ ∈ L : д(t ′) = u ∧ h(t ′) = t })
= (Bd ◦ д)(h−1({t}) ∩ L)
= S+(t).

�erefore, nφ1o = S+. �e only thing le� to do is to �x the value for the empty

structure. We de�ne the probabilistic MSO formula φ by

φ =
�
φ1 ∧ (∃x .x = x)� ∨ �

S(ε) ∧ (∀x .x , x)�.
Clearly, nφo = S . �is concludes the proof. �

Using �eorems 5.22 and 5.23 and �eorems 3.9 and 3.20 from Chapter 3, we

immediately obtain the following two corollaries.

Corollary 5.24. Let Σ be a �nite alphabet and S : Σ∞ → [0, 1] be any function. �e

following statements are equivalent:

1. S = nφo for a probabilistic MSO sentence φ ∈ PMSO(WΣ),
2. S = ‖A‖ for a probabilistic Muller-automaton A.

�e translations are e�ective in both directions.

Corollary 5.25. Let Σ be a �nite ranked alphabet and S : TΣ → [0, 1] be any func-

tion. �e following statements are equivalent:

1. S = nφo for a probabilistic MSO sentence φ ∈ PMSO(TΣ),
2. S = ‖A‖ for a bo�om-up probabilistic tree automaton A.

�e translations are e�ective in both directions.

Remark 5.26. �e proofs of Corollaries 5.24 and 5.25 make a detour through Nivat

representations for both directions. We are not aware of any direct proof showing

the equivalence of probabilistic automata and probabilistic MSO logic.
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Chapter 6

Probabilistic Regular Expressions

on Words

Regular expressions were introduced by Kleene [K56] in the 1950s. Only some

years later, regular expressions have been extended to the weighted se�ing by

Schützenberger [S61]. Both models only consider �nite words. Nowadays, regular

expressions have spread through all of theoretical computer science and enjoy

manifold applications and generalisations to many di�erent se�ings.

In this chapter, we recall the de�nition of classical regular expressions in Sec-

tion 6.1. A�erwards, we transfer the classical operations used in regular expressions

to the probabilistic se�ing and also to in�nite words in Section 6.2. Using these

de�nitions, we introduce probabilistic regular expressions on �nite and in�nite

words in Section 6.3 and give some basic properties. �e last two sections contain

the proof of the expressive equivalence of probabilistic regular expressions and

probabilistic Muller-automata.

�e results of this chapter have been published in [W14].

For the rest of this chapter, we �x a �nite alphabet Σ.

6.1 Classical Regular Expressions

In this section, we will �rst recall Kleene’s notion of classical regular expressions

and a�erwards state Schützenberger’s extension to the weighted se�ing.

Rational or regular expressions are built from the empty set and single le�ers

using the operations union, language concatenation and Kleene-iteration. Every

well-formed term using these operations is a rational expression.

Definition 6.1. �e set RE of all regular expressions or rational expressions is given

in BNF by

E F ∅ | a | E ∪ E | E · E | E∗,
where a ranges over all le�ers a ∈ Σ.
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With each regular expression E we associate its language L(E). �e de�nition of

L(E) is given inductively on the structure of E below:

L(a) = {a}, L(E ∪ F ) = L(E) ∪ L(F ),
L(E∗) = L(E)∗, L(E · F ) = L(E) · L(F ),
L(∅) = ∅.

We call any language L ⊆ Σ∗ regular or rational, if there is a regular expression E
such that L(E) = L.

�e following theorem is a fundamental result in the theory of formal languages

and became known as Kleene’s theorem [K56].

Theorem 6.2. Let L ⊆ Σ∗ be any language. �e following statements are equival-

ent:

1. L = L(A) for some �nite automaton A.

2. L = L(E) for some regular expression E.

Regular expressions describe languages of �nite words. �ere is a simple gener-

alisation to cover languages containing �nite and in�nite words.

Definition 6.3. �e set of all ω-regular expressions is given in BNF by

E F R | R · E | E ∪ E | Rω ,
where R is any regular expression as de�ned in De�nition 6.1.

�e language L(E) ⊆ Σ∞ de�ned by an expression E is de�ned by induction on

the structure of E:

L(R) = LDef. 6.1(R) L(R · E) = L(R) · L(E)
L(E1 ∪ E2) = L(E1) ∪ L(E2) L(Eω) = L(E)ω .

A language L ⊆ Σ∞ is called ω-regular if there is an ω-regular expression E with

L(E) = L.

Using the distributivity of · over ∪, one shows that every ω-regular expression is

equivalent to an ω-regular expression of the form E0 ∪
⋃n

i=1
EiF

ω
i , where the Ei and

Fj are regular expressions.
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Example 6.4. We now come back to the automaton A from Example 2.2. Recall

that the language of this automaton is

L(A) =�
aua ∈ Σ∗

�
u ∈ Σ∗, every maximal sequence of b’s in u has even length

	

∪
�
aw ∈ Σω

� |w |b is in�nite

	
,

where Σ = {a, b}. We now give an ω-regular expression E with L(E) = L(A):
E = a

�
a ∪ bb

�∗a ∪ a
�
a∗b

�ω
.

For �nite words, b occurs only in pairs. �us, the number of consecutive b’s is

always even. For in�nite words, we in�nitely o�en concatenate words that end

with b. �us, obtaining an in�nite word with in�nitely many b’s. Conversely,

every �nite word with an even number of b’s in any consecutive sequence of b’s

can be decomposed into a sequence of a and bb. Furthermore, every in�nite word

containing an in�nite number of b’s can be decomposed into words of the form

a∗b. �is shows L(E) = L(A).
Using Kleene’s theorem for �nite words, one also obtains the expressive equival-

ence of Büchi-automata and ω-regular expressions.

Theorem 6.5. Let L ⊆ Σω . �e following statements are equivalent:

1. L = L(A) for a Büchi-automaton A.

2. L = L(E) for an ω-regular expression E.

6.2 Probabilistic Rational Operations

Before we de�ne the syntax and semantics of probabilistic regular expressions,

we introduce probabilistic versions of the rational operations. �e de�nitions of

sum, concatenation, and Kleene-star correspond to their counterparts in weighted

regular expressions [S61] over the semiring (R+,+, ·, 0, 1), where R+ = R+ ∪ {∞}.

�e sum and product is extended to∞ by le�ing s+∞ = ∞ for all s ∈ R+, s ·∞ = ∞
for all s > 0 and 0 · ∞ = 0.

For the rest of this chapter, 1 denotes the function with 1(w) = 1 for all w ∈ Σ∞.

Formally, given two functions f ,д : Σ∗ → R+, the operations weighted concaten-
ation and weighted Kleene-star are de�ned as follows:

(f · д)(w) =
∑
uv=w

f (u)д(v), (f ∗)(w) =
∑
n≥0

f n(w),
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where f 0 = 1{ε} and f n+1 = f · f n. �en, f ·д and f ∗ are again functions Σ∗ → R+.

Remark that in the semiring R+ every countable sum converges to a value of the

semiring. �us, the Kleene-star of a function is always de�ned. Another common

approach is to require f (ε) = 0. �is is not needed here.

We would like to use these de�nitions also in our probabilistic se�ing. Unfor-

tunately, even when f and д only a�ain values from the interval [0, 1], the values

of f · д and f ∗ may be unbounded. �erefore, we �rst give su�cient conditions

such that the values of concatenation and Kleene-iteration are again interpretable

as probability values.

Definition 6.6. Let f : Σ∞ → [0, 1]. We call f pre�x summable if∑
u�w

f (u) ≤ 1

for all w ∈ Σ∗.

�is de�nition is a generalisation of pre�x free languages: a language L ⊆ Σ∞ is

pre�x free if it does not contain two words u and v with u ≺ v , cf. De�nition 6.29.

�us, a language L is pre�x free if and only if 1L is pre�x summable.

If a language L is pre�x free and w ∈ LΣ∗, then there are unique words u,v with

u ∈ L such that uv = w . �is property transfers to pre�x summable series, which

allows us to interpret the values of weighted concatenation as probability values.

Lemma 6.7. Let f ,д : Σ∞ → [0, 1] such that f is pre�x summable. �e series f ·д,

de�ned by

(f · д)(w) =
∑
uv=w

f (u)д(v),

is bounded by 1. Moreover, if д is also pre�x summable, so is f · д.

Proof. Let w ∈ Σ∞. We obtain (f · д)(w) = ∑
uv=w f (u)д(v) ≤ ∑

uv=w f (u) ≤ 1, as

f is pre�x summable. �us, f · д is well-de�ned. Now, assume that д is also pre�x

summable. We compute∑
uv=w

(f · д)(u) =
∑
uv=w

∑
xy=u

f (x)д(y) =
∑

xv ′=w

f (x)
∑
v ′=yv

д(y) ≤ 1,

since д and f are pre�x summable. �us, f · д is pre�x summable. �

In order to obtain a probabilistic ω-iteration, note that for a pre�x free language

L ⊆ Σ∗, the equation Lω =
⋂

n≥1
LnΣω holds, see Lemma 6.31. Hence, Lω can

be regarded as the limit of the sequence LnΣω . By transferring this idea to the

probabilistic se�ing, we obtain the probabilistic ω-iteration.
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Definition 6.8. Given a pre�x summable series f : Σ∞ → [0, 1], we de�ne the

probabilistic ω-iteration f ω by

f ω(w) = lim

n→∞
(f n · 1)(w),

where 1 : Σ∞ → [0, 1] is the constant function with 1(w) = 1.

Lemma 6.9. Let f be a pre�x summable series. �en, the series f ω is a well-de�ned

function Σ∞ → [0, 1].
Proof. By Lemma 6.7, we know that (f n · 1)(w) ≤ 1 for all n ≥ 0 and w ∈ Σ∞. We

show (f n+1 · 1)(w) ≤ (f n · 1)(w): let w ∈ Σ∞.

(f n+1 · 1)(w) =
∑

u1···un+1v=w

n+1∏
i=1

f (ui) =
∑

u1···unv ′=w

n∏
i=1

f (ui)
∑

un+1v=v ′

f (un+1)

≤
∑

u1···unv ′=w

n∏
i=1

f (ui) = (f n · 1)(w)

�us, the sequence

�(f n · 1)(w)�n≥0
is monotonically decreasing and bounded by 0.

�erefore, the sequence converges with limit between 0 and (f 0 · 1)(w) = 1. �

Finally, we consider the Kleene-iteration. Intuitively, every step of Kleene-

iteration involves two choices: whether to continue the iteration at all and if

so, which word to choose. �e choice of the next word is well-behaved for pre�x

summable series. To handle the exit condition, we require an extra series д, which

is appended a�er f ∗.

Definition 6.10. Let f ,д : Σ∞ → [0, 1]. We call the pair (f ,д) an iteration pair if

and only if ∑
u�w

f (u) + д(w) ≤ 1,

for all w ∈ Σ∞.

Lemma 6.11. Let f : Σ∞ → [0, 1] be a pre�x summable function. Furthermore, let

д : Σ∞ → [0, 1] such that (f ,д) is an iteration pair. �en, the series (f ∗ · д) + f ω is

bounded by 1. Moreover, if f + д is pre�x-summable, so is f ∗ · д.

Proof. Let 1 be the constant 1 function. For two functions f1, f2 : Σ∞ → R+ let

f1 ≤ f2 if f1(w) ≤ f2(w) for all w ∈ Σ∞. Note that the probabilistic concatenation is

monotonic in both arguments. Let д be a function such that (f ,д) is an iteration
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pair. We show f k+1 · 1 +
∑k

n=0
f n · д ≤ 1 using induction on k . For k = 0 the

statement is just the assumption that (f ,д) is an iteration pair. We have for k + 1:

f k+2 · 1 +

k+1∑
n=0

f n · д = f k+1 · (f · 1 + д) +
k∑

n=0

f n · д ≤ f k+1 · 1 +

k∑
n=0

f n · д ≤ 1.

�us, the series

∑k
n=0

(f n · д)(w) converges for k → ∞ for every w since it is

bounded and monotonically increasing. As the limit of f k+1 · 1 is f ω , we obtain∑
n≥0

(f n · д)(w) + f ω(w) ≤ 1. Using the absolute convergence of

∑
n≥0

(f n · д)(w),
we can rearrange this sum to obtain the desired bound for f ∗ · д:∑

n≥0

(f n · д)(w) =
∑
n≥0

∑
uv=w

f n(u)д(v) =
∑
uv=w

∑
n≥0

f n(u)д(v) = (f ∗ · д)(w)

Assume that f + д is pre�x summable. �us, (f ,д · 1) is an iteration pair and

the function f ∗ · (д · 1) is bounded by 1. By the associativity of the weighted

concatenation, we know that (f ∗ · д) · 1 = (f ∗ · д) · 1. Hence, f ∗ · д is pre�x

summable. �

6.3 Probabilistic Regular Expressions

We introduce the syntax and semantics of probabilistic regular expressions. Fur-

thermore, we state some basic semantic equalities.

As seen in the last section, the usual approach to de�ne regular expressions on

in�nite words, is to �rst de�ne expressions on �nite words, and extend these to

in�nite words in a second step. For the probabilistic se�ing, we have to ensure

that whenever a function f ∗ ·д occurs in the semantics of an expression (f ,д) is an

iteration pair. �us, we cannot use such a two parted de�nition, but have to de�ne

expressions on �nite and in�nite words simultaneously.

In the following de�nition we use a new symbol �, which serves as a placeholder

in regular expressions for places where other regular expressions can be inserted.

�is is necessary as we can only append to expressions which generate pre�x

summable series.

Definition 6.12. �e set PRE all probabilistic regular expressions is the smallest set

R which satis�es the following conditions:

1. � ∈ R

2. If A ⊆ Σ and Ea ∈ R for a ∈ A, then

∑
a∈A aEa ∈ R, and ε +

∑
a∈A Ea ∈ R
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3. If p ∈ [0, 1], E ∈ R, and F ∈ R, then pE + (1 − p)F ∈ R and pE ∈ R

4. If E� ∈ R and F ∈ R, then EF ∈ R

5. If E� + F ∈ R, then E∗F + Eω ∈ R, E∗F ∈ R, and Eω ∈ R,

and is closed under the following identities modelling the usual associativity, com-

mutativity, and distributivity laws:

6. E + (F +G) ≡ (E + F ) +G and E · (F ·G) ≡ (E · F ) ·G
7. E + F ≡ F + E

8. E · (F +G) ≡ EF + EG and (E + F ) ·G ≡ EG + FG

Each identity states that an expression containing the le� side of an identity as a

subexpression is in R if and only if the same expression, but with this subexpression

replaced by the right side of the identity, is in R and vice versa.

As in [BGMZ12], we call the rules 6 to 8 ACD rules.

We say an expression E ∈ PRE is a partial expression if � occurs within E,

otherwise we say that E is complete.
Any subterm of an expression is called a subexpression. Note that a subexpression

may not to be an expression.

Note that, the symbol � only occurs in the syntax of probabilistic regular ex-

pressions, but not as actual symbol in the alphabet. Its entire use is to give a

concise grammar for PRE. �is is di�erent from the use of variables in regular tree

expressions which actually do occur as distinct le�ers in the ranked alphabet.

Next, we give the semantics of a PRE as function mapping �nite or in�nite words

to probability values. Even though the symbol � is only used as a placeholder

expression in the syntax of PRE, we choose to give a meaningful semantics to the

symbol. �is will simplify further de�nitions.

�e de�nition below states the semantics of a probabilistic regular expression

as function mapping to R+ and not to [0, 1]. We will see a�erwards that by the

choice of the syntax of probabilistic regular expressions, any valid expression’s

semantics actually only a�ains values in [0, 1]. Nevertheless, subexpressions may

violate this property. Consider for example the expression E = (1/2 a + 1/2ε)∗ 1/2 ε :
using the de�nition below, one can see that ‖E‖(an) = 1 for all n ≥ 0. Nevertheless,

‖(1/2 a + 1/2ε)∗‖(an) = 2 for all n ≥ 0.

�e following de�nition gives the semantics of a PRE using structural induction

on the syntax tree.
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Definition 6.13. Let E be a PRE and w ∈ Σ∞. �e semantics of E is a mapping

‖E‖ : Σ∞ → R+ inductively de�ned by

‖a‖(w) =



1 if w = a

0 otherwise,
‖p‖(w) =




p if w = ε

0 otherwise,

‖E + F ‖(w) = (‖E‖ + ‖F ‖)(w), ‖E∗‖(w) = (‖E‖∗)(w),
‖E · F ‖(w) = (‖E‖ · ‖F ‖)(w), ‖Eω ‖(w) = (‖E‖ω)(w),
‖�‖(w) = 1,

for all w ∈ Σ∞, a ∈ Σ ∪ {ε}, and p ∈ [0, 1].
We show that the semantics of a probabilistic regular expression is always de�ned

and a�ains a value in [0, 1]. Before we prove this statement, we introduce the terms

of an expression, which are independent of the application of the ACD rules. In the

following de�nition the notation {{. . .}} is used to describe a multi-set, i.e., a set

with multiplicities. �e terms of an expression already appeared in [BGMZ12]. We

extend their de�nition by spli�ing the set of terms in head terms and tail terms.

Definition 6.14. Let E be a PRE. We de�ne the set T (E) of all terms of E inductively

by

T (x) = {{x}} for x ∈ A ∪ {ε,�},
T (E + F ) = T (E) ∪ T (F ),
T (E · F ) = {{E′ · F ′ �

E′ ∈ T (E), F ′ ∈ T (F )}},
T (E∗) = {{E∗}},
T (Eω) = {{Eω}}.

Furthermore, we de�ne the set HT(E) of all head terms of E and the set TT(E) of all

tail terms of E by

HT(E) = {{E′ | E′� ∈ T (E)}},
TT(E) = {{E ∈ T (E) | E , E′� for all E′ ∈ HT(E)}}.

Intuitively, the terms of an expression are all summands that occur a�er applying

distributivity until no product can be expanded. �e head terms are all such

summands whose last factor is �, and the tail terms are all other summands.

Since we would like the formula T (E) = HT(E)� ∪ TT(E) to hold for all ex-

pressions E, we say HT(�) is just the empty expression (not to be mixed with the

expression “ε”). In the next lemma we implicitly assume 1{ε} as the semantics of

the empty expression.
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Lemma 6.15. Let E be a probabilistic regular expression. �en, ‖E‖ is a well-

de�ned function Σ∞ → [0, 1].
Proof. Given an expression E, we need to show two conditions: that f ∗ and f ω is

only applied to pre�x summable functions f , and that ‖E‖ ≤ 1.

For a probabilistic regular expression E, let H(E) = ∑
T∈HT(E)‖T ‖ and T(E) =∑

T∈TT(E)‖T ‖. Let the set M contain all probabilistic regular expressions E, such

that the following conditions hold:

1. �e operations
∗

and
ω

are only applied to expressions with pre�x summable

semantics in E, ‖E‖ ≤ 1, and ‖E‖ =
∑

T∈T (E)‖T ‖

2. (H(E),T(E)) is an iteration pair

We prove that M = PRE by showing that M satis�es call conditions of De�ni-

tion 6.12.

Clearly, � ∈ M holds. Let A ⊆ Σ and assume expressions Ea ∈ M for each a ∈ A.

Let E = ε +
∑

a∈A aEa . We show E ∈ M . �ere are no new expressions of the form F ∗

or Fω in E, thus, by assumption on the Ea’s, every iteration in E is only applied to a

pre�x summable function. Let w ∈ Σ∞. If w = ε , we have ‖E‖(w) = 1. Otherwise,

w = aw′, and we conclude ‖E‖(w) = 0 if a < A or ‖E‖(w) = ‖Ea‖(w′) ≤ 1 if

a ∈ A, as Ea ∈ M . We show that (H(E),T(E)) is an iteration pair. By de�nition of

E, HT(E) = ⋃
a∈A a HT(Ea) and TT(E) = {{ε}} ∪⋃

a∈A a TT(Ea). Let w ∈ Σ∞. We

show

∑
u�w H(E)(u)+T(E)(w) ≤ 1. Ifw = ε the statement follows directly from the

de�nition. Assume w = a0w
′
. We obtain∑

u�w

H(E)(u) + T(E)(w) =
∑
u�w

∑
a∈A

�
‖a‖H(Ea)�(u) + 1{ε}(w) +

∑
a∈A

�
‖a‖ T(Ea)�(w)

If a0 < A, we immediately conclude that the value of this expression is 0. If a0 ∈ A,

only the summands that start with ‖a0‖ contribute a positive value. We continue

=
∑
u ′�w ′

H(Ea0
)(u′) + T(Ea0

)(w′) ≤ 1.

�erefore, (H(E),T(E)) is an iteration pair.

We consider the case E = pE1 + (1 − p)E2. �e proof of conditions 1. and 2. is

analogous to the previous case and therefore le� out here.

Assume E1�,E2 ∈ M . As (H(E1�),T(E1�)) is an iteration pair by assumption

and HT(E1�) = T (E1), we obtain that ‖E1‖ is pre�x summable. Hence, ‖E1‖‖E2‖ is

well-de�ned by Lemma 6.7. Let w ∈ Σ∞, we conclude∑
u�w

H(E1E2)(u) + T(E1E2)(w)
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=
∑
u�w

∑
u1u2=u

‖E1‖(u1)H(E2)(u2) +
∑
uv=w

‖E1‖(u)T(E2)(v)

=
∑
uv=w

‖E1‖(u)*
,

∑
v=v1v2

H(E2)(v1) + T(E2)(v)+
-

≤ 1.

�us, (H(E),T(E)) is an iteration pair and E ∈ M .

We continue with the case E = E1�+ E2 ∈ M . We have HT(E) = T (E1)∪HT(E2)
and TT(E) = TT(E2). By assumption, (H(E),T(E)) is an iteration pair. In particular,

‖E1‖ is pre�x summable. Hence, ‖E1‖
∗

and ‖E1‖
ω

are well-de�ned functions to

R+. As (H(E1),H(E2) · 1 + T(E2)) is also an iteration pair, we additionally have

‖E1‖
∗(H(E2) · 1+T(E2))+ ‖E1‖

ω =
∑

T∈HT(E2)‖E∗1T ‖ · 1 +
∑

T∈TT(E2)‖E∗1E2‖ +E
ω
1
≤ 1.

�erefore, (H(E∗
1
E2+E

ω),T(E∗
1
E2+E

ω)) is an iteration pair. We conclude E∗
1
E2+E

ω
1
∈

M .

�e set M is also closed under application of the ACD rules, as the terms of an

expression do not change by application of these rules. �

Example 6.16. We return to the communication device introduced in Example 2.19.

To build an expression for this model, we again consider the two le�er alphabet

Σ = {w, i} for the events “wait” and “input message”. We claim that the following

expression models the probability that the bu�er does not over�ow:

E =
(
w + ip + i (1 − p) �(1 − q)w + p i�∗qw

)ω
.

�e intuition for E is as follows: the expression in the ω operator is the probability

to return to the empty bu�er state when starting with an empty bu�er. If no new

message is received, or a new input messages is received and it can be successfully

sent right away, the bu�er stays empty. In case of a new input message that fails to

be sent successfully, this happens with probability 1 − p, the device will try to send

this message on every wait event. �is fails with probability 1 − q, and eventually

succeeds with probability q. Any new incoming messages in this state must succeed

to be sent immediately.

We still need to show that E is really a probabilistic regular expression, i.e., that

it can be constructed using the rules given in De�nition 6.12. First we show how to

construct the expression

�(1 − q)w + p i�∗qw�.

� { q � + (1 − q)� De�nition 6.12 (3)

{ w
�
q � + (1 − q)��

+ ip � De�nition 6.12 (2),

p� was obtained using De�nition 6.12 (3)
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{
�(1 − q)w + p i�� + qw� Using ACD rules

{
�(1 − q)w + p i�∗qw� De�nition 6.12 (5). (6.1)

We continue and construct the expression E:

� { p � + (1 − p) �(1 − q)w + p i�∗qw� De�nition 6.12 (3) + (6.1)

{ w� + ip � + i (1 − p) �(1 − q)w + p i�∗qw� De�nition 6.12 (2)

{
(
w + ip + i (1 − p) �(1 − q)w + p i�∗qw)

� Using ACD rules

{
(
w + ip + i (1 − p) �(1 − q)w + p i�∗qw)ω

De�nition 6.12 (5)

�is shows that E is actually a probabilistic regular expression as de�ned in De�ni-

tion 6.12.

Definition 6.17. Let E and F be two PREs. We say that E and F are equivalent if

‖E‖(w) = ‖F ‖(w) for all w ∈ Σ∞. In this case we write E ≡ F .

Next, we show two useful rules for building probabilistic regular expressions.

�e �rst rule states that any � can be replaced by an arbitrary expression. �e

second rule allows us to omit summands from an expression.

Lemma 6.18. �e following statements hold:

1. Let E� + F and G be PRE, then EG + F is also a PRE.

2. If E + F is a PRE, so is E.

In order to prove Lemma 6.18 we need the following technical lemma.

Lemma 6.19. Let E be a probabilistic regular expression. �e following statements

hold:

1.
∑

T∈T (E)T ∈ PRE and

∑
T∈T (E)T ≡ E.

2. Let M ⊆ T (E) be a multi-set and E1, F1, . . . ,En, Fn be subexpressions such

that Ei� < M for all 1 ≤ i ≤ n and M ∪ {{E1�, . . . ,En�}} ⊆ T (E). �en∑
T∈M T +

∑n
i=1

EiFi ∈ PRE. �is is also true, if M = ∅ or n = 0.

Proof. �e �rst statement can be shown by proving that the set of all expressions

E which satisfy statement 1 satis�es the conditions given in De�nition 6.12 and

thus equals to PRE.

We show the second statement using the same technique. Let R be the set of all

expressions satisfying statement 2. Clearly, the statement holds for �.
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Let A ⊆ Σ and Ea ∈ R for all a ∈ A and assume E = ε +
∑

a∈A aEa . By de�nition,

we have T (E) = {{ε}} ∪ ⋃
a∈A{{aT | T ∈ T (Ea)}}. Let Ma = {{T | aT ∈ M }} and

Ei = aiE
′
i with ai ∈ A and subexpressions E′i for all 1 ≤ i ≤ n. As Ea ∈ R, we have∑

Ma +
∑n

i=1,ai=a
E′iFi ∈ PRE. By De�nition 6.12, we obtain

ε +
∑
a∈A

a*.
,

∑
aT∈M

T +
n∑

i=1,ai=a

E′iFi
+/
-
≡ ε +

∑
aT∈M,a∈A

aT +
n∑
i=1

∑
a∈A,a=ai

aE′iFi

≡ ε +
∑
T∈M

T +
n∑
i=1

EiFi ∈ PRE.

�e case E = pF + (1 − p)G is analogous to the previous case.

Let E = FG with F�,G ∈ R. We have T (E) = {{T1T2 | T1 ∈ T (F ), T2 ∈ T (G)}}.

De�ne multisets MT = {{T ′ | TT ′ ∈ M }} for every T ∈ T (F ). Furthermore,

let Ei = TiE
′
i with Ti ∈ T (F ) and E′i ∈ T (G). As G ∈ R it follows that ET =∑

MT +
∑n

i=1,Ti=T
E′iFi ∈ PRE for every T ∈ T (F ). Next, we apply the hypothesis

to F� with M = ∅ and {{T1�, . . . ,Tn�}} = T (F�) and Fi = ETi . As before, using

distributivity, we obtain E ∈ R.

Finally, we consider the case E = F ∗G + Fω with F� +G ∈ R. All subexpressions

Ei must be of the form Ei = F ∗E′i with E′i� ∈ T (G). Moreover, M = {{F ∗T |
T ∈ M′}} ∪ {{Fω | Fω ∈ M }} for some multiset M′ ⊆ T (G). We apply the induction

hypothesis to F� +G with M′ ∪ T (F�) and subexpressions E′
1
, F1, . . . ,E

′
n, Fn. �us,∑

T∈T (F�)T +
∑

T∈T (M ′)T +
∑n

i=1
E′iFi is a probabilistic regular expression. As the

�rst sum is equivalent to F�, we conclude the desired result by De�nition 6.12 (5).�

�e statements of Lemma 6.18 follow now directly from Lemma 6.19.

Proof (of Lemma 6.18). 1. We apply Lemma 6.19 with M = T (F ), E1 = E, and F1 =

G . �us, M ∪ {{E1�}} = T (E� + F ) and we obtain

∑
T∈T (F )T + EG ≡ F + EG ∈ PRE.

2. Again, we use Lemma 6.19. �is time, with M = T (E) and n = 0. We obtain

E =
∑

T∈M T ∈ PRE. �

6.4 From Expressions to Automata

In this section, we give a constructive proof that every probabilistic regular ex-

pressions admits an equivalent probabilistic Muller-automaton. �e constructions

are based on the ideas of [BGMZ12], but extended to the in�nite word se�ing.

Whereas the constructions themselves are not much more complicated than the

constructions in the �nite word case, showing their correctness on in�nite words

adds technical di�culties to the proofs.
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For a probabilistic Muller-automaton A = (Q,δ , µ, F ,R) and a set X ⊆ Q , we

denote the probabilistic Muller-automaton (Q,δ , µ,X , ∅) by A[X ]F. For a subset

X ⊆ P(Q), we write A[X ]R for the automaton (Q,δ , µ, ∅,X ).
Definition 6.20. Let E be a PRE and A = (Q,δ , µ, F ,R) a probabilistic Muller-

automaton. We say that A is an automaton for E if there is a partition F = F0 ∪⋃
H∈HT(E) FH of F , such that

1.
∑

E ′∈TT(E)‖E′‖ = ‖A0‖ where A0 = (Q,δ , µ, F0,R)
2. ‖H ‖ = 


A[FH ]F




 for all H ∈ HT(E)
3. �e states in FH are sinks for every H ∈ HT(E)

Note that if E is a complete expression, i.e., HT(E) = ∅, and A is an automaton

for E, then the semantics of E already equals the behaviour of A. �us, our goal for

this section is to show that the set of expressions E, such that there is an automaton

for E, satis�es the closure properties of De�nition 6.12.

Lemma 6.21. �ere is an automaton for �.

Proof. We have HT(�) = {{ε}} and TT(�) = ∅. �us, the automaton A given by

A = ({q0},δ , 1{q0}, {q0}, ∅) with δ (q0,a) = 0 for all a ∈ Σ is an automaton for �. �

Lemma 6.22. Let Γ ⊆ Σ and Ea be a PRE for every a ∈ Γ . Furthermore, assume

there is an automaton for each expression Ea . �en there are automata for ε +∑
a∈Γ aEa and for

∑
a∈Γ aEa .

Proof. Assume E = ε +
∑

a∈Γ aEa and Aa = (Qa,δa, µa, Fa,Ra) is an automaton

for Ea for every a ∈ Γ such that the sets Qa are pairwise disjoint. We de�ne the

automaton A = (Q,δ , µ, F ,R) by

Q = {q0,q f } ∪
⋃
a∈Γ

Qa, µ(q) = 1{q0}(q),

F = {q0} ∪
⋃
a∈Γ

Fa, R =
⋃
a∈Γ

Ra,

δ (q,a)(q′) =




µa(q′) if q = q0, a ∈ Γ , and q′ ∈ Qa

1 if q = q0, a < Γ , and q′ = q f

δb(q,a,q′) if q,q′ ∈ Qb for some b ∈ Σ

1 if q = q′ = q f

0 otherwise.
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By construction, we have ‖A‖(ε) = 1 and ‖A‖(aw) = ‖Aa‖(w) for all a ∈ Γ . For

w′ = aw with a < Γ , we obtain ‖A‖(w′) = 0, as A enters q f a�er reading a with

probability 1, which is not �nal, but cannot be le� again.

We still need to show thatA is an automaton for E. By de�nition we have HT(E) =
{{aE′ | a ∈ Σ, E′ ∈ HT(Ea)}} and TT(E) = {{ε}} ∪ {{aE′ | A ∈ Σ, E′ ∈ TT(E)}}. Let

a ∈ Γ . As Aa is an automaton for Ea there is a partition Fa = F 0

a ∪
⋃

E ′∈HT(Ea ) FE
′

a

of Fa as in De�nition 6.20. Let aE′ ∈ HT(E) and A′ = A[FE ′a ]F. By de�nition of A
we have ‖A′‖(ε) = 0 and ‖A′‖(bu) = ‖Aa‖(u) if b = a and ‖A′‖(bu) = 0 otherwise.

�us, ‖A′‖ = ‖aE′‖. On the other hand, let A′′ = (Q,δ , µ, {q0} ∪ ⋃
a∈Σ F

0

a ,R).
Again by de�nition of A we conclude ‖A′′‖(ε) = 1 and ‖A′′‖(aw) = ‖A′′a ‖(w), where

A′′a = (Qa,δa, µa, F
0

a ,Ra). By assumption on Aa , we have ‖A′′a ‖ =
∑

E ′∈TT(Ea )‖E′‖
and so ‖A′′‖ = normε +

∑
a∈Σ

∑
E ′a∈TT(Ea )‖aE′a‖ =

∑
E ′∈TT(E)‖E′‖. �erefore, A is an

automaton for E.

�e case E =
∑

a∈A aEa is analogous, the only di�erence is to omit q0 from F in

the construction of A. �

Lemma 6.23. Let E and F be PREs which each admit an automaton. Furthermore,

let p ∈ [0, 1]. �ere is an automaton for pE + (1 − p)F .

Proof. Let Ai = (Qi ,δi , µi , Fi ,Ri) for i = 1, 2 such that A1 is an automaton for E
and A2 is an automaton for F . We assume that Q1 and Q2 are disjoint. We de�ne an

automaton A by A = (Q1 ∪Q2,δ , µ, F1 ∪ F2,R1 ∪R2) and

δ (p,a,q) =



δi(p,a,q) if p,q ∈ Qi for i = 1, 2,

0 otherwise,

µ(q) =



p µ
1
(q) if q ∈ Q1,

(1 − p) µ
2
(q) if q ∈ Q2.

�e automaton A chooses in its initial distribution a state from Q1 with probability

p and a state from Q2 with probability 1−p. A�erwards A simulates the automaton

A1 or A2, respectively.

�e proof that A is indeed an automaton for pE + (1 − p)F is le� to the reader.�

Lemma 6.24. Let E1� and E2 be expressions which both admit an automaton.

�ere is an automaton for E1 · E2.

Proof. Let Ai = (Qi ,δi , µi , Fi ,Ri) for i = 1, 2 be probabilistic Muller-automata such

that A1 is an automaton for E1� and A2 is an automaton for E2. �e new automaton

A resembles the usual construction for the concatenation of regular languages:

starting in A1, transitions which might enter a �nal state in A1 are detoured to the
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initial states of A2. Unfortunately, as we need the correspondence between �nal

states of A and head terms of E1E2 we have to enlarge the state set to satisfy this

condition.

Let F1 = F 0

1
∪

⋃
G∈HT(E1�) FG1 and F2 = F 0

2
∪

⋃
G∈HT(E2) FG2 as in De�nition 6.20.

Note that TT(E1�) = ∅. �us, we may assume F 0

1
= ∅ and R1 = ∅. Formally, we

de�ne A = (Q,δ , µ, F ,R) by

Q = Q1 \ F1 ∪ (HT(E�) ×Q2)

δ (p,a,q) =




δ1(p,a,q) if p,q ∈ Q1 \ F1

δ2(p′,a,q′) if p = (G,p′), q = (G,q′) for some G ∈ HT(E�)
δ1(p,a, FG

1
) µ2(q′) if p ∈ Q1 \ F1 and q = (G,q′) for some G

0 otherwise.

µ(q) =



µ1(q) if q ∈ Q1 \ F1

µ1(FG
1
) µ2(q′) if q = (G,q′) for some G ∈ HT(E�)

F =
�(G,q) �

G ∈ HT(E�), q ∈ F2

	

R =
�{(G,q) | q ∈ R} �

R ∈ R2, G ∈ HT(E�)	
.

Note that A is actually a probabilistic Muller automaton, i.e., δ (p,a) is a distribution

for every possible choice of p and a.

We show that the constructed automaton is an automaton for EF . Before we

prove the actual statement, we give the following auxiliary result: let G ∈ HT(E�),
QG = {G} × Q2, and κG : Q∞

2
→ Q∞G be the unique homomorphism with κG(q) =

(G,q). �en

Pr
w
A ((Q1 \ F1)nR) = ‖A1[FG1 ]F‖(w1 · · ·wn) · Pr

wn+1···

A2

(κ−1

G (R)), (6.2)

for all measurable sets R ⊆ QGQ
∞
G .

Let Rq = {τ ∈ Q∞G | (G,q)τ ∈ R}, i.e., all words from R that start with (G,q)
without the �rst le�er. �en, R =

⋃
q∈Q2

(G,q)Rq . Using Proposition 2.20 we

conclude

Pr
w
A ((Q1 \ F1)nR) =

∑
r0,··· ,rn−1∈Q1\F1

∑
q∈Q2

Pr
w
A (r0 · · · rn−1(G,q)Rq)

=




∑
r0,··· ,rn−1∈Q1\F1

∑
q∈Q2

µ1(r0)*
,

n−1∏
i=1

δ (ri−1,wi , ri)+
-
δ (rn,wn, F

G
1
)

· µ2(q) Pr
wn+2···

A(G,q) ((G,q)Rq)
if n > 0

∑
q∈Q2

µ1(FG1 ) µ2
(q) Pr

w
A(G,q)((G,q)Rq) if n = 0
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=
∑

r0,...,rn−1∈Q1\F1,rn∈F
G
1

µ1(r0)
n∏
i=1

δ1(ri−1,wi , ri) Pr
wn+1···

A2

(κ−1

G (R))

=
∑
n≥−1

‖A1[FG1 ]F‖(w1 · · ·wn) · Pr
wn+1···

A2

(κ−1

G (R)).

�is completes the proof of (6.2) and we are ready to prove the correctness of A.

For every GH ∈ HT(EF ) with G ∈ HT(E�) and H ∈ HT(F ) we de�ne FGH =
{(G,q) ∈ Q | q ∈ FH

2
}. Moreover, we set F0 = {(G,q) | G ∈ HT(E�), q ∈ F 0

2
}. �us,

F0 ∪
⋃

GH∈HT(EF ) FGH is a partition of F .

We show ‖A[FGH ]F‖ = ‖GH ‖ for all GH ∈ HT(EF ). Let w = w1 · · ·w |w | ∈ Σ∗.
Note that, by the structure of automatonA, the set of runs with non-zero probability

is contained in

⋃
G∈HT(E�)(Q1 \F1)∗({G}×Q2)∞. �us, taking the intersection of any

measurable set M with this set does not change the probability of M . We compute

‖A[FGH ]F‖(w) = Pr
w
A (Q |w |({G} × FH

2
))

=
∑

0≤n≤|w |
Pr

w
A ((Q1 \ F1)nQ |w |−n

G ({G} × FH
2
))

Next, we apply (6.2):

=
∑

0≤n≤|w |
‖A1[FG1 ]F‖(w1 · · ·wn) Pr

wn+1···w|w |
A (κ−1

G (Q |w |−n
G ({G} × FH

2
)))

=
∑
uv=w

‖A1[FG1 ]F‖(u) Pr
v
A2

(Q |v |
2
FH

2
)

By our assumption on A1 and A2 we have ‖A1[FG
1
]F‖ = ‖G‖ and ‖A2[FH2 ]F‖ = ‖H ‖.

�us

= (‖G‖ · ‖H ‖)(w) = ‖GH ‖(w).
Finally, we prove ‖A′‖ =

∑
T∈TT(EF )‖T ‖, where A′ = (Q,δ , µ, F0,R). At �rst, we

show the statement for �nite words. Let w = w1 · · ·w |w | ∈ Σ∗.

‖A[F0]F‖(w) =
∑

G∈HT(E�)
Pr

w
A (Q |w |({G} × F 0

2
))

As before, we split the runs in parts running in A1 and in A2:

=
∑

G∈HT(E�)
(‖A1[FG1 ]F‖ · ‖A2[F 0

2
]F‖)(w)

By assumption, we have ‖A2[F 0

2
]F‖ = ∑

H∈TT(F )‖H ‖:

=
∑

G∈HT(E�)

∑
H∈TT(F )

(‖G‖ · ‖H ‖)(w)
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=
∑

T∈TT(EF )
‖T ‖(w).

For the in�nite word case let w ∈ Σω . We obtain

‖A‖(w) = Pr
w
A ({ρ ∈ Qω | inf(ρ) ∈ R})

By construction R contains the κG images of the sets in R2:

=
∑

G∈HT(E�)
Pr

w
A ({ρ ∈ Qω | κ−1

G (inf(ρ)) ∈ R2})

�e complement of set

⋃
G(Q1 \ F1)∗({G} ×Q2)ω has probability zero:

=
∑

G∈HT(E�)
Pr

w
A ((Q1 \ F1)∗{ρ ∈ ({G} ×Q2)ω | κ−1

G (inf(ρ)) ∈ R2})

As before, we can seperate the runs in A1 and A2:

=
∑

G∈HT(E�)
(‖A1[FG1 ]F‖ · PrA2

({ρ ∈ Qω
2
| inf(ρ) ∈ R2})︸                                  ︷︷                                  ︸

=‖A2‖

)(w)

=
∑

G∈HT(E�)

∑
H∈TT(F )

(‖G‖ · ‖H ‖)(w)

=
∑

T∈TT(EF )
‖T ‖(w).

�erefore, A is an automaton for EF and the proof is complete. �

Our �nal step is to show that the recognizable series are also closed under

iteration, i.e., rule De�nition 6.12 (5). Before we can prove this result, we need a pre-

paratory result which shows that the expected values the elements of a convergent

sequence converge to the same value as the sequence itself.

We suppose that the next two results have already appeared in the literature on

probability theory, but we could not �nd a concrete reference.

Lemma 6.25. Let f : R→ R be a bounded, measurable function such that the limit

limx→∞ f (x) exists. Furthermore, let (Xn)n≥1 be a sequence of random variables

over probability spaces (Ωi ,Ai , Pri) such that

1. |E[Xn]| < ∞ and σ (Xn) < ∞ for all n ≥ 1,

2. E[Xn]→ ∞ for n → ∞,
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3. σ (Xn)/E[Xn]→ 0 for n → ∞,

where the expected values and standard deviations are computed with respect to

the corresponding probability spaces. �en, E[f (Xn)] converges for n → ∞ and

lim

n→∞
E[f (Xn)] = lim

x→∞
f (x).

Note that the requirement σ (Xn)/E[X ]→ 0 is really necessary. Consider the random

variables Xn de�ned by Pr(Xn = 0) = 1/2 and Pr(Xn = n) = 1/2. �us, E[Xn] = n/2.
On the other hand, let f (x) = 1/max(1,x). We obtain E[f (Xn)] = 1/2 + 1/2 · 1/n → 1/2 ,
0 = limn→∞ f (n/2). �is does not contradict the above lemma as σ (Xn) = n/2.

Proof (of Lemma 6.25). Let a = limx→∞ f (x) and M be a bound of |f |. Let ϵ > 0

be arbitrary. Choose a C > 0 such that 2M ≤ ϵ/2C2
and N0 large enough such that

|f (x) − a| ≤ ϵ/2 for all x ≥ N0. Next, choose N1 ≥ N0 such that 1/2E[Xn] ≥ N0 for

all n ≥ N1. Finally choose N2 ≥ N1 with 8Mσ (Xn)2/E[Xn]2 ≤ ϵ/2 for all n ≥ N2.

We obtain for n ≥ N2:

|E[f (Xn)] − a|
≤

∫
|f (Xn) − a| dPr

=

∫
|Xn−E[Xn]|≥1/2E[Xn]

|f (Xn) − a| dPr +

∫
|Xn−E[Xn]|<1/2E[Xn]

|f (Xn) − a| dPr

As f is bounded by M and |Xn − E[Xn]| < 1/2E[Xn] implies Xn ≥ 1/2E[Xn] ≥ N0 by

the choice of N1, we continue:

≤ 2M Pr

(
|Xn − E[Xn]| ≥ 1

2

E[Xn]
)
+

∫
Xn≥N0

|f (Xn) − a| dPr

By Chebyshev’s inequality and the choice of N0:

≤ 2M
σ (Xn)2

1/4E(Xn)2 +
ϵ

2

By the choice of N2:

≤ ϵ .

Hence, we obtain limn→∞ E[f (Xn)] = a. �

Corollary 6.26. Let (an)n≥0 a convergent sequence and (Xn)n≥1 N0-valued random

variables which satisfy conditions 1 to 3 of Lemma 6.25. �en

lim

n→∞

∑
k≥0

ak Pr(Xn = k) = lim

n→∞
an .
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Proof. We de�ne a function f : R→ R by

f (x) =



an if x ∈ [n,n + 1) for some n ∈ N0

0 otherwise.

As (an)n≥0 converges, so does f for x → ∞ and the limits agree. Furthermore, also

by the convergence of (an)n≥0, f is bounded. �us we can apply Lemma 6.25 and

obtain

lim

n→∞

∑
k≥0

ak Pr(Xn = k) = lim

n→∞
E[f (Xn)] = lim

x→∞
f (x) = lim

n→∞
an,

where the �rst equality holds as the Xn only a�ain values in N0. �

We are now ready to prove the closure of recognizable series under iteration.

Lemma 6.27. Let E� + F be an expression which admits an automaton. �ere are

automata for E∗F + Eω and for Eω and E∗F .

Proof. We show the “E∗F + Eω” case. �e other cases are analogous. Let A =
(Q,δ , µ,X ,R) be an automaton for E� + F .

1
�ere is a partition X = X0 ∪⋃

E ′∈HT(E�+F )XE ′ such that De�nition 6.20 holds. Let XE =
⋃

E ′∈HT(E�)XE ′. We

may assume µ(XE) < 1. Otherwise, ‖E‖ ≡ 1 and ‖F ‖ ≡ 0 as all states in XE are

sinks.

We construct an automatonA′which simulates the automatonA until it can reach

a state from XE . At this point, instead of entering XE , the automaton accumulates

the acceptance probability of the computation so far, and resets the simulated

automaton to start a new computation. In order to de�ne an acceptance condition

based on the number of computations, we mark states that start a new computation.

Moreover, whenever a new computation is started, we add a factor
1

1−µ(XE ) to account

for an arbitrary number of computations on the empty word.

For every q ∈ Q let q be a new, marked state and for a set P ⊆ Q let P contain

all states p for p ∈ P . We write q̃ if both q and q can be used, i.e., r = q̃ stands for

r = q or r = q. De�ne A′ = (Q′,δ ′, µ′,X ′,R′) by

Q′ = Q0 ∪Q0 where Q0 = Q \ XE,

δ ′(p̃,a, q̃) =



δ (p,a,q) if q̃ = q∑
r∈XE δ (p,a, r ) µ(q)

1−µ(XE ) if q̃ = q,

1
We use X for the �nal states (exit states) to avoid the name clash
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µ′(q̃) =



µ(q)
1−µ(XE ) if q̃ = q

0 otherwise,

X ′ = (X \ XE) ∪ X \ XE,

R′ = R ∪R1 where R1 =
{
R ⊆ Q′ ��� Q0 ∩ R , ∅

}
.

We show thatA′ is an automaton for E∗F+Eω . Note that TT(E∗F+Eω) = {{E∗F ′ |
F ′ ∈ TT(F )}} ∪ {{Eω}} and HT(E∗F + Eω) = {{E∗F ′ | F ′ ∈ HT(F )}}.

Let P ⊆ Q be a set of states, R ⊆ Q′∞ a measurable set of (�nite or in�nite) runs,

and n ≥ 0. �en for all w ∈ Σ∞:

Pr
w
A′

((
Q0Q

∗
0

)n
PR

)
=

∑
u1···unv=w
u1,...,un∈Σ

+

*
,

n∏
i=1

‖A[XE]F‖(ui)
1 − µ(XE)

+
-

∑
q∈P

µ(q)
1 − µ(XE) Pr

v
A′q
(qR). (6.3)

Let w = (wi)i∈pos(w) ∈ Σ∞. We compute

Pr
w
A

((
Q0Q

∗
0

)n
PR

)
Every run in (Q0Q

∗
0
)nPR contains exactly n + 1 positions from Q0 before entering R:

=
∑

0=i0<i1<···<in≤|w |
Pr

w
A

��
q̃0q̃1 · · ·

� {i | q̃i ∈ Q0} = {i0, . . . , in},
qin ∈ P , q̃in+1 · · · ∈ R

	�

We apply Proposition 2.20 to move the �rst in positions out of PrA′:

=
∑

0=i0<i1<···<in≤|w |

∑
q̃0,...,q̃in−1∈Q

′, q̃in ∈P{i |q̃i=qi }={i0,...,in}

µ′(q̃0)*
,

in∏
i=1

δ ′(q̃i−1,wi , q̃i)+
-

Pr
win+1···

A′q̃in
(q̃inR)

Next, we insert the de�nition of δ ′:

=
∑

0=i0<i1<···<in≤|w |

∑
qij ∈Q0,qij+1,...,qij+1

−1∈Q0

(j=0,...,n−1)

∑
qin ∈P

µ(q0)
1 − µ(XE)

n∏
j=1



*.
,

i j−1∏
i=i j−1+1

δ (qi−1,wi ,qi)+/
-

*.
,

∑
r∈XE

δ (qi j−1,wi j , r )
µ(qi j )

1 − µ(XE)
+/
-


· Pr

win+1···

A′qin

(qinR)
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�e sums over qi j , . . . ,qi j+1−1 for j = 0, . . . ,n − 1 are independent from each other.

�us, we can apply distributivity and move the sums into the product over the j’s:

=
∑

0=i0<i1<···<in≤|w |

n∏
j=1

1

1 − µ(XE)
*.....
,

∑
qij−1
,...,qij−1∈Q0

qij ∈XE

µ(qi j−1
)

i j∏
i=i j−1+1

δ (qi−1,wi ,qi)
+/////
-

·
1

1 − µ(XE)
∑
q∈P

µ(q) Pr
win+1···

A′q
(qR)

=
∑

u1···unv=w
u1,...,un∈Σ

+,v∈Σ∞

*.
,

n∏
j=1

‖A[XE]F‖(ui)
1 − µ(XE)

+/
-
·

1

1 − µ(XE)
∑
q∈P

µ(q) Pr
v
A′q
(qR).

�is shows (6.3). Next, we apply (6.3) to the case where R is the set of all �nal states.

Let Y ⊆ Q0 be a set of states, let Ỹ = Y ∪ Y . We show

‖A′[Ỹ ]F‖ ≡ ‖E‖∗‖A[Y ]F‖. (6.4)

Let w ∈ Σ∗. We obtain

‖A′[Ỹ ]F‖(w)
= Pr

w
A′(Q′∗Y ) + Pr

w
A′(Q′∗Y )

We apply (6.3) twice: to the �rst summand with R = Q∗
0
Y and to the second

summand with R = {ε}:

=
∑
n≥0

∑
u1···unv=w

u1,...,un∈Σ
+,v∈Σ∗

*.
,

n∏
j=1

‖A[XE]F‖(ui)
1 − µ(XE)

+/
-

∑
q∈Q0

µ(q)
1 − µ(XE) Pr

v
A′q
(qQ∗

0
Y )

+
∑
n≥0

∑
u1···unv=w

u1,...,un∈Σ
+,v∈Σ∗

*.
,

n∏
j=1

‖A[XE]F‖(ui)
1 − µ(XE)

+/
-

∑
q∈Y

µ(q)
1 − µ(XE) Pr

v
A′q
(q)

Using the series expansion of 1/1−µ(XE ) and thatδ ′ andδ agree on runs only containing

states from Q0 we obtain:

=
∑
n≥0

∑
u1···unv=w

u1,...,un ,v∈Σ
+

∑
`0,...,`n∈N0

*.
,

n∏
j=1

µ(XE)`j−1 ‖A[XE]F‖(ui)+/
-
µ(XE)`n Pr

v
A(Q+0Y )

+
∑
n≥0

∑
u1···un=w
u1,...,un∈Σ

+

∑
`0,...,`n∈N0

*.
,

n∏
j=1

µ(XE)`j−1 ‖A[XE]F‖(ui)+/
-
µ(XE)`n µ(Y )
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Any sequencev1, . . . ,vn of words can be bijectively mapped to a sequenceu1, . . . ,uk
of non-empty words and a sequence `0, . . . , `n of non-negative integers counting

the empty words between the non-empty ones. Moreover, we can rewrite the

second sum by replacing µ(Y ) with Pr
v
A(Y ) = µ(Y ) 1{ε}(v):

=
∑
n≥0

∑
u1···unv=w

u1,...,un ,v∈Σ
∗

*.
,

n∏
j=1

‖A[XE]F‖(ui)+/
-
(Pr

v
A(Q+0Y ) + Pr

v
A(Y ))

= (‖E‖∗‖A[Y ]F‖)(w) .
�is shows (6.4). Let E∗F ′ ∈ HT(E∗F + Eω). By the above computation we

obtain ‖A′[X̃F ′]F‖ ≡ ‖E∗F ′‖. �us, A′ satis�es De�nition 6.20 (2). By de�nition

of δ ′, if q ∈ Q0 is a sink state in A so is q and q in A′. Hence, the partition

X ′ = X̃0 ∪
⋃

F ′∈TT(F ) X̃F ′ satis�es De�nition 6.20 (3).

Next, we show De�nition 6.20 (1). First, consider an in�nite word w ∈ Σω . Note

that the set of runs ρ with inf(ρ) ∈ R and the set of runs ρ′ with inf(ρ′) ∈ R1 are

disjoint. �us ‖A‖(w) = ‖A[R]R‖(w) + ‖A[R1]R‖(w). We compute ‖A[R1]R‖(w):
‖A[R1]R‖(w) = Pr

w
A ({q̃0q̃1 · · · | q̃i = qi for in�nitely many i })

As Q∗
0
Q0 is pre�x-free, we have

⋂
n≥1

(Q∗
0
Q0)nQ′ω = {ρ ∈ Q′ω | inf(ρ) ∩ Q0 , ∅}.

By the continuity of measures we conclude:

= lim

n→∞
Pr

w
A

((
Q

0
Q∗

0

)n
Q

0
Q′ω

)
We apply (6.3) with P = Q0 and R = Q′ω :

= lim

n→∞

∑
u1···unv=w

u1,...,un∈Σ
+,v∈Σω

n∏
i=1

‖A[XE]F‖(ui)
1 − µ(XE) . (6.5)

Next, we derive that ‖E‖ω is equal to the expression (6.5).

‖E‖ω(w) = lim

n→∞

∑
u1···unv=w

u1,...,un∈Σ
∗,v∈Σω

n∏
i=1

‖E‖(ui)

= lim

n→∞

n∑
k=0

∑
u1···unv=w

u1,...,un∈Σ
∗,v∈Σω

|{i |ui,ε }|=k

n∏
i=1

‖E‖(ui)
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�ere are n over k combinations to choose k non-empty words from n possible

words:

= lim

n→∞

n∑
k=0

∑
u1···ukv=w

u1,...,uk∈Σ
+,v∈Σω

(
n

k

)
(‖E‖(ε))n−k

k∏
i=1

‖E‖(ui)

= lim

n→∞

n∑
k=0

*...
,

∑
u1···ukv=w

u1,...,uk∈Σ
+,v∈Σω

k∏
i=1

‖E‖(ui)
1 − ‖E‖(ε)

+///
-︸                                   ︷︷                                   ︸

= ak

(
n

k

)
(‖E‖(ε))n−k(1 − ‖E‖(ε))k

(6.6)

Now, we analyse the parenthesised expression ak and show that ak converges for

k → ∞. By assumption we have ‖E‖ = ‖A[XE]F‖. As every state in XE is a sink

state, ‖E‖ is pre�x summable. �us, so is the series S given by S(w) = ‖E‖(w)
1−‖E‖(ε)

for w , ϵ and S(ε) = 0. We can write ak = (Sk · 1)(w). By Lemma 6.7 Sk · 1 is

bounded by 1. Since series concatenation is monotonic, we obtain ak = (Sk ·1)(w) ≥
(Sk · (S ·1))(w) = (Sk+1 ·1)(w) = ak+1 ≥ 0. Hence, the sequence (ak)k≥0 is monotonic

and bounded, and thus convergent. �erefore, we can apply Corollary 6.26, where

every Xn is distributed as a binomial distribution with parameters n and 1 − ‖E‖(ε),
i.e., E[Xn] = n(1 − ‖E‖(ε)) and σ (Xn) =

√
n(1 − ‖E‖(ε))‖E‖(ε). As ‖E‖(ε) < 1 by

assumption, this choice of the Xn satis�es the requirements of Corollary 6.26. We

obtain

(6.6) = lim

n→∞

∑
u1···unv=w

u1,...,un∈Σ
+,v∈Σω

n∏
i=1

‖E‖(ui)
1 − ‖E‖(ε) . (6.7)

Since ‖E‖ = ‖A[XE]F‖ by assumption, we have that (6.5) and (6.7) equal to each

other, and so ‖Eω ‖(w) = ‖A[R1]F‖(w).
We show ‖A[R]R‖(w) = ∑

F ′∈TT(F )‖E∗F ‖(w). Note that any run ρ ∈ Q′ω with

inf(ρ) ∈ R can only contain �nitely many states from Q0. �erefore

‖A[R]R‖(w) = Pr
w
A ({ρ ∈ Q′ω | inf(ρ) ∈ R})

= Pr
w
A

((Q0Q
∗
0
)∗Q0R

)
where R = {ρ ∈ Qω

0
| inf(ρ) ∈ R}

Since (Q0Q
∗
0
)∗Q0R =

⋃
n≥0

(Q0Q
∗
0
)nQ0R and the sets (Q0Q

∗
0
)nQ0R are pairwise dis-

joint for di�erent values of n, we conclude

=
∑
n≥0

Pr
w
A

((Q0Q
∗
0
)nQ0R

)
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Chapter 6 Probabilistic Regular Expressions on Words

By (6.3) we obtain:

=
∑
n≥0

∑
u1···unv=w

u1,...,un∈Σ
+,v∈Σω

*
,

n∏
i=1

‖A[XE]F‖(ui)
1 − µ(XE)

+
-

∑
q∈Q0

µ(q)
1 − µ(XE) Pr

v
A′q
(qR)

As A and A′ agree on runs from Qω
0

, XE only contain sink states, and R = Q0R:

=
∑
n≥0

∑
u1···unv=w

u1,...,un∈Σ
+,v∈Σω

*
,

n∏
i=1

‖E‖(ui)
1 − ‖E‖(ε)

+
-

1

1 − ‖E‖(ε) Pr
v
A(R)

As before we move from sum over non-empty words, to the sum over all words by

expanding the geometric series:

=
∑
n≥0

∑
u1···unv=w

u1,...,un∈Σ
∗,v∈Σω

*
,

n∏
i=1

‖E‖(ui)+
-

∑
F ′∈TT(F )

‖F ′‖(v)

=
∑

F ′∈TT(F )
‖E∗F ‖(w) .

Now, assume w ∈ Σ∗ is a �nite word. By (6.4) we have

‖A[X̃0]F‖(w) = (‖E‖∗ · ‖A[X0]F‖)(w) =
∑

F ′∈TT(F )
(‖E‖∗‖F ′‖)(w)

=
∑

H∈TT(E∗F )
‖H ‖(w).

�is completes the proof. We have shown that A′ is an automaton for E∗F + Eω .

�e cases E∗F and Eω are completely analogous: in the �rst case omit all repeated

states in A′, and in the second state omit all �nal states and include only R1 as

repeated states. �

Corollary 6.28. Let E be a PRE. �en, there is an automaton for E.

Proof. By Lemmas 6.21 to 6.24 and 6.27 the set of all expressions E, which admit

an automaton for E, satis�es the closure conditions of De�nition 6.12. �erefore,

this set already contains all probabilistic regular expressions. �

6.5 From Automata to Expressions

In this section, we show that there is an equivalent probabilistic regular expression

for every probabilistic Muller-automaton. In contrast to [BGMZ12], where this step

of the proof resembles Kleene’s classical proof, we use a di�erent construction in
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6.5 From Automata to Expressions

order to capture the Muller-acceptance condition. �e main tool in our proof are

pre�x-free sets of runs. �ese allow us to uniquely decompose runs which arise

from concatenation or iteration of pre�x-free sets of runs.

6.5.1 Prefix-free sets of runs

�e following de�nition is folklore, but repeated here for completeness.

Definition 6.29. Let Q be an alphabet and L ⊆ Q∗.

1. �e set of all pre�xes of L is de�ned by

Pre(L) = �
u ∈ Q∗

�
∃v ∈ Q∗ : uv ∈ L

	
.

2. �e set L is pre�x-free if for every w ∈ L we have

Pre({w}) ∩ L = {w}.

Concatenation and iteration of pre�x-free languages removes the ambiguity from

these operations and yields unique decompositions.

Proposition 6.30. Let L ⊆ Q∗ be pre�x-free and K ⊆ Q∞ with L+K ∩K = ∅. �en

1. If w ∈ LQ∞, then w = uv for unique u ∈ L and v ∈ Q∞.

2. If w ∈ L∗K , then w = u1 · · ·unv for unique a n ≥ 0 and u1, . . . ,un ∈ L, v ∈ K .

Proof. 1. Assume uv = u′v′ with u,u′ ∈ L and v,v′ ∈ Q∞. if |u | < |u′|, then u is a

strict pre�x of u′. �is contradicts the pre�x-freeness of L. Analogously, |u| > |u′| is

not possible. �us, u = u′ and v = v′.
2. Consider words u1 · · ·unv = u

′
1
· · ·u′mv

′
with ui ,u

′
i ∈ L and v,v′ ∈ K . Assume

an i ≤ min(n,m)withui , u′i . Let i be minimal with this property. �us,ui · · ·unv =
u′i · · ·u

′
mv ∈ LQ∗. By 1. we have ui = u′i . A contradiction. Hence, ui = u′i for all

i ≤ min(n,m). Next, assume n < m, i.e., v = u′n+1
· · ·u′mv

′ ∈ K ∩ L+K . �is

contradicts the assumption L+K ∩ K = ∅. �erefore,m = n and so v = v′. �

Lemma 6.31. Let L ⊆ Q+ be pre�x-free. �en Lω =
⋂

n≥0
LnQω

.

Proof. �e direction “⊆” is clear. Let w ∈ LnQω
for all n ≥ 0. For any n ≥ 0

there are words w (n)
1
, . . . ,w (n)

n ∈ L and v(n) ∈ Qω
with w = w (n)

1
· · ·w (n)

n v(n)
. Let

0 ≤ n ≤ m. We have w = w (n)
1
· · ·w (n)

n v(n) = w (m)
1
· · ·w (m)

n (w (m)
n+1
· · ·w (m)

m v(m)).
Hence, by Proposition 6.30, we obtain w (n)

i = w
(m)
i for all 1 ≤ i ≤ n. �us, the word

w (1)
1
w (2)

2
· · · equals w and we have w ∈ Lω . �
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Chapter 6 Probabilistic Regular Expressions on Words

Note that Lω =
⋂

n≥0
LnQω

does not hold for general languages L. Consider

Q = {a, b} and the sequence (wi)i≥0 of words de�ned by w0 = a and wn+1 = w
n+1

n b
for n ≥ 0, i.e., w1 = ab, w2 = ababb and so on. As wn is a strict pre�x of wn+1, there

is a word w ∈ Qω
such that every wn is a pre�x of w . Let L = {wn | n ≥ 0}. Clearly,

w ∈ LnQω
for every n ≥ 0, but w < Lω .

Using the results of Proposition 6.30, we can decompose the probability of

concatenation and iteration of pre�x-free sets of runs.

Lemma 6.32. Let A = (Q,δ , µ, F ,R) be a probabilistic Muller-automaton, q ∈ Q ,

L ⊆ Q+ such that Lq is pre�x-free, and K ⊆ Q∞. �en

1. PrA(LqK) = PrA(Lq) · PrAq (qK),

2. If (Lq)+K ∩ K = ∅ then PrAq (q(Lq)∗K) =
�
PrAq (qLq)

�∗
· PrAq (qK),

3. PrAq (q(Lq)ω) =
�
PrAq (qLq)

�ω
,

where Aq = (Q,δ , 1{q}, F ,R) for all q ∈ Q .

Proof. 1. Let w = w1 · · ·wn ∈ LqK . By Proposition 6.30 there is a unique k ≥ 1

such thatw1 · · ·wk ∈ Lq andwk+1 · · ·wn ∈ K . �us, the sets (Lq∩Qn)K are pairwise

disjoint. We conclude

Pr
w
A (LqK) =

∑
n≥1

Pr
w
A ((Lq ∩Qn)K)

=
∑
n≥1

Pr
w1···wn−1

A (Lq ∩Qn) Pr
wn ···
Aq

(qK)

=
�
PrA(Lq) · PrAq (qK)

�(w).

2. Again, by Proposition 6.30, the sets (Lq)nK are pairwise disjoint. Hence

Pr
w
Aq
(q(Lq)∗K) =

∑
n≥0

Pr
w
Aq
(q(Lq)nK) =

∑
n≥0

((
PrAq (qLq)

)n
· PrAq .(qK)

)(w)

=
�
PrAq (qLq)

�∗(w)

3. We apply the result from 1. and the de�nition of in�nity iteration. �us

Pr
w
Aq
(q(Lq)ω) = lim

n→∞
Pr

w
Aq
(q(Lq)nQω) = lim

n→∞

��
PrAq (qLq)

�n
· PrAq (qQω)�(w)

= lim

n→∞

��
PrA(qLq)�n · 1�(w) = �

PrA(qLq)�ω(w). �
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In order to obtain an inductive proof, based on the number of visited states, we

next show how the Kleene-iteration and ω-iteration of a set can be decomposed into

iterations of smaller, pre�x-free sets. �is lemma will be the major ingredient for

the construction of an equivalent probabilistic regular expression for a probabilistic

Muller-automaton.

For any two sets of states F ,X ⊆ Q let

RXF =
�
ρ ∈ Xω �

inf(ρ) = F
	
.

Lemma 6.33. Let Q be a �nite, non-empty set, ∅ , X ⊆ Q a subset of Q , and

X = {x1, . . . ,xm} an enumeration of X . Furthermore, let ∅ , F ( X . We de�ne the

following sets Ck for 0 ≤ k ≤ m:

Ck =



X ∗
1
x1X

∗
2
x2 · · · xk−1X

∗
k
xk if k > 0

{ε} if k = 0,

where Xi = X \ {xi}. �e following equalities hold:

X ∗ =
m⋃
k=1

(Cm)∗ ·Ck−1 · X
∗
k , (6.8)

RXF =
m⋃
k=1

(Cm)∗ ·Ck−1 · R
Xk
F , (6.9)

RXX = (Cm)ω , (6.10)

Moreover, the unions in the �rst and second equation are over pairwise disjoint

sets.

Proof. We show the (6.8). As xi ∈ X and Xi ⊆ X , the direction “⊇” is clear. Let

ϕ : N→ {1, . . . ,m} map a positive integer n to the positive remainder when divided

bym, i.e., we have n = a ·m + ϕ(n) for some a ≥ 0 and all n > 0.

Let w ∈ X ∗. We inductively de�ne a sequence (ni)i≥0 of non-negative integers

by n0 = 0 and

ni = min

��
k ∈ pos(w) �

k > ni−1, wk = xϕ(i)
	
∪ {∞}�

for all i > 0. Note that ni+1 > ni if ni < ∞. Let N = min{i | ni = ∞} and de�ne

ui = wni−1+1 · · ·wni for all 1 ≤ i < N ,

uN = wnN−1+1 · · ·w |w |.
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We have w = u1 · · ·uN , and for i < N it holds that

ui ∈ X
∗
ϕ(i)xϕ(i) and uN ∈ X

∗
ϕ(N ).

�us, for every j ≥ 0 of m we have umj+1 · · ·umj+m ∈ C
X
m . Let N = a ·m + b with

1 ≤ b ≤ m and a ≥ 0. We obtain

w = u1 . . .uN =
*.
,

a−1∏
j=0

umj+1 · · ·umj+m
+/
-

�
uma+1 · · ·uma+(b−1)

�
uma+b .

�us, w ∈ (Cm)∗Cϕ(N )−1
X ∗
ϕ(N ).

We show that sets of the form (Cm)∗Ck−1Lk , where Lk ⊆ X∞
k

, are pairwise disjoint

for di�erent values of k . Let k,k′ ∈ {1, . . . ,m} and assume w ∈ (Cm)∗Ck−1Lk ∩
(Cm)∗Ck ′−1Lk ′. Let w = u1 · · ·unvz = u′

1
· · ·u′n′v

′z′ with u1, . . . ,un,u
′
1
, . . . ,u′n′ ∈ Cm,

v ∈ Ck−1, v
′ ∈ Ck ′−1, z ∈ Lk , and z′ ∈ Lk ′ .

Assume n < n′. Hence, vz = u′n+1
· · ·u′n′v

′z′. As u′n+1
∈ Cm, it contains a pre�x p

in Ck = Ck−1X
∗
k
xk , i.e., p = p1p2xk with p1 ∈ Ck−1 and p2 ∈ X

∗
k
. By Proposition 6.30

we have p1 = v . �us, p2xk is a pre�x of z. But z does not contain the symbol xk , so

p2xk cannot be a pre�x of z. A contradiction. Analogously n > n′ is not possible.

�us n = n′ and ui = u′i for all 1 ≤ i ≤ n as Cm is pre�x-free by Proposition 6.30.

Hence, vz = v′z′. If k < k′ then vz would have a pre�x in Ck ′, which results in a

contradiction as before. Similarly, k > k′ is not possible. �erefore, k = k′. �is

shows that the unions in (6.9) and (6.10) are unions of pairwise disjoint sets.

Next, we consider an in�nite word w ∈ Σω and show (6.9) and (6.10). In both

cases the direction “⊇” is clear. We will use the sequence (ni)i≥0 as de�ned above.

We show (6.9). Let w ∈ RXF with F ( X . �us, there is a x ∈ X which occurs only

�nitely o�en in w . Hence, we have ni = ∞ for some i ≥ 0. Let N be the minimal

index i with ni = ∞. We de�ne words ui as in the previous case. Asw is in�nite, we

have uN ∈ X
ω
ϕ(N ). Furthermore, inf(uN ) = inf(w) = F . �us uN ∈ R

Xϕ(N )
F . As before,

we obtain w ∈ (Cm)∗Cϕ(N )−1
R
Xϕ(N )
F .

We show (6.10). Let w ∈ RXX . As every xk ∈ X occurs in�nitely o�en in w , we

have ni < ∞ for all i ≥ 0. Using the words ui from the previous two cases, we have

ui ∈ Xϕ(i)xϕ(i) for all i ≥ 1 and w = u1u2 · · · =
∏

j≥0
(ujm+1 · · ·ujm+m) ∈ (CX

m)ω . �

6.5.2 Constructing an Expression for an Automaton

�e next lemma is an extension of the syntax rule De�nition 6.12 (5), which allows

an additional test for the empty word.

Lemma 6.34. If ε +E�+ F is a PRE, then there are expressions Ẽ∗, Ẽ∗, and Ẽω such

that Ẽ∗ ≡ E∗, Ẽ+ ≡ E+, Ẽω ≡ Eω , and ε + Ẽ+ + Ẽω + Ẽ∗F is also an expression.
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Proof. By De�nition 6.12 (5), we have that E∗ + E∗F + Eω is an expression. We

substitute this expression in ε + E� + F using Lemma 6.18 and obtain that

ε + E
�
E∗ + E∗F + Eω

�
+ F ≡ ε + EE∗ + (EE∗ + ε)F + EEω

is a probabilistic regular expression. Se�ing Ẽ+ = EE∗, Ẽ∗ = ε + EE∗, and Ẽω = EEω

completes the proof. �

Lemma 6.35. Let A be a probabilistic Muller-automaton. �ere is a complete PRE

E with ‖A‖ = ‖E‖.

Proof. Let A = (Q,δ , µ, F ,R). Given a set X ⊆ Q and a state p ∈ Q such that

either p ∈ X or X = ∅, we construct expressions EXp of the following form:

EXp = ε +
∑

q∈Q\X

EXp,q� +
∑
q∈X

EXp,q +
∑
∅,R⊆X

EXp,inf=R, (6.11)

where the subexpressions EXp,q and EX
p,inf=R

have the following semantics




E
X
p,q




 = PrAp (pX ∗q), (6.12)




E
X
p,inf=R




 = PrAp

��
ρ ∈ Xω �

inf(ρ) = R
	�
. (6.13)

We use induction on |X |. ForX = ∅, we have ‖E∅p,q ‖ = ‖
∑

a∈Σ δ (p,a,q)a‖. We con-

struct an expression E∅p using De�nition 6.12 (1) to De�nition 6.12 (3), distributivity,

and associativity:

E∅p = ε +
∑
q∈Q

*
,

∑
a∈Σ

a δ (p,a,q)+
-
� = ε +

∑
a∈Σ

a *.
,

∑
q∈Q

δ (p,a,q)�+/
-
.

Assume X , ∅ and let p ∈ X . Fix an enumeration {x1, . . . ,xm} with xm = p of X
and let Xi = X \ {xi}. Furthermore, let x0 = xm. By induction hypothesis, there are

expressions

EXi+1

xi = ε + E
Xi+1

xi ,xi+1
� +

∑
q∈Q\X

EXi+1

xi ,q � +
∑

q∈Xi+1

EXi+1

xi ,q +
∑

∅,R⊆Xi+1

EXi+1

xi ,inf=R
,

for every i = 0, . . . ,m − 1. We show that for every k = 0, . . . ,m − 1, the following

expression E′
k

is a probabilistic regular expression:

E′k = ε + Ck+1� +
∑

q∈Q\X

k∑
i=0

CiEXi+1

xi ,q � +
∑
q∈X

k−1∑
i=0

CiEXi+1

xi ,q +
∑

q∈Xk+1

CkEXk+1

xk ,q
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+
∑
∅,R(X

∑
i∈{0,...,k−1}

xi+1<R

CiEXk+1

xi ,inf=R
,

where we set Ci = EX1

x0,x1
EX2

x1,x2
· · · EXi+1

xi−1,xi for i > 0, and C0 as the empty expression.

For k = 0, E′
k

equals to EX1

x0,x1
. Assume that E′

k
is a probabilistic regular expression for

k < m − 1, we show that the same holds for E′
k+1

. Using Lemma 6.18, we substitute

the � a�er Ck+1 in E′
k

by EXk+2

xk+1

resulting in the following expression:

E′′ = ε + Ck+1

*.
,
ε + EXk+2

xk+1
,xk+2

� +
∑

q∈Q\X

EXk+2

xk+1
,q� +

∑
q∈Xk+2

EXk+2

xk+1
,q +

∑
∅,R⊆Xk+2

EXk+2

xk+1
,inf=R

+/
-

+
∑

q∈Q\X

k∑
i=0

CiEXi+1

xi ,q � +
∑
q∈X

k−1∑
i=0

CiEXi+1

xi ,q +
∑

q∈Xk+1

CkEXk+1

xk ,q

+
∑
∅,R(X

∑
i∈{0,...,k−1}

xi+1<R

CiEXk+1

xi ,inf=R
,

Using associativity, commutativity, and distributivity, we obtain

= ε + Ck+1E
Xk+2

xk+1
,xk+2

� +
∑

q∈Q\X

*
,
Ck+1E

Xk+2

xk+1
,q� +

k∑
i=0

CiEXi+1

xi ,q �
+
-

+
∑
q∈X

k−1∑
i=0

CiEXi+1

xi ,q +
∑

q∈Xk+1

CkEXk+1

xk ,q + Ck+1︸                                           ︷︷                                           ︸
=
∑
q∈Q

∑k
i=0

CiE
Xi+1

xi ,q

+
∑

q∈Xk+2

Ck+1E
Xk+2

xk+1
,q

+
∑
∅,R(X

∑
i∈{0,...,k−1}

xi+1<R

CiEXk+1

xi ,inf=R
+

∑
∅,R⊆X

∑
i=k+1

xi+1<R

CiEXi+1

xi ,inf=R
.

�is expression is equal to E′
k+1

. Hence, we obtain that E′
k

is a probabilistic regular

expression for all k = 0, . . . ,m − 1. In particular, the expression E′m−1
is of the

following form:

E′m−1
= ε + Cm� +

∑
q∈Q\X

m−1∑
i=0

CiEXi+1

xi ,q � +
∑
q∈X

m−2∑
i=0

CiEXi+1

xi ,q +
∑
q∈Xm

Cm−1E
Xm
xm−1,q

+
∑
∅,R(X

∑
i∈{0,...,m−2}

xi+1<R

CiEXm−1

xi ,inf=R
,
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Next, we apply Lemma 6.34 iterating Cm and obtain the following expression E′′′:

E′′′ = ε + C+m +
∑

q∈Q\X

m−1∑
i=0

C∗mCiE
Xi+1

xi ,q � +
∑
q∈X

m−2∑
i=0

C∗mCiE
Xi+1

xi ,q

+
∑
q∈Xm

C∗mCm−1E
Xm
xm−1,q +

∑
∅,R(X

m−1∑
i=0

xi+1<R

C∗mCiE
Xi+1

xi ,inf=R
+ Cωm ,

where we used the expressions C̃+m, C̃∗m, C̃ωm from Lemma 6.34 without the tilde to

increase the readability of the formula.

We de�ne the expressions EXx0,q , EX
x0,inf=R

, and EX
x0,inf=X

for every state q ∈ Q and

subset ∅ , R ( X by

EXx0,q =



∑m−1

i=0
C∗mCiE

Xi+1

xi ,q if q , xm∑m−2

i=0
C∗mCiE

Xi+1

xi ,q + C+m if q = xm,

EXx0,inf=R =

m−1∑
i=0

xi+1<R

C∗mCiE
Xi+1

xi ,inf=R
,

EXx0,inf=X = Cωm .

�us, by using commutativity and associativity, we obtain that E′′′ is in the form of

(6.11).

We still need to show that just de�ned expressions satisfy the semantics properties

(6.12) and (6.13). We �rst show (6.12): since C+m ≡ C∗mCm−1E
Xm
xm−1,xm , we can assume

that EXx0,q =
∑m−1

i=0
C∗mCiE

Xi+1

xi ,q for all q ∈ Q . Let q ∈ Q .




E
X
x0,q




 =
m−1∑
i=0

(


E
X1

x0,x1




 · · ·



E

Xm
xm−1,xm





)∗


EX1

x0,x1




 · · ·



E

Xi+1

xi ,q





By induction hypothesis, we obtain

=

m−1∑
i=0

(
PrAx

0

(x0X
∗
1
x1) · · · PrAxm−1

(xm−1X
∗
mxm)

)∗
· PrAx

0

(x0X
∗
1
x1) · · · PrAxi−1

(xi−1X
∗
i xi) PrAxi

(xiX ∗i+1
q)

By Lemma 6.32 we move concatenation and iteration in the probability measure

∗
=

m−1∑
i=0

(
PrAx

0

�
x0X

∗
1
x1 · · · xm−1X

∗
mxm

�)∗
PrAx

0

�
x0X

∗
1
x1 · · · xiX

∗
i+1
q

�
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∗
=

m−1∑
i=0

PrAx
0

(
x0

�
X ∗

1
x1X

∗
2
· · ·X ∗m−1

xm
�∗
X ∗

1
x1X

∗
2
· · ·X ∗i xiX

∗
i+1
q
)

Finally, we apply (6.8) from Lemma 6.33 to obtain

= PrAx
0

(x0X
∗q).

�e requirements of Lemma 6.32 in the two equalities ∗ are satis�ed: Let Ci =

X ∗
1
x1 · · · xi−1X

∗
i xi . We showC+mCiX

∞
i+1
∩CiX

∞
i+1
= ∅ for every 0 ≤ i ≤ m − 1. Assume

w ∈ C+mCiX
∗
i+1
∩ CiX

∞
i+1

, i.e., w = u1x1u2x2 · · ·umxmv and w = u′
1
x1 · · ·u

′
ixiv

′
for

ui ,u
′
i ∈ X

∗
i , v ∈ Q+, and v′ ∈ X∞i+1

. By Proposition 6.30 we have ui = u′i for i ≤ i .
�us, ui+1xi+1 · · ·umx1v = v

′
. �is is a contradiction, as xi+1 occurs on the le� side

of the equation, but not on the right side. �erefore, C+mCiX
∞
i+1
∩CiX

∞
i+1
= ∅. Hence,

C+mK ∩ K = ∅ and so C+mKq ∩ Kq = ∅ for all K ⊆ CiX
ω
i+1

and q ∈ Q . �erefore, we

can apply Lemma 6.32 and we obtain (6.12).

For (6.13) �rst consider the case R , X . �e calculation is essentially the same as

in the previous case.

‖EXx0,inf=R ‖ =

m=1∑
i=0

�
PrAx

0

(x0X
∗
1
x1) · · · PrAxm−1

(xm−1X
∗
mxm)

�

· PrAx
0

(x0X
∗
1
x1) · · · PrAxi−1

(xi−1X
∗
i xi)

· PrAxi
({ρ ∈ Xω

i+1
| inf(ρ) = R})

As before, we apply Lemma 6.32:

=

m−1∑
i=0

PrAx
0

�
x0C

∗
mCi{ρ ∈ Xω

i+1
| inf(ρ) = R}�

By Lemma 6.33 we obtain

= PrAx
0

�{ρ ∈ Xω | inf(ρ) = R}�
.

Finally, consider the case R = X . We de�ned EX
x0,inf=X

= (Cm)ω . By Lemma 6.32 we

know ‖Cωm‖ =
(
PrAx

0

(x0Cm)
)ω
= PrAx

0

(x0C
ω
m) = PrAx

0

(Cω
m). Using Lemma 6.33 we

obtain Cω
m = {ρ ∈ Xω | inf(ρ) = X }. �is completes the proof of (6.13).

�erefore, we obtain that E
Q
p = ε +

∑
q∈Q E

Q
p,q +

∑
∅,R⊆Q E

Q
p,inf=R

is a probabilistic

regular expression. Using Lemma 6.18, we restrict this expression to the valid

summands:

Ep = 1F (p) ε +
∑
q∈F

E
Q
p,q +

∑
R∈R

E
Q
p,inf=R

.

By (6.12) and (6.13) we obtain

‖A‖ =
∑
q∈Q

µ(q) ‖Eq ‖.
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�is completes the proof, as E =
∑

q∈Q µ(q)Eq is the desired probabilistic regular

expression with ‖A‖ = ‖E‖. �

Using the results of Sections 6.4 and 6.5 we have now shown the following

theorem:

Theorem 6.36. Let S : Σ∞ → [0, 1] be a function. �e following statements are

equivalent:

1. S = ‖A‖ for a probabilistic Muller-automaton A.

2. S = ‖E‖ for a probabilistic regular expression E.

Moreover, the translations between probabilistic Muller-automata and probabilistic

regular expressions are e�ective.
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Chapter 7

Probabilistic Regular Expressions

on Finite Trees

We will extend the notion of probabilistic regular expressions, which we developed

for words in the last chapter, to �nite ranked trees in this chapter.

�is chapter is structured as the last chapter: in Section 7.1 we recall the notion

of regular tree expressions for classical tree languages. A�erwards, in Section 7.2,

we introduce probabilistic versions of the classical regular operations. Using these

de�nitions we de�ne probabilistic regular tree expressions in Section 7.3. Finally,

we use Sections 7.4 and 7.5 to show the expressive equivalence of probabilistic

regular tree expressions and probabilistic tree automata.

�e results of this chapter have been published in [W15].

7.1 Regular Tree Expressions

Before we de�ne probabilistic regular tree expressions, we recall the notion of

regular tree expressions. Regular tree expressions play the same role to recognizable

tree languages as regular expressions play to recognizable word languages. In

contrast to regular expressions on words, regular tree expressions make use of an

additional �nite set of variables. �is is necessary to mark the leaf nodes in a tree

at which substitutions can occur. In the word case, concatenation always appends

to every word in a language. Let V be a �nite set of variables, we write TΣ(V ) for

all trees over the rank alphabet Σ′, where Σ′n = Σn for n ≥ 1 and Σ′
0
= Σ0 ∪V , i.e.,

TΣ(V ) = TQΣ′.

Definition 7.1. Let L,K ⊆ TΣ(V ), t ∈ TΣ(V ) and z ∈ V . We make the following

de�nitions:

1. �e tree concatenation t ·z K ⊆ TΣ(V ) of a tree t ∈ TΣ(V ) and a tree language
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K ⊆ TΣ(V ) is given inductively by

a ·z K =



{a} if a , z

K if a = z

f (t1, . . . , tn) ·z K = �
f (s1, . . . , sn) �

si ∈ ti ·z K for 1 ≤ i ≤ n
	
,

for all a ∈ Σ0 ∪V and t = f (t1, . . . , tn) with n ≥ 1.

2. �e tree concatenation L ·z K ⊆ TΣ(V ) of two tree languages L,K ⊆ TΣ(V ) is

L ·z K =
⋃
t∈L

t ·z K .

3. �e Kleene iteration L∗z ⊆ TΣ(V ) of a tree language L ⊆ TΣ(V ) is de�ned by

L∗z =
⋃
n≥0

Ln,z where L0,z = {z} and Ln+1,z = L ·z L
n,z ∪ Ln,z .

Definition 7.2. �e set of all regular tree expressions RTE is given in BNF by

E F ∅ | z | f (E, . . . ,E︸   ︷︷   ︸
arity(f )-times

) | E ∪ E | E ·z E | E∗z .

�e language L(E) of a regular tree expression E is the tree language inductively

de�ned by

L(∅) = ∅

L(z) = {z}
L(f (E1, . . . ,En)) = �

f (s1, . . . , sn) �
si ∈ L(Ei) for 1 ≤ i ≤ n

	

L(E1 ∪ E2) = L(E1) ∪ L(E2)
L(E1 ·z E2) = L(E1) ·z L(E2)
L(E∗z) = L(E)∗z .

A tree language L is called regular or rational if there is a regular tree expression E
over some set of variables with L(E) = L.

Example 7.3. Let Σ = {f, a, b}, where f is a binary symbol and a, b are leaf symbols.

Consider the following expression E:

E =
(�
f(y, z) ∪ f(z, y)�∗y ·y a

)
·z

(�
f(z, z)�∗z ·z (a ∪ b)) .
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7.2 Probabilistic Operations on Tree Series

We claim that L(E) contains all trees with at least one a labelled node. �is can be

seen as follows: the expression

�
f(y, z) ∪ f(z, y)�∗y generates all trees of the form

д1(д2(· · ·дn(y) · · · )) where дi(t) is either f(t , z) or f(z, t). So, intuitively, it generates

one path to a leaf node by making le�/right choices. A�erwards, the single y leaf is

replaced by an a. Finally, the remaining labels z are substituted by arbitrary trees,

as L

��
f(z, z)�∗z ·z (a ∪ b)� = TΣ .

�e following result is the analogon of Kleene’s theorem for �nite ranked trees

is due to �atcher and Wright [TW68].

Theorem 7.4. Let Σ be a rank alphabet and L ⊆ TΣ . �e following statements are

equivalent:

1. L = L(A) for a tree automaton A.

2. L = L(E) for a regular tree expression E.

7.2 Probabilistic Operations on Tree Series

In this section, we introduce probabilistic tree concatenation, which is de�ned as

weighted tree concatenation introduced by Droste, Pech and Vogler [DPV05], but

restricted to so-called substitution summable tree series. A�erwards, we give a new

iteration operation, the in�nity-iteration, which will replace Kleene-iteration in

probabilistic regular tree expressions.

We call any function S : TΣ(V ) → [0, 1] a probabilistic tree series or just a tree
series. In order to ease the notation in the rest of the chapter, we introduce the

substitution order. Intuitively, s EW t holds if s can be obtained from t by removing

some subtrees of t and inserting elements fromW ⊆ V in their place.

Definition 7.5. LetW ⊆ V . We de�ne the substitution order EW on TΣ(V ) by

s EW t ⇐⇒ pos(s) ⊆ pos(t) and s(x) = t(x) for all x ∈ pos(s) \ posW (s).

Let z ∈ V . For convenience, we write Ez instead of E{z}.

�e following restriction will ensure the well-de�nedness of probabilistic tree

concatenation and in�nity iteration. We say a tree series S is substitution summable,

if, intuitively, it is for all trees t (at most) a distribution on the trees s which can be

extended to t by substituting any variable from V .

119



Chapter 7 Probabilistic Regular Expressions on Finite Trees

V z

z

V

V

V

r s tEz EV

Figure 7.1: Situation in proof of Lemma 7.8

Definition 7.6. A tree series S is called substitution summable if∑
sEV t

S(s) ≤ 1,

for all t ∈ TΣ(V ).
We de�ne probabilistic tree concatenation using the same expression as weighted

tree concatenation over the semiring of non-negative real numbers, but restrict the

operands to substitution summable tree series.

Definition 7.7. Let S be a substitution summable tree series and T be a tree series.

We de�ne the tree concatenation S ·z T of S and T by

�
S ·z T

�(t) =
∑
sEzt

S(s)
∏

x∈posz (s)
T (t |x ). (7.1)

Next, we show that our de�nition is sound, i.e., the tree series S ·zT is well-de�ned

and that ·z preserves substitution summability.

Lemma 7.8. Let S and T be tree series and S be substitution summable. �e

following statements hold:

1. S ·z T is again a probabilistic tree series, i.e., it only a�ains values in [0, 1].
2. If T is also substitution summable, so is S ·z T .

Proof. 1. As S andT only map to positive values, it is clear, that (S ·z T )(t) ≥ 0 for

all t ∈ TΣ(V ). Consider an arbitrary tree t . We obtain

(S ·z T )(t) =
∑
sEzt

S(s)
∏

x posz (s)
T (t |x ) ≤

∑
sEzt

S(s) ≤
∑
sEV t

S(s) ≤ 1.
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7.2 Probabilistic Operations on Tree Series

�us, S ·z T is a probabilistic tree series.

2. Now, assume that T is substitution summable. Let t ∈ TΣ(V ). We have∑
sEV t

(S ·z T )(s) =
∑
sEV t

∑
rEzs

S(r )
∏

x∈posz (r )
T (s |x ). (7.2)

In order to use the assumptions on S andT we apply the following index transform-

ation to the double sum: let X = {(r , s) | r Ez s EV t } and Y = {(r , (sx )x∈posz (r )) |
r EV t , sx EV t |x for all x ∈ posz(r )}. We show that the mapping д : X →

Y given by д(r , s) = (r , (s |x )x∈posz (r )) is bijective. Let (r , (sx )x∈posz (r )) ∈ Y . We

construct a tree s by replacing in r every occurrence x of z by sx . More form-

ally s = r [x ← sx ]x∈posz (r ). Clearly, we have r Ez s . Moreover, we obtain

pos(s) = pos(r ) ∪⋃
x∈posz (r ) x pos(sx ) ⊆ pos(t), as pos(r ) ⊆ pos(t) and x pos(sx ) ⊆

x pos(t |x ) ⊆ pos(t). In the same way, we obtain that s and t agree on pos(s)\posV (s)
as r EV t and sx EV t |x . �us, д is surjective.

Next, assume д(r , s) = д(r ′, s′) for some (r , s), (r ′, s′) ∈ X . By de�nition of д we

get r = r ′. Let x ∈ pos(s) ∩ pos(s′). If x ∈ pos(r ) \ posz(r ), then s(x) = r (x) =
r ′(x) = s′(x), as r Ez s and r ′ Ez s′. Assume x ∈ (pos(s) \ pos(r )) ∪ posz(r ). Let

x′ � x maximal with x′ ∈ pos(r ). �en r (x′) = z, since either x′ = x ∈ posz(r ) or

x ∈ pos(s) \ pos(r ) and x′ is labelled by a leaf symbol in r but not in s . Moreover, r
and s are only allowed to di�er on posz(r ). Let x = x′x′′. We obtain s(x) = sx ′(x′′) =
s′x ′(x′′) = s′(x). So, s and s′ coincide on pos(s) ∩ pos(s′). As we are dealing with

ranked trees, this implies s = s′. �erefore, д is bijective.

We continue (7.2):∑
sEV t

(S ·z T )(s) =
∑
sEV t

∑
rEzs

S(r )
∏

x∈posz (r )
T (s |x ) =

∑
rEV t

∑
sxEV t |x(x∈posz (r ))

S(r )
∏

x∈posz (r )
T (sx )

=
∑
rEV t

S(r )
∏

x∈posz (r )

∑
sxEV t |x

T (sx ) ≤
∑
rEV t

S(r ) ≤ 1.

�is shows that S ·z T is substitution summable. �

As probabilistic tree concatenation is just weighted tree concatenation restricted

to substitution summable tree series, associativity directly carries over.

Lemma 7.9. Let R, S,T : TΣ(V ) → [0, 1] be probabilistic tree series and z ∈ V .

�en

R ·z (S ·z T ) = (R ·z S) ·z T .
�is equality does not hold in general, if two distinct variables are used in the

products.
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Proof. Use distributivity and an index transformation similar to the one in the

proof of Lemma 7.8. For details, see [DPV05]. �

We de�ne the powers of a tree series S with respect to a variable z:

S0,z = 1{z} and Sn+1,z = Sn,z ·z S .

We will make use of the following representation of Sn,z which can be obtained

using distributivity:

Sn,z(t) =
∑

t1Ezt2Ez ···Eztn−1Eztn=t

S(t1)
n−1∏
i=1

∏
x∈posz (ti )

S(ti+1|x ).

Next, we give the de�nition of in�nity iteration. �is will be the iteration

operation that we will use in probabilistic regular tree expressions. �ere is a

conceptional di�erence to standard Kleene-iteration: in Kleene-iteration, there is

a choice a�er substituting a variable by a tree to either continue the process and

substitute the variables in that tree or to stop. In in�nity iteration this choice is

removed, variables have to be substituted for as long as possible.

Definition 7.10. Let S be a substitution summable tree series and z ∈ V . We de�ne

the in�nity iteration S∞z of S by

S∞z(t) = lim

n→∞
Sn,z(t),

for all trees t .

One advantage of using in�nity iteration is that it works well with substitution

summable tree series: the in�nity iteration of a substitution summable tree series

is always well-de�ned, bounded by 1, and is itself substitution summable.

Lemma 7.11. Let S be a substitution summable probabilistic tree series and z ∈ V .

�e following statements hold:

1. S∞z is well-de�ned, i.e., S∞z(t) ∈ [0, 1] for all t ∈ TΣ(V ).

2. S∞z is again substitution summable.

3. S∞z(t) = 0 if posz(t) , ∅ and S(z) < 1.
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Proof. If S(z) = 1, then S = 1{z} as S is substitution summable. Hence, S∞z = S
is well-de�ned and substitution summable. We show statements 1 - 3 for the case

S(z) < 1. We start with statement 3, which is needed for the �rst statement.

3. We show that S∞z(t) = 0 if posz(t) , ∅. Note that, since posz(t) , ∅, we also

have posz(s) , ∅ for all s Ez t . Let Cn
k
(t) contain all n + 1-tuples (t1, . . . , tn+1) of

trees with ti Ez ti+1 for all 1 ≤ i ≤ n, and tn+1 = t , such that there are exactly k
indices j ∈ {1, . . . ,n} with tj = tj+1. Using that (Cn

k
(t))n

k=0
is a partition of all chains

of length n + 1 below t and that at least one substitution of z by itself has to occur

if tj = tj+1 we obtain

Sn+1,z(t) =
∑

t1Ez ···Eztn+1=t

S(t1)
n∏
i=1

∏
x∈posz (ti )

S(ti+1|x ) ≤
n∑

k=0

∑
(t1,...,tn+1)∈Cnk (t)

S(z)k .

Hence, we need to �nd an upper bound for |Cn
k
(t)|. Let N (t) be the number of all

trees s with s Ez t . Note that, by de�nition of Cn
k
(t), there are n + 1−k distinct trees

in every tuple in Cn
k
(t). �us, Cn

k
(t) = ∅ if n + 1−k > N (t), i.e., k < n + 1−N (t). �e

mapping д : Cn
k
(t)→ P({1, . . . ,n} × {s | s Ez t }) de�ned by д(t1, . . . , tn) = {(i, ti) |

1 ≤ i ≤ n, ti , ti+1} is injective and |д(t1, . . . , tn+1)| = n − k for every tuple

(t1, . . . , tn+1) ∈ Cnk (t). We can considerд(t1, . . . , tn+1) as partial function on {1, . . . ,n}.

Moreover, д(t1, . . . , tn+1) is strictly monotonic. �erefore,

�
Cnk (t)

�
=

�
д

�
Cn
k (t)

��
≤

(
n

n − k

) (
N (t) − 1

n − k

)
=

(
n

k

) (
N (t) − 1

n − k

)
.

�e additional “−1” is used as we did not include tn+1 = t in д(t1, . . . , tn+1). �us, we

obtain the following:

Sn,z(t) ≤
n−1∑
k=0

�
Cnk (t)

�
S(z)k =

n∑
k=0

(
n

k

) (
N (t) − 1

n − k

)
S(z)k

=

n∑
k=n+1−N (t)

(
n

k

) (
N (t) − 1

n − k

)
S(z)k ≤ S(z)n+1−N (t)

n∑
k=n+1−N (t)

(
n

k

) (
N (t) − 1

n − k

)

≤ S(z)n · S(z)1−N (t)N (t)!
N (t)−1∑
k=0

.

(
n

k

)
︸                          ︷︷                          ︸

=P(n)

�e polynomial P(n) has degree N (t) independent of n. �us, Sn,z(t)→ 0 as n → ∞
since S(z) < 1. Hence, S∞z(t) = 0 as claimed.
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1. We consider the case posz(t) = ∅ and show S∞z(t) ∈ [0, 1]. For this, we prove

the following monotonicity property Sn,z(t) ≤ Sn+1,z(t):

Sn,z(t) =
∑

t1Ez ···Eztn+1=t

S(t1)
n∏
i=1

∏
x∈posz (ti )

S(ti+1|x )

As posz(t) = ∅ we just add an empty product in the next step:

=
∑

t1Ez ···Eztn+1=tn+2=t

S(t1)
n+1∏
i=1

∏
x∈posz (ti )

S(ti+1|x )

≤
∑

t1Ez ···Eztn+1Eztn+2=t

S(t1)
n+1∏
i=1

∏
x∈posz (ti )

S(ti+1|x ) = Sn+1,z(t).

As Sn,z(t) ≤ 1 for every tree t by Lemma 7.8, the sequence (Sn,z(t))n≥1 is monoton-

ically increasing and bounded. �us, the sequence converges and the limit also

bounded by 1.

2. We show that S∞z is substitution summable. Let t ∈ TΣ(V ). We conclude∑
sEV t

S∞z(s) =
∑
sEV t

lim

n→∞
Sn,z(s) = lim

n→∞

∑
sEV t

Sn,z(s) ≤ 1,

where we could interchange sum and limit, as the sum has a �nite index set.

Moreover, we have

∑
sEV S

n,z(s) ≤ 1 by Lemma 7.8. �

Instead of de�ning S∞z as limit of powers of S as in De�nition 7.10, one can also

characterise S∞z as unique solution of an equation.

Lemma 7.12. Let z ∈ V and S be a substitution summable tree series with S(z) < 1.

�en, S∞z is the unique solution of the equation X = S ·z X .

Proof. We �rst show, that S∞z is a solution of X = S ·z X . We have the following:

(S ·z S∞z)(t) =
∑
sEzt

S(s)
∏

x∈posz (s)
lim

n→∞
Sn,z(t |x )

As the product and sum are �nite, these can be interchanged with the limit:

= lim

n→∞

∑
sEzt

S(s)
∏

x∈posz (s)
Sn,z(t |x )

= lim

n→∞
(S ·z Sn,z)(t) = lim

n→∞
Sn+1,z(t) = S∞,z(t).
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�us, S∞z is a solution of X = S ·z X .

Next, we show that every solution is equal to S∞z . Let T be any substitution

summable probabilistic tree series with T = S ·z T . �us, T = Sn,z ·z T for every

n ≥ 0. Taking n to the limit to in�nity, we obtain:

T (t) = lim

n→∞
T (t) = lim

n→∞
(Sn,z ·z T )(t)

As before, we can interchange the limit with the �nite sum:

=
∑
sEzt

(
lim

n→∞
Sn,z(s)

) ∏
x∈posz (s)

T (t |x )

=
∑
sEzt

S∞z(s)
∏

x∈posz (s)
T (t |x )

By Lemma 7.11, we have S∞z(s) = 0 if posz(s) , ∅. Moreover, s Ez t with s , t
implies posz(s) , ∅. �us

=



S∞z(t) if posz(t) = ∅
0 otherwise

= S∞z(t).
�is completes the proof that S∞z is the unique solution of X = S ·z X . �

In [DPV05] another quantitative iteration for weighted tree series was proposed:

a weighted Kleene-iteration. We �rst restate their de�nition and then show how

weighted Kleene-iteration relates to probabilistic in�nite-iteration. �ough the

weighted de�nitions work with arbitrary semirings, we will only use the semiring

of the positive real numbers here. �e product of arbitrary functions S,T : TΣ(V )→
[0,∞) is also de�ned by the right side of (7.1).

Definition 7.13. Let S : TΣ(V )→ [0,∞) be any function with S(z) = 0. We de�ne

functions Sn,Fz for n ≥ 0 by

S0,F
z = 0 and Sn+1,F

z = S ·z (Sn,Fz + 1{z}),

where 0 is the null-function. Using these de�nitions, we set S∗,Fz (t) = S
height(t),F
z .

Intuitively, if a tree t does not contain the variable z, then the computation of

S∗,Fz has to continue, i.e., the term 1{z} is always zero, until no more z’s occur. �us,

the value of S∗,Fz (t) equals S∞z(t). �is is the statement of the next lemma.
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Lemma 7.14. Let S be a substitution summable probabilistic tree series and z ∈ V
with S(z) = 0. �en, S∞z(t) = S∗,Fz (t) for all t ∈ TΣ(V \ {z}).
Proof. We show Sn,z(t) = Sn,Fz (t) for all t ∈ TΣ(V \ {z}). Let t ∈ TΣ(V \ {z}). For

n = 0, we have S0,z(t) = 1{z}(t) = 0 = 0(t) = S0,F
z (t). Next, assume the statement

holds for n. We obtain

Sn+1,F
z (t) =

∑
sEzt

S(s)
∏

x∈posz (s)

�
Sn,Fz (t |x ) + 1{z}(t |x )

�

By assumption, t does not contain the label z. �us, 1{z}(t |x ) is always zero:

=
∑
sEzt

S(s)
∏

x∈posz (s)
Sn,z(t)

= Sn+1,z(t).

In [DPV05] it was shown that Sn,Fz (t) = S
height(t),F
z (t) for all n ≥ height(t). �us, we

conclude

S∞z(t) = lim

n→∞
Sn,z(t) = lim

n→∞
Sn,Fz (t) = S

height(t),F
z (t) = S∗,Fz (t).

�is completes the proof. �

7.3 Syntax and Semantics of Probabilistic Regular

Tree Expressions

In this section, we de�ne the syntax and semantics of probabilistic regular tree

expressions and give an example of these de�nitions at work.

Definition 7.15. �e set PRTE of all probabilistic regular tree expressions is the

smallest set R satisfying the following properties:

1. 0 ∈ R

2. z ∈ R for every z ∈ V

3.
∑

f ∈Σ ′ f (E(f )1
, . . . ,E

(f )
arity(f )) ∈ R for all Σ′ ⊆ Σ and families of expressions

�
E
(f )
i

�
f ∈Σ,i≤arity(f ) in R

4. pE + (1 − p)F ∈ R for all E, F ∈ R and p ∈ [0, 1]
5. E ·z F ∈ R for all E, F ∈ R and z ∈ V
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6. E∞z ∈ R for all E ∈ R and z ∈ V

As in the word case, the restricted sums do not allow for the usual associativity,

commutativity, and distributivity laws to hold any longer. �us, these are explicitly

added as additional identities to R:

7. E ·z (F ·z G) ≡ (E ·z F ) ·z G, E + (F +G) ≡ (E + F ) + F , and p1(p2E) ≡ (p1p2)E
8. E + F ≡ F + E

9. (E + F ) ·z G ≡ E ·z G + F ·z G , p(E + F ) ≡ pE + pF , and (p1 + p2)E ≡ p1E + p2E

Recall that each identity states that an expression containing the le� side of an

identity as a subexpression is in R if and only if the same expression, but with this

subexpression replaced by the right side of the identity, is in R and vice versa.

�e semantics of a probabilistic regular tree expressions is de�ned using struc-

tural induction on the syntax tree:

‖0‖(t) = 0,

‖z‖(t) =



1 if t = z

0 otherwise,

‖ f (E1, . . . ,En)‖(t) =



∏n
i=1
‖Ei ‖(ti) if f = д

0 otherwise,

‖pE‖(t) = p‖E‖(t),
‖E + F ‖(t) = ‖E‖(t) + ‖F ‖(t),
‖E ·z F ‖(t) = �

‖E‖ ·z ‖F ‖
�(t),

‖E∞z ‖(t) = ‖E‖∞z(t),

for all t = д(t1, . . . , tn) ∈ TΣ(V ) with n ≥ 0.

�e following lemma is a direct consequence of the results in the last section.

Lemma 7.16. Let E be a probabilistic regular tree expression. �en ‖E‖ is a well-

de�ned function ‖E‖ : TΣ(V )→ [0, 1]. Moreover, ‖E‖ is substitution summable.

Proof. Let M contain all PRTEs which satisfy the statement of the lemma. Clearly,

the null-function and 1z are well-de�ned and substitution summable. �us, 0 ∈ M
and z ∈ M .
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Assume E
(д)
i ∈ M for all д ∈ Σ and i ≤ arity(д) and E =

∑
д∈Σ д(E(д)1

, . . . ,E
(д)
arity(д)).

Let t = f (t1, . . . , tn). Hence, ‖E‖ =
∏arity(f )

i=1
‖E

(f )
i ‖(ti) ≤ 1 by induction hypothesis.

We show that ‖E‖ is substitution summable:

∑
sEV t

‖E‖(s) = ‖E‖(z) +
∑
siEzti(i=1,...,arity(f ))

arity(f )∏
i=1

‖E
(f )
i ‖(si) =

arity(f )∏
i=1

∑
sEzti

‖E
(f )
i ‖(s) ≤ 1,

since ‖E‖(z) = 0 as only elements of Σ are included in the de�nition of E. Hence,

E ∈ M .

Finally, if E, F ∈ M , we obtain E ·z F ∈ M by Lemma 7.8, and E∞z ∈ M by

Lemma 7.11. Furthermore, application of the ACD rules does not change the se-

mantics and so, membership in M . �us, M satis�es all closure properties of

De�nition 7.15. �erefore, M = PRTE. �

At the end of this section, we give an example how probabilistic regular tree

expressions can be used to de�ne probabilistic tree series.

Example 7.17. We come back to Example 7.3. �e regular tree expression given

there is not a probabilistic regular tree expression for two reasons: �rst, it contains

the Kleene-iteration and not the in�nity-iteration, and second, the sum f(y, z)+f(z, y)
is not allowed in PRTE. In fact, we will later see, that the characteristic function of

the language described by the expression given in Example 7.3 cannot be recognized

by a probabilistic top-down tree automaton.

In order to give a probabilistic variant of this expression, we replace this sum by

a probabilistic choice: let Σ = {f, a, b} we de�ne the PRTE E by

E =
(

1

2

f(y, z) + 1

2

f(z, y) + a
)∞y

︸                             ︷︷                             ︸
=E1

·z

(
f(z, z) + a + b

)∞z
︸                 ︷︷                 ︸

=E2

.

We obtained the expression 1/2 f(y, z) + 1/2 f(z, y) + a using distributivity from the

expression 1/2(f(y, z) + a) + 1/2(f(z, y) + a), which in turn can be directly constructed

from the de�nition. �e expression E1 assigns the probability (1/2)n to all trees

of the form д1(д2(· · ·дn(a) · · · )) where either дi(t) = f(t , z) or дi(t) = f(z, t) for all

1 ≤ i ≤ n. For all trees t not of this form, we have ‖E1‖(t) = 0. �e second part of

the expression, E2, assigns probability 1 to every tree in TΣ .

Given an arbitrary tree t ∈ TΣ and a position x ∈ pos(t) with t(x) = a, let s be

the tree obtained from t replacing all subtrees which are not on the direct path

to x by z’s. �us, we have ‖E1‖(s) = (1/2)|x |. Conversely, every tree s Ez t with
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‖E1‖(s) > 0 uniquely identi�es a position x with t(x) = a. �erefore, we obtain

‖E‖(t) =
∑
sEzt

‖E1‖(s)
∏

x∈posz(s)
‖E2‖(t |x ) =

∑
sEzt

‖E1‖(s) =
∑

x∈posa(t)

(
1

2

) |x |
.

7.4 From Expressions to Automata

In the next two sections, we show the expressive equivalence of probabilistic

regular tree expressions and probabilistic tree automata. In this section, we give an

inductive construction of a tree automaton for a given expression. In Section 6.5

we show the converse direction.

As shown in Lemma 7.16, every function ‖E‖ for a given expression E is substi-

tution summable. In the following de�nition, we give a syntactic restriction on a

tree automaton A which ensures that ‖A‖ is also substitution summable.

Definition 7.18. Let A = (Q,δ , µ, F ) be a probabilistic tree automaton over TΣ(V ).
For W ⊆ V ∪ Σ0 let FW = {q ∈ Q | (q,a) ∈ F for some a ∈ W }. We say A is

substitution summable if the |V | + 1 sets FΣ0
, F{z} (z ∈ V ) are pairwise disjoint and

the set FV contains only sink states.

We will use the notation FW throughout this chapter. For single variables z ∈ V ,

we write Fz for F{z}.
Lemma 7.19. LetA be a substitution summable probabilistic tree automaton. �en

‖A‖ is also substitution summable.

Proof. LetA = (Q,δ , µ, F ) and the sets FW as in De�nition 7.18. Instead of showing

the actual statement

∑
sEV t ‖A‖(t) ≤ 1 for all t ∈ TΣ(V ), we prove a slightly stronger

statement: let δq(t) be de�ned as below De�nition 2.25. We show

∑
sEV t δq(s) ≤ 1

for all q ∈ Q and t ∈ TΣ(V ) using induction on height(t) and showing the statement

for all q ∈ Q at the same time. �us, let q ∈ Q and t ∈ TΣ(V ). First, consider the

case t = a ∈ Σ0. We obtain∑
sEV t

δq(s) = δq(a) +
∑
z∈V

δq(z) = 1F{a}(q) +
∑
z∈V

1F{z}(q)
(#)
≤ 1,

where (#) holds as the sets FΣ0
, F{z} (z ∈ V ) are pairwise disjoint. �e case t = z ∈ V

is analogous, only the term “δq(a)” is le� out.

Assume t = f (t1, . . . , tn). Note that a tree s EV t is either of the form s = z ∈ V
or s = f (s1, . . . , sn) with si Ez ti for all i = 1, . . . ,n. �us, we have∑

sEzt

δq(s) =
∑
z∈V

δq(z) +
∑
siEV ti(i=1,...,n)

δq(f (s1, . . . , sn))
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=
∑
z∈V

1Fz (q) +
∑
siEV ti(i=1,...,n)

∑
q1,...,qn∈Q

δ (q, f )(q1, . . . ,qn)
n∏
i=1

δqi (si)

As the sets Fz (z ∈ V ) are pairwise disjoint, we have

∑
z∈V 1Fz = 1FV .

= 1FV (q) +
∑

q1,...,qn∈Q

δ (q, f )(q1, . . . ,qn)
n∏
i=1

∑
sEV ti

δqi (s)

Applying the induction hypothesis to each of the δqi we obtain

≤ 1FV (q) +
∑

q1,...,qn∈Q

δ (q, f )(q1, . . . ,qn). (∗)

If q ∈ FV holds, q is a sink state and δ (q, f ) = 0 Hence, (∗) = 1. On the other hand,

if q < FV , we conclude 1FV (q) = 0 and thus (∗) ≤ 1, as δ (q, f ) is a distribution on

Qn
or 0. Finally, for any t ∈ TΣ(V ), we obtain∑

sEV t

‖A‖(s) =
∑
sEV t

∑
q∈Q

µ(q)δq(s) =
∑
q∈Q

µ(q)
∑
sEV t

δq(s) ≤ 1.

�is completes the proof. �

�e rest of this section is devoted to showing that the class of tree series recog-

nizable by substitution summable probabilistic tree automata satis�es the closure

properties of De�nition 7.15. �us, we will obtain the result that every probabilistic

regular tree expression is equivalent to a probabilistic tree automaton.

Lemma 7.20. Let Σ′ ⊆ Σ and (Ai
f
)f ,i for f ∈ Σ′, 1 ≤ i ≤ arity(f ) be a family

substitution summable probabilistic tree automata. �ere is a substitution summable

probabilistic tree automaton A such that

‖A‖(t) =



∏n
i=1
‖Ai

f
‖(ti) if f ∈ Σ′

0 otherwise

for all t = f (t1, . . . , tn) ∈ TΣ(V ). Note that empty products are 1 by convention.

Proof. Let Ai
f
= (Qi

f
,δ i

f
, µi

f
, F i

f
) for every f ∈ Σ′ and 1 ≤ i ≤ arity(f ). We assume

that the sets of states Qi
f

are pairwise disjoint. We de�ne A = (Q,δ , µ, F ) where

Q = {q0} ∪
⋃
f ∈Σ ′

1≤i≤arity(f )

Qi
f and F =

�(q0,a) �
a ∈ Σ′ ∩ Σ0

	
∪

⋃
f ∈Σ ′

1≤i≤arity(f )

F if .
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Furthermore, we let µ = 1{q0} and de�ne δ by δ (q, f ) for q ∈ Qi
f ′

by

δ (q, f )(q1, . . . ,qn) =



δ i
f ′
(q1, . . . ,qn) if qj ∈ Q

i
f ′

for all 1 ≤ j ≤ n

0 otherwise

and for q = q0 by

δ (q0, f )(q1, . . . ,qn) =



∏n
i=1

µi
f
(qi) if f ∈ Σ′ and qi ∈ Q

i
f

for all 1 ≤ i ≤ n

0 otherwise.

Note that δ agrees with δ i
f

on Qi
f
. �us, we also have δq = (δ i

f
)q for all q ∈ Qi

f
.

To show that A actually satis�es the statement of the lemma, �rst consider

t = a ∈ Σ0. We have ‖A‖(t) = 1F (q0,a) = 1Σ ′(a). For t = f (t1, . . . , tn) with n ≥ 1

we have δ (q0, f ) = 0 if f < Σ′ and thus also ‖A‖(t) = 0. For f ∈ Σ′ we obtain

‖A‖(t) =
∑

q1,...,qn∈Q

δ (q0, f )(q1, . . . ,qn)
n∏
i=1

δqi (ti)

=
∑

q1∈Q
1

f ,...,qn∈Q
n
f

*
,

n∏
i=1

µif (qi)+
-

n∏
i=1

δqi (ti)

=

n∏
i=1

∑
q∈Qi

f

µif (q) (δ if )q(ti)

=

n∏
i=1

‖Ai
f ‖(ti).

�us, A has the claimed behaviour. It remains to show that A is substitution

summable. Let q ∈ FV . As q0 < FV , there is a f ∈ Σ and i ∈ {1, . . . , arity(f )} with

q ∈ Qi
f

and thus q ∈ (F i
f
)V . Hence, δ (q, f ′) = δ i

f
(q, f ′) = 0 as Ai

f
is substitution

summable. Next, assume q ∈ F{u} ∩ F{v} for some u,v ∈ Σ0 ∪ V with u , v
and not both in Σ0. As q0 is not in any F{z}, we have q , q0. �ere is a f ∈ Σ0

and i ∈ {1, . . . , arity(f )} with q ∈ Qi
f

and therefore q ∈ (F i
f
){u} ∩ (F i

f
){v}. A

contradiction. �is shows that A is substitution summable. �

Lemma 7.21. Let A1 and A2 be substitution summable probabilistic tree automata

and p ∈ [0, 1]. �ere is a substitution summable probabilistic tree automaton A with

‖A‖ = p‖A1‖ + (1 − p)‖A2‖.
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Proof. Let Ai = (Qi ,δi , µi , Fi) and assume that Q1 and Q2 are disjoint. We de�ne

A = (Q,δ , µ, F ) with Q = Q1 ∪Q2, F = F1 ∪ F2,

δ (q, f )(q1, . . . ,qn) =



δ1(q, f )(q1, . . . ,qn) if q,q1, . . . ,qn ∈ Q1

δ2(q, f )(q1, . . . ,qn) if q,q1, . . . ,qn ∈ Q2

0 otherwise,

and

µ(q) =



p µ1(q) if q ∈ Q1

(1 − p) µ2(q) if q ∈ Q2.

Note that δ agrees with δ1 on Q2 and with δ2 on q2. For the behaviour of A we

obtain

‖A‖(t) =
∑
q∈Q

µ(q)δq(t) =
∑
q∈Q1

p µ1(q) (δ1)q(t) +
∑
q∈Q2

(1 − p) µ2 (δ2)q(t)

= p ‖A1‖(t) + (1 − p) ‖A2‖(t).
�e substitution summability of A1 and A2 immediately carries over to A. �

Lemma 7.22. Let A1 and A2 be substitution summable probabilistic tree automata

and z ∈ V . �ere is a substitution summable probabilistic tree automaton A with

‖A‖ = ‖A1‖ ·z ‖A2‖.

Proof. Let Ai = (Qi ,δi , µi , Fi) for i = 1, 2. Let X = (F1)z = {q ∈ Q1 | (q, z) ∈ F1}.

We de�ne A = (Q,δ , µ, F ) by

Q = (Q1 \ X ) ∪Q2, F = (F1 \ (X × {z})) ∪ F2,

µ(q) =



µ1(q) if q ∈ Q1 \ X

µ1(X ) µ2(q) if q ∈ Q2,

δ (q, f )(q1, . . . ,qn) =




∑
r1,...,rn∈Q1

δ1(q, f )(r1, . . . , rn)
n∏
i=1

κ(ri ,qi) if q ∈ Q1 \ X

δ2(q, f )(q1, . . . ,qn) if q,q1, . . . ,qn ∈ Q2

0 otherwise,

where κ : Q1 ×Q → [0, 1] is given by

κ(r ,q) =



1 if r = q

µ2(q) if r ∈ X and q ∈ Q2

0 otherwise.
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We �rst need to show that A is a well-de�ned substitution summable PTA. By

de�nition of µ and δ one sees that µ and δ (q, f ), for q ∈ Q2, are distributions. Let

q ∈ Q1 \ X and f ∈ Σ:∑
q1,...,qn∈Q

δ (q, f )(q1, . . . ,qn)

=
∑

q1,...,qn∈Q

∑
r1,...,rn∈Q1

δ1(q, f )(r1, . . . , rn)
n∏
i=1

κ(ri ,qi)

=
∑

r1,...,rn∈Q1

δ1(q, f )(r1, . . . , rn)
n∏
i=1

∑
q∈Q

κ(ri ,q)

By de�nition, κ is either 1{ri} or µ2, depending on ri :

=
∑

r1,...,rn∈Q1

δ1(q, f )(r1, . . . , rn)
n∏
i=1




1 if ri ∈ Q1 \ X

µ2(Q2) if ri ∈ X

=
∑

r1,...,rn∈Q1

δ1(q, f )(r1, . . . , rn)

≤ 1.

Next, we show that A actually has the behaviour ‖A1‖ ·z ‖A2‖. To employ

induction on the height of the input tree, we prove a slightly stronger statement:

δq(t) = �(δ1)q ·z ‖A2‖
�(t) (7.3)

for all t ∈ TΣ(V ) with and q ∈ Q1 \ X , where δq is de�ned as below De�nition 2.25.

Let q ∈ Q1 \ X , t ∈ TΣ(V ) and assume height(t) = 0, i.e, t = a ∈ Σ0 ∪V . We have

δq(t) = 1F{a}(q). In case a = z, (q, z) < F by construction of F . �us, δq(t) = 0 =

((δ1)q ·z ‖A2‖)(t) since (δ1)q(z) = 0 by choice of q ∈ Q1 \ X . In case a , z, we have

(q,a) ∈ F i� (q,a) ∈ F1. �us, δq(t) = (δ1)q(t) = (δ1)q(t) + (δ1)q(z) ‖A2‖(t), again, as

(δ1)q(z) = 0.

Now, consider a tree t = f (t1, . . . , tn) with n ≥ 1. We obtain

δq(t) =
∑

q1,...,qn∈Q

δ (q, f )(q1, . . . ,qn)
n∏
i=1

δqi (ti)

=
∑

q1,...,qn∈Q

∑
r1,...,rn∈Q1

δ1(q, f )(r1, . . . , rn)
n∏
i=1

κ(ri ,qi)δqi (ti)

=
∑

r1,...,rn∈Q1

δ1(q, f )(r1, . . . , rn)
n∏
i=1

∑
q∈Q

κ(ri ,q)δq(ti)
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=
∑

r1,...,rn∈Q1

δ1(q, f )(r1, . . . , rn)
n∏
i=1




δri (ti) if ri ∈ Q1 \ X∑
q∈Q2

µ2(q)δq(ti) if ri ∈ X

By induction hypothesis, we have δri = (δ1)ri ·z ‖A2‖. Moreover,

∑
q∈Q2

µ2(q)δq(ti) =
‖A2‖(ti). Finally, remark that (δ1)ri = 1{z} if ri ∈ X , as every state in X is a sink

state. Altogether we obtain

=
∑

r1,...,rn∈Q1

δ1(q, f )(r1, . . . , rn)
n∏
i=1

�(δ1)ri ·z ‖A2‖
�(ti)

By the upcoming Proposition 7.23 we obtain the following since (δ1)q(z) = 0:

=
�(δ1)q ·z ‖A2‖

�(t)
�is shows (7.3). Finally, we deduce the desired statement about ‖A‖:

‖A‖(t) =
∑
q∈Q

µ(q)δq(t) =
∑

q∈Q1\X

µ1(q)�(δ1)q ·z ‖A2‖
�(t) +

∑
q∈Q2

µ1(X ) µ2(q) (δ2)q(t)

=
∑

q∈Q1\X

*.
,
µ1(q)

∑
sEzt

(δ1)q(s)
∏

x∈posz (s)
‖A2‖(t |x )+/

-
+ ‖A1‖(z) ‖A2‖(t).

Since q < X in the �rst sum, (δ1)q(z) = 0 as X contains all �nal states for z. �us,

we only need to consider trees s , z.

=
∑

z,sEzt

‖A1‖(s)
∏

x∈posz (s)
‖A2‖(t |x ) + ‖A1‖(z) ‖A2‖(t)

= (‖A1‖ ·z ‖A2‖)(t).
�is shows the correctness of the construction of A and therefore completes the

proof. �

�e next statement is an auxiliary result, which allows us to decompose products

of the form δq ·z S .

Proposition 7.23. Let z ∈ V ,A = (Q,δ , µ, F ) a substitution summable probabilistic

tree automaton, q ∈ Q a state with (q, z) < F , and S a tree series. We have

�
δq ·z S

�(t) =
∑

q1,...,qn∈Q

δ (q, f )(q1, . . . ,qn)
n∏
i=1

�
δqi ·z S

�(ti),

for all t = f (t1, . . . , tn) with n ≥ 1.
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Proof. Let z, A, S , and t as in the statement of the lemma. We show the statement

by direct computation. Since (q, z) < F , we have δq(z) = 0:

�
δq ·z S

�(t) =
∑

z,sEzt

δq(s)
∏

x∈posz (s)
S(t |x )

Every tree s with z , s Ez t is of the form s = f (s1, . . . , sn) with si Ez ti for all

i = 1, . . . ,n. Hence

=
∑
siEzti(i=1,...,n)

∑
q1,...,qn∈Q

δ (q, f )(q1, . . . ,qn)
n∏
i=1

δqi (si)
∏

x∈posz (si )
S(ti |x )

=
∑

q1,...,qn∈Q

δ (q, f )(q1, . . . ,qn)
n∏
i=1

�
δqi ·z S

�(ti). �

Lemma 7.24. Let z ∈ V and A be a substitution summable probabilistic tree

automaton. �ere is a substitution summable probabilistic tree automaton A′ with

‖A′‖ = ‖A‖∞z .

Proof. �e proof is similar to the proof of Lemma 7.22. Instead of redirecting

transition from a state in Fz to the initial states of A2, the transitions are redirected

to enter A again. Additionally, the probabilities of these transitions are multiplied

by a factor λ to model arbitrarily many substitutions of z by itself.

Assume A = (Q,δ , µ, F ) and let X = {q ∈ Q | (q, z) ∈ F }. We may assume

µ(X ) < 1. Otherwise, ‖A‖ = 1{z} as A is substitution summable and 1{z}∞ = 1{z}.
Let A′ = (Q′,δ ′, µ′, F ′) be given by

Q′ = Q \ X , F ′ = F \ (X × {z}), µ′(q) = λ µ(q)

δ ′(q, f )(q1, . . . ,qn) =
∑

r1,...,rn∈Q

δ (q, f )(r1, . . . , rn)
n∏
i=1

κ(ri ,qi),

where

λ =
1

1 − µ(X ) and κ(r ,q) =



1{r}(q) if r ∈ Q′

λ µ(q) if r ∈ X .

Before we show the correctness of the construction, we prove the following auxiliary

equation, which will allow us to use induction on the tree height, for all t =
f (t1, . . . , tn) with n > 0:

‖A‖∞z(t) =
∑
q∈Q ′

λ µ(q) (δq ·z ‖A‖∞z)(t). (7.4)
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As X is disjoint from any other set F{a} = {q ∈ Q | (q,a) ∈ F } for a , z and

every state in X is a sink state in A by substitution summability of A, we have∑
q∈Q ′ µ(q)δq(t) = ‖A‖(t) for any tree t , z, and δq(z) = 0 for all q ∈ Q′. �erefore∑

q∈Q ′

λ µ(q)�δq ·z ‖A‖∞z�(t) = λ
∑

z,sEzt

‖A‖(s)
∏

x∈posz (s)
‖A‖∞z(t |x )

= λ
�(‖A‖ − ‖A‖(z) 1{z}) ·z ‖A‖∞z

�(t).
Let S be an arbitrary substitution summable tree series. As S ·z S

∞z = S∞z by

Lemma 7.12, we obtain

(S − S(z) 1{z}) ·z S∞z = S ·z S
∞z − S(z) S∞z = (1 − S(z)) S∞z .

�erefore, we obtain the following for S = ‖A‖:

‖A‖∞z =
(‖A‖ − ‖A‖(z) 1{z}) ·z ‖A‖∞z

1 − ‖A‖(z) .

As λ = 1

1−µ(X ) =
1

1−‖A‖(z) , this shows (7.4).

We are now ready to prove ‖A′‖ = ‖A‖∞. We show

δ ′q(t) =
�
δq ·z ‖A‖

∞z�(t) (7.5)

for all q ∈ Q′ and t ∈ TΣ(V ) using induction on height(t). Let t = a ∈ Σ0 ∪ V .

We obtain δ ′q(a) = 0 if a = z and, in case a , z, δ ′q(a) = 1F ′((q,a)) = 1F ((q,a)) =
δq(t) = δq(t) + δq(z) ‖A‖∞z(t), as δq(z) = 0 by the choice of q.

Next, assume t = f (t1, . . . , tn) with n ≥ 1. We compute

‖δ ′q ‖(t) =
∑

q1,...,qn∈Q ′

δ ′(q, f )(q1, . . . ,qn)
n∏
i=1

δ ′qi (ti)

By induction hypothesis, δ ′qi (ti) = (δqi ·z ‖A‖∞)(ti) for i = 1, . . . ,n:

=
∑

q1,...,qn∈Q ′

∑
r1,...,rn∈Q

δ (q, f )(r1, . . . , rn)
n∏
i=1

κ(ri ,qi) (δqi ·z ‖A‖∞z)(ti)

We apply distributivity, and insert the de�nition of κ:

=
∑

r1,...,rn∈Q

δ (q, f )(r1, . . . , rn)

·

n∏
i=1

*.
,
1X (ri)

∑
q∈Q ′

λ µ(q) (δq ·z ‖A‖∞z)(ti)︸                             ︷︷                             ︸
(7.4)

= ‖A‖∞z (ti )

+ 1Q ′(ri) (δri ·z ‖A‖∞z)(ti)+/
-
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Since δri = 1{z} for ri ∈ X , we obtain ‖A‖∞z = δri ·z ‖A‖
∞z

. We conclude

=
∑

r1,...,rn∈Q

δ (q, f )(r1, . . . , rn)
n∏
i=1

�
δri ·z ‖A‖

∞z�(ti)

Again, we apply Proposition 7.23 using that δq(z) = 0:

=
�
δq ·z ‖A‖

∞z�(t).
�erefore, we obtain (7.5). We use (7.4) to show that A′ indeed has the desired

behaviour:

‖A′‖ =
∑
q∈Q ′

λ µ(q)δ ′q(t) =
∑
q∈Q ′

λ µ(q)�δq ·z ‖A‖∞z� (7.4)

= ‖A‖∞z .

�is completes the proof. �

Combining the results from this section, we have proven the following lemma.

Lemma 7.25. Let E be a probabilistic regular tree expression. �ere is a probabi-

listic tree automaton A with ‖E‖ = ‖A‖.

Proof. Let M = {E ∈ PRTE | ∃substitution summable PTA A : ‖A‖ = ‖E‖}.

Clearly, 0 ∈ M and 1z ∈ M for all z ∈ V . By Lemmas 7.20 to 7.22 and 7.24

and the fact that application of the associativity, commutativity, and distributivity

does not change the semantics of an expression, M satis�es the closure properties

of De�nition 7.15. �us, PRTE = M . �

7.5 From Automata to Expressions

�is subsection contains the proof of the following lemma. As the proof is one

monolithic argument, it uses all of this section.

Lemma 7.26. Let A be a top-down probabilistic tree automaton over TΣ . �ere is

a set of variables V and a probabilistic regular tree expressions E over TΣ(V ) such

that ‖A‖ = ‖E‖.

Let A = (Q,δ , µ, F ). We setV = Q . �e idea of the proof is similar to the classical

case, but additional care has to be taken to handle the syntax restrictions of PRTE.

Let X ⊆ Q and t ∈ TΣ(X ) with t(ε) < X . We de�ne the following sets of runs over

t : let RXq (t) contain runs ρ : pos(t)→ Q with
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1. ρ(ε) = q,

2. ρ(x) ∈ Q \ X for all x ∈ posΣ(t) \ {ε},

3. ρ(x) = t(x) for all x ∈ posX (t),
4. (ρ(x), t(x)) ∈ F for all x ∈ posΣ0

(t).
Intuitively, the runs in RXq (t) must start at q and may only a�ain states from X if t is

also labelled with a state from X at this position, and the two states must match. At

all positions, where t is labelled with some le�er from Σ, only states from Q \Xare

allowed in the runs. Furthermore, all leaf nodes not labelled by states in t must

satisfy the acceptance condition of A.

With the help of RXq (t), we de�ne the tree series SXq on TΣ(Q) by

SXq (t) =



∑
ρ∈RXq (t)

∏
x∈inner(t)

δ (ρ(x), t(x))�ρ(x1), . . . , ρ(xarity(t(x)))�

if t ∈ TΣ(X ) \ X
0 otherwise.

Since, for a tree t ∈ TΣ , R
Q
q (t) is the set of all runs of A on t starting in q, we have

‖A‖(t) = ∑
q∈Q µ(q) S∅q (t). We will construct expressions EXq such that ‖EXq ‖(t) =

SXq (t) if t ∈ TΣ(X ) \ X and ‖EXq ‖(t) = 0 otherwise using induction on |Q \ X |.
First, we consider the case X = Q . By condition 2, we have RXq (t) , ∅ only for

trees of the form t = f (q1, . . . ,qn) with f ∈ Σn and qi ∈ Q . In this case RXq (t)
contains the single run with q at the root node and q1, . . . ,qn at the child nodes.

�us, SXq (t) = δ (q, f )(q1, . . . ,qn). We construct the expression E
Q
q as follows:

E
Q
q =

∑
a∈Σ0(q,a)∈F

a +
∑
f ∈Σn
n≥1

∑
q1,...,qn∈Q

δ (q, f )(q1, . . . ,qn) · f (q1, . . . ,qn).

By De�nition 7.15 (2) every state qi is an expression. Hence, E
Q
q is also an expression

by the following Sublemma 7.27.

Sublemma 7.27. For every f ∈ Σ let X f be a �nite set and (λ fx )x∈Xf be a distribu-

tion on X f . Furthermore, let e f : X f → PRTE
arity(f )

be a mapping for every f ∈ Σ.

�en,

E =
∑
f ∈Σ

∑
x∈Xf

λ
f
x f (e f (x))

is also a probabilistic regular tree expression.
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Proof. Let X contain all function s : Σ →
⋃

f ∈Σ X f with s(f ) ∈ X f for all f ∈ Σ.

�en, the function s 7→
∏

д∈Σ λ
д
s(д) is a distribution on X. We de�ne the expression

E′ by

E′ =
∑
s∈X

*.
,

∏
д∈Σ

λ
д
s(д)

+/
-

∑
f ∈Σ

f
�
e f (s(f ))�.

We have that

∑
f ∈Σ f (e f (s(f ))) is a PRTE for every s ∈ X by De�nition 7.15 (3).

Hence, E′ is also an PRTE by iterated application of De�nition 7.15 (4). We still need

to show that E = E′, i.e., that E′ can be transformed into E by application of the

ACD rules:

E′ ≡
∑
f ∈Σ

∑
s∈X

*.
,

∏
д∈Σ

λ
д
s(д)

+/
-
f

�
e f (s(f ))�

≡
∑
f ∈Σ

∑
sд∈Xд
(д∈Σ)

*.
,

∏
д∈Σ

λ
д
s(д)

+/
-
f

�
e f (s f )�

≡
∑
f ∈Σ

∑
sf ∈Xf

*....
,

∑
sд∈Xд

(д∈Σ,д,f )

∏
д∈Σ

λ
д
sд

+////
-

f
�
e f (s f )�

≡
∑
f ∈Σ

∑
sf ∈Xf

*.
,
λ
f
sf

∏
д∈Σ\{f }

∑
sд∈Xд

λ
д
sд

+/
-
f

�
e f (s f )�

≡
∑
f ∈Σ

∑
sf ∈Xf

λ
f
sf f

�
e f (s f )�

≡ E.

�is completes the proof of Sublemma 7.27. �

Next, we consider the case |Q \ X | > 0, i.e., Q \ X , ∅. Let q ∈ Q \ X be some

�xed state. Let X ′ = X ∪{q}. We have |Q \X ′| < |Q \X |. �us, there are expressions

EX
′

p for all p ∈ Q with ‖EX
′

p ‖(t) = SX
′

p (t) for all t ∈ TΣ(Q). We show SXp = SX
′

p ·q S
X
q

for all p,q ∈ Q . In order to prove this statement, we show how a set of runs can

be decomposed in a top parts only containing q at the leaf nodes, and a bo�om

part, where q may occur anywhere. For any run ρ on t let minq(ρ) be the set of

pre�x-minimal positions in pos(t) with ρ(x) = q. Recall that a �-antichain is a set

M ⊆ pos(t) such that x � y implies x = y for all x ,y ∈ M .
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Sublemma 7.28. Let M ⊆ pos(t) be a �-antichain. We de�ne a function д on the

set of all runs with ρ ∈ RXp (t) with minq(ρ) = M by д(ρ) = (ρ|
pos(t)\MN+, (ρ|x )x∈M ),

where ρ|
pos(t)\MN+ : pos(t) \MN+ → Q is the restriction of ρ to all positions above

of M or incomparable to M , and ρ|x : {y ∈ N∗ | xy ∈ pos(t)} → Q the run below

the position x .

�en, д is a bijection from {ρ ∈ RXp (t) | minq(ρ) = M } to the set of tuples

(ρ, (ρx )x∈M ) with ρ ∈ RX
′

p (t[M ← q]) and ρx ∈ R
X
q (t |x ) for all x ∈ M .

Proof. We verify that д is well-de�ned. Given a tree t ∈ TΣ(X ), a position x ∈ M ,

and a run ρ ∈ RXt (t), we clearly have ρ|x ∈ RXq (t |x ) as t(x) = q. Moreover, as

the positions in M are minimal the state q occurs only at leaf nodes in the run

ρ′ = ρ|
pos(t)\MN+ . �ese are exactly the positions where t[M ← q] is labelled by q.

�us, ρ′ ∈ RX
′

q (t[M ← q]).
We show that the function h(ρ, (ρx )x∈M ) = ρ[x ← ρx ]x∈M , where ρ ∈ RX

′

p (t[M ←
q]) and ρx ∈ RXq (t |x ) for all x ∈ M , is the inverse of д. �e well-de�nedness of h

follows directly from the de�nition of the sets RX
′

p (t[M ← q]) and RXq (t |x ).
Let (д ◦ h)(ρ, (ρx )x∈M ) = (ρ′, (ρ′x )x∈M ) and h(ρ, (ρx )x∈M ) = τ . As the underlying

trees of the runs coincide, we have pos(ρ) = pos(ρ′) and pos(ρx ) = pos(ρ′x ) for

all x ∈ M . Let y ∈ pos(ρ). If y < M , we have ρ(y) = ρ[x ← ρx ]x∈M (y) = τ (y) =
τ |

pos(t)\MN+(y) = ρ′(y), and for y ∈ M we obtain ρ(y) = t[M ← q](y) = q and

ρ′(y) = t[M ← q](y) = q. Hence, ρ = ρ′. Next, let x ∈ M and y ∈ pos(ρx ). We

conclude ρx (y) = ρ[x ← ρx ]x∈M (xy) = τ (xy) = τ |x (y) = ρ′x (y). �us, ρx = ρ
′
x . �is

implies that д ◦ h = id.

Conversely, assume (h ◦ д)(τ ) = τ ′ and let д(τ ) = (ρ, (ρx )x∈M ). Let y ∈ pos(t) be

not below any position in M . We conclude τ (y) = τ
pos(t)\MN+(y) = ρ(y) = ρ[x ←

ρx ]x∈M (y) = τ ′(y). Now, assume y = xy′ for some x ∈ M . Hence, τ (y) = τ |x (y′) =
ρx (y′) = ρ[x ← ρx ]x∈M (xy′) = τ ′(y). �us, τ = τ ′ and h ◦ д = id. �is shows that

h = д−1
and д is bijective. �

We use the statement of Sublemma 7.28 to show SXp = SX
′

p ·q S
X
q for all p,q ∈ Q .

Let t ∈ TΣ(Q) arbitrary. If t < TΣ(X ) \ X then either t = r ∈ X or t(x) ∈ Q \ X for

some x ∈ pos(t). In the �rst case, we have s ∈ Q for all s Eq t . �us, SX
′

p (s) = 0 and

so (SX ′p ·q S
X
q )(t) = 0. In the second case, we have either t(x) ∈ Q \ X ′ or t(x) = q

for some x ∈ pos(t). If t(x) ∈ Q \ X ′, then for every s Ez t either posQ\X ′(s) , ∅
or posQ\X ′(t |x ) , ∅ for some x ∈ posq(s). Hence, SX

′

p (s)∏x∈posq (s) S
X ′
q (t |x ) = 0 and

so (SX ′p ·z S
X
q )(t) = 0. In the la�er case, i.e., t(x) = q for some x ∈ pos(t), consider

a tree s Ez t . By de�nition of Ez , there is an x′ ∈ posq(s) with x′ � x . Since then

posq(t |x ′) , ∅ and SXq (T |x ) = 0, we conclude (SX ′p ·q S
X
q )(t) = 0.
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Now, assume t ∈ TΣ(X ) \ X . We compute

SXp (t) =
∑

ρ∈RXp (t)

∏
x∈inner(t)

δ (ρ(x), t(x))�ρ(x1), . . . , ρ(xarity(t(x)))�

Each run ρ ∈ RXp (t) as a unique set minq(ρ) of minimal positions labelled with q:

=
∑

M⊆pos(t) antichain

∑
ρ∈RXp (t)

minq (ρ)=M

∏
x∈inner(t)

δ (ρ(x), t(x))(ρ(x1), . . . , ρ(xnx )),

where nx = arity(t(x)). We apply Sublemma 7.28 to the index set of the summation:

=
∑

M⊆pos(t) antichain

∑
ρ∈RX

′

p (t[M←q])
ρx ∈R

X
q (t |x ) (x ∈ M)

·
∏

x∈inner(ρ[x←ρx ]x ∈M )
δ (ρ[x ← ρx ]x∈M (x), t(x))(ρ[x ← ρx ]x∈M (x1), . . . )

Next, we split the product in the inner positions below any element of M and

the inner positions above or incomparable to M . Note that the la�er set equals

inner(t[M ← q]):
=

∑
M⊆pos(t) antichain

∑
ρ∈RX

′

p (t[M←q])
ρx ∈R

X
q (t |x ) (x ∈ M)

·
∏

x∈inner(t[M←q])
δ (ρ(x), t(x))(ρ(x1), . . . , ρ(xnx ))

·
∏
y∈M

∏
x∈inner(t |y )

δ (ρy(x), t |y(x))(ρy(x1), . . . , ρy(xnx ))

Using distributivity, we obtain the de�nitions of SX
′

p and SXq , respectively:

=
∑

M⊆pos(t) antichain

SX
′

p (t[M ← q])
∏
y∈M

SXq (t |y).

Finally, note that the mapping M 7→ t[M ← q] is a bijection between the antichains

in pos(t) and the trees s ∈ TΣ(X ′) with s Eq t as q does not appear as label in t . �e

inverse function of this bijection is s 7→ posq(s). �us, we continue:

=
∑
sEqt

SX
′

p (s)
∏

y∈posq (s)
SXq (t |y)

141



Chapter 7 Probabilistic Regular Expressions on Finite Trees

=
�
SX

′

p ·z S
X
q

�(t).

From SXp = SX
′

p ·q S
X
q we directly conclude two statements: First, when se�ing p = q,

we obtain SXq = SX
′

q ·q S
X
q and therefore SXq = (SX ′q )∞q by Lemma 7.12, and so we

conclude SXp = SX
′

p ·q (SX ′q )∞q . �us, by induction hypothesis, SXp = ‖E
X ′
p ‖ ·q ‖E

X ′
q ‖
∞z

.

We de�ne EXp = EX
′

p ·q (EX ′q )∞q for every p ∈ Q . �is de�nition satis�es ‖EXp ‖ = SXp ,

by the above calculation. Hence, we have completed the inductive construction of

the expressions EXp .

We are now ready to de�ne the expression E with ‖E‖ = ‖A‖ using the case

X = ∅:
E =

∑
q∈Q

µ(q)E∅q .

�is is a valid expression by iterated application of De�nition 7.15 (4). As the sets

R∅q(t) contain exactly the successful runs of A on t starting in q, we have ‖E‖ = ‖A‖
as claimed. �is completes the proof of Lemma 7.26. �

With results of this section and the last section, we �nally have proven the

following theorem:

Theorem 7.29. Let Σ be a rank alphabet and S : TΣ → [0, 1] a probabilistic tree

series. �e following statements are equivalent:

1. S = ‖A‖ for a top-down probabilistic tree automaton A.

2. S = ‖E‖ for a probabilistic regular tree expression over some set of variables.

�e constructions in both directions are e�ective.
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Model Checking LTL over the

Infinite Tree
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Chapter 8

Constraint LTL and Constraint

Büchi Automata

In this chapter, we introduce Constraint Linear Temporal Logic, or cLTL for short, a

variant of Linear Temporal Logic (LTL) with local constraints. A model of a formula

of this logic is a (multi-) data word with data values from some {�,v, S}-structure.

We are particularly interested in the case where this structure is an ordered tree

with pre�x order � and lexicographic order v. Our goal of this chapter and the

next chapter is to adjust the automata-based model checking methods known for

LTL to this se�ing.

For this purpose, we �rst introduce our notion of the in�nite tree in Section 8.1

and Constraint LTL in Section 8.2. A�erwards we recall constraint automata in

Section 8.3. As last part of this chapter we prove in Section 8.4 that satis�ability

and model checking for cLTL formulas with constraints over the full in�nitely

branching tree are in PSPACE due to a reduction to the emptiness problem of

tree-constraint automata. �e technical core for containment in PSPACE is to

show that emptiness of tree-constraint automata is PSPACE-complete and NL-

complete for �xed dimension. �e proof of this result is postponed to Chapter 9.

We conclude this chapter by providing a reduction of the satis�ability and model

checking problem for cLTL over the full �nitely branching tree or over the trees

with branching structure ω or −ω + ω to the corresponding problem over the full

in�nitely branching tree.

�is is joint work with Alexander Kartzow. �e results can also be found in

[KW15].

8.1 Data Words over the Infinite Tree

Let us �rst give an exact de�nition of “in�nite tree”. For this, we extend the notion

of signature introduced in De�nition 4.1 to signatures with constants. Special treat-

ment of constants was not necessary in Chapter 4 as a constant can be simulated
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Chapter 8 Constraint LTL and Constraint Büchi Automata

in MSO logic using existential quanti�cation and a unary predicate which is inter-

preted as a singleton set. Formally, a signature with constants or just a signature

is a pair S = (S, arity) such that S is a set and arity : S → N0 is a function. A

S-structure is a tuple A = (A, (RA)R∈S ) such that A is any set and RA ⊆ Aarity(R)
if

arity(R) > 0 and RA ∈ A if arity(R) = 0 for every R ∈ S .

Next, we choose a set D ⊆ Q which will describe the branching structure of the

tree, i.e., the order structure of the child nodes of any node. We consider the cases

D ∈ {N,Z,Q} which describe in�nitely branching trees, and D = {1, . . . ,k}, for

some k ≥ 1, for �nitely branching trees. Note that though the branching degree

may be �nite, we always consider trees of in�nite height, i.e., trees without leaf

nodes. Furthermore, we introduce a �nite number of constants symbols s1, . . . , sm
to mark distinguished nodes in the tree. Intuitively, the tree T C

D is the unlabelled

in�nite tree where the children of every node are ordered like (D, ≤) and nodes

can be compared using pre�x order and lexicographic order, i.e., le�-right order.

Additionally, a �nite set of nodes is distinguishably marked as constants.

Formally, let D be one of the above sets and C = {c1, . . . , cm} ⊆ D∗ a set of

constants. Let the signature σ be given by σ = {�,v, s1, . . . , sm} where s1, . . . , sm
are constants symbols. �e in�nite tree over D with constants C is the σ -structure

T C
D given by

T C
D = (D∗, �D,vD, c1, c2, . . . , cm),

where �D is the pre�x order on D∗, and vD is the lexicographic order on D∗ with

respect to the natural order on D. Note that, apart from the constants, there

is no labelling on the tree T C
D . If D is understood, we just write � and v. For

D = {1, . . . ,k} we also write T C
k

instead of T C
D .

In order to reason about elements of T C
D , i.e., positions in the tree, using automata

or temporal logic, we use data words over D∗. Intuitively, a data word is an in�nite

word, where a �xed number of elements of D∗ replaces the symbols of a �nite

alphabet. Formally, given a σ -structure A = (A, �A,vA sA
1
, sA

2
, . . . , sAm ), an n-

dimensional data word over A is any element of

�
An

�ω
.

For two positions x ,y ∈ D∗ let x uy be the maximal common pre�x of x andy, i.e.,

z = x u y if z ∈ D∗ is the �-maximal position with z � x and z � y. �is position

always exists, as ε is always a possible choice and the �nitely many pre�xes of x
(or equivalently y) are linearly ordered by �.

8.2 LTL with Constraints

Constraint LTL has been introduced by Demri and D’Souza [DD07] for arbitrary

domains. Here, as we are only interested in the case of trees with pre�x order and
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8.2 LTL with Constraints

lexicographic order, we recall the de�nition of Constraint LTL for this signature

only.

�e logic Constraint LTL over the signature σ = {�,v, s1, s2, . . . , sm} where

S = {s1, . . . , sm} is a set of constant symbols, abbreviated cLTL, is given by the

grammar

φ ::= X
i x1 ∼ s | s ∼ X

i x1 | X
i x1 ∼ X

j x2 | ¬φ | φ ∧ φ | Xφ | φ U φ,

where ∼ ∈ {=, �,v}, i, j are non-negative integers, x1,x2 are variables from some

countable �xed set V and s ∈ S is a constant symbol. Note that “X
i
” is just

shorthand notation for i many Xes. �us, X
i

requires space linear in i . Let

A = (A, �A,vA, c1, . . . , cn) be a σ -structure. We evaluate a formula φ on n-

dimensional data words (ai)i≥1 over A where x1, . . . ,xn ∈ V are the variables

occurring in φ. We write aji for the j-th component of ai . We say a word d = (ai)i≥1

is a model of φ, denoted as d |= φ or (ai)i≥1 |= φ, if the following conditions for the

atomic comparisons ∼ ∈ {=, �,v} hold:

d |= (Xi xk) ∼ (Xj x`) ⇐⇒ aki ∼
A a`j (i.e., (aki ,a`j ) ∈ ∼A),

d |= (Xi xk) ∼ sj ⇐⇒ aki ∼
A sAj ,

d |= si ∼ (Xj x`) ⇐⇒ sAi ∼
A a`j ,

where we set =A as the identity on D∗, and additionally the usual rules for LTL

apply:

d |= ¬φ ⇐⇒ (ai)i≥1 6|= φ,
d |= (φ1 ∧ φ2) ⇐⇒ (ai)i≥1 |= φ1 and (ai)i≥1 |= φ2,

d |= Xφ ⇐⇒ (ai+1)i≥1 |= φ,
d |= φ1 U φ2 ⇐⇒ there is a k ∈ N0 with (ai+k)i≥1 |= φ2

and (ai+j)i≥1 |= φ1 for all 0 ≤ j < k .

Note that the symbol X has two uses in the logic: either in front of a formula to

denote that this formula should hold in the next step, or in front of a variable to

denote that the value of this variable at the next step should be considered.

From the logical and temporal connectives de�ned above, one can derive dis-

junction, globally, and eventually as usual:

φ1 ∨ φ2 = ¬(¬φ1 ∧ ¬φ2), Fφ = > U φ, Gφ = ¬ F¬φ.

Our constraint LTL does not use atomic propositions. On nontrivial structures,

proposition p can be resembled by constraints of the form xi = cp where we

introduced a distinct constant cp for every proposition p.

Constraint LTL permits arbitrary �nite lookahead. In the next proposition, we

show that a one-step lookahead su�ces.
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· · ·

u1 = 11 u2 = 2 u3 = 1211 u4 = 122 · · ·

Figure 8.1: 1-dimensional data word u = (ui)i≥1 from Example 8.2 (1)

Proposition 8.1. �ere is a polynomial time algorithm that computes, on input

of a cLTL-formula φ, an equivalent cLTL-formula φ′ such that φ′ does not contain

terms of the form X
i x with i ≥ 2.

Proof. We can replace any occurrence of (Xi x) ∼ (Xj y) by X
min(i,j)�(Xi−min(i,j)) ∼

(Xj−min(i,j)y)�. Now assume that there is a subformula of the form X
i x ∼ y (the case

x ∼ X
j y is symmetrical). Introducing fresh variables y0,y1, . . . ,yi−1 we replace this

formula by the formula x ∼ yi and add the conjunct G(y0 = y ∧
∧i

j=1
yj = Xyj−1)

to φ. �is replacement yields an equivalent formula. Iterating this process for all

constraints, we obtain the desired formula ψ . For each atomic comparison, we

add at most |φ| new variables. �us, the size of the resulting formula is at most

quadratic in the size of φ. �

Let us conclude this section by giving two examples that show Constraint LTL

at work.

Example 8.2. We give two examples of cLTL formulas and their semantics.

1. Consider the formula φ1 = G(Xx1 @ X Xx1 @ x1 ∨ x1 @ X Xx1 @ Xx1), where

@ denotes the strict lexicographic ordering, i.e., x @ y if x v y and x , y. A data

word satis�es this formula if the data value at every position is strictly between

the two preceding data values. A concrete example of a data word over T C
2

that

satis�es this property is (ui)i≥1 with u2k+1 = (12)k11 and u2k+2 = (12)k2 for every

k ≥ 0. �e beginning of this word is depicted in Fig. 8.1. If we consider T C
Q

as

underlying tree, it su�ces to choose data values of length 1: the data word (ui)i≥1

with ui =
(−1)i
i also satis�es φ1. Note that the lexicographic order on data words of

length 1 is e�ectively the natural order ≤ on Q.
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8.3 Constraint Automata

2. Let φ2 = G

�(Xx1 � x1) ∧ (Xx1 � x2) ∧ F(x1 � x2)�. �is formula is not

satis�able, which can be seen as follows: Assume (ui)i≥0 |= φ2. By the �rst and the

second clause, we have u1

i+1
� u1

i u u
2

i for every i ≥ 0. Moreover, for any index

j with u1

j � u2

j , we have u1

j u u
2

j ≺ u1

j , and therefore u1

j+1
≺ u1

j . As φ2 asserts the

existence of in�nitely many such indices j, there has to be an in�nite, descending

≺-chain in (u1

i )i≥0. A contradiction.

8.3 Constraint Automata

In the following, we investigate the satis�ability and model checking problems

for Constraint LTL over models with data values in one of the trees T C
D for D ∈

{N,Z,Q} or D = {1, . . . ,k} for some k ∈ N. We follow closely the automata

theoretic approach of Vardi and Wolper [VW94] which provides a reduction of

model checking for LTL to the emptiness problem of Büchi automata. In order to

deal with the constraints, we use T C
D -constraint automata (cf. [G09]) instead of Büchi

automata. Next we recall the de�nition of constraint automata and state our main

result concerning emptiness of constraint automata. We then derive analogous

results of Vardi and Wolper’s decidability results on LTL for cLTL with constraints

over T C
D . A T C

D -constraint automaton is de�ned as a usual Büchi automaton but

instead of labelling transitions by some le�er from a �nite alphabet we label them

by Boolean combinations of constraints which the current and the next data values

have to satisfy in order to execute the transition.

Formally, assume C = {c1, . . . , cm} and let S = {s1, . . . , sm} be a set of constants

symbols. Let BCn be the set of all propositional logic formulas with atomic formulas

of the form v ∼ v′ where v,v′ ∈ {x1, . . . ,xn,y1, . . . ,yn} ∪ S and ∼ ∈ {=, �,v}.

�us, BCn contains all quanti�er-free MSO formulas over the signature {=, �,v}
with variables {xi ,yi | i = 1, . . . ,n}∪S . For tuples u = (u1, . . . ,un),v = (v1, . . . ,vn)
in (D∗)n and a formulaψ ∈ BCn , we write (T C

D ,u,v) |= ψ ifψ evaluates to true when

the values u1, . . . ,un are used for x1, . . . ,xn, the value v1, . . . ,vn for y1, . . . ,yn, and

the values of the constants from C for the constant symbols S . In other words

(D∗, (�D,vD),α) |= ψ , in the sense of De�nition 4.3, where α is any assignment

with α(xi) = ui , α(yi) = vi and α(sj) = cj for all i = 1, . . . ,n and j = 1, . . . ,m.

Definition 8.3. Let D ∈ {N,Z,Q} or D = {2, . . . ,k} for some k ∈ N, and C a

�nite set of constants. An n-dimensional T C
D -constraint automaton is a quadruple

A = (Q, I , F ,δ ) where

1. Q is a �nite, non-empty set – the set of states,

2. I ⊆ Q – the set of initial states,
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q1

q2 q3

x 1
@
y 2
∧
x 1
@
y 1

∧
x 2
=
y 1

y
2 @

x
1 ∧
y

1 @
x

1

∧
x

2 =
y

1y1 @ x1 ∧

y2 @ x1 ∧ x2 = y1

x1 @ y1 ∧ x1 @ y2 ∧ x2 = y1

q1 q2

y1 � x1 ∧ y1 � x2

y1 � x1 ∧ y1 � x2

y1 � x1 ∧ y1 � x2

∧ x1 � x2

y1 � x1 ∧ y1 � x2

∧ x1 � x2

Figure 8.2: Automata described in Example 8.4

3. F ⊆ Q – the set of accepting states,

4. δ ⊆ Q × BCn ×Q – the transition relation,

where BCn is de�ned as above.

A con�guration of the automaton A is a tuple in Q × (D∗)n. We de�ne a relation

→A on the set of con�gurations by le�ing (q,u)→A (p,v) if and only if there is a

transition (q, β,p) ∈ δ such that (T C
D ,u,v) |= β . If A is understood, we just write→

for→A.

A run of A is a �nite or in�nite sequence of con�gurations r = (cj)j∈J , J ⊆ N

being an interval, such that cj → cj+1 for all j, j + 1 ∈ J . For a �nite run r = (ci)i1≤i≤i2
with i1 ≤ i2 ∈ N, we say that r is a run from ci1 to ci2 .

An in�nite run r = (ci)i∈N is accepting if c1 = (q,d1, . . . ,dn) for some initial state

q ∈ I and some �nal state f ∈ F appears in in�nitely many con�gurations of r .

�e set of all words accepted by A consists of all w 1w2 · · · ∈ ((D∗)n)ω such that

there is an accepting in�nite run (ci)i∈N with ci = (qi ,wi).
Example 8.4. We come back to the formulas introduced in Example 8.2:

1. �e le� automaton in Figure 8.2 depicts an T C
Q

-constraint automaton recogniz-

ing the set of data words that model φ1. Note that φ1 uses a two-step lookahead, thus

we introduced an auxiliary variable x2, which is always assigned to the next value of

x1. �e automaton alternately checks that the current value of x1 is before the next

and next-next value of x1 or a�er the next and next-next value of x1, respectively.

An accepting run of A on the data word

�(11, 2), (2, 1211), (1211, 122), . . .� is given

below:

Q
x1

x2

*.
,

q1

11

2

+/
-

*.
,

q2

2

1211

+/
-

*.
,

q3

1211

122

+/
-

*.
,

q2

122

121211

+/
-

*.
,

q3

121211

12122

+/
-

*.
,

q2

12122

12121211

+/
-

*.
,

q3

12121211

1212122

+/
-
· · · .

2. �e right automaton is built following the intuition of φ2. At every transition

the next value of x1 must be below the current values of x1 and x2 and in�nitely
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8.4 Satis�ability and Model Checking of Constraint LTL

o�en x1 must not be a pre�x of x2. By the same reasoning as in Example 8.2, the

language of this automaton is empty.

In the following chapter (see �eorem 9.1) we prove that emptiness of n-dimen-

sional T C
Q

-constraint automata is decidable in space linear in nK (log(m)+ log(|C |)+
log(|A|)) for some global constant K , wherem is the length of the longest constant

occurring in C . We next apply this result in order to obtain PSPACE-completeness

of satis�ability and model checking.

8.4 Satisfiability and Model Checking of Constraint

LTL

We de�ne the satis�ability an model checking problem for cLTL over the in�nite

tree. We prove that these problems for TQ are decidable in polynomial space

assuming �eorem 9.1. A�erwards, we give a reduction of the the model checking

and satis�ability problem for TD with D , Q to the case D = Q.

Definition 8.5. Let D ∈ {N,Z,Q} or D = {2, . . . ,k} for some k ∈ N.

Let SAT(TD) denote the satis�ability problem for cLTL over T C
D : given a set of

constants C and a cLTL-formula φ, is there a data word (wi)i∈N over T C
D such that

(wi)i∈N |= φ?

Let MC(TD) denote the model checking problem for T C
D -constraint automata

against cLTL: given constantsC , a T C
D -constraint automaton A and a cLTL-formula

φ, is there a data word (wi)i∈N over T C
D accepted by A such that (wi)i∈N |= φ?

Theorem 8.6. �e problems SAT(TQ) and MC(TQ) are PSPACE-complete.

Our proof of �eorem 8.6 relies on the statement of �eorem 9.1, which is already

given below. As the proof of �eorem 9.1 is rather involved, we postpone this proof

to Chapter 9.

Theorem 9.1. Let C be a set of constants and A an n-dimensional T C
Q

-constraint

automaton. Let furthermore m = max{|c | | c ∈ C }. It is decidable in space linear in

nK (log(m) + log(|C |) + log(|A|)), for some global constant K independent of C and

A, whether L(A) , ∅.
Proof (of Theorem 8.6). Since there is an automaton accepting all data words,

the satis�ability problem reduces to the model checking problem whence it su�ces

to prove the claim on model checking. Hardness follows directly from the known

results for LTL.
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Let C ⊆ Q∗ be a �nite set of constants, A a T C
Q

-constraint automaton and

φ ∈ cLTL. Due to Proposition 8.1 we can assume that all atomic constraints

occurring in φ only concern the current and the next data values. Recall that Vardi

and Wolper [VW94] provided a translation from LTL to Büchi automata such that

the resulting automaton accepts some word if and only if the word is a model of

the formula.

�is translation li�s to a translation if cLTL over TQ to TQ-constraint automata.

We assume that the reader is familiar with the construction given in [VW94].

A description of this construction can also be found in [BK08, Chapter 5]. We

outline the construction below. Let φ be a Constraint LTL formula and x1, . . . ,xn
be all variables occurring in φ. We denote by cl(φ) the closure of φ, i.e., the set of

all subformulas and their negations (where ¬¬ψ and ψ are identi�ed). As in the

classical construction we �rst give a generalised TQ-constraint automaton, which is

transformed to a TQ-constraint automaton in a second step. Formally, A generalised

TQ-constraint automaton is a quadruple A = (Q, I ,F ,δ ), where Q , I , and δ are the

same as in De�nition 8.3, and F ⊆ P(Q). An in�nite run is accepting in A, if it

starts in an initial state, and visits a state f ∈ F in�nitely o�en for every F ∈ F .

We de�ne a generalised TQ-constraint automaton A = (Q, I ,F ,δ ) where

Q = {M ∈ cl(φ) | M is maximally consistent},
I = {M ∈ Q | φ ∈ M },
F =

�
Fφ1,φ2

� (φ1 U φ2) ∈ cl(φ)	
,

δ =
�(M, β,M′) � (Xψ ) ∈ M ⇐⇒ ψ ∈ M′,

(ψ1 Uψ2) ∈ M ⇐⇒ ψ2 ∈ M
′ ∨ (ψ1 Uψ2) ∈ B′,

β =
∧

(v∼v ′)∈M (v ∼ v′) ∧∧
¬(v∼v ′)∈M ¬(v ∼ v′)

	
,

where the v and v′ run over all x1, . . . ,xn, y1, . . . ,yn and constants from C , ∼ ∈

{=, �,v}, and Fφ1,φ2
= {M ∈ Q | (φ1 U φ2) ∈ M =⇒ φ2 ∈ M }. Analogous to the

classical proof, one shows (wi)i≥1 ∈ L(A) if and only if (wi)i≥1 |= φ for every data

word (wi)i≥1.

Let us outline how to obtain a TQ-constraint automaton. See [BK08, Chapter 4]

for details. Assume F = {F1, . . . , Fk}. We de�ne the automaton A′ = (Q′, I ′, F ′,δ ′)
with Q′ = Q × {1, . . . ,k}, I ′ = {(q, 1) | q ∈ I }, F ′ = {(q, 1) | q ∈ F1} and

δ ′ =
��(q, i), β, (q′, j)� � (q, β,q′) ∈ δ , j = i + 1Fi (q)

	
,

where we identify (q,k+1) with (q, 1). Note that the number of state ofA′ is bounded

by |cl(φ)| · |φ|. �us, the number of states is at most exponential in the size of φ.

Hence, we obtain a constraint automaton A′ such that A′ accepts (wi)i∈N if and

only if (wi)i∈N |= φ. Since the usual product construction for Büchi automata li�s
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also to constraint automata, we easily construct an automaton A′′ such that A′′

accepts a word if and only if both A′ and B accept this word. Hence, the set of all

words accepted by A′′ is non-empty if and only if there is a data word (wi)i∈N such

that A accepts (wi)i∈N and (wi)i∈N |= φ. Since the translation from an LTL formula

to a Büchi automaton may result in an exponential size blow-up, we cannot pass

this automaton directly to the algorithm checking the emptiness. Instead, using

the same idea as in [VW94], whenever the algorithm needs to guess a state or a

transition we run a PSPACE decision procedure to verify whether an arbitrarily

guessed string of polynomial length is a state or a transition. Furthermore, the size

of a single state or a transition is polynomial. �us, the claim follows. �

�e rest of this chapter is devoted to showing how MC(T C
D ) can be reduced to

MC(T C
Q
) in logarithmic space. As �rst step we introduce σ -embeddings which can

be used to map runs to di�erent domains.

Definition 8.7. Let σ be a signature, and A and B be σ -structures. We say a

function h : A→ B is a σ -embedding if it is injective and preserves the relations,

and constants under images and preimages. Formally,

(a1, . . . ,an) ∈ RA ⇐⇒ (h(a1), . . . ,h(an)) ∈ RB
,

h(cA) = cB,

for all relations R ∈ σ , constants c ∈ σ and a1, . . . ,an ∈ A.

We will use the following fact in several places throughout this and the next

chapter.

Proposition 8.8. Let σ = {�,v, S} and A = (Q,T , I , F ) be a T C
D -constraint auto-

maton and h : D∗ → Q∗ a σ -embedding. �en, every �nite or in�nite sequence

r = (qi ,wi)i∈I of con�gurations is a run in A, if and only if the sequence h(r ) =
(qi ,h(wi))i∈I , where h(wi) = (h(w j

i ))nj=1
, is a run in A.

Proof. �is is a direct consequence of the fact that h preserves the relations �, @
and the constants in both directions, and that the transition relation→ of A only

depends on these relations and constants. �

In the next lemma, we �rst show that the in�nite tree with branching domain

Q, can be {�,v}-embedded in the in�nite binary tree. A�er this, we give several

constructions of σ -embeddings.

Lemma 8.9. Let σ = {�,v}. �ere is a σ -embedding from TQ to T2.
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Proof. We �rst show how (Q, ≤) can be embedded into ({1, 2}∗,v) and a�erwards

extend this mapping to TQ.

Let O = ({11, 22}∗12,v) where v denotes the lexicographical order. We show

that O and (Q, ≤) are isomorphic. �e domain of O is countable and does not have

endpoints because (11n12)n∈N forms a strictly descending sequence such that for

any element x of O there is an n ≥ 0 with (11)n12 v x . Analogously, (22
n
12)n∈N is a

strictly increasing sequence majorising every element. �us, it is le� to show that

v is a dense order. Assume w,v ∈ O with w , v and w v v . Let w = w1w2 . . .wk

and v = v1v2 . . .v` with wi ,vi ∈ {11, 12, 22}. Furthermore, let i be minimal such

that wi , vi . If vi = 12 then wi = 11 and w1w2 . . .wi(22)k−i 12 is between w and v .

If vi = 22 then wi = 11 or wi = 12. Hence, w @ w1w2 . . .wi−122(11)`−i12 @ v . Finally,

the case vi = 11 is not possible as this would imply v @ w . �us, O is a countable,

dense order without end points and therefore isomorphic to (Q, ≤). For the rest of

the proof let h : O → Q denote such an isomorphism.

We now extend h to a mapping д : Q∗ → {1, 2}∗ by de�ning

д(q1q2 · · ·qn) = h(q1)h(q2) · · ·h(qn),
i.e., д is the extension of h to Q∗ as a homomorphism. We show that д is a σ -

embedding.

We show that д preserves � (in both directions). It is obvious from the de�nition

thatw � v impliesд(w) � д(v). Now assume thatд(w) � д(v) and letw = w1 · · ·wk

and v = v1 · · ·v`. By assumption we have h(w1) · · ·h(wk)w′ � h(v1) · · ·h(v`). As

{11, 22}∗12 forms a �-antichain, i.e., all elements are pairwise �-incomparable, any

word u in ({11, 22}∗12)∗, can be uniquely decomposed into words u = u1 · · ·u` with

ui ∈ {11, 22}∗12 for all i = 1, . . . , `, c.f. Proposition 6.30. Hence, we conclude k ≤ `
and h(wi) = h(vi) for all i = 1, . . . ,k . By injectivity of h, we obtain w � v . Note

that this also shows the injectivity of д, as � is a partial order.

We prove preservation of v. Let w = w1 · · ·wk and v = v1 · · ·v` . Assume w v v .

If w � v , we have д(w) � д(v) by the previous paragraph. �us, assume wi < vi
and wj = vj for a i ≤ min(k, `) and all j < i . Since wi < vj implies h(wi) @ h(vi),
we conclude д(w) @ д(v). Conversely, assume д(w) v д(v). If д(w) � д(v) we

conclude w � v by the previous paragraph. Let i be minimal with h(wi) , h(vi).
Since h(w) @ h(v), we obtain h(wi) @ h(vi). As h is an isomorphism, we conclude

wi < vi and wj = vj for all j < i . �erefore, w @ v . �

We are now ready to give the reduction from the model checking problem over

TD to the model checking problem over TQ.

Lemma 8.10. Let D ∈ {N,Z} or D = {1, . . . ,k} for some k ≥ 2. �en, MC(TD) is

LOGSPACE-reducible to MC(TQ).
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Proof. Let C ⊆ D∗ be a �nite set of constants, A a T C
D -constraint automaton and

φ ∈ cLTL. Assume variables x1, . . . ,xn occur in φ. We may assume, thatC is closed

under pre�xes, as any set can be closed under pre�xes with only polynomial blowup.

�e crucial di�erence to the case D = Q is that the branching domain is not dense

and possibly bounded. For every i ∈ {1, . . . ,n}, we de�ne the following formulas:

αi =
∧

c∈C,j∈D :

cj,c(j+1)∈C

�
cj v xi =⇒ (cj � xi ∨ c(j + 1) v xi)�,

β0

i =




∧
c∈C

(c1 v x ∨ x � c1) if D , Z

> otherwise,

β 1

i =




∧
c∈C

(x v ck ∨ ck � x) if D = {2, . . . ,k}
> otherwise,

where > is some �xed tautology. We claim that (C,A,φ) is a positive instance of

MC(T C
k
) if and only if (C′,A,ψ ) is a positive instance of MC(T C

Q
), where C′ ⊇ C

additionally contains the constants used in β0,1
i , A is seen as a T C

Q
-automaton, and

ψ = φ ∧ G

∧n
i=1

(αi ∧ β0

i ∧ β
1

i ). Intuitively, ψ is obtained from φ by adding checks

that the data values may not occur between constants of the form cj and c(j + 1),
and not before the minimal possible data value or a�er the maximal possible data

value. �us, we need to show that there is a witness for the instance (C,A,φ) if

and only if there is a witness for (C′,A,ψ ), i.e., that the following conditions are

equivalent:

1. d |= φ for some d ∈ LD(A),
2. d |= ψ for some d ∈ LQ(A).

First, assume statement 1 holds. Let d = (ui)i≥0 with d ∈ LD(A) and d |= φ. As every

u j
i is in D∗, we automatically obtain d |= G(αn ∧ βn

0
∧ βn

1
). Moreover, note that |=

does not depend on the tree arity. So d |= φ regardless of whether we consider φ
as a formula over D or over Q. Furthermore, d ∈ LD(A) implies d ∈ LQ(A) as the

automaton only depends on the relations between data values and not on the tree

domain. Together we obtain statement 2.

�e converse direction is more involved. We construct a {�,v}-embedding h
which maps a witness of statement 2 to a witness of statement 1. In order to de�ne

this function, we �rst need to de�ne its domain: let K ⊆ Q∗ contain all words w
such that

1. ci v w =⇒ (ci � w ∨ c(i + 1) v w) for all c ∈ D∗, i ∈ Q with ci, c(i + 1) ∈ C .
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Chapter 8 Constraint LTL and Constraint Büchi Automata

2. if D = N or D = {1, . . . ,k}, then c1 v w for all c ∈ C

3. if D = {1, . . . ,k}, then w v ck or ck � w for all c ∈ C .

Clearly, (ui)i≥0 |= G

∧n
i=1

(αi ∧ βi
0
∧ βi

1
) if and only if u j

i ∈ K for all i ≥ 0 and

j ∈ {1, . . . ,n}. We de�ne a mapping {�,v}-embedding h : K → D∗. Intuitively, h
maps all nodes of the form cq for some constant c below the node c(j + 1), where

j < q is maximal with cj ∈ C . By the choice of K , c(j + 1) cannot be a constant.

Let zmin be 1 if D = N or D = {1, . . . ,k} or smaller than any component of any

constant if D = Z. For every c ∈ C let the function ιc : Q→ D be given by

ιc(q) =



max{z ≤ q | cz ∈ C } + 1 if there is a z ≤ q with cz ∈ C

zmin otherwise.

Letд : Q∗ → {1, 2}∗ be a {�,v}-embedding. With the help of ιc we de�ne a function

h : K → D∗ by

h(w) =



w if w ∈ C

c ιc(q)д(qu) if c ∈ C is maximal with c � w and w = cqu
for some q ∈ D, u ∈ D∗.

�is mapping is a {�,v, S}-embedding. �e rather technical proof of this statement

is outsourced to Lemma 8.11.

Now, assume d |= φ ∧ G(αn ∧ βn
0
∧ βn

1
) for some d ∈ LQ(A). Let d = (ui)i≥0.

�us, we have u j
i ∈ K for all i and j. Hence, we can apply h to the data word,

obtaining a data word h(d) = (h(ui))i≥0 with h(ui) = (h(u1

i ), . . . ,h(uni )). As h is a

{�,v, S}-embedding, we obtain h(d) |= φ and h(d) ∈ LQ(A) by Proposition 8.8. As

h(d) ∈ ((D∗)n)ω , we also have h(d) ∈ LD(A). �is completes the proof. �

Lemma 8.11. We assume the notation of the proof of Lemma 8.10. �e mapping

h : K → D∗ is a {�,v, S}-embedding.

Proof. Recall that we assume the set of constants to be closed under pre�xes. We

show that h is well-de�ned. �e only case that may violate well-de�nedness of h is

D = {1, . . . ,k} that ιc(q) > k . Let w = cqx with c � w and c ∈ C maximal. Since

w ∈ K , we conclude q ≤ k . As cq is not a constant, ιc(q) ≤ k and h is well-de�ned.

We prove the following statement for all w ∈ K : if w < C , then h(w) < C . Let

w = cqw′ with c � w maximal and q ∈ Q. Consider the case that there is no z ∈ D
with z ≤ q and cz ∈ C . If D = Z, we have c ιc(q) < C by construction of ιc . If D = N

or D = {1, . . . ,k}, we conclude c1 v w as w ∈ K and so 1 ≤ q. Since we assumed

that there is no constant cz with z ≤ q, c1 = c ιc(q) is not a constant. As C is closed
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under pre�xes h(w) is also not a constant. In the case that there is a z ∈ D with

cz ∈ C and z ≤ q, let z0 be maximal with this property. Since cq ∈ K and cz0 v cq,

we have z0 = q or z0 + 1 ≤ q. As cq < C , only the case z0 + 1 ≤ q can occur. �us,

by maximality of z0, c(z0 + 1) = c ιc(q) is not a constant. �erefore, h(w) < C .

Preservation of �: We show that h preserves � in both directions. Let u,v ∈ K .

Assume v ∈ C . �en, h(v) = v . If u � v , then u is also a constant, and h(u) = u. If

h(u) � h(v) = v , we conclude that h(u) is a constant. By the second paragraph, u is

a constant, and u = h(u) � h(v) = v .

Next, we consider the case that u ∈ C and v < C . If u � v , there is a constant

c with u � c � v . By de�nition of h, we obtain h(u) = h(c) � h(v). Conversely,

assume h(u) � h(v). As h(v) is not a constant, there is a maximal constant c ∈ C
with h(u) = u � c ≺ h(v). Assume c � v . Let c′ be maximal with c′ � v . �us,

c′ � h(v). By maximality of c we conclude c′ � c . By de�nition of h and the second

paragraph, c′ is the maximal constant that is a pre�x of h(v). �us, c = c′ and u � v .

Assume u,v < C . Let u = cqx and v = c′q′x′, where c, c ∈ C′ are maximal with

c � u and c′ � v . If u � v , then c = c′, q = q′, and x � x′ since cq, c′q′ < C . We

conclude h(u) = c ιc(q)д(qx) � c ιc(q)д(q′x′) = h(v). Conversely, if h(u) � h(v),
we have c ιc(q)д(qx) � c′ ιc(q′)д(q′x′). As before, we conclude c = c′, ιc(q) = ιc ′(q′),
and д(qx) � (q′x′). As д preserves �, this implies qx � q′x′, i.e., q = q′ and x � x′.
�erefore, u � v .

Preservation of v: We show that h preserves v in both directions. Let u,v ∈ K
with u v v . If u � v holds, we conclude h(u) v h(v), as h preserves �. Assume u =
wqx and v = wq′x′ with q < q′. If wq and wq′ are constants, we obtain h(u) v h(v)
by de�nition. Assume that onlywq is a constant. �us, ιc(q′) > q andwq v w ιc(q′).
�is implies h(u) v h(v). Next, assume only wq′ is a constant. Assume there is a

z ≤ q with cz ∈ C . Since q < q′, we have z < q′. �us, ιc(q) = z + 1 ≤ q′. If there

is no such z, then ιc(q) ≤ q′ by de�nition of ιc . In both cases, we obtain ιc(q) < q′

since wιc(q) is not a constant by the second paragraph. We conclude h(u) v h(v)
as д preserves v. Finally, assume wq,wq′ < C , but w ∈ C . As ιc is monotonic, we

obtain ιw (q) ≤ ιc(q′) and therefore h(u) = w ιw (q)д(qx) v w ιw (q′)д(q′x′) = h(v).
If w < C , we conclude h(u) = h(w)д(qx) and h(v) = h(w)д(q′x′). As д preserves v,

we obtain h(u) v h(v).
Conversely, assume u,v ∈ K with h(u) v h(v). If h(u) � h(v) we immediately

conclude u v v . Moreover, if u and v are constants, the claim follows immediately.

Assume u ∈ C , v = cq′x′ with c ∈ C maximal with c � v . Since u = h(u) v h(v) =
c ιc(q′)д(x′) and c ιc(q) < C , the maximal common pre�x of u and h(v) is a strict

pre�x of u and c . �us, u @ c . �e case that only v is a constant is analogous. We

still need to consider the case that both words u,v are not constants. Let u = cqx
and v = c′q′x′. Assume c = c′. �en, either ιc(q) = ιc(q′) and д(qx) v д(q′x′), or

ιc(q) < ιc(q′) and q < q′. In both cases we conclude u v v . If c ≺ c′, we have
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h(cq) @ h(c′) and conclude cq @ c′ as above. Analogously, if c′ ≺ c , we obtain

c @ c′q′ from h(c) @ h(c′q′). �us, assume that c and c′ are �-incomparable. Hence,

c @ c′ and so u @ v .

Injectivity follows from the fact that h preserves the partial order �. �is com-

pletes the proof. �

From �eorem 8.6 and Lemma 8.10 we directly obtain the following corollary.

Corollary 8.12. Let D ∈ {Q,N,Z} or D = {1, . . . ,k} for some k ≥ 2. �en,

MC(T C
D ) and SAT(T C

D ) are PSPACE-complete.

Remark 8.13. Demri and Deter [DD15] conjectured that if the arity k of the tree

is part of the input to the satis�ability problem, it is still in PSPACE. Our proof

con�rms that this branching degree uniform satis�ability problem is PSPACE-

complete.
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Chapter 9

Emptiness of Tree Constraint

Automata

Recall that every non-empty Büchi automaton has an accepting run which is

ultimately periodic. We �rst prove that a nonempty constraint automaton has an

accepting run which ultimately consists of loops that never contract the distances

of data values and keep the order type of the data values constant. We then de�ne

the notion of the type of a run. It turns out that such a non-contracting loop exists

if and only if the automaton has a run realising a type among a certain set. Finally,

we provide a nondeterministic algorithm, which uses space polynomial in the

dimension of the automaton, but logarithmic in the automaton’s size, that checks

whether an automaton realises a given type. Pu�ing all these together yields our

main technical result:

Theorem 9.1. Let C be a set of constants and A an n-dimensional T C
Q

-constraint

automaton. Let furthermore m = max{|c | | c ∈ C }. It is decidable in space linear in

nK (log(m) + log(|C |) + log(|A|)), for some global constant K independent of C and

A, whether L(A) , ∅.
�e proof of this theorem will take up the rest of this chapter.

�is is joint work with Alexander Kartzow. �e results can also be found in

[KW15].

9.1 Emptiness and Stretching Loops

We �rst introduce some notation before de�ning our notion of stretching loop and

characterising emptiness in terms of stretching loops.

From now on a word is always an element of Q∗,
�

(u) denotes the (binary)

greatest common pre�x operator, and we �x a �nite tuple of wordsC = (c1, c2, . . . , cm)
called constants. Moreover, we �x a T C

Q
-constraint automaton A with state space

Q .
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Chapter 9 Emptiness of Tree Constraint Automata

s1 s2 s1

s2

MCAT(121, 122) MCAT(211, 22)

Figure 9.1: Situation described in Example 9.3. �e do�ed arrows represent the

isomorphism h : MCAT(121, 122)→ MCAT(211, 22)

We assume thatC is closed under pre�xes.

Note that a reference to the pre�x of a constant can be stored in space logarithmic

in the number of constants and the maximal length of the constants, by storing

the index of the constant and the length of the pre�x. �us, this assumption does

not increase the space needed by our algorithm as the algorithm never stores the

actual value of a constant, but merely references the constants.

Definition 9.2. Let s1, s2, . . . be countable many constant symbols. Given a tuple

w = (w1,w2, . . . ,wn) of words, the maximal common ancestor tree MCAT(w) of w
is the following σ -structure, where σ = {�,v, s1, s2, . . . , sn}:

MCAT(w) = (M, �|M2,v|M2,w1,w2, . . . ,wn) with

M = {ε} ∪ {�i∈I wi | ∅ , I ⊆ {1, 2, . . . ,n}},

i.e., wi is the interpretation of constant symbol si .
�e (order) type typ(w) of w is the σ -isomorphism class of MCAT(w). We de�ne

MCATC(w) = MCAT(w,C) and typC(w) = typ(w,C), i.e., MCATC(w) includes all

positions from w as well as all positions from C .

Labelling the words from w by constant symbols has the following consequence: if

typC(w) = typC(v) for w = (w1,w2, . . . ,wn) and v = (v1,v2, . . . ,vn) then there is a

unique isomorphism h from MCATC(w) to MCATC(v) which maps c 7→ c for every

c ∈ C and wi → vi for wi the i-th element of w and vi the i-th element of v .
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Example 9.3. We consider the 2-dimensional data values u = (121, 122) and v =
(211, 22) in T2. In Fig. 9.1 both tuples are shown embedded in the binary tree.

�e rectangular nodes correspond to the maximal common ancestor tree of u,

v , respectively. Clearly, we have typ(u) = typ(v). �us, there exists a unique

σ -isomorphism h : MCAT(u)→ MCAT(v).

We introduce a partial order ≤C on the set of con�gurations.

Definition 9.4. We make the following de�nitions:

1. LetD ⊆ Q∗. A functionh : D → Q∗ is called stretching if |h(e)|−|h(d)| ≥ |e |−|d |
for all d, e ∈ D with d � e .

2. For n ∈ N we de�ne a relation ≤C on con�gurations from Q × (Q∗)n by

(q,w) ≤C (p,v) if q = p, typC(w) = typC(v) and the induced isomorphism

h : MCATC(w)→ MCATC(v) is stretching.

Intuitively, (q,w) ≤C (q,v) holds if both data tuples have the same order type and

the distances between parent nodes and direct child nodes in MCATC(v), seen as a

subtree of Q∗, are greater than the corresponding distances in MCATC(w). Note

that the isomorphism h shown in Fig. 9.1 is not stretching since |12| − |ε | = 2 > 1 =

|1| − |ε | = |h(12)| − |h(ε)|.
Recall that a well-quasi ordering is a quasi ordering R, i.e., R is re�exive and

transitive, such that for any in�nite sequence x1,x2, . . . of elements there are indices

i < j with (xi ,xj) ∈ R.

Lemma 9.5. ≤C is a well-quasi order.

Proof. Obviously, ≤C is a quasi order.

Let (wi)i∈N be an in�nite sequence of n-tuples of words. �is sequence induces

an in�nite subsequence (wi ,C)i∈I such that for all i, j ∈ I typC(wi) = typC(w j).
�is implies that MCATC(wi) and MCATC(w j) are isomorphic for all i, j ∈ I via an

isomorphism ϕi,j .
For every i ∈ I we de�ne a map fi : MCATC(wi)2 → N by (u,v) 7→ |u | − |u uv |.

Fix an i0 ∈ I and an enumeration of the domain of fi0 . �is induces an enumeration

of the domain of fi for every i ∈ I by le�ing (u,v) ∈ dom(fi) be the k-th element if

(ϕi,i0(u),ϕi,i0(v)) is the k-th element of dom(fi0).
Consider the set { f (wi) | i ∈ I } ⊆ Nn

. By Dickson’s Lemma we �nd tuples w j ,

wk (j < k) such that fk(ϕj,k(u),ϕj,k(v)) ≥ fj(u,v) for all (u,v) ∈ MCATC(w j). From

this we immediately conclude that w j ≤C wk . �
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We want to show that the order ≤C and the relation→ induced by the transitions

of a constraint automaton are compatible in the sense of strong upwards com-

patibility. We say that→ is strongly upwards compatible with respect to ≤C if for

all con�gurations (q,u), (p,v), and (q,u′) with (q,u) → (p,v) and (q,u) ≤C (q,u′)
there is a con�guration (p,v′) such that (q,u′)→ (p,v′) and (p,v) ≤C (p,v′).

We prepare the proof of strong upwards compatibility of the transition relation

by formally proving the following intuition: if MCATC(w′) has larger gaps than

MCATC(w) (seen as subtrees of Q∗), every extension of MCATC(w) to a bigger tree

induces a corresponding extension of MCATC(w′) to a bigger tree of the same order

type. �e proof of this statement requires the following technical lemma, which

gives constructions of σ -embeddings.

Lemma 9.6. Let σ = {�,v,u}. �e following functions are σ -embeddings:

1. For any u ∈ Q∗ the function ιu : Q∗ → Q∗ given by ιu(w) = uw .

2. For any strictly monotonically increasing, bijective function ` : Q→ Q, the

function
˜̀

: Q∗ → Q∗ de�ned by
˜̀(ε) = ε and

˜̀(q1 · · ·qn) = `(q1)q2 · · ·qn.

3. Given two σ -embeddings f ,д : Q∗ → Q∗ and a position z ∈ Q∗, the function

h = f [z ← д] given by

h(w) =



f (z)д(w′) if w = zw′

f (w) otherwise.

Moreover, if f ,д are only {�,v}-embeddings, so is f [z ← д].
4. Let σ = {�,v} or σ = {�,v,u}. Given an in�nite sequence of σ -embedding

(fi)i∈N such that for every x ∈ Q∗ there is an N ∈ N with fi(x) = fj(x) for all

i, j ≥ N . �en, the function f : Q∗ → Q∗ given by f (x) = y if fi(x) = y for

almost all i ∈ N is a σ -embedding.

Proof. 1. �e statement about ιu follows directly from the de�nitions of the

relations �, v, and u.

2. Let ` : Q→ Q a strictly monotonic function. Let u,v ∈ Q∗ with u = u1 · · ·un
and v = v1 · · ·vm. If u � v , then v = uv′ for some v′ ∈ Q∗. �is implies

˜̀(u) =
`(u1)u2 · · ·un � `(u1)u2 · · ·unv

′ = ˜̀(v). Conversely, assume
˜̀(u) � ˜̀(v). �us,

n ≤ m and `(u1) = `(v1), u2 = v2, . . . ,un = vn. As ` is injective, we conclude u � v .

Assume, u v v . If u � v , we conclude
˜̀(u) � ˜̀(v). �us, assume u = xqy

and v = xq′y′ with q,q′ ∈ Q and q < q′. If x is non-empty, we directly conclude

˜̀(u) v ˜̀(v) by de�nition of
˜̀
. Otherwise, x = ε and

˜̀(u) = `(q)y v `(q′)y′ = ˜̀(v)
since ` is strictly monotonic. Conversely, assume

˜̀(u) v ˜̀(v). As before, the case
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˜̀(u) � ˜̀(v) follows from the previous paragraph. �us
˜̀(u) = xqy and

˜̀(v) = xq′y′

with q < q′. If x is non-empty, we have u = x0qy and v = x0q
′y′ for some x0 ∈ Q

∗

and so u v v . If x = ∅, we conclude q = `(q0) and q′ = `(q′
0
) for some q0,q

′
0
∈ Q.

As ` is strictly monotonic, this implies q0 < q′
0
. Hence, u v v .

Note that
˜̀

is bijective as ` is bijective. �us,
˜̀

preserves u as it preserves � in

both directions.

3. Let f ,д, z as in the assumptions of the statement. Let u,v ∈ Q∗. If u and v
are either both su�xes of z or both strict pre�xes of or incomparable to z, then

the function h is essentially only the function f or the function д applied to both

values. �us, the statement follows directly by the assumptions on f and д.

Assume u is a strict pre�x of z or incomparable to z and v = zv′. If u � v , we

conclude h(u) = f (u) � f (z) � f (z)д(v′) = h(v). Conversely, assume h(u) � h(v).
�us, h(u) = f (u) is either a strict pre�x or a su�x of f (z). If f (z) � f (u), then

z � u since f preserves � in both directions. �is contradicts the assumptions on

u. Hence, u ≺ z � v . Next, we consider the case u v v , i.e., u = xqy and v = xq′y′

with q < q′. Since x � u uv , we have x ≺ z. �us, xq′ � z and h(xq′) � h(v). Since

xq @ xq′ are �-incomparable, the same holds for f (xq) and f (xq′). We conclude

h(u) @ h(v) since f (xq) � h(u) and f (xq′) � h(v). Conversely, assume h(u) v h(v)
and h(u) � h(v). Hence, h(u) = xqy and h(v) = xq′y′ with q < q′. Since u is

not a su�x of z, f (u) is not a su�x of f (z). Hence, x is a strict pre�x of f (z).
�erefore, xq′ � f (z) and f (u) @ f (z). Since xq′ is also a pre�x of f (z), we obtain

that f (u) and f (z), and u and z are �-incomparable We conclude u @ z and u @ v
as z � v and u and z are �-incomparable. Finally, we show that h preserves u.

Note that since, u is not a su�x of z, we have u u v = u u z ≺ z. We conclude

h(u uv) = h(u uz) = f (u uz) = f (u)u f (z) = h(u)uh(v), since f (u) is not a su�x

of f (z).
�e case thatu is a su�x of z andv is not a su�x of z is analogous to the previous

case.

4. Consider two words u,v ∈ Q∗. By de�nition of f , there is a N ≥ 0 such that

f (u) = fN (u) and f (v) = fN (v). As fN is a σ -embedding, the claim follows. �

Lemma 9.7. Let σ = {�,v,u}. Let further be {ε} ⊆ A ⊆ Q∗ �nite and closed

under greatest common pre�xes, and f a stretching σ -embedding on A. �en, f
extends to a stretching σ -embedding д : Q∗ → Q∗.

Proof. We use induction on |A|. For A = {ε}, the mapping д is just the identity on

Q∗.

Assume A ) {ε}. We show the case |A| = 2 separately. Let x = x1 · · · xm ∈ A
and f (x) = x′ = x′

1
· · · x′m′ with m′ ≥ m as f is stretching. Fix strictly monotonic,
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bijective functions `i : Q→ Q for 1 ≤ i ≤ m with `i(xi) = x′i for i ≤ m. De�ne д by

д(y1 · · ·yn) =



f (x)ym+1 · · ·yn if x � y1 · · ·yn,

`1(y1) · · · `n(yn) if y1 · · ·yn ≺ x

`1(y1) · · · `k(yk)yk+1 · · ·yn otherwise,

where k ≤ n is minimal with y1 · · ·yk � x . Obviously, д(x) = f (x). �e function д
can be wri�en using the operations and functions de�ned in Lemma 9.6 as follows:

д = id[ε ← `1][x1 ← `2][x1x2 ← `3] · · · [x1 · · · xm−1 ← `m][x1 · · · xm ← ιx ′m+1
···x ′m′

].
By the results of the same lemma, д is a σ -embedding.

Next, assume |A| > 2. Choose a position y ∈ A such that the set X = {x ∈ A | y �
x , y , x} is non-empty and contains only �-incomparable elements. LetA0 = A\X
and f0 = f |A0

. By induction hypothesis there is a σ -embedding д0 on Q∗ which

extends f0. Let X = {x1, . . . ,xm} with xi v xi+1 for all 1 ≤ i < m. As A is closed

under maximal common ancestors, there are rational numbers q1 < · · · < qm and

words u1, . . . ,um such that xi = yqiui . For any two indices 1 ≤ i < j ≤ m, we have

xi u xj = y and so f (xi)u f (xj) = f (y), as f is compatible with u. Since f (y) is the

maximal common pre�x of any two values xj and xj , there are rational numbers

q′
1
< · · · < q′m and words u′

1
, . . . ,u′m with f (xi) = f (y)q′iu′i . Next, choose a bijective,

strictly monotonic function ` : Q→ Q with `(qi) = q′i for all 1 ≤ i ≤ m. For every

i ∈ {1, . . . ,m} let fi : {ε,ui} → Q∗ be given by fi(ui) = u′i . Using the case |A| ≤ 2

we obtain a σ -embedding дi : Q∗ → Q∗ which extends fi . We de�ne д by

д(w) =



f (y)q′i дi(u) if w = yqiu for some i ∈ {1, . . . ,m},
f (y) `(q)u if w = yqu and q < {q1, . . . ,qm},
д0(w) if w ⊀ z.

Using the notation of Lemma 9.6, we can represent д as follows:

д = д0

�
y ← ˜̀[qi ← дi]i=1,...,m

�
.

By the choice of д0, . . . ,дm, д is an extension of f . Furthermore, д is a σ -embedding

by Lemma 9.6. �

We are now ready to proof the strong upwards compatibility of→ and→−1
with

respect to ≤C , where→−1
is the inverse relation i.e., (p,u)→−1 (q,v) if and only if

(q,v)→ (p,u).
Proposition 9.8. → and→−1

are strongly upwards compatible with respect to ≤C .
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Proof. Given k-tuples w , v , w′ and states q and p such that there is a transition

(q,w)→ (p,v) and such that w ≤C w′ we have to show that there is some v′ such

that v ≤C v
′

and (q,w′)→ (p,v′).
Since w ≤C w′, the isomorphism h : MCATC(w) → MCATC(w′) extends (by

Lemma 9.7) to a stretching {�,v,u}-embedding
ˆh : Q∗ → Q∗. Se�ing v′i =

ˆh(vi)
for each vi ∈ v we obtain with v′ = (v′

1
, . . . ,v′

k
) that (p,v) ≤C (p,v′) and (q,w′)→

(p,v′) as desired.

�e argument for→−1
is completely analogous. �

We now consider a particular (�,v,u, S)-embedding: the insertion of an m-gap

at some u which is not pre�xed by a constant from C . �is preserves the type and

leads to a ≤C larger tuple.

Definition 9.9. Let u be a word andm ∈ N. We de�ne the insertion of anm-gap at
u to be ιmu : Q∗ → Q∗ given by ιmu (w) = u0

mv if w = uv and ιmu (w) = w if u � w .

Clearly, ιmu is also a stretching function. Hence, it preserves ≤C on the con�gura-

tions. Iterated use of this fact and Proposition 9.8 proves the following lemma.

Lemma 9.10. Given two con�gurations (q,w), (q,v) such that typC(w) = typC(v)
then there is a con�guration (q,u) such that (q,w) ≤C (q,u) and (q,v) ≤C (q,u).

Proof. Let d ∈ N be maximal such that there are x1,x2 ∈ MCATC(w) with x1 � x2

and |x2| − |x1| = d . Inductively, from the �-maximal elements to ε we insert a

d-gap at each y ∈ MCATC(v) if y is not pre�xed by a constant from C . All these

iterated insertions result �nally in a tuple u such that (q,v) ≤C (q,u) and for all

z1, z2 ∈ MCATC(u) such that z1 � z2 and z2 is not pre�x of any constant from C ,

then |z2| − |z1| ≥ d . �us, by de�nition of d also (q,w) ≤C (q,u) holds as desired. �

We are �nally ready to characterise the non-emptiness of T C
Q

-constraint automata

by the existence of particular loops.

Definition 9.11. A loop is a �nite run r = (ci)i≤n with c0 = (q,w), cn = (q,v) and

typC(w) = typC(v). We say that a loop r = (ci)i≤n is stretching if c0 ≤C cn.

Lemma 9.12. Let A be a constraint automaton. A has an accepting run if and only

if there are �nite runs r1, r2 where r1 starts in an initial con�guration and ends in

some con�guration c whose state is a �nal state, and where r2 is a stretching loop

starting in c .
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Proof. (⇒). Let r = (ci)i∈N be an accepting run. Since r contains in�nitely many

con�gurations with a �nal state and ≤C is a wqo, we can �nd numbers n1 < n2

such that cn1
≤C cn2

whence (cn)n≤n1
, (cn)n1≤n≤n2

are the desired runs.

(⇐). Assume r1 is a run from some initial con�guration to c1 whose state is a �nal

state f ∈ F and r2 is a stretching loop starting in c1 and ending in c2. Since c1 ≤C c2,

iterated use of strong upwards compatibility (Proposition 9.8) yields runs ri from

ci−1 to ci such that ci−1 ≤C ci for all i ≥ 3. Clearly, the composition of r1, r2, r3, r4, . . .
is an accepting run. �

9.2 Stretching Loops and Types of Runs

�e last subsection provided a characterisation of loops using concrete data values.

In order to obtain a decision procedure we abstract from these concrete values in

this subsection. We give a characterisation of loops that lead to an accepting run,

which only depends on the relations between the data values.

Definition 9.13. Let r = (ci)0≤i≤n be a �nite run, with c0 = (q,w) and cn = (p,v).
Se�ing π = typC(w,v), we say r has type typ(r ) = (q,π ,p).
Definition 9.14. Let w,v be k-tuples of words such that typC(w) = typC(v) and

let h be the induced isomorphism from MCATC(w) to MCATC(v). (w,v) is called

contracting if one of the following holds.

1. �ere is some d ∈ MCATC(w) such that h(d) ≺ d .

2. �ere are d, e ∈ MCATC(w) such that d ≺ e , h(e) = e and d ≺ h(d).
We call a loop r from (q,w) to (q,v) contracting if (w,v) is contracting. Otherwise,

we call it (and its type) noncontracting.

Remark 9.15. As contracting only depends on the relations =,�, and v and not

on the actual values of the positions in MCATC(w) and MCATC(v), it only depends

on typC(w,v) whether (w,v) is contracting.

Let us explain the term “contracting”. Fix a loop from (q,w) to (q,v). �e

isomorphism h : MCATC(w) → MCATC(v) relates for every pair x � y with

x ,y ∈ MCATC(w) the interval (x ,y) with the interval (h(x),h(y)). By de�nition, for

every contracting loop there is an interval (x ,y) such that |y| − |x | > |h(y)| − |h(x)|.
�e technical core of this section shows that if an automaton admits a noncon-

tracting loop then it admits a stretching loop with the same initial and �nal state.

�is allows to rephrase the conditions from Lemma 9.12 in terms of types.
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For runs r = (ci)i∈I and r ′ = (di)i∈I we write r ≤C r ′ if ci ≤C di for all i ∈ I .
Recall from Proposition 8.8, that given a (�,v, S)-embedding f the sequence

r =
�(qi ,wi)�i≥1

is a run in A if and only if f (r ) = �(qi , f (wi))�i≥1
is a run in A. In

particular, this holds if f = ιmu , i.e., the insertion of anm-gap at position u.

Let w,v ∈ Q∗. We say that w and v are comparable if w � v or v � w holds.

Otherwise, we call u andv incomparable. In this situation, we distinguish two cases:

we say w is incomparable le� of v if w v v and w � v . In the same situation we

call v incomparable right of w .

Proposition 9.16. Let r be a noncontracting loop. �en, there is a stretching loop

r ′ such that r ≤C r ′.

Proof. Let r from (q,w) to (q,v) be a noncontracting loop and h : MCATC(w)→
MCATC(v) the induced isomorphism. We iteratively de�ne a sequence r = r0 ≤C

r1 ≤C · · · ≤C rn of runs until rn is stretching.

We call a pair (u1,u2) ∈ MCATC(w)2 problematic (with respect to r ) if u1 � u2

and |u2 | − |u1 | > |h(u2)| − |h(u1)|. Recall that in this case u2 and h(u2), respectively,

are not pre�xes of any constant c from C because h �xes all such elements and C .

Let Pr be the set of all problematic pairs. We split the set of all problematic pairs

into three parts, which we handle separately (cf. Figure 9.2 for an example). Let

Lr = {(u1,u2) ∈ Pr | u2 incomparable le� of h(u2)},
Rr = {(u1,u2) ∈ Pr | u2 incomparable right of h(u2)}, and

Dr = {(u1,u2) ∈ Pr | u2 comparable to h(u2)}.
L-Step: If Lr is nonempty, choose the v-minimal u2 such that there is u1 with

(u1,u2) ∈ Lr . Now �xu1 such that (u1,u2) ∈ Lr andd B (|u2 |−|u1 |)−(|h(u2)|−|h(u1)|)
is maximal. Let ι = ιd

h(u2) be the insertion of a d gap at h(u2) and r ′ = ι(r ). Denote

by ι(w) (ι(v)) the data values of the �rst (last, respectively) con�guration of r ′.
Let h′ : MCATC(ι(w)) → MCATC(ι(v)) be the corresponding isomorphism. By

de�nition the set Lr ′ = {(x1,x2) ∈ Pr ′ | x2 incomparable le� of h′(x2)} does not

contain a pair (u, ι(u2)) for any u ∈ MCATC(ι(w)). Nevertheless, r ′ may admit

problematic pairs that are not problematic with respect to r . �is can happen if there

are x1,x2 ∈ MCATC(w) such that x1 ≺ h(u2) � x2 holds, but h(x1) ≺ h(u2) � h(x2)
does not. �en, the distance between ι(x1) and ι(x2) is greater than the distance

between x1 and x2 (by d). On the other hand, either both or none of h′(ι(x1)) and

h′(ι(x2)) are shi�ed by the insertion of the gap whence their distance is equal to

the distance of h(x1) and h(x2).
In this case, possibly (ι(x1), ι(x2)) is problematic w.r.t. r ′ while (x1,x2) is not

problematic w.r.t r . Since u2 is incomparable le� of h(u2) and h(u2) ≺ x2, we have
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u1

u2

x1

h(u1)
h(u2)

x2

h(x1)

y1

h(x2)
y2

h(y1)

h(y2)

Figure 9.2: Example for Proposition 9.16: In the �rst tree (u1,u2) is problematic,

insertion of a gap (D-Step) at h(u2) makes (the pair corresponding to)

(x1,x2) problematic; insertion of a gap (L-Step) at h(x2) makes (y1,y2)
problematic; insertion of a gap (L-Step) at h(y2) makes the tree stretch-

ing.

that u2 is incomparable le� of x2 and x2 is incomparable le� of h(x2). Whence the

same holds for ι(x2),h′(ι(x2)) = ι(h(x2)) and ι(u2). �us, if (ι(x1), ι(x2)) is problematic,

then (ι(x1), ι(x2)) ∈ Lr ′ and ι(u2) is strictly incomparable le� of ι(x2).
�us, iteration of this step only creates problematic pairs that are more and more

to the right with respect to typC(wn) = typC(ι(w)). Since typC(wn) is �nite, we

eventually do not introduce new problematic pairs and obtain a run ri such that

Lri = ∅ and r ≤C ri because ri results from insertion of several gaps in r .

R-Step: If Rr , ∅, proceed as in (L-Step), but exchange “le�” and “right”.

D-Step: If Lr = Rr = ∅ and r is not stretching, then Dr , ∅. Choose u2 v-minimal

in MCAT(w) such that there is some u1 with (u1,u2) ∈ Dr and choose u1 ≺ u2 in

MCATC(w) such that d B (|u2 | − |u1 |)− (|h(u1)| − |h(u2)|) is maximal. Since r is not

contracting we have u2 � h(u2) and u1 � h(u1). Assume u2 = h(u2), then u1 ≺ h(u1)
as (u1,u2) ∈ D. �is contradicts that r is not contracting. �us, u2 ≺ h(u2). Again,

let ι = ιd
h(u2) and r ′ = ι(r ).

De�ne ι(w), ι(v) and h′ as in the L-step. Again there may be a pair (x1,x2) which

is not problematic with respect to r while (ι(x1), ι(x2)) is problematic with respect

to r ′. If Rr ′ or Lr ′ are nonempty, we can deal with those problematic intervals using

R- or L-steps. �is �nally leads to a run rj with Rr j = Lr j = ∅. Moreover, for every

pair (x1,x2) such that this pair is not problematic with respect to r but (ι(x1), ι(x2))
is problematic with respect to r ′, we conclude that x2 is strictly below u2 whence
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ι(x2) is strictly below ι(u2) w.r.t. �. �us, the endpoints of problematic pairs move

downwards (in typC(w,v) = typC(w′,v′)) and eventually all problematic pairs are

removed. Once rj is a loop without problematic pairs, it is stretching. �

Corollary 9.17. �e set of words accepted by an automaton A is nonempty if

and only if there are runs r1 and r2 such that r2 is a noncontracting loop starting

in con�guration (f ,w) where f is a �nal state and r1 is a run from an initial

con�guration to some con�guration (f ,v) such that typC(w) = typC(v).
Proof. Due to Lemma 9.12 and the fact that every stretching loop is also non-

contracting, only (⇐) requires a proof. Assume that there are runs r1, r2 as stated

above. By Lemma 9.10, there is a con�guration c0 with (f ,v) ≤C c0 and (f ,w) ≤C c0.

Using Lemma 9.7, we obtain a stretching σ -embedding д : Q∗ → Q∗ which maps

(f ,w) to c0. Applying д to every con�guration in r2 results in a new run r ′
2
≥C r2.

As д is an σ -embedding, r ′
2

is also non-contracting. Whence by Proposition 9.16

there is a stretching loop r ′′
2

with r ′
2
≤C r ′′

2
. �is loop starts in some con�guration

c1 such that (f ,v) ≤C c1. Applying Proposition 9.8 to r1 and c2 we obtain a run r ′
1

from an initial con�guration to c2. �us, r ′
1

and r ′′
2

match the conditions of Lemma

9.12 which completes the proof. �

9.3 Computation of Types

In order to turn this characterisation of emptiness in terms of types into an e�ective

algorithm for the emptiness problem the last missing step is to compute whether a

given type is realised by some run of a given automaton. Let us �rst de�ne the set

of all types and the associated product operation.

Recall thatBCn contains all propositional logic formulas where the atomic formulas

are given by v ∼ v′ with v,v ∈ {x1, . . . ,xn,y1, . . . ,yn} ∪C and ∼ ∈ {=, �,v}. We

say an isomorphism type π = typC(w,v) satis�es a formula β ∈ BCn , wri�en π |= β ,

if (T C
Q
,w,v) |= β . Note that this de�nition is well-de�ned, i.e., if typC(w,v) =

typC(w′,v′) then (T C
Q
,w,v) |= β if and only if (T C

Q
,w′,v′) |= β as MCATC(w,v) and

MCATC(w′,v′) are isomorphic.

Definition 9.18. We make the following de�nitions:

1. Let RunTypes
C
n denote the set of all types (q,π ,p) where q,p ∈ Q and π =

typC(w,v) for some n-tuples of words w and v .

2. We equip the power set 2
RunTypes

C
n with a product · as follows: let S,T ⊆

RunTypes
C
n , then S ·T contains all types (p,π ,q) such that there are words

u,v,w ∈ (Q∗)n and a state r ∈ Q with (p, typC(u,v), r ) ∈ S , (r , typC(v,w),q) ∈
T , and π = typC(u,w).
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3. �e set of types of one-step runs T1 ⊆ RunTypes
C
n is given by t = (q,π ,p) ∈ T1

if there is a transition (q, β,p) of A such that π satis�es β .

Using the just introduced product operation, we de�ne the iteration of an element

as usual: T 1 B T andTn+1 B Tn ·T . Furthermore, the setT + given byT + B
⋃

n≥1
Tn

contains all types that appear in some power ofT . �e product operation resembles

the composition of types. As a consequence one can connect the runs of A and T +
1

.

Next, we show that for every run r its type is contained in T +
1

, i.e., typ(r ) ∈ T +
1

.

We also show the converse direction, that every type t ∈ T +
1

admits a run r with

typ(r ) = t . �us the elements of T ∗
1

are exactly the types of the runs of the

automaton. We will later use this correspondence to check if an arbitrary type can

be realised in the automaton, i.e., is the type of a run.

Lemma 9.19. For every run r = (ci)1≤i≤k with k ≥ 1, we have typ(r ) ∈ T k−1

1
.

Proof. For k = 2 the claim follows by de�nition of T 2−1

1
= T1. We proceed by

induction. Write ci = (qi ,wi
1
, . . . ,wi

`
). Let r ′ = (ci)1≤i≤k−1 and rk−1 = (ci)k−1≤i≤k . By

induction hypothesis typ(r ′) = (q1,π ,qk−1) ∈ T k−2

1
with

π = typC(w 1

1
,w 1

2
, . . . ,w 1

`,w
k−1

1
, . . . ,wk−1

` ),
and typ(rk−1) = (qk−1,πk−1,qk) ∈ T1 with

πk−1 = typC(wk−1

1
, . . . ,wk−1

` ,w
k
1
, . . . ,wk

` ).
�us, the tuples w 1

1
, . . . ,w 1

`
, wk−1

1
, . . . ,wk−1

`
, wk

1
, . . . ,wk

`
witness that

(q1,π
′,qk) := typ(r ) ∈ typ(r ′) · typ(rk−1) ⊆ T k−2

1
·T1 = T

k−1

1
,

which completes the proof. �

Lemma 9.20. Let k ≥ 1 and t ∈ T k
1

. �ere is a run r = (ci)i=1,...,k+1 with typ(r ) = t .

Proof. We use induction over k . For k = 1, we have t ∈ T1 and so t = (p,π ,q) such

that there is a (p, β,q) ∈ T and π |= β . Choose u, v with MCATC(u,v) = π . �en,

(p,u)→ (q,v) is the desired run of length 2.

Assume k > 1. Let t ∈ {t0} · {t1} with t0 ∈ T
k−1

1
and t1 ∈ T1. Let t = (p,π ,q),

t0 = (p,π0, r ), and t1 = (r ,π1,q). By de�nition of the type product, there are tuples

of words x , y, and z with π0 = typC(x ,y), π1 = typC(y, z), and π = typC(x , z). By

induction hypothesis, there is a run r0 = (qi ,ui)ki=1
with typ(r0) = t0, i.e., p1 = p,

pk = r , and typC(u1,uk) = typC(x ,y).
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Let h : MCATC(x ,y) → MCATC(u1,uk) be an isomorphism. We modify the

image of h to obtain a stretching isomorphism. Let N be the maximal distance

between to adjacent nodes in MCATC(x ,y) and de�ne the function f : Q∗ → Q∗ by

f (x) = c 0
Nx′

1
0
Nx′

2
0
N · · · 0Nx′`0

N ,

where x = cx′ with c ∈ C maximal with c � x and x′ = x′
1
· · · x′`. Clearly,

f is a (�,v,u, S)-embedding and the composition f ◦ h : MCATC(x ,y) → Q∗

is stretching. Moreover, we have f (MCATc(u)) = MCATC(f (u)) for all tuples

of words u. By Lemma 9.7, there is a σ -embedding h′ : Q∗ → Q∗ which ex-

tends f ◦ h. Let h1 the restriction of h′ to MCATC(x ,y, z) and de�ne w = h1(z).
�us, h1 is a isomorphism MCATC(x ,y, z) → MCATC(f (u1), f (uk),w). �erefore,

typC(x ,y, z) = typC(f (u1), f (uk),w). Let f (r ) = (pi , f (ui))ki=1
. �en f (r ) is also a run

and typ(r ) = typ(f (r )) holds as f is a σ -embedding. Furthermore, as typC(y, z) =
typC(f (uk),w) and t1 ∈ T1, we conclude that r ′ = (p1, f (u1)) · · · (pk , f (uk))(q,w) is a

run. As π = typC(x , z) = typC(f (u1),w), we obtain typ(r ) = t . �

From the last to lemmas we immediately conclude the following result.

Corollary 9.21. �ere is a �nite run of A of type t if and only if t ∈ T +
1

.

9.4 Representation of Tree Types

Before we state our complexity result, we investigate how to e�ciently store tree

types in memory. Let π = typC(u) for some tuple of words u. �e naı̈ve approach

would just store every component of u as a list of pairs of integers. Unfortunately,

the size of such a representation requires space which is not logarithmic in the size

of the constants. �ere are two reasons for this:

1. A su�x ui of a constant c includes the whole constant c in its naı̈ve repres-

entation,

2. If c, cq1, cq3 are constants andu = cq2 forq1,q2,q3 ∈ Q, the size of the integers

representing q2 might be linear in the size of q1,q3.

We �x the �rst issue by writing ui = ciu
′
i where ci ∈ C is maximal with ci � ui and

only storing the index of ci andu′i . To overcome the second issue, we do not store the

exact values of u′i , but any valuesv′i with MCATC(u′1, . . . ,u′n) = MCATC(v′1, . . . ,v′n).
�e values v′i can be chosen to be always in {1, . . . ,n}. �is transformation does

not preserve the le�-right-order of the vi ’s with the constants. �erefore, we store

for every i the maximal constant `i which is le� of ui and on the same level. Recall,
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that the set of constants is closed under pre�xes. �is process results in a small

representation of typC(u). �is will be formalised and proven in the next lemma.

Note that any �nite setA ⊆ Q∗, which is closed under maximal common pre�xes,

can be {�,v,u}-embedded in a tree with branching degree at most |A| and height at

most |A|. �us, the {�,v,u}-isomorphism class of (A, �,v,u) can be represented

in space at most |A|2 log(|A|). Moreover, any set A′ can be closed under maximal

common pre�xes by adding of at most |A′| elements to A′.

Lemma 9.22. Let n ≥ 1 and TreeTypes
C
n = {typC(u) | u ∈ (Q∗)n }. Moreover, let

the set of representation RCn be given by

RCn =
{ �(ci , `i ,vi)�ni=1

∈
�
C2 × {1, . . . ,n}≤n�n ��� ci � `i , |`i | − |ci | ≤ 1 for all i

}
,

where {1, . . . ,n}≤n = ⋃n
i=0

{1, . . . ,n}i . �en, there is a surjective function h : RCn →
TreeTypes

C
n , such that for every r ∈ R the relations � and v in h(r ) can be computed

from r in logarithmic space.

Especially, it is possible to represent an element of RunTypes
C
n in space linear in

log(|Q |) · n(log(|C |) + log(m)) · n log(n) wherem = max{|c | | c ∈ C }.

We will use the rest of this section for the proof of this lemma.

Let r = ((ci , `i ,vi))ni=1
∈ RCn . For every i = 1, . . . ,n choose words ui as follows: if

vi is �-minimal in {vj | cj = ci , `j = `i } assumeC ∩ciQ = {ciq1, . . . , ciqk}, if `i = ci
set ui = ci(q1 − 1) (or ui = ci1 if k = 0). Otherwise, `i = ciqj and we de�ne ui = ciq
with q = 1/2 (qj + qj+1) (or just q = qj + 1 if j = k). If vi is not �-minimal in {vj |
cj = ci , `j = `i }, let vi = vjv

′
, where vj is minimal, and set ui = ujv

′
, where uj is

the element construction in the �rst case. We de�ne h by h(r ) = typC(u1, . . . ,un).
�e chosen elements u1, . . . ,un satisfy

ci = max

�
{c ∈ C | c � ui }, `i = max

v
{` ∈ C | ci � ` v ui , |`| − |c | ≤ 1},

MCAT(u′j | cj = ci , `j = `i) � MCAT(vj | cj = ci , `j = `i),
(9.1)

where ui = ciu
′
i for i = 1, . . . ,n. �is can be seen directly from the de�nition of ui ’s,

but also makes use of the fact that C is closed under pre�xes.

Before we show surjectivity, we argue that any representation r = ((ci , `i ,vi))ni=1

satisfying (9.1) carries enough information to reconstruct the relations � and v on

typC(u1, . . . ,un). We begin with �:

Sublemma 9.23. ui � uj if and only if one of the following conditions holds:

1. ci ≺ cj and vi = ε

2. ci = cj , `i = `j and vi � vj
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Proof. We distinguish three cases:

ci = cj Assume ui � uj . Assume there is an ` ∈ C with ci � `, ` v uj but ui @ `.
�us, ui ≺ ` � uj , which contradicts the maximality of ci . �erefore, ` v ui
i� ` v uj and so `i = `j . Hence, u′i � u′j implies vi � vj .

Conversely, assume `i = `j and vi � vj . �is implies u′i � u′j and thus ui � uj .

ci ≺ cj Assume ui � uj . By maximality of ci , we have u′i = ε in this case, and thus

vi = ε (Recall that the MCAT always includes ε .)

Conversely, vi = ε implies u′i = ε . �us, ui � uj .

cj ≺ ci By maximality of cj ,ui cannot be a pre�x ofuj in this case. Moreover, neither

condition 1 nor 2 are satis�ed. �

Next, we establish the corresponding result for v.

Sublemma 9.24. ui v uj if and only if one of the following conditions holds:
1

1. ci ‖ cj and ci v cj

2. ci = cj and (`i @ `j or (`i = `j and vi v vj))

3. ci ≺ cj and ((`i v cj and `i ‖ cj) or `i = ci )

4. ci � cj and ((ci v `j and `j ‖ ci ) or cj ≺ `j � ci )

Proof. We consider four cases:

ci ‖ cj We have ui v uj ⇐⇒ ci v cj ⇐⇒ condition 1. �us the claim holds.

ci = cj Assume ui v uj and `j v `i . We have `i v ui v uj and so `i v `j . �is

implies `i = `j . �us, we obtain u′i v u′j , as uj v uj .

Conversely, assume condition 2. For `i @ `j , assume uj @ ui . �us `j v `i , a

contradiction. Otherwise, `i = `j and vi v vj and hence u′i v u′j .

ci ≺ cj Assume ui v uj . If u′i = ε , we obtain `i = ci . We now consider the case

u′i , ε , i.e., cj ‖ ui . Assume `i , ci . Assume cj @ `i . �us, cj @ ui and uj @ ui .
A contradiction. Hence, `i v cj . Next, assume ci ≺ `i ≺ cj . We have `i @ ui ,
as `i ‖ ui , and thus cj @ ui . A contradiction. �us, `i ‖ cj .

Conversely, assume condition 3 holds. For u′i = ε , we immediately obtain

ui v uj . �us, assume u′i , ε . Next, assume `i = ci . If uj @ ui , then cj @ ui and

1x ‖ y means x � y and y � x .

173



Chapter 9 Emptiness of Tree Constraint Automata

thus there is a ci ≺ c ≺ cj with c @ ui , which contradicts the maximality of `i .
Finally, let `i ‖ cj and `i v cj . Ifuj v ui , then cj v ui , thus there is a ci ≺ c ≺ cj
with c v ui . As `i v cj and `i ‖ cj , we have `i @ c , which contradicts the

maximality of `i . �erefore, ui � uj .

ci � cj Assume ui v uj . First, assume `j ‖ ci . Assume `j @ ci . As ci v uj and ci ‖ uj ,
there is a cj ≺ c � ci with c v uj . As `j @ c , this contradicts maximality of

`j . Hence, ci v `j . Next, assume `j = cj . As before, there is a cj ≺ c � ci with

c v uj , this contradicts maximality of `j = cj .

Conversely, assume condition 4 holds. Assume `j ‖ ci and ci v `j . �us,

ui v `j v uj . Next, assume cj ≺ `j � ci . By maximality of cj , we have uj ‖ `j
and thus ci v uj , and so ui v uj . Finally, assume cj ≺ `j � ci . As `j v uj and

`j ‖ uj , we obtain ci v uj and so ui v uj . �

�us, using the above two Sublemma, we obtain that if r = ((ci , `i ,vi))ni=1
∈ R

is a representation and u1, . . . ,un ∈ Q
∗

such that (9.1) is satis�ed, we have h(r ) =
typC(u1, . . . ,un).

We show surjectivity. Let t = typC(u) with u = (u1, . . . ,un) ∈ (Q∗)n we de�ne

words ci and `i , an vi just by (9.1). Note that the ci and `i are uniquely determined

by (9.1) and values vi can always be chosen as any n tree nodes can be represented

as subtree of {1, . . . ,n}≤n preserving � and v. Let r be the representation r =
(c1, `1,v1) · · · (cn, `n,vn). We show h(r ) = t . Assume h(r ) = t ′ = typC(w) where

w = (w1, . . . ,wn). As u and w both satisfy (9.1) using this representation r , we

obtain by the above two Sublemma that typC(u) = typC(w).
Moreover, the conditions given in Sublemma 9.23 and Sublemma 9.24 can be

checked in logarithmic space given a representation r . �erefore, the proof of

Lemma 9.22 is completed. �

9.5 Emptiness of Constraint Automata

We are ready to state our decision procedure for the emptiness of T C
Q

-constraint

automata in this section. As preparatory step, we argue that it can be checked in

logarithmic space whether a type is contained in the product of two singleton sets

of types.

Proposition 9.25. �ere is a nondeterministic algorithm that, given three run

types t0, t1, t2 represented as in Lemma 9.22, checks in space linear in nK (log(|A|) +
log(|C |) + log(m)) whether t0 ∈ {t1} · {t2} for some �xed K ∈ N.
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Proof. Let RCm be the sets from the last chapter. Let ti = (pi ,πi ,qi) for i = 0, 1, 2
with pi ,qi ∈ Q and πi ∈ TreeTypes

C
n . We assume that the πi are represented

as elements from RCn . �e algorithm guesses a element from r = RC
3n. Assume

h(r ) = typC(x ,y, z) and then checks whether p0 = p1, q0 = q2, q1 = p2, and

typC(x , z) = π0, typC(x ,y) = π1 and typC(y, z) = π2. �ese checks can be carried

out in logarithmic space, as the relations on representation, i.e., elements from

RCm, can be decided in logarithmic space. Correctness follows directly from the

surjectivity of h: If this algorithm accepts an input, then x , y, z are witnesses for

the product. Conversely, if t0 ∈ {t1} · {t2}, then there are words x ,y, z as above. As

h is surjective the algorithm can guess a representation r with h(r ) = typC(x ,y, z).�
We now prove the main theorem of this chapter, which we already stated at the

beginning of the chapter.

Theorem 9.1. Let C be a set of constants and A an n-dimensional T C
Q

-constraint

automaton. Let furthermore m = max{|c | | c ∈ C }. It is decidable in space linear in

nK (log(m) + log(|C |) + log(|A|)), for some global constant K independent of C and

A, whether L(A) , ∅.
Proof (Proof of Theorem 9.1). By Corollary 9.17 and Lemma 9.21 it su�ces that

the algorithm guesses a type (i,π , f ) and a non-contracting type (f ,π ′, f ) such

that i is an initial state, f is a �nal state, and the order type of the last elements of π
coincides with the order type of the �rst elements of π ′, and then veri�es whether

these types are realised by actual runs.

�is test is carried out as follows: First, guess an initial type t1 ∈ T1. A�erwards

iteratively guess types tn+1 and one-step types sn+1 ∈ T1, and verifying that tn+1 ∈

{tn} · {sn+1}. In every step check whether tn = (i,π , f ) or tn = (f ,π ′, f ). Note that

a�er the completion of a single step, the space occupied by tn can be reused for the

next step. As the number of run types is exponential inn(log(|C |)+log(m)+n log(n)),
a counter requiring space linear in the same term is used to guarantee termination.�

Using this result, we conclude the desired complexity of the model checking for

cLTL.

Corollary 9.26. �e model checking problem for cLTL is PSPACE-complete.

Proof. PSPACE-hardness follows directly, from the corresponding result for LTL

model checking. We show containment in PSPACE. �e algorithm runs the de-

cision procedure for emptiness of T C
Q

-constraint automata from �eorem 9.1 on the

automaton arising from the cLTL formula and the input automaton as laid out in

section 8.4. �ough this automaton has size exponential in the input, we can apply

175



Chapter 9 Emptiness of Tree Constraint Automata

the same trick as in [VW94] to obtain a PSPACE decision procedure: instead of

constructing and storing the automaton explicitly, whenever the algorithm needs

to guess a state or a transition, the algorithm actually guesses some arbitrary string

(of polynomial length) and then veri�es that this string represents a state or a

transition. �is veri�cation can run in polynomial space. Furthermore, a state of

this automaton can also be remembered in polynomial space. �

Finally, the question arises what the exact complexity of the emptiness problem is.

It turns out that the use of an arbitrary number of dimensions separates between

NL and PSPACE.

Proposition 9.27. �e following statements hold:

1. �e emptiness problem for TQ-constraint automata is PSPACE-complete.

2. For any �xed n ≥ 1, the emptiness problem for n-dimensional TQ-constraint

automata is NL-complete.

Proof. We start with statement 2: for �xed n, containment in NL is the statement

of �eorem 9.1. Hardness follows by reducing from graph reachability.

We show statement 1. �e proof is inspired by the proof of PSPACE-hardness

of timed graph reachability given in [CY92]. We reduce the LBA (linear bounded

automaton) word acceptance problem to emptiness of constraint automata.

Given a LBA A and an input word w , we construct a set of constants C and an

|w |-dimensional T C
Q

-constraint automaton B. Let A = (Q,Σ, Γ ,T ,q0, F ,�), where

Σ is the input alphabet, Γ is the tape alphabet, T ⊆ Q × Γ ×Q × Γ × {L,R,H} is

the transition relation, q0 ∈ Q is the initial state, F ⊆ Q is the set of �nal states,

and � ∈ Γ is a dedicated blank symbol. We may assume that every symbol in the

tape alphabet Γ of A occurs in at least one transition of A, thus, the size of the

encoding of A is at least |Γ |. Moreover, we assume that the only transitions possible

in a state in F are self-loops. Choose |Γ | many distinct elements of the domain, i.e.,

C = {cγ | γ ∈ Γ}. �is set can be computed in P , for example choose C = {1
i |

i ≤ |Γ |}.

�e automaton B keeps track of the LBA’s state and head position in its state

space, and uses the values of the |w | dimensions to remember the tape contents.

More formally: B = (Q′, I ′, F ′,T ′) where ι < Q is a new symbol and

Q′ = {ι} ∪Q × {1, . . . , |w |}, I = {ι}, F ′ = F × {1, . . . , |w |},
T ′ =

�(ι,α , (q0, 1)	 ∪ ��(q,n), βn,γ ,γ ′, (q′,n′)� �
∃(q,γ ,q′,γ ′,d) ∈ T : n′ = n + ϵ(d)	 ,
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where ϵ(d) = 1,−1, 0 for d = R, L,H, respectively, and

α =
∧

i=1,...,|w |
(yi = cwi ), βn,γ ,γ ′ = (xn = cγ ) ∧ (yn = cγ ′) ∧

∧
i=1,...,|w |

i,n

(xi = yi).

Clearly, there is a one-to-one correspondence between the con�gurations of A and

B (except for ι). Moreover, this correspondence is compatible with the respective

transition relations. �us, we have (q,n,u)→A (q′,n′,u′) if and only if ((q,n),v)→B

((q′,n′),v′), where ui = γ i� vi = cγ for all 1 ≤ i ≤ n and u = (u1, . . . ,un),
v = (v1, . . . ,vn).

�e additional state ι checks if u2 in a input data word (ui)i≥1 encodes the wordw
and moves to the initial con�guration of A. As A enters a loop around a �nal state

when accepting a word, an accepting con�guration of A translates to an in�nite,

accepting run in B and vice versa. �
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|w | Length of word w

α[X 7→ M] Modi�ed assigment α mapping X to M

Bd Either B
D
d , B

n
d
, or B

ω
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depending on the argument type

B
D
d Bernoulli measure on MD

for d ∈ ∆(M) and �nite set D

B
n
d

Bernoulli measure on Mn
for d ∈ ∆(M)

B
ω
d

Bernoulli measure on Mω
for d ∈ ∆(M)

Bp Either B
D
p , B

n
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ω
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P(A)
p depending on the argument type

B
D
p Bernoulli measure on {0, 1}D for p ∈ [0, 1] and �nite set D

B
n
p Bernoulli measure on {0, 1}n for p ∈ [0, 1]

B
ω
p Bernoulli measure on {0, 1}ω for p ∈ [0, 1]

B
P(A)
p,E Bernoulli measure on P(A) constructed with enumeration E of A

B(X ) Borel-σ-algebra of metric space (X ,d) where d is implicitly given

B(X ,d) Borel-σ-algebra of the metric space (X ,d)
·z Tree concatenation

1M Characteristic Function of M

Cyl
n
E(X ) Cylinder set of the �rst n positions in X w.r.t. enumeration E

δq(t) Probability of accepting t , starting in state q

∆(M) Set of all distributions on M

∆0(X ) Set of all distributions and the null function on X
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List of Symbols

dom(A) Domain of structure A

E[f ] Expected value of function f

Free(φ) Set of free variables in MSO formula φ

inner(t) Set of inner positions in t∫
f dµ Integral of function f w.r.t. measure µ∫
f (x) µ(dx) Integral of function f w.r.t. measure µ

v Lexicographic Order

L(A) Language recognized by the automaton A

L(E) Language of the regular (tree) expression E

LC(φ) Language of the MSO formula φ as subset of C

≤C Relation on con�gurations — (q,u) ≤C (p,v) if induced isomorphism is

stretching

leaf(t) Set of leaf positions in t

PMSO(S) Set of all probabilistic MSO formulas over signature S

PRE Set of all probabilistic regular expressions

PRTE probabilistic regular tree expressions

RE Set of all regular expressions

MCAT(w) Maximal common ancestor tree of w

MCATC(w) Maximal common ancestor tree of w with constants C additionally

included

MC(TD) Constraint LTL Model Checking Problem

MSO(S) Set of all MSO formulas over signature S

N Natural numbers starting with 1

N0 Natural numbers starting with 0

N (Σ∞) Nivat-class of Σ∞
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List of Symbols

N (TΣ) Nivat-class of TΣ

ND(TΣ) Deterministic Nivat-class of TΣ

‖A‖ Behaviour of the probabilistic automaton A

R+ Non-negative real numbers with∞

pos(t) Set of positions in tree t

pos(w) Set of positions in word w

posA(t) Set of positions in t with label from A

posa(w) Set of positions of w labelled by a

� Pre�x Order

R Real numbers

R+ Non-negative real numbers

RunTypes
C
n Set of all types typ(r ) for runs r

SAT(TD) Constraint LTL Satis�ability Problem

nφoC Semantics of probabilistic MSO formula φ in set C

σ (E) σ-algebra generated by E

Σ∗ Finite words over alphabet Σ

Σ∞ Set of �nite and in�nite words over Σ

Σω In�nite words over alphabet Σ

TΣ Signature modelling �nite or in�nite trees

WΣ Signature modelling �nite or in�nite words

EW substitution order

u Maximal common pre�x

T C
D In�nite tree with branching structure D and distinguished constants C

typ(w) Type of w , i.e., it’s {�,v, s1, . . . , s|w |}-isomorphism class
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List of Symbols

typ(r ) Type of a run r = ((qi ,wi))i=0,...,n is (q0, typC(w0,wn),qn)
typC(w) Type of w with constans from C additionally included

ε Empty word

t̃ TΣ-structure associated with tree t

w̃ WΣ-structure associated with word w

A[X ]R Automaton de�ned as A but with no �nal states and Muller-condition X

A[X ]F Automaton de�ned as A but with �nal states X and empty Muller-condition

BCn Set of propositional logic formulas build from comparison v ∼ v′ for v,v′ ∈
{xi ,yi | i = 1, . . . ,n} ∪ S

dE Metric on P(A) where E is an enumeration of A

dΣ Metric on �nite or in�nite words over Σ

f (t1, . . . , tn) Tree constructed by joining trees t1, . . . , tn under new root node f

L · K Concatenation of languages L and K

L∗ Kleene-iteration of L

Lω ω-iteration of L

S∞z In�nity iteration of tree series S

t[M ← s] Substitution of the subtrees at all positions from M in t by s

t[x ← s] Substitution of the subtree at x in t by s

cLTL Set of all Constraint LTL formulas
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Symbols

σ-Algebra, 14

σ-Embedding, 153

A

Alphabet, 9

Antichain, 25

Assignment, 53

Automaton for an expression, 95

B

Büchi’s theorem

Trees, 55

Words, 55

Bernoulli measure

Subsets, 58

Trees, 35

Words, 35

Borel-σ-algebra, 16

C

Characteristic function, 9

Concatenation

Languages, 10

Tree language, 118

Tree series, 120

Weighted, 86

Words, 10

Constraint automaton, 149

Constraint LTL, 147

Model checking problem, 151

Satis�ability problem, 151

Continous function, 15

Contracting loop, 166

Cylinder set

Subsets, 58

Words, 16

D

De�nable language, 54

Distribution, 13, 15

E

Embedding, see σ-Embedding

Expected value, 18

F

Finite automaton, 11

Finite Measure, 14

Formal language, 9

Free variables, 53

G

Generated σ-algebra

By preimage of measurable func-

tion, 17

By system of sets, 14

H

Homomorphism, 10

I

In�nite tree, 146

In�nity iteration, 122

Inner position, 24
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Integrable function, 18

Integral, 18

Iteration pair, 87

K

Kleene’s theorem

Trees, 119

Words, 84

Kleene-iteration, 10

Tree language, 118

Weighted, 86

Kleene-star, see Kleene-iteration

L

Language, 9

Leaf position, 24

Lexicographic order, 10

M

Maximal common ancestor tree, 160

Maximal common pre�x, 146

Measurable function, 16

Measurable set, 14

Measurable space, 14

Measure, 14

Measure space, 14

Metric

Words, 15

MSO formula, 53

MSO sentence, 53

Muller-automaton, 11

N

Nivat-class

Deterministic, 41

Trees, 41

Words, 36

O

Omega-iteration, 10

Probabilistic, 87

Omega-regular expression, 84

Open set, 15

P

Pointed set of structure, 67

Pre�x order, 10

Pre�x summable, 86

Probabilistic automaton, 13

Probabilistic MSO formula, 61

Probabilistic Muller-automaton, 20

Probabilistic regular expressions, 88

Probabilistic regular tree expression,

126

Probabilistic tree automaton, 28

Bottom-up, 47

Top-Down, 28

With �nal weights, 43

Probabilistic tree series, 119

Probability measure, 14

Probability space, 14

Product σ-algebra, 19

Product measure, 19

R

Ranked alphabet, 24

Rational expression, see Regular ex-

pression

Rational Language, 84

Rational transducer, 33

Recognizable function, 14, 21

Recognizable Language, 11

Recognizable tree language, 26

Regular expression, 83

Regular tree expressions, 118

Regular Tree language, 118

Relabelling

Trees, 41

Words, 10

S

Set of positions, 9
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Signature, 51

With constants, 146

Sink state, 20

Step formula, 69

Stretching function, 161

Stretching loop, 165

Strongly upwards compatible, 162

Structure, 51

Substitution, 24

Substitution order, 119

Substitution summable

Probabilistic tree automaton, 129

Tree series, 120

Subtree, 24

T

Terms of an expression, 90

Tree, 24

Tree automaton, 25

Tree series, 119

Type of an tuple, 160

W

Word

Finite, 9

In�nite, 9
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