103,344 research outputs found

    Verifying proofs in constant depth

    Get PDF
    In this paper we initiate the study of proof systems where verification of proofs proceeds by NC circuits. We investigate the question which languages admit proof systems in this very restricted model. Formulated alternatively, we ask which languages can be enumerated by NC functions. Our results show that the answer to this problem is not determined by the complexity of the language. On the one hand, we construct NC proof systems for a variety of languages ranging from regular to NP-complete. On the other hand, we show by combinatorial methods that even easy regular languages such as Exact-OR do not admit NC proof systems. We also present a general construction of proof systems for regular languages with strongly connected NFA's

    Might Hurro-Urartian and North-Caucasian Languages Be Derived from (or Related to) Indo-European?

    Get PDF
    Several basic-lexicon etymologies, with regular sound correspondences, suggest Hurro-Urartian (HU) might be derived from (or related to) Proto-Indo-European (PIE). Preliminary evidence suggests North-Caucasian (NC) languages might also be related to PIE – in particular, to Iranian languages and Armenian. KEYWORDS: reconstruction, Proto-Indo-European, Hurro-Urartian, North-Caucasian, etymologySeveral basic-lexicon etymologies, with regular sound correspondences, suggest Hurro-Urartian (HU) might be derived from (or related to) Proto-Indo-European (PIE). Preliminary evidence suggests North-Caucasian (NC) languages might also be related to PIE – in particular, to Iranian languages and Armenian. KEYWORDS: reconstruction, Proto-Indo-European, Hurro-Urartian, North-Caucasian, etymolog

    Complexity of Suffix-Free Regular Languages

    Get PDF
    The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.jcss.2017.05.011 © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/We study various complexity properties of suffix-free regular languages. A sequence (Lk,Lk+1,…) of regular languages in some class, where n is the quotient complexity of Ln, is most complex if its languages Ln meet the complexity upper bounds for all basic measures. It is known that there exist such most complex sequences in several classes of regular languages. In contrast to this, we prove that there does not exist a most complex sequence in the class of suffix-free regular languages. However, we do exhibit two such sequences that together meet upper bounds for all basic measures.Natural Sciences and Engineering Research Council of Canada (NSERC) grant No. OGP000087National Science Centre, Poland project number 2014/15/B/ST6/0061

    The Power of Programs over Monoids in DA

    Get PDF
    The program-over-monoid model of computation originates with Barrington\u27s proof that it captures the complexity class NC^1. Here we make progress in understanding the subtleties of the model. First, we identify a new tameness condition on a class of monoids that entails a natural characterization of the regular languages recognizable by programs over monoids from the class. Second, we prove that the class known as DA satisfies tameness and hence that the regular languages recognized by programs over monoids in DA are precisely those recognizable in the classical sense by morphisms from QDA. Third, we show by contrast that the well studied class of monoids called J is not tame and we exhibit a regular language, recognized by a program over a monoid from J, yet not recognizable classically by morphisms from the class QJ. Finally, we exhibit a program-length-based hierarchy within the class of languages recognized by programs over monoids from DA

    Tameness and the power of programs over monoids in DA

    Get PDF
    The program-over-monoid model of computation originates with Barrington's proof that the model captures the complexity class NC1\mathsf{NC^1}. Here we make progress in understanding the subtleties of the model. First, we identify a new tameness condition on a class of monoids that entails a natural characterization of the regular languages recognizable by programs over monoids from the class. Second, we prove that the class known as DA\mathbf{DA} satisfies tameness and hence that the regular languages recognized by programs over monoids in DA\mathbf{DA} are precisely those recognizable in the classical sense by morphisms from QDA\mathbf{QDA}. Third, we show by contrast that the well studied class of monoids called J\mathbf{J} is not tame. Finally, we exhibit a program-length-based hierarchy within the class of languages recognized by programs over monoids from DA\mathbf{DA}

    The limits of Nečiporuk’s method and the power of programs over monoids taken from small varieties of finite monoids

    Full text link
    Cotutelle avec l'École Normale Supérieure de Cachan, Université Paris-Saclay.Cette thèse porte sur des minorants pour des mesures de complexité liées à des sous-classes de la classe P de langages pouvant être décidés en temps polynomial par des machines de Turing. Nous considérons des modèles de calcul non uniformes tels que les programmes sur monoïdes et les programmes de branchement. Notre première contribution est un traitement abstrait de la méthode de Nečiporuk pour prouver des minorants, indépendamment de toute mesure de complexité spécifique. Cette méthode donne toujours les meilleurs minorants connus pour des mesures telles que la taille des programmes de branchements déterministes et non déterministes ou des formules avec des opérateurs booléens binaires arbitraires ; nous donnons une formulation abstraite de la méthode et utilisons ce cadre pour démontrer des limites au meilleur minorant obtenable en utilisant cette méthode pour plusieurs mesures de complexité. Par là, nous confirmons, dans ce cadre légèrement plus général, des résultats de limitation précédemment connus et exhibons de nouveaux résultats de limitation pour des mesures de complexité auxquelles la méthode de Nečiporuk n’avait jamais été appliquée. Notre seconde contribution est une meilleure compréhension de la puissance calculatoire des programmes sur monoïdes issus de petites variétés de monoïdes finis. Les programmes sur monoïdes furent introduits à la fin des années 1980 par Barrington et Thérien pour généraliser la reconnaissance par morphismes et ainsi obtenir une caractérisation en termes de semi-groupes finis de NC^1 et de ses sous-classes. Étant donné une variété V de monoïdes finis, on considère la classe P(V) de langages reconnus par une suite de programmes de longueur polynomiale sur un monoïde de V : lorsque l’on fait varier V parmi toutes les variétés de monoïdes finis, on obtient différentes sous-classes de NC^1, par exemple AC^0, ACC^0 et NC^1 quand V est respectivement la variété de tous les monoïdes apériodiques finis, résolubles finis et finis. Nous introduisons une nouvelle notion de docilité pour les variétés de monoïdes finis, renforçant une notion de Péladeau. L’intérêt principal de cette notion est que quand une variété V de monoïdes finis est docile, nous avons que P(V) contient seulement des langages réguliers qui sont quasi reconnus par morphisme par des monoïdes de V. De nombreuses questions ouvertes à propos de la structure interne de NC^1 seraient réglées en montrant qu’une variété de monoïdes finis appropriée est docile, et, dans cette thèse, nous débutons modestement une étude exhaustive de quelles variétés de monoïdes finis sont dociles. Plus précisément, nous portons notre attention sur deux petites variétés de monoïdes apériodiques finis bien connues : DA et J. D’une part, nous montrons que DA est docile en utilisant des arguments de théorie des semi-groupes finis. Cela nous permet de dériver une caractérisation algébrique exacte de la classe des langages réguliers dans P(DA). D’autre part, nous montrons que J n’est pas docile. Pour faire cela, nous présentons une astuce par laquelle des programmes sur monoïdes de J peuvent reconnaître beaucoup plus de langages réguliers que seulement ceux qui sont quasi reconnus par morphisme par des monoïdes de J. Cela nous amène à conjecturer une caractérisation algébrique exacte de la classe de langages réguliers dans P(J), et nous exposons quelques résultats partiels appuyant cette conjecture. Pour chacune des variétés DA et J, nous exhibons également une hiérarchie basée sur la longueur des programmes à l’intérieur de la classe des langages reconnus par programmes sur monoïdes de la variété, améliorant par là les résultats de Tesson et Thérien sur la propriété de longueur polynomiale pour les monoïdes de ces variétés.This thesis deals with lower bounds for complexity measures related to subclasses of the class P of languages that can be decided by Turing machines in polynomial time. We consider non-uniform computational models like programs over monoids and branching programs. Our first contribution is an abstract, measure-independent treatment of Nečiporuk’s method for proving lower bounds. This method still gives the best lower bounds known on measures such as the size of deterministic and non-deterministic branching programs or formulæ with arbitrary binary Boolean operators; we give an abstract formulation of the method and use this framework to prove limits on the best lower bounds obtainable using this method for several complexity measures. We thereby confirm previously known limitation results in this slightly more general framework and showcase new limitation results for complexity measures to which Nečiporuk’s method had never been applied. Our second contribution is a better understanding of the computational power of programs over monoids taken from small varieties of finite monoids. Programs over monoids were introduced in the late 1980s by Barrington and Thérien as a way to generalise recognition by morphisms so as to obtain a finite-semigroup-theoretic characterisation of NC^1 and its subclasses. Given a variety V of finite monoids, one considers the class P(V) of languages recognised by a sequence of polynomial-length programs over a monoid from V: as V ranges over all varieties of finite monoids, one obtains different subclasses of NC^1, for instance AC^0, ACC^0 and NC^1 when V respectively is the variety of all finite aperiodic, finite solvable and finite monoids. We introduce a new notion of tameness for varieties of finite monoids, strengthening a notion of Péladeau. The main interest of this notion is that when a variety V of finite monoids is tame, we have that P(V) does only contain regular languages that are quasi morphism-recognised by monoids from V. Many open questions about the internal structure of NC^1 would be settled by showing that some appropriate variety of finite monoids is tame, and, in this thesis, we modestly start an exhaustive study of which varieties of finite monoids are tame. More precisely, we focus on two well-known small varieties of finite aperiodic monoids: DA and J. On the one hand, we show that DA is tame using finite-semigroup- theoretic arguments. This allows us to derive an exact algebraic characterisation of the class of regular languages in P(DA). On the other hand, we show that J is not tame. To do this, we present a trick by which programs over monoids from J can recognise much more regular languages than only those that are quasi morphism-recognised by monoids from J. This brings us to conjecture an exact algebraic characterisation of the class of regular languages in P(J), and we lay out some partial results that support this conjecture. For each of the varieties DA and J, we also exhibit a program-length-based hierarchy within the class of languages recognised by programs over monoids from the variety, refining Tesson and Thérien’s results on the polynomial-length property for monoids from those varieties

    Algebraic properties of structured context-free languages: old approaches and novel developments

    Full text link
    The historical research line on the algebraic properties of structured CF languages initiated by McNaughton's Parenthesis Languages has recently attracted much renewed interest with the Balanced Languages, the Visibly Pushdown Automata languages (VPDA), the Synchronized Languages, and the Height-deterministic ones. Such families preserve to a varying degree the basic algebraic properties of Regular languages: boolean closure, closure under reversal, under concatenation, and Kleene star. We prove that the VPDA family is strictly contained within the Floyd Grammars (FG) family historically known as operator precedence. Languages over the same precedence matrix are known to be closed under boolean operations, and are recognized by a machine whose pop or push operations on the stack are purely determined by terminal letters. We characterize VPDA's as the subclass of FG having a peculiarly structured set of precedence relations, and balanced grammars as a further restricted case. The non-counting invariance property of FG has a direct implication for VPDA too.Comment: Extended version of paper presented at WORDS2009, Salerno,Italy, September 200
    • …
    corecore