18,895 research outputs found

    Automated DNA Motif Discovery

    Get PDF
    Ensembl's human non-coding and protein coding genes are used to automatically find DNA pattern motifs. The Backus-Naur form (BNF) grammar for regular expressions (RE) is used by genetic programming to ensure the generated strings are legal. The evolved motif suggests the presence of Thymine followed by one or more Adenines etc. early in transcripts indicate a non-protein coding gene. Keywords: pseudogene, short and microRNAs, non-coding transcripts, systems biology, machine learning, Bioinformatics, motif, regular expression, strongly typed genetic programming, context-free grammar.Comment: 12 pages, 2 figure

    Automated Problem Decomposition for the Boolean Domain with Genetic Programming

    Get PDF
    Researchers have been interested in exploring the regularities and modularity of the problem space in genetic programming (GP) with the aim of decomposing the original problem into several smaller subproblems. The main motivation is to allow GP to deal with more complex problems. Most previous works on modularity in GP emphasise the structure of modules used to encapsulate code and/or promote code reuse, instead of in the decomposition of the original problem. In this paper we propose a problem decomposition strategy that allows the use of a GP search to find solutions for subproblems and combine the individual solutions into the complete solution to the problem

    Evolving text classification rules with genetic programming

    Get PDF
    We describe a novel method for using genetic programming to create compact classification rules using combinations of N-grams (character strings). Genetic programs acquire fitness by producing rules that are effective classifiers in terms of precision and recall when evaluated against a set of training documents. We describe a set of functions and terminals and provide results from a classification task using the Reuters 21578 dataset. We also suggest that the rules may have a number of other uses beyond classification and provide a basis for text mining applications

    Ludii -- The Ludemic General Game System

    Full text link
    While current General Game Playing (GGP) systems facilitate useful research in Artificial Intelligence (AI) for game-playing, they are often somewhat specialised and computationally inefficient. In this paper, we describe the "ludemic" general game system Ludii, which has the potential to provide an efficient tool for AI researchers as well as game designers, historians, educators and practitioners in related fields. Ludii defines games as structures of ludemes -- high-level, easily understandable game concepts -- which allows for concise and human-understandable game descriptions. We formally describe Ludii and outline its main benefits: generality, extensibility, understandability and efficiency. Experimentally, Ludii outperforms one of the most efficient Game Description Language (GDL) reasoners, based on a propositional network, in all games available in the Tiltyard GGP repository. Moreover, Ludii is also competitive in terms of performance with the more recently proposed Regular Boardgames (RBG) system, and has various advantages in qualitative aspects such as generality.Comment: Accepted at ECAI 202

    Learning with Latent Language

    Full text link
    The named concepts and compositional operators present in natural language provide a rich source of information about the kinds of abstractions humans use to navigate the world. Can this linguistic background knowledge improve the generality and efficiency of learned classifiers and control policies? This paper aims to show that using the space of natural language strings as a parameter space is an effective way to capture natural task structure. In a pretraining phase, we learn a language interpretation model that transforms inputs (e.g. images) into outputs (e.g. labels) given natural language descriptions. To learn a new concept (e.g. a classifier), we search directly in the space of descriptions to minimize the interpreter's loss on training examples. Crucially, our models do not require language data to learn these concepts: language is used only in pretraining to impose structure on subsequent learning. Results on image classification, text editing, and reinforcement learning show that, in all settings, models with a linguistic parameterization outperform those without

    Generating networks of genetic processors

    Full text link
    [EN] The Networks of Genetic Processors (NGPs) are non-conventional models of computation based on genetic operations over strings, namely mutation and crossover operations as it was established in genetic algorithms. Initially, they have been proposed as acceptor machines which are decision problem solvers. In that case, it has been shown that they are universal computing models equivalent to Turing machines. In this work, we propose NGPs as enumeration devices and we analyze their computational power. First, we define the model and we propose its definition as parallel genetic algorithms. Once the correspondence between the two formalisms has been established, we carry out a study of the generation capacity of the NGPs under the research framework of the theory of formal languages. We investigate the relationships between the number of processors of the model and its generative power. Our results show that the number of processors is important to increase the generative capability of the model up to an upper bound, and that NGPs are universal models of computation if they are formulated as generation devices. This allows us to affirm that parallel genetic algorithms working under certain restrictions can be considered equivalent to Turing machines and, therefore, they are universal models of computation.This research was partially supported by TAILOR, a project funded by EU Horizon 2020 research and innovation programme under GA No 952215.Campos Frances, M.; Sempere Luna, JM. (2022). Generating networks of genetic processors. Genetic Programming and Evolvable Machines. 23(1):133-155. https://doi.org/10.1007/s10710-021-09423-713315523

    The use of data-mining for the automatic formation of tactics

    Get PDF
    This paper discusses the usse of data-mining for the automatic formation of tactics. It was presented at the Workshop on Computer-Supported Mathematical Theory Development held at IJCAR in 2004. The aim of this project is to evaluate the applicability of data-mining techniques to the automatic formation of tactics from large corpuses of proofs. We data-mine information from large proof corpuses to find commonly occurring patterns. These patterns are then evolved into tactics using genetic programming techniques
    corecore