153,342 research outputs found

    A bandwidth theorem for approximate decompositions

    Get PDF
    We provide a degree condition on a regular nn-vertex graph GG which ensures the existence of a near optimal packing of any family H\mathcal H of bounded degree nn-vertex kk-chromatic separable graphs into GG. In general, this degree condition is best possible. Here a graph is separable if it has a sublinear separator whose removal results in a set of components of sublinear size. Equivalently, the separability condition can be replaced by that of having small bandwidth. Thus our result can be viewed as a version of the bandwidth theorem of B\"ottcher, Schacht and Taraz in the setting of approximate decompositions. More precisely, let δk\delta_k be the infimum over all δ1/2\delta\ge 1/2 ensuring an approximate KkK_k-decomposition of any sufficiently large regular nn-vertex graph GG of degree at least δn\delta n. Now suppose that GG is an nn-vertex graph which is close to rr-regular for some r(δk+o(1))nr \ge (\delta_k+o(1))n and suppose that H1,,HtH_1,\dots,H_t is a sequence of bounded degree nn-vertex kk-chromatic separable graphs with ie(Hi)(1o(1))e(G)\sum_i e(H_i) \le (1-o(1))e(G). We show that there is an edge-disjoint packing of H1,,HtH_1,\dots,H_t into GG. If the HiH_i are bipartite, then r(1/2+o(1))nr\geq (1/2+o(1))n is sufficient. In particular, this yields an approximate version of the tree packing conjecture in the setting of regular host graphs GG of high degree. Similarly, our result implies approximate versions of the Oberwolfach problem, the Alspach problem and the existence of resolvable designs in the setting of regular host graphs of high degree.Comment: Final version, to appear in the Proceedings of the London Mathematical Societ

    Unavoidable minors in graphs and matroids

    Get PDF
    It is well known that every sufficiently large connected graph G has either a vertex of high degree or a long path. If we require G to be more highly connected, then we ensure the presence of more highly structured minors. In particular, for all positive integers k, every 2-connected graph G has a series minor isomorphic to a k-edge cycle or K_{2,k}. In 1993, Oxley, Oporowski, and Thomas extended this result to 3- and internally 4-connected graphs identifying all unavoidable series minors of these classes. Loosely speaking, a series minor allows for arbitrary edge deletions but only allows edges to be contracted when they meet a degree-2 vertex. Dually, a parallel minor allows for any edge contractions but restricts the deletion of edges to those that lie in 2-edge cycles. This dissertation begins by proving the dual results to those noted above. These identify all unavoidable parallel minors for finite graphs of low connectivity. Following this, corresponding results on unavoidable minors for infinite graphs are proved. The dissertation concludes by finding the unavoidable parallel minors for 3-connected regular matroids, which combines the results for unavoidable series and parallel minors for graphs with Seymour\u27s decomposition theorem for regular matroids

    Random walks which prefer unvisited edges : exploring high girth even degree expanders in linear time.

    Get PDF
    Let G = (V,E) be a connected graph with |V | = n vertices. A simple random walk on the vertex set of G is a process, which at each step moves from its current vertex position to a neighbouring vertex chosen uniformly at random. We consider a modified walk which, whenever possible, chooses an unvisited edge for the next transition; and makes a simple random walk otherwise. We call such a walk an edge-process (or E -process). The rule used to choose among unvisited edges at any step has no effect on our analysis. One possible method is to choose an unvisited edge uniformly at random, but we impose no such restriction. For the class of connected even degree graphs of constant maximum degree, we bound the vertex cover time of the E -process in terms of the edge expansion rate of the graph G, as measured by eigenvalue gap 1 -λmax of the transition matrix of a simple random walk on G. A vertex v is ℓ -good, if any even degree subgraph containing all edges incident with v contains at least ℓ vertices. A graph G is ℓ -good, if every vertex has the ℓ -good property. Let G be an even degree ℓ -good expander of bounded maximum degree. Any E -process on G has vertex cover time equation image This is to be compared with the Ω(nlog n) lower bound on the cover time of any connected graph by a weighted random walk. Our result is independent of the rule used to select the order of the unvisited edges, which could, for example, be chosen on-line by an adversary. © 2013 Wiley Periodicals, Inc. Random Struct. Alg., 00, 000–000, 2013 As no walk based process can cover an n vertex graph in less than n - 1 steps, the cover time of the E -process is of optimal order when ℓ =Θ (log n). With high probability random r -regular graphs, r ≥ 4 even, have ℓ =Ω (log n). Thus the vertex cover time of the E -process on such graphs is Θ(n)

    Universal lower bound for community structure of sparse graphs

    Full text link
    We prove new lower bounds on the modularity of graphs. Specifically, the modularity of a graph GG with average degree dˉ\bar d is Ω(dˉ1/2)\Omega(\bar{d}^{-1/2}), under some mild assumptions on the degree sequence of GG. The lower bound Ω(dˉ1/2)\Omega(\bar{d}^{-1/2}) applies, for instance, to graphs with a power-law degree sequence or a near-regular degree sequence. It has been suggested that the relatively high modularity of the Erd\H{o}s-R\'enyi random graph Gn,pG_{n,p} stems from the random fluctuations in its edge distribution, however our results imply high modularity for any graph with a degree sequence matching that typically found in Gn,pG_{n,p}. The proof of the new lower bound relies on certain weight-balanced bisections with few cross-edges, which build on ideas of Alon [Combinatorics, Probability and Computing (1997)] and may be of independent interest.Comment: 25 pages, 2 figure

    Local resilience and Hamiltonicity Maker-Breaker games in random-regular graphs

    Full text link
    For an increasing monotone graph property \mP the \emph{local resilience} of a graph GG with respect to \mP is the minimal rr for which there exists of a subgraph HGH\subseteq G with all degrees at most rr such that the removal of the edges of HH from GG creates a graph that does not possesses \mP. This notion, which was implicitly studied for some ad-hoc properties, was recently treated in a more systematic way in a paper by Sudakov and Vu. Most research conducted with respect to this distance notion focused on the Binomial random graph model \GNP and some families of pseudo-random graphs with respect to several graph properties such as containing a perfect matching and being Hamiltonian, to name a few. In this paper we continue to explore the local resilience notion, but turn our attention to random and pseudo-random \emph{regular} graphs of constant degree. We investigate the local resilience of the typical random dd-regular graph with respect to edge and vertex connectivity, containing a perfect matching, and being Hamiltonian. In particular we prove that for every positive ϵ\epsilon and large enough values of dd with high probability the local resilience of the random dd-regular graph, \GND, with respect to being Hamiltonian is at least (1ϵ)d/6(1-\epsilon)d/6. We also prove that for the Binomial random graph model \GNP, for every positive ϵ>0\epsilon>0 and large enough values of KK, if p>Klnnnp>\frac{K\ln n}{n} then with high probability the local resilience of \GNP with respect to being Hamiltonian is at least (1ϵ)np/6(1-\epsilon)np/6. Finally, we apply similar techniques to Positional Games and prove that if dd is large enough then with high probability a typical random dd-regular graph GG is such that in the unbiased Maker-Breaker game played on the edges of GG, Maker has a winning strategy to create a Hamilton cycle.Comment: 34 pages. 1 figur

    Packing and embedding large subgraphs

    Get PDF
    This thesis contains several embedding results for graphs in both random and non random settings. Most notably, we resolve a long standing conjecture that the threshold probability for Hamiltonicity in the random binomial subgraph of the hypercube equals 1/21/2. %posed e.g.~by Bollob\'as, In Chapter 2 we obtain the following perturbation result regarding the hypercube \cQ^n: if H\subseteq\cQ^n satisfies δ(H)αn\delta(H)\geq\alpha n with α>0\alpha>0 fixed and we consider a random binomial subgraph \cQ^n_p of \cQ^n with p(0,1]p\in(0,1] fixed, then with high probability H\cup\cQ^n_p contains kk edge-disjoint Hamilton cycles, for any fixed kNk\in\mathbb{N}. This result is part of a larger volume of work where we also prove the corresponding hitting time result for Hamiltonicity. In Chapter 3 we move to a non random setting. %to a deterministic one. %Instead of embedding a single Hamilton cycle our result concerns packing more general families of graphs into a fixed host graph. Rather than pack a small number of Hamilton cycles into a fixed host graph, our aim is to achieve optimally sized packings of more general families of graphs. More specifically, we provide a degree condition on a regular nn-vertex graph GG which ensures the existence of a near optimal packing of any family H\mathcal H of bounded degree nn-vertex kk-chromatic separable graphs into GG. %In general, this degree condition is best possible. %In particular, this yields an approximate version of the tree packing conjecture %in the setting of regular host graphs GG of high degree. %Similarly, our result implies approximate versions of the Oberwolfach problem, %the Alspach problem and the existence of resolvable designs in the setting of %regular host graphs of high degree. In particular, this yields approximate versions of the the tree packing conjecture, the Oberwolfach problem, the Alspach problem and the existence of resolvable designs in the setting of regular host graphs of high degree
    corecore