
The Second Order Traffic Fine: Temporal
Reasoning in European Transport Regulations
Ana de Almeida Borges
University of Barcelona, Spain
anadealmeidagabriel@ub.edu

Juan José Conejero Rodríguez
University of Barcelona, Spain
juan.conejero@ub.edu

David Fernández-Duque1

Ghent University, Belgium
David.FernandezDuque@Ugent.be

Mireia González Bedmar
University of Barcelona, Spain
m.gonzalezbedmar@ub.edu

Joost J. Joosten
University of Barcelona, Spain
jjoosten@ub.edu

Abstract
We argue that European transport regulations can be formalized within the Σ1

1 fragment of monadic
second order logic, and possibly weaker fragments including linear temporal logic. We consider
several articles in the regulation to verify these claims.
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1 Introduction

The authors of the paper are involved in research projects that collaborate with industry,
lawyers and legislators where the main goal is to develop verified legal software. The
industrial and social need is evident: various legal decisions are made on the basis of
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6:2 The Second Order Traffic Fine

algorithmic processing of data in consequence of which individuals can be fined or even
sent to jail. Software contains errors, but for our legal context such errors should not
be acceptable.

In particular, the above-mentioned projects have as first and main objective to eradicate
errors from software that interprets data from tachographs. A tachograph is to a truck what
a black-box is to an aeroplane: it registers all kinds of activities from the truck and driver,
like speed, movement and others. In practice, a police officer may pull over a truck for an
inspection where the tachograph data is read and interpreted by some software. Depending
on the verdict of the program, the driver may be instantly fined or sometimes even imprisoned.
It is known that many erroneous automated verdicts are issued. This is highly undesirable
both from an industrial and from a civil rights perspective. It is here that logic tries to come
to the rescue.

The aim of the project is to recast the transport legislation into an unambiguous mathemat-
ically formulated language such that proof-checkers may show that the developed code indeed
satisfies the legislation. This paradigm allows us to honestly speak of error-free software.2

The multi-disciplinary nature of the project poses many challenges. For one, legislation
is often intended to leave room for various interpretations and applications of the law. In
contrast, mathematical definitions and algorithms are deterministic in nature and disallow
ambiguity. The main mitigation of this challenge seems to be the accepted tendency to
require unambiguous laws if they should prescribe an algorithm. These laws are written
in prose, and albeit technical, it will always leave room for multiple interpretations which
sometimes only differ on very subtle yet essential aspects. Here jurisdiction tells us what
to do in most cases. Our collaboration with working lawyers has been very interesting
in this aspect.

Yet another challenge lies in choosing the right ontology and logico-mathematical frame-
work where to recast the interpreted and disambiguated laws. It is mainly this aspect that is
addressed here. In particular, in this paper we will argue that the European regulation can
be modelled in linear temporal logics [10], broadly construed as subsystems and extensions
of the classical LTL with “until”.

To illustrate this claim we identify some passages that may be problematic from a logical
perspective, most notably because they contain prima facie “impredicative” content: for our
purposes, a property is impredicative if its definition requires genuine quantification over the
set of all subsets of N. This terminology is inspired from Weyl’s predicative mathematics
which does not accept the powerset axiom for infinite sets [11]. Nevertheless, all laws we
consider will fall in the Σ1

1 fragment of monadic second-order logic, and model-checking
formulas in this fragment can be reduced to satisfiability of first-order formulas. Thus we
argue that such laws are not ideal from a computational perspective, but even in the worst
case scenario, checking the compliance of a law can be reduced to a well-understood problem.

2 European Transport Law

In this section we discuss some passages from the European transport regulation [3] and
why they pose a challenge in terms of logical modelling. Our analysis will be based on the
following excerpts, which we have found to be problematic from a logical perspective.

2 Of course, it has its subtleties. Software will be as good as the specification, which may contain
errors. Also, we must trust the small kernel of the proof-checker, apart from the hardware and middle-
ware involved. There is also the consistency assumption of the underlying type-theory. A further
methodological objection may be that the formalisations and proofs are not easily human-readable.
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§4(h) “regular weekly rest period” means any period of rest of at least 45 hours.
§4(i) “a week” means the period of time between 00.00 on a Monday and 24.00 on the

following Sunday.
§8.6. In any two consecutive weeks, a driver shall take at least:

two regular weekly rest periods, or
one regular weekly rest period and one reduced weekly rest period of at least 24 hours.
However, the reduction shall be compensated by an equivalent period of rest taken en
bloc before the end of the third week following the week in question.

A weekly rest period shall start no later than at the end of six 24-hour periods from the
end of the previous weekly rest period.

§8.7. Any rest taken as compensation for a reduced weekly rest period shall be attached to
another rest period of at least nine hours.

§8.9. A weekly rest period that falls in two weeks may be counted in either week, but not in
both.

I Remark 1. There are additional regulations regarding daily rest periods. For the sake of
exposition we will only consider the above-mentioned regulations, but in all constructions
and examples it should be noted that the driver would additionally have to rest daily in order
to fully comply with the law. We will not discuss daily resting periods further in this text.

2.1 Placement of weekly rest periods
Let us consider a case implied by Article §8 of the Regulation, depicted in Figure 1. Each
letter-divided segment denotes a week and the smaller segments denote a day, with time
flowing from left to right. Furthermore, each serpentine line denotes weekly rest periods of
68 hours except the last one, which lasts only 45 hours.

A B C D E F G

Figure 1 Six consecutive weeks and five weekly rest periods (serpentine lines) taken by a
hypothetical driver.

Figure 1 represents the activities of a driver who starts resting Saturday at 00:00h
and retakes their activity on Monday at 20:00h. Then, until the fourth week, the driver
periodically start his weekly rest on Sunday at 00:00h and retake their activity on Tuesday
at 20:00h. During the sixth week they rest 45 hours, from Monday at 20:00h to Wednesday
at 17:00h.

Since all except the last of these weekly rest periods fall between two weeks, it is reasonable
to want to find a procedure that will determine whether there exists a way of counting each
of them within one week or the other as per §8.9, so that the situation becomes legal.

In our simple example, the segment FG has a fixed rest period of 45 hours. In the
remaining weeks we have to choose where to assign the resting periods,3 but it is evident
that we cannot arrange them in a way that makes the whole interval AG legal. One might
argue that this situation is a bit controversial, given that all other articles exposed above
except §8.9 are complied beyond their minimum requirements.

3 We cannot assign parts of this periods to different weeks, since this would give rise to two consecutive
reduced weekly rest periods and thus violate §8.6.

TIME 2019



6:4 The Second Order Traffic Fine

Here, the Regulation does not pose a logical problem, nor is it inconsistently worded. But
logic is not entirely unrelated to this issue. The complexity that results from §8.9 generates
a potential combinatorics problem. As an example, we could encounter situations which
follow the structure from Figure 1 with many more occurrences of the in between segments.
Verifying the legality of the situation could, in principle, require checking a large number of
possible assignments of rest intervals to weeks. This non-locality feature has been discussed
and formalised in Coq [2].

In a first attempt to formally represent §8.9 we may think in a second-order setting:
we could model weekly rest periods as pairs of points indicating the start and end of the
rest. Thus §8.9 could be a formula asserting the existence of a function that would model
the assignment of weekly rest periods into weeks. Such a formalization would require a
second-order existential quantifier (and, in fact, would even fall outside of monadic second
order logic, which does not allow for function quantification). In the following section we
discuss this issue in some detail.

2.2 Timing of compensations

The second potential source of problems comes from the compensation mechanism of §8.6.
To illustrate it, we construct weeks A, B, and Ci, 1 ≤ i ≤ n such that the sequences
[A,C1, . . . , Cn] and [C1, . . . , Cn, B] are both legal, but the full sequence [A,C1, . . . , Cn, B] is
not. The question then arises: where is the illegality? It is in the combination between A
and B, where A and B can be arbitrarily far apart from each other. Clearly this is not a
good feature for a law.

Throughout this subsection, line segments represent weeks, and the numbers attached to
them represent the number of hours rested during each week. In Figure 2, the first and last
segments represent the weeks A and B we mentioned before.

A
44 45 45 45 24 45

B

Figure 2 Illegal interval of six consecutive weeks performed by a hypothetical driver.

As shown in Figure 3, if we do not consider the last week, the remaining interval is
rendered legal by the law, for we can assume that the hours to be compensated will be
incorporated in the week we omitted.

A
44 45 44+1 45 24 45+1

Figure 3 First five weeks of the example represented in Figure 2, together with a possible sixth
week that would make the whole interval legal.

Similarly, if we remove week A from the example of Figure 2, the resulting interval
(represented in Figure 4) is also legal, since we can assume that the compensation for the
fourth week takes place in the weeks outside our interval.
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45 45 45 24
B
45 45+21

Figure 4 Last five weeks of the interval represented in Figure 2, together with a possible sixth
week that would make the whole interval legal.

However, the interval of Figure 2 is illegal, as Figure 5 illustrates. This is because
after compensating the first week according to article §8.6, we still have to compensate one
hour, but we cannot allocate it within any of the three following weeks without having two
consecutive reduced weekly rest periods.

A
44 45 44+1 45 24

B
45

Figure 5 The same interval of Figure 2, with an attempt to assign compensations (dashed lines)
that ultimately fails.

This example can be generalized to ensure that that A and B are n weeks apart. The
corresponding interval (illustrated in Figure 6) has a similar structure to the one we have
treated. The first week has a 44 hour weekly rest period, and all the following weeks have 45
hour weekly rest periods except for the penultimate one, which has a 24 hour weekly rest
period.

44
A

45 45 24 45
B

Figure 6 General example of an illegal interval that is legal when week A or week B is erased.

In this situation if we omit one of the weeks A or B the remaining interval will be legal,
but the interval as it stands is illegal.

Indeed, a literal reading of the law would require three functions c1, c2, c3 where given
a week W , ci(W ) is a (possibly empty) interval that occurs i weeks later and is used to
compensate a reduced weekly rest. Once again such functions are not, properly speaking,
objects of monadic second order logic, but we will show that they can be represented as such.

In the rest of the article we will show that these properties can indeed be represented in
monadic second order logic, and explore whether simpler representations are possible. Before
we do so, let us review the logical frameworks we will work with.

3 Temporal Logics

In this section we review the temporal logics that we consider. These are all subsystems of
either linear temporal logic LTL or monadic second-order logic MSO interpreted over the
natural numbers; as we discuss below, we regard the latter as a temporal logic in view of
Kamp’s theorem and extensions.

TIME 2019



6:6 The Second Order Traffic Fine

3.1 Linear Temporal Logic
Linear temporal logic is based on the language L� U given by the following grammar:

ϕ,ψ := ⊥ | P | ϕ→ ψ | ϕ | �ϕ | ϕUψ,

where P is an element of a countable set P of predicate symbols. We will consider the U-free
fragment L�, the �-free fragment LU and the language whose only tense is , L . As usual,
is read as “next”, � is read as “henceforth”, and U as “until”. We define other Booleans

and ♦ as abbreviations in the standard way. Note that LU is expressively equivalent to L� U,
so we will seldom work over the full language. We could additionally consider past tenses,
but they do not add expressive power to LU in models with a starting point (although there
are issues with succinctness which we briefly discuss).

The articles we consider also require some counting, but this can be dealt with using the
following abbreviations, where n,m ∈ N. Below, an empty disjunction should be read as ⊥
and an empty conjunction as >.

0ϕ := ϕ and n+1ϕ = nϕ;
♦<nϕ =

∨n−1
i=0

nϕ and �<nϕ =
∧n−1

i=0
nϕ.

Variants with ≤n instead of <n are defined by reading ≤n as <n+ 1.
Given any formula ϕ and a set Θ ⊆ { ,�,U}, we define the Θ-depth of ϕ (in symbols,

dptΘ(ϕ)) to be the nesting depth of tenses in Θ, defined in a standard way. If Θ = {ϑ} we
write ϑ-depth and dptϑ(·) instead of Θ-depth and dptΘ(·), and if Θ = { ,�,U} we write
temporal depth and dpt(·) instead of Θ-depth and dptΘ(·). As a general rule we consider the
-depth to be a negligible complexity measure with respect to the depths of other tenses.
We will always interpret formulas of L over the structure (N, S), where S(n) = n + 1.

Hence, for our purposes an LTL model M is merely a function ·M : P→ 2N. We define the
satisfaction relation |= inductively by
1. (M, n) |= P iff n ∈ PM
2. (M, n) 6|= ⊥
3. (M, n) |= ϕ→ ψ iff (M, n) 6|= ϕ or (M, n) |= ψ

4. (M, n) |= ϕ iff
(
M, S(n)

)
|= ϕ

5. (M, n) |= �ϕ iff for all k ≥ 0 we have that
(
M, Sk(n)

)
|= ϕ

6. (M, n) |= ϕUψ iff there exists k ≥ 0 such that
(
M, Sk(n)

)
|= ψ and ∀ i ∈ [0, k),(

M, Si(n)
)
|= ϕ

As usual, a formula ϕ is satisfiable over a set of models Ω if there isM ∈ Ω and n ∈ N so
that (M, n) |= ϕ, and valid on Ω if, for everyM∈ Ω and n ∈ N, (M, n) |= ϕ.

3.2 Monadic Second-Order Logic
The syntax of monadic second-order logic is defined as follows. First, define a term to be
given by the grammar

t := 0 | x | S(t),

where x belongs to some fixed set of first-order variables V. Then, the language L2
∀ is defined

by the grammar

ϕ,ψ := ⊥ | P (t) | t < s | ϕ→ ψ | ∀xϕ | ∀P ϕ

where x is a variable, t and s terms, and P ∈ P. Once again we define other Booleans and ∃
as standard abbreviations, and define L1

∀ to be the sub-language of L2
∀ that does not allow

quantifiers over elements of P.
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The language L2
∀ is interpreted over models ·M : V ∪ P → N ∪ 2N such that xM ∈ N if

x is a variable and PM ⊆ N if P is a predicate symbol. For a variable x and n ∈ N let
M[x/n] be the model that is the same asM except that xM[x/n] = n, and for P ∈ P and
A ⊆ N defineM[P/A] analogously. Extend ·M to terms by defining recursively 0M = 0 and
(S(t))M = tM + 1. The satisfaction relation is then defined as follows:
1. M 6|= ⊥
2. M |= P (t) iff tM ∈ PM

3. M |= ϕ→ ψ iffM 6|= ϕ orM |= ψ

4. M |= ∀xϕ iff for all n ∈ N,M[x/n] |= ϕ

5. M |= ∀P ϕ iff for all A ⊆ N,M[P/A] |= ϕ

Satisfiability and validity are defined as before. MSO denotes the language L2
∀ endowed with

these semantics, and MFO denotes MSO restricted to L1
∀. In order to unify our semantics for

temporal logics and MSO, we regard an LTL modelM as an MSO model by setting xM = 0
for all variables, and similarly regard an MSO model as an LTL model by restricting the
domain to P.

We say that a set Ω of models is definable in a language L ⊆ L�U if there is ϕ in L such
that for any modelM we have (M, 0) |= ϕ if and only ifM∈ Ω. Similarly, Ω is definable in
L ⊆ L2

∀ if there is ϕ in L such that for any modelM,M |= ϕ if and only ifM∈ Ω. With
this in mind, we may regard MFO as a temporal logic in terms of the following.

I Theorem 2 (Kamp [8]). Let Ω be a set of LTL models. Then, Ω is definable in LU if and
only if it is definable in L1

∀.

There are also known extensions of LTL which are expressively equivalent to full MSO [6],
but for our purposes the presentation as MSO is more convenient than such extensions. On
the other hand, we will go back and forth between LTL and MFO depending on which is
more convenient for the application at hand.

4 Expressibility

In this section we show how the legal articles we have considered could be represented within
monadic second order logic. It is crucial to stress that the articles allow for some interpretation
and thus certain elements may admit readings different from those we propose. We will
also make a few simplifying assumptions for the sake of exposition. From discussions with
legal experts we believe that our interpretations are reasonable modulo the aforementioned
simplifying assumptions.

We assume that each natural number represents one hour, although we remark that
tachograph data is processed4 minute by minute and this would be the suitable resolution
for actual implementations. Each moment in time (each hour in our presentation) is labelled
by an activity of the driver: these activities are driving, resting, availability, other work
and unknown.5

4 Actually, tachograph data is recorded second by second and legally interpreted minute by minute. The
law prescribes how minutes should be labelled depending on the tachograph data. We refer the reader
to [4] for details and for various mathematical problems with this labelling.

5 The value of unknown is not prescribed by the law, but it is implemented in various systems for obvious
reasons.

TIME 2019



6:8 The Second Order Traffic Fine

Since the articles we analyse in this paper only involve rest periods, we consider a predicate
symbol Rest. We also introduce a predicate symbol Week which holds on the first hour of
each Monday. This condition can be treated model-theoretically – i.e. models are assumed
to be equipped with a correct valuation for Week – or syntactically by the L� axiom

Week ∧�
(
Week→ ( �<167¬Week ∧ 168Week)

)
(assuming that the model begins on the first hour of a Monday). LTL models satisfying this
formula at zero are called weekly models. With this in mind, we proceed to illustrate how
the legislation could be formalized. However, since we want to isolate possible sources of
impredicativity, we will work with simplified variants of the legislation that are more suitable
for expository purposes.

4.1 Article §8.9
Article §8.6 requires that each two week period be assigned two rest periods with some
additional constraints, and §8.9 indicates how rest periods should be assigned to specific
weeks. Our goal in this subsection is to explore the possible impredicativity arising from
the assignment itself, independently of the additional conditions of §8.6. Every week should
contain at least one 24 hour rest period, but this by itself would not be sufficient to comply
with §8.6. On the other hand, a driver resting 45 hours each week would comply with §8.6,
so this would be a sufficient, but not necessary, condition for compliance. In order to not
commit to either condition, we will consider the following general property: when is it that
each week can be assigned a rest period of at least d hours, so that each rest period intersects
the week it is assigned to? This simplified condition is already prima facie impredicative, as
it requires a function mapping rest intervals to weeks. Thus it may be surprising that it can
actually be defined in first order logic (and hence in LTL).

I Theorem 3. Given d ∈ [2, 85] there is an L1
∀-formula ϕ = ϕd ∈ L1

∀ such that given any
LTL modelM,M |= ϕ if and only if there is an assignment of weekly rest periods such that
every week is assigned a rest period of length at least d.

Proof. In this proof we will assume that variables range over weeks. It is clear that using our
fundamental ontology this can be established in first order logic, as a week can be identified
with its starting point, which is already marked by the predicate Week. Let E(x) be a formula
which holds if and only if x is a week with an early rest period (of length at least d) which
means that it overlaps with the previous week, L(x) a formula that holds if x contains a late
rest period overlapping with the following week, and I(x) be a formula that holds if and only
if x is a week with an internal rest period disjoint from (but possibly contiguous with) any
early or late rest periods in the week x.

Clearly E, I, L are first-order definable (although their definition depends on d). The
condition d ≤ 85 ensures that if E(x)∧L(x) holds then the week x contains disjoint early and
late rest periods.6 Define Ě(x) = E(x) ∧ ¬I(x) ∧ ¬L(x), and define Ǐ(x), Ľ(x) analogously.

Then set

ϕ = ∀x
(
E(x) ∨ I(x) ∨ L(x)

)
∧ ∀x ∀ y

(
x < y ∧ Ľ(x) ∧ Ě(y)→ ∃ z ∈(x, y) I(z)

)
.

6 If E(x) then there are at most d − 1 = 84 hours in x and likewise for L(x). In a week there are
7× 24 = 84× 2 hours.
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We claim that ϕ holds if and only if there is an assignment such that each week is assigned
one rest period of length at least d. First assume that such an assignment exists. Clearly
∀x
(
E(x) ∨ I(x) ∨ L(x)

)
holds, since if x were a counterexample no rest period could be

assigned to the week of x.
Now, suppose that x < y are such that Ľ(x) ∧ Ě(y), and choose x, y such that y − x is

minimal. Note that x is assigned to its late rest period (as this is the only one available)
and y is assigned to its early rest period. It follows that there is a least z ∈ (x, y] that is
not assigned to its late rest period. By minimality z − 1 is assigned to its late rest period,
hence z cannot be assigned to its early rest period. However, z must be assigned to some
rest period by assumption, and since this rest period is neither early nor late, the week of z
must contain some internal rest period, and I(z) holds.

Now assume that ϕ holds and define an assignment recursively as follows. Let R be a
rest period and suppose that all earlier rest periods have been assigned to some week. If R is
internal, assign it to its current week. If R is late for week w and w has not been assigned a
rest period, assign R to w. Otherwise, assign R to w + 1.

We prove by induction that every week is assigned to some rest period. Fix y and
assume that all earlier weeks have been assigned to some period. We may assume that
E(y) ∨ I(y) ∨ L(y) holds, as otherwise ϕ automatically fails.

If I(y) holds then the week of y has a rest period assigned to it. If L(y) holds then the
late rest period of y is assigned to it, unless an earlier one was already assigned to it. So we
are left with the hypothetical case where Ě(y) holds, and the early rest period of y has been
assigned to y − 1. Let x < y be minimal with the property that every z ∈ [x, y) has had its
late rest period assigned to it. First note that E(x) fails, since otherwise x > 0 and either
x− 1 has had its late rest period assigned to it, contradicting the minimality of x, or else the
early rest period of x would have been assigned to the week of x by our recursion. Note also
that I(z) fails for all z ∈ [x, y), since any internal rest period is automatically assigned to the
current week. We conclude that Ľ(x) holds and I(z) fails for all z ∈ (x, y), thus ϕ fails. J

4.2 Article §8.6
Now that we have seen that the possibility of assigning rest periods is not itself impredicative,
we isolate the compensation mechanism from the rest assignments and analyse it in a similar
fashion. In order to do this, we work with simple models defined as the set of modelsM
satisfying the following conditions.
M is a weekly model.
(M, 0) |= ♦�Rest ∧�(Week ∧ Rest→ �Rest).
Given a week W , W ∩ RestM is an interval.
There are never more than 6× 24 hours between two consecutive rest periods.

The idea is that all rest periods are internal (the first hour of a week is never spent resting),
and so every week can unambiguously be assigned a rest period, until the driver “retires” and
rests on all subsequent moments. We impose this condition to clarify that our constructions
do not require “immortal” drivers. As stated previously, additional daily rest periods are
needed to fully comply with regulations, but these will be ignored for the sake of exposition.

We claim that Article §8.6 admits a formalization in L2
∀ by a Σ1

1 formula over the class
of simple models. Let R be a variable meant to denote the union of all continuous rest
periods of more than nine hours and C1, C2, and C3 be variables meant to denote periods of
compensation: C1 compensates the previous weekly rest, C2 compensates the weekly rest of
two weeks ago, and C3 compensates the weekly rest of 3 weeks ago. If W is a week, let S(W )
be the successor week to W . We express §8.6 by a formula ψ§8.6 := ∃R ∃C1 ∃C2 ∃C3 ψ

0
§8.6,

where ψ0
§8.6 expresses a conjunction of the following conditions:

TIME 2019



6:10 The Second Order Traffic Fine

Ci ∩ Cj = ∅ if 1 ≤ i < j ≤ 3.⋃3
i=1 Ci ⊆ R.

Given a week W , R ∩W is an interval of length at least 24.
Given a week W and i ∈ {1, 2, 3}, Ci ∩W is an interval. Moreover, if Ci ∩ Si(W ) 6= ∅,
then Cj ∩ Sj(W ) = ∅ for all j ∈ {1, 2, 3} \ {i}.
Given a week W,∣∣∣∣∣((R \

3⋃
i=1

Ci) ∩W
)
∪

3⋃
i=1

(
Ci ∩ Si(W )

)∣∣∣∣∣ ≥ 45.

It should be clear that each of these conditions is first order definable, hence ψ§8.6 is Σ1
1.

Moreover, some inspection shows that over the set of simple models, ψ§8.6 coincides with §8.6.
We conclude that §8.6 admits a Σ1

1 formalization over the set of simple models, as claimed.
I Remark 4. It is also possible to formalize §8.6 over the class of all weekly models using
a similar Σ1

1 formula. We restrict our attention to simple models only because the general
formalization would be more cumbersome and no more illuminating.

5 Stratified Bisimulations

In this section we present a version of stratified bisimulations for LU proposed by Kurtonina
and de Rijke [9]. Since all languages we consider contain Booleans and , it is convenient to
begin with a “basic” notion of bisimulation for this language.

I Definition 5. Given k ≥ 0 and two LTL models M and N , a binary relation Z ⊆ N2 is
a k- -bisimulation (between M and N ) if whenever x Z y, P ∈ P, and j ≤ k, we have
x+ j ∈ PM iff y + j ∈ PN .

We will use bounded -bisimulations as a basis to define bounded bisimulations for more
powerful languages.

I Definition 6. Fix k ≥ 0 and two LTL models M and N . Let ~Z = (Zi)∞i=0 be a sequence
such that for all i ∈ N, Zi is a k- -bisimulation and Zi+1 ⊆ Zi.
1. ~Z is a k-�-bisimulation (betweenM and N ) if whenever x Zi+1 y:

Forth �. For all x′ ≥ x there exists y′ ≥ y such that x′ Zi y
′.

Back �. For all y′ ≥ y there exists x′ ≥ x such that x′ Zi y
′.

2. ~Z is a k-U-bisimulation (betweenM and N ) if whenever x Zi+1 y:
Forth U. For all x′ ≥ x there exists y′ ≥ y and a function ξ : [y, y′] → [x, x′] such that

every z ∈ [y, y′] satisfies ξ(z) Zi z and ξ(z) = x′ if and only if z = y′.
Back U. For all y′ ≥ y there exists x′ ≥ x and a function η : [x, x′] → [y, y′] such that

every z ∈ [x, x′] satisfies z Zi η(z) and η(z) = y′ if and only if z = x′.

Stratified bisimulations are an essential tool in proving inexpressivity or succinctness
results, given that they preserve the truth of formulas of small enough nesting depth.

I Lemma 7 ([9]).
1. Given two LTL modelsM and N and a k-�-bisimulation ~Z between them, for all formulas

ϕ ∈ L� and for all (x, y) ∈ Zi, if ϕ has -depth at most k and �-depth at most i then
(M, x) |= ϕ iff (N , y) |= ϕ.

2. Given two LTL modelsM and N and a k-U-bisimulation ~Z between them, for all formulas
ϕ ∈ LU and for all (x, y) ∈ Zi, if ϕ has -depth at most k and U-depth at most i then
(M, x) |= ϕ iff (N , y) |= ϕ.

In the next section we use Lemma 7 to show that certain legal properties we have
considered are hard or impossible to define in fragments of linear temporal logic.
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6 Non-expressibility

We have seen that Articles §8.9 and §8.6 are expressible in MFO and MSO, respectively. We
will see that they are not expressible in L� and that §8.6 is not reasonably expressible in LU,
in the sense that any formula expressing it (if it exists) would require very large U-depth.
For this, we use constructions similar to the examples given in Section 2. However, since
these constructions will be somewhat more elaborate, we settle some notation first.

Say that a modelM is eventually resting if there is some m such that for all n > m and
all P ∈ P, n ∈ PM iff P = Rest. The end of an eventually resting model is the least such
value of m which is also a multiple of 168 (i.e., a whole number of weeks). A week-long
model is an eventually resting models whose end is 168. We define the concatenation of two
eventually resting models A,B, denoted A | B, as follows. Let m be the end of A. Then, for
a predicate symbol P and n ∈ N, we set

n ∈ PA|B ⇔

{
n ∈ PA if n ≤ m
n−m ∈ PB if n > m.

If k is a natural number then Ak denotes k concatenated copies of A. If n ∈ [24, 168),
then n denotes a week with one weekly resting period of n; we assume that these weekly
periods fall in the middle of each week without overlapping with other weeks, with the details
being non-essential. However, we do assume that any two instances of the week represented
by n are identical.

It will be convenient to represent a given moment in time both by the number of hours
t since the beginning of time, and by 168w + h, where w is the number of weeks since the
beginning of time, and h < 168 is the number of hours since the beginning of that week.

6.1 Article §8.9
We have seen that the possibility of assigning weekly rest periods to each week is first order
definable. One may then ask if L� suffices to define it, and the answer is negative. We prove
this via the following construction.

I Definition 8. Fix d ∈ [24, 84]. Define the following week-long models:
E is a model whose first bd/2c hours are resting.
I is a model whose hours (bd/2c+ 1, bd/2c+ d) are resting.
L is a model whose last dd/2e hours are resting.
Concatenations of letters denote unions of resting hours, i.e., EL denotes a week with a
beginning and an end rest period.

Then, for each n ∈ N, define the eventually resting models An = (L | ELn | EIL | ELn |
E)n+1 and An = L | ELn | E | An.

Given d ∈ [24, 84] and a modelM, we say thatM admits a weekly rest assignment if it
is possible that each week is assigned a weekly rest period of length at least d.

I Lemma 9. The model An admits a weekly rest assignment but An does not.

Proof. It is easy to see that An satisfies the formula ϕd of Theorem 3 and that An does
not. J

I Lemma 10. There is a bounded 168n-�-bisimulation ~Z between An and An such that
0 Zn 0.

TIME 2019
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Proof sketch. Define r := 2n+ 3 and for x = 168w+ h, y = 168v+ ` ∈ N, let x Zi y if h = `

and one of the following holds:
A1. x = y = 0 and i ≤ n,
A2. 0 < v, max{w, v − n− 2} ≤ (n− i)r and v ≡ w + n+ 2 (mod r), or
A3. v = w + n+ 2.
Then ~Z is a bisimulation (see Appendix A) and 0 Zn 0. J

I Theorem 11. Given d ∈ [24, 84], there is no L� formula ϕ such for every model M,
M |= ϕ if and only ifM admits a weekly rest assignment.

Proof. Suppose that ϕ ∈ L� is such a formula. Let d and d� be its -depth and �-depth,
respectively. Choose n such that d ≤ 168n and d� ≤ n. Then by Lemmas 7 and 10,
(An, 0) |= ϕ iff (An, 0) |= ϕ. But, according to Lemma 9, An admits a weekly rest assignment,
while An does not. J

6.2 Article §8.6
Our goal now is to show that Article §8.6 is not expressible in L�, and that it needs a
formula with a large U-depth to express it in LU. As before, we start by defining a model
that complies with the article, and one that doesn’t, and then prove that they are bisimilar.

I Definition 12. For each n ∈ N, define simple models

Bn = (44 | 45n | 46 | 45n)n | 24 | 45 | 24

and Bn = 44 | 45n | Bn.

I Lemma 13. Given n ∈ N, Bn |= ψ§8.6 but Bn 6|= ψ§8.6.

Proof. In Bn, the first week’s missing hour can be compensated on the third week. This
creates a chain reaction of compensations, as the third week also needs to be compensated
(because it’s interpreted as a reduced rest of 44 hours together with a compensation of 1
hour). However, it is always possible to compensate either two weeks after, or on the week of
46 hours, if it is close enough. It is thus never necessary to use up hours from the second
block of n 45 hour rest weeks, which are all regular rest periods. This process happens n
times, until we reach the last three weeks of the model. Two of them need to be compensated,
but it is possible to do so using the unlimited hours of rest available after the end.

Consider now Bn. The 24 hour weeks near the end of the model cannot be used to
compensate previous weeks, since 24 is the minimum allowed weekly rest. The last 45 hour
week cannot be used to compensate previous weeks either, because then there would be more
than one consecutive week with no regular rest period. Thus, we erase the last three weeks
from consideration. There are m := 2n2 + 3n+ 1 weeks in the rest of the model, 2n2 + n of
which have 45 rest hours, n+ 1 of which have 44 rest hours, and n of which have 46 hours,
for a total of 45m− 1 rest hours. Thus there are not enough rest hours to distribute among
the period such that each week is assigned 45 hours of weekly rest. J

I Lemma 14. There is a bounded 168n-�-bisimulation ~Z between Bn and Bn such that
0 Zn 0.

Proof. The stratified bisimulation and the proof are analogous to those used in the proof of
Lemma 10. J

I Theorem 15. There is no L�-formula equivalent to ψ§8.6 over the class of simple models.
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Proof. Suppose that ψ ∈ L� is a formula expressing Article §8.6 with -depth d and
�-depth d�. Choose n big enough to ensure that d ≤ 168n and d� ≤ n, and let ~Z be the
bisimulation of Lemma 14. Then by Lemma 7, (Bn, 0) |= ψ iff (Bn, 0) |= ψ. This contradicts
Lemma 13. J

Now we show that any formula of LU requires nesting depth 20 of U.

I Definition 16. For n ∈ N, define models Cn = (44 | 452n+1)21 | 66 | 24 | 45 | 24 and
Cn = (44 | 452n+1) | Cn.

I Lemma 17. Given n ∈ N, Cn |= ψ§8.6 but Cn 6|= ψ§8.6.

Proof. First we see that Cn |= ψ§8.6. Intuitively, even weeks are compensated two weeks
later, and the size of the compensation increases by one every 2n+2 weeks. Thus for example
one hour of week 0 is compensated by one hour of week 2, which is compensated by one
hour of week 4, and so on until we reach week 2n + 2. Note however that this week only
has 44 hours of rest and has used one hour to compensate the previous week, so we need to
compensate two hours of rest. This is compensated by two hours on week 2n+ 4, and so on
until we reach the third 44 hour rest. Since two hours of this rest are used to compensate a
previous week, now three hours need to be compensated, and so on. On week 21(2n+ 2) we
use 21 hours to compensate, which is the maximum allowed given that each week requires a
24 hour rest period. As before, the last 24 | 45 | 24 block cannot be used to compensate, but
can be compensated with the following unlimited rest.

More formally, every week w numbered 2k (including week zero) will be reduced and
compensated by week 2k + 2, up to and including week 21(2n + 2). The amount of the
compensation is the unique i > 0 such that (i− 1)(2n+ 2) ≤ w < i(2n+ 2).

As in Bn, the 24 | 45 | 24 block at the end of Cn cannot be used to compensate previous
weeks (see the proof of Lemma 13). There are m := 22(2n+ 2) + 1 remaining weeks in Cn, of
which 22(2n+ 1) have 45 resting hours, 22 have 44 resting hours, and 1 has 66 resting hours,
for a total of 45m− 1 resting hours. Thus there are not enough resting hours to distribute
among the weeks. J

I Lemma 18. There is a bounded 168n-U-bisimulation ~Z between Cn and Cn such that
0 Z20 0.

Proof sketch. Let r := 2n+2. For 168w+h ∈ Cn and 168v+` ∈ Cn, set 168w+h Zi 168v+`
if h = ` and one of the following holds:
C1. max{w + r, v} < (21− i)r and w ≡ v (mod r);
C2. v = w + r.
Then, ~Z is a stratified bisimulation (see Appendix A) and 0 Z20 0 by C1. J

I Theorem 19. Any LU formula equivalent to ψ§8.6 has U-depth at least 20.

Proof. Suppose that ψ ∈ LU is a formula expressing Article §8.6 with -depth d and U-depth
less than 20. Choose n big enough to ensure that d ≤ n, and let ~Z be the bisimulation
of Lemma 18. Then by Lemma 7, (Cn, 0) |= ψ ⇐⇒ (Cn, 0) |= ψ. This contradicts
Lemma 17. J

I Remark 20. One can ask how Theorem 19 would differ if we included “since” in the language.
In this case, (Cn, 0) and (Cn, 0) are only about 10-bisimilar. However, the nesting depth of
20 is determined only by the resolution of our models. If instead we used a minute-wise
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resolution (which, as we have mentioned, is the resolution required by the law itself), we
could stretch this to 20× 60 by replacing the 44 hour reduced weekly rests by 44 : 59 reduced
weekly rests. Thus any LTL definition of ψ§8.6 would have to exploit the temporal resolution
in an essential way, making it arguably unnatural.

7 Concluding Remarks

We have shown that the Σ1
1 fragment of monadic temporal logic is sufficient for formalizing

even the most problematic passages we have found in our study of European transport
regulations. The upshot is that evaluating whether a given truck driver’s record complies
with regulations can then be transformed into a model-checking problem over this fragment.
Moreover, truth of Σ1

1 MSO formulas is equivalent to validity for MSO, and via Kamp’s
theorem we may further reduce it to validity of LTL formulas, for which many algorithms
and solvers are already available. Nevertheless, validity in LTL is PSPACE-complete, and
moreover the translation of MSO into LTL is non-elementary in the worst case, so this
approach is not ideal from a complexity perspective.

On the other hand, LTL is indeed suitable for formalizing portions of the regulation, and
in this case the model-checking problem (over deterministic models) is polynomial [5]. In
fact, the advantage of having such a general tool available can be viewed as an argument to
use “sugared” versions of LTL (say, with counting modalities) in the design of future – and
revision of current – laws.

Indeed, consider the following variant of §8.6:

In every two consecutive weeks, the driver must take two weekly rest periods, at
least one of which is regular.
In every four consecutive weeks, the sum of the weekly rest periods must be of at
least 180 hours.

This version of the article can be easily checked to be definable by a not-too-large LTL formula
and maintain the spirit of the original, as drivers are required to compensate reduced rest
periods within the following three weeks.

A second issue concerns the use of classical logic. This is especially relevant when the
law is ambiguous or contradictory, or driving records are incomplete. Up to now our team
has found classical logic to be sufficient for our intended applications, but it is possible that
some non-classical temporal logic (as in e.g. [1, 7]) will turn out to be the “right” foundation
for modelling these regulations.
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A Bisimulation proofs

Recall the models An = (L | ELn | EIL | ELn | E)n+1 and An = L | ELn | E | An.

I Lemma 10. There is a bounded 168n-�-bisimulation ~Z between An and An such that
0 Zn 0.

Proof. Define r := 2n+ 3 and for x = 168w + h, y = 168v + ` ∈ N, let x Zi y if h = ` and
one of the following holds:
A1. x = y = 0 and i ≤ n,
A2. 0 < v, max{w, v − n− 2} ≤ (n− i)r and v ≡ w + n+ 2 (mod r), or
A3. v = w + n+ 2.
We need to show that ~Z is a stratified bisimulation.

It is clear that Zi+1 ⊆ Zi. Assume that x Zi y and write x = 168w + h, y = 168v + `;
note that by definition we must have h = `. If i = 0, then some inspection shows that x and
y share the same formulas of the form jp with j ≤ 168n, since the current and subsequent
n weeks are of the same form. It is sufficient to check this for Z0 because it contains all
the Zi.

Otherwise, change variables so that x ∼i+1 y; we check that the required clauses hold.
Forth �. Let x′ ≥ x and write x′ = 168w′ + h′. We claim that there is v′ such that

168v′ + h′ ≥ 168v + h and 168w′ + h′ Zi 168v′ + h′. If 168(w′ + n+ 2) + h′ ≥ 168v + h

we may take v′ = w′ + n + 2, and the bisimulation holds by A3. Otherwise, we have
v ≥ w′ + n+ 2 ≥ w + n+ 2, where the first inequality is strict unless h′ < h, in which
case the second inequality must be strict. Hence x, y do not satisfy A1 nor A3 and thus
max{w, v − n− 2} ≤ (n− i− 1)r. Take v′ ∈ (v, v + r] with v′ ≡ w′ + n+ 2 (mod r) and
set y′ = 168v′ + h′. Note that w′ + n+ 2 ≤ v < (n− i− 1)r + n+ 2 yields w′ ≤ (n− i)r,
while v′ ≤ v+ r ≤ (n− i− 1)r+ r = (n− i)r, and thus v−n− 2 ≤ (n− i)r as well. Thus
x′ Zi y

′ by A2.
Back �. Let y′ ≥ y and write y′ = 168v′+h′. As before, we claim that there is w′ such that

168w′ + h′ ≥ 168w + h and 168w′ + h′ Zi 168v′ + h′. If 168(v′ − n− 2) + h′ ≥ 168w + h

we may take w′ = v′ − n − 2, and the result follows by A3. Otherwise, we have
w ≥ v′ − n− 2 ≥ v − n− 2 with one inequality being strict , so that x, y do not satisfy
A3. If x, y satisfy A2, then max{w, v − n− 2} ≤ (n− i− 1)r. If x, y satisfy A1, we have
that w = v = 0 and i+ 1 ≤ n, so that max{w, v−n− 2} = 0 ≤ (n− i− 1)r as well. Take
w′ ∈ (w,w + r] with w′ + n+ 2 ≡ v′ (mod r) and set x′ = 168w′ + h′. It is not hard to
check that max{w′, v′ − n− 2} ≤ (n− i)r, and thus x′ Zi y

′ by A2. J
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Recall the models Cn = (44 | 452n+1)21 | 66 | 24 | 45 | 24 and Cn = (44 | 452n+1) | Cn.

I Lemma 18. There is a bounded 168n-U-bisimulation ~Z between Cn and Cn such that
0 Z20 0.

Proof. Recall that we defined r := 2n+ 2 and for 168w + h ∈ Cn and 168v + ` ∈ Cn, we set
168w + h Zi 168v + ` if h = ` and one of the following holds:
C1. max{w + r, v} < (21− i)r and w ≡ v (mod r), or
C2. v = w + r.
We need to show that ~Z is a stratified bisimulation. To see this, assume that x Zi y and
write x = 168w + h, y = 168v + `. Note that we must have h = `. If i = 0 then some
inspection shows that x and y share the same formulas of the form jp with j ≤ 168n, as
the current and subsequent n weeks are of the same form. It is sufficient to check this for Z0
because it contains all the Zi.

If i > 0, change variables so that x ∼i+1 y; we check that the required clauses hold.
Forth U. Let x′ ≥ x and write x′ = 168w′ + h′. Consider two cases. First assume that

w′ ≤ w + r. Set y′ = y + (x′ − x) and for z ∈ [y, y′] set ξ(z) = x+ (z − y). It is then not
hard to check that if x Zi+1 y by C1 then ξ(z) Zi z by C1, and similarly if x Zi+1 y by
C2 then ξ(z) Zi z by C2. The other required properties of ξ are easy to check, so that ξ
witnesses Forth U.
Otherwise w′ > w + r. We claim that there is v′ such that 168v′ + h′ ≥ 168v + h and
168w′ + h′ Zi 168v′ + h′. If 168(w′ + r) + h′ ≥ 168v + h we may take v′ = w′ + r.
Otherwise, we have v ≥ w′ + r > w + r so that x, y do not satisfy C2 and thus
max{w + r, v} ≤ (21 − i − 1)r. Take v′ ∈ (v, v + r] with v′ ≡ w′ (mod r) and set
y′ = 168v′ + h′; from (21 − i − 1)r ≥ v ≥ w′ + r and v′ ≤ v + r ≤ (21 − i)r we obtain
x′ Zi y

′ by C1.
We now construct the function ξ : [y, y′] → [x, x′]. First define ξ(y′) = x′. For z =
168u+t ∈ [y, y′), we consider two cases. If 168(u−r)+t ∈

[
x, x′

)
take ξ(z) = 168(u−r)+t,

which in view of C2 satisfies all desired properties. Otherwise, 168(u− r) + t 6∈ [x, x′),
and choose d ∈ (0, r] such that w + d ≡ u (mod r), then set ξ(z) = 168(w + d) + t. The
assumption that w′ > w + r yields ξ(z) ∈ [x, x′]. It remains to show that ξ(z) Zi z, for
which it suffices to check that max{w + d+ r, u} < (21− i)r.
If 168(u−r)+ t < x then since z ≥ y, either u > v and hence v < u ≤ w+r, or else u = v

and t ≥ h, so that forcibly u− r < w and thus v < w + r. But v < w + r together with
168v+h′ Zi+1 168w+hmeans that C1 holds so that max{w+r, v} < (21−i−1)r. Thus we
have u−r ≤ w < (21−i−1)r so that u < (21−i)r. Similarly w+d ≤ w+r < (21−i−1)r
yields w + d+ r < (21− i)r.
Otherwise 168(u − r) + t ≥ x′. But then since z < y′, either u = v′ and hence t < h′,
so that v′ − r = u − r > w′; or else u < v′ and v′ − r > u − r ≥ w′. Thus w′ + r 6= v′,
which together with 168w′ + h′ Zi 168v′ + h′ yields max{w′ + r, v′} < (21− i)r. From
u ≤ v′ < (21 − i)r and w + d + r ≤ (w + r) + r < w′ + r < (21 − i)r we obtain
max{w + d+ r, u} < (21− i)r, as needed.

Back U. This is essentially symmetric and we omit it. J
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