139 research outputs found

    Automatic whole heart segmentation based on image registration

    Get PDF
    Whole heart segmentation can provide important morphological information of the heart, potentially enabling the development of new clinical applications and the planning and guidance of cardiac interventional procedures. This information can be extracted from medical images, such as these of magnetic resonance imaging (MRI), which is becoming a routine modality for the determination of cardiac morphology. Since manual delineation is labour intensive and subject to observer variation, it is highly desirable to develop an automatic method. However, automating the process is complicated by the large shape variation of the heart and limited quality of the data. The aim of this work is to develop an automatic and robust segmentation framework from cardiac MRI while overcoming these difficulties. The main challenge of this segmentation is initialisation of the substructures and inclusion of shape constraints. We propose the locally affine registration method (LARM) and the freeform deformations with adaptive control point status to tackle the challenge. They are applied to the atlas propagation based segmentation framework, where the multi-stage scheme is used to hierarchically increase the degree of freedom. In this segmentation framework, it is also needed to compute the inverse transformation for the LARM registration. Therefore, we propose a generic method, using Dynamic Resampling And distance Weighted interpolation (DRAW), for inverting dense displacements. The segmentation framework is validated on a clinical dataset which includes nine pathologies. To further improve the nonrigid registration against local intensity distortions in the images, we propose a generalised spatial information encoding scheme and the spatial information encoded mutual information (SIEMI) registration. SIEMI registration is applied to the segmentation framework to improve the accuracy. Furthermore, to demonstrate the general applicability of SIEMI registration, we apply it to the registration of cardiac MRI, brain MRI, and the contrast enhanced MRI of the liver. SIEMI registration is shown to perform well and achieve significantly better accuracy compared to the registration using normalised mutual information

    High frame rate multi-perspective cardiac ultrasound imaging using phased array probes

    Get PDF
    Ultrasound (US) imaging is used to assess cardiac disease by assessing the geometry and function of the heart utilizing its high spatial and temporal resolution. However, because of physical constraints, drawbacks of US include limited field-of-view, refraction, resolution and contrast anisotropy. These issues cannot be resolved when using a single probe. Here, an interleaved multi-perspective 2-D US imaging system was introduced, aiming at improved imaging of the left ventricle (LV) of the heart by acquiring US data from two separate phased array probes simultaneously at a high frame rate. In an ex-vivo experiment of a beating porcine heart, parasternal long-axis and apical views of the left ventricle were acquired using two phased array probes. Interleaved multi-probe US data were acquired at a frame rate of 170 frames per second (FPS) using diverging wave imaging under 11 angles. Image registration and fusion algorithms were developed to align and fuse the US images from two different probes. First- and second-order speckle statistics were computed to characterize the resulting probability distribution function and point spread function of the multi-probe image data. First-order speckle analysis showed less overlap of the histograms (reduction of 34.4%) and higher contrast-to-noise ratio (CNR, increase of 27.3%) between endocardium and myocardium in the fused images. Autocorrelation results showed an improved and more isotropic resolution for the multi-perspective images (single-perspective: 0.59 mm × 0.21 mm, multi-perspective: 0.35 mm × 0.18 mm). Moreover, mean gradient (MG) (increase of 74.4%) and entropy (increase of 23.1%) results indicated that image details of the myocardial tissue can be better observed after fusion. To conclude, interleaved multi-perspective high frame rate US imaging was developed and demonstrated in an ex-vivo experimental setup, revealing enlarged field-of-view, and improved image contrast and resolution of cardiac images.</p

    Towards Patient Specific Mitral Valve Modelling via Dynamic 3D Transesophageal Echocardiography

    Get PDF
    Mitral valve disease is a common pathologic problem occurring increasingly in an aging population, and many patients suffering from mitral valve disease require surgical intervention. Planning an interventional approach from diagnostic imaging alone remains a significant clinical challenge. Transesophageal echocardiography (TEE) is the primary imaging modality used diagnostically, it has limitations in image quality and field-of-view. Recently, developments have been made towards modelling patient-specific deformable mitral valves from TEE imaging, however, a major barrier to producing accurate valve models is the need to derive the leaflet geometry through segmentation of diagnostic TEE imaging. This work explores the development of volume compounding and automated image analysis to more accurately and quickly capture the relevant valve geometry needed to produce patient-specific mitral valve models. Volume compounding enables multiple ultrasound acquisitions from different orientations and locations to be aligned and blended to form a single volume with improved resolution and field-of-view. A series of overlapping transgastric views are acquired that are then registered together with the standard en-face image and are combined using a blending function. The resulting compounded ultrasound volumes allow the visualization of a wider range of anatomical features within the left heart, enhancing the capabilities of a standard TEE probe. In this thesis, I first describe a semi-automatic segmentation algorithm based on active contours designed to produce segmentations from end-diastole suitable for deriving 3D printable molds. Subsequently I describe the development of DeepMitral, a fully automatic segmentation pipeline which leverages deep learning to produce very accurate segmentations with a runtime of less than ten seconds. DeepMitral is the first reported method using convolutional neural networks (CNNs) on 3D TEE for mitral valve segmentations. The results demonstrate very accurate leaflet segmentations, and a reduction in the time and complexity to produce a patient-specific mitral valve replica. Finally, a real-time annulus tracking system using CNNs to predict the annulus coordinates in the spatial frequency domain was developed. This method facilitates the use of mitral annulus tracking in real-time guidance systems, and further simplifies mitral valve modelling through the automatic detection of the annulus, which is a key structure for valve quantification, and reproducing accurate leaflet dynamics

    Foetal echocardiographic segmentation

    Get PDF
    Congenital heart disease affects just under one percentage of all live births [1]. Those defects that manifest themselves as changes to the cardiac chamber volumes are the motivation for the research presented in this thesis. Blood volume measurements in vivo require delineation of the cardiac chambers and manual tracing of foetal cardiac chambers is very time consuming and operator dependent. This thesis presents a multi region based level set snake deformable model applied in both 2D and 3D which can automatically adapt to some extent towards ultrasound noise such as attenuation, speckle and partial occlusion artefacts. The algorithm presented is named Mumford Shah Sarti Collision Detection (MSSCD). The level set methods presented in this thesis have an optional shape prior term for constraining the segmentation by a template registered to the image in the presence of shadowing and heavy noise. When applied to real data in the absence of the template the MSSCD algorithm is initialised from seed primitives placed at the centre of each cardiac chamber. The voxel statistics inside the chamber is determined before evolution. The MSSCD stops at open boundaries between two chambers as the two approaching level set fronts meet. This has significance when determining volumes for all cardiac compartments since cardiac indices assume that each chamber is treated in isolation. Comparison of the segmentation results from the implemented snakes including a previous level set method in the foetal cardiac literature show that in both 2D and 3D on both real and synthetic data, the MSSCD formulation is better suited to these types of data. All the algorithms tested in this thesis are within 2mm error to manually traced segmentation of the foetal cardiac datasets. This corresponds to less than 10% of the length of a foetal heart. In addition to comparison with manual tracings all the amorphous deformable model segmentations in this thesis are validated using a physical phantom. The volume estimation of the phantom by the MSSCD segmentation is to within 13% of the physically determined volume

    Ultrafast Ultrasound Imaging

    Get PDF
    Among medical imaging modalities, such as computed tomography (CT) and magnetic resonance imaging (MRI), ultrasound imaging stands out due to its temporal resolution. Owing to the nature of medical ultrasound imaging, it has been used for not only observation of the morphology of living organs but also functional imaging, such as blood flow imaging and evaluation of the cardiac function. Ultrafast ultrasound imaging, which has recently become widely available, significantly increases the opportunities for medical functional imaging. Ultrafast ultrasound imaging typically enables imaging frame-rates of up to ten thousand frames per second (fps). Due to the extremely high temporal resolution, this enables visualization of rapid dynamic responses of biological tissues, which cannot be observed and analyzed by conventional ultrasound imaging. This Special Issue includes various studies of improvements to the performance of ultrafast ultrasoun

    Post formation processing of cardiac ultrasound data for enhancing image quality and diagnostic value

    Get PDF
    Cardiovascular diseases (CVDs) constitute a leading cause of death, including premature death, in the developed world. The early diagnosis and treatment of CVDs is therefore of great importance. Modern imaging modalities enable the quantification and analysis of the cardiovascular system and provide researchers and clinicians with valuable tools for the diagnosis and treatment of CVDs. In particular, echocardiography offers a number of advantages, compared to other imaging modalities, making it a prevalent tool for assessing cardiac morphology and function. However, cardiac ultrasound images can suffer from a range of artifacts reducing their image quality and diagnostic value. As a result, there is great interest in the development of processing techniques that address such limitations. This thesis introduces and quantitatively evaluates four methods that enhance clinical cardiac ultrasound data by utilising information which until now has been predominantly disregarded. All methods introduced in this thesis utilise multiple partially uncorrelated instances of a cardiac cycle in order to acquire the information required to suppress or enhance certain image features. No filtering out of information is performed at any stage throughout the processing. This constitutes the main differentiation to previous data enhancement approaches which tend to filter out information based on some static or adaptive selection criteria. The first two image enhancement methods utilise spatial averaging of partially uncorrelated data acquired through a single acoustic window. More precisely, Temporal Compounding enhances cardiac ultrasound data by averaging partially uncorrelated instances of the imaged structure acquired over a number of consecutive cardiac cycles. An extension to the notion of spatial compounding of cardiac ultrasound data is 3D-to-2D Compounding, which presents a novel image enhancement method by acquiring and compounding spatially adjacent (along the elevation plane), partially uncorrelated, 2D slices of the heart extracted as a thin angular sub-sector of a volumetric pyramid scan. Data enhancement introduced by both approaches includes the substantial suppression of tissue speckle and cavity noise. Furthermore, by averaging decorrelated instances of the same cardiac structure, both compounding methods can enhance tissue structures, which are masked out by high levels of noise and shadowing, increasing their corresponding tissue/cavity detectability. The third novel data enhancement approach, referred as Dynamic Histogram Based Intensity Mapping (DHBIM), investigates the temporal variations within image histograms of consecutive frames in order to (i) identify any unutilised/underutilised intensity levels and (ii) derive the tissue/cavity intensity threshold within the processed frame sequence. Piecewise intensity mapping is then used to enhance cardiac ultrasound data. DHBIM introduces cavity noise suppression, enhancement of tissue speckle information as well as considerable increase in tissue/cavity contrast and detectability. A data acquisition and analysis protocol for integrating the dynamic intensity mapping along with spatial compounding methods is also investigated. The linear integration of DHBIM and Temporal Compounding forms the fourth and final implemented method, which is also quantitatively assessed. By taking advantage of the benefits and compensating for the limitations of each individual method, the integrated method suppresses cavity noise and tissue speckle while enhancing tissue/cavity contrast as well as the delineation of cardiac tissue boundaries even when heavily corrupted by cardiac ultrasound artifacts. Finally, a novel protocol for the quantitative assessment of the effect of each data enhancement method on image quality and diagnostic value is employed. This enables the quantitative evaluation of each method as well as the comparison between individual methods using clinical data from 32 patients. Image quality is assessed using a range of quantitative measures such as signal-to-noise ratio, tissue/cavity contrast and detectability index. Diagnostic value is assessed through variations in the repeatability level of routine clinical measurements performed on patient cardiac ultrasound scans by two experienced echocardiographers. Commonly used clinical measures such as the wall thickness of the Interventricular Septum (IVS) and the Left Ventricle Posterior Wall (LVPW) as well as the cavity diameter of the Left Ventricle (LVID) and Left Atrium (LAD) are employed for assessing diagnostic value

    Echocardiography

    Get PDF
    The book "Echocardiography - New Techniques" brings worldwide contributions from highly acclaimed clinical and imaging science investigators, and representatives from academic medical centers. Each chapter is designed and written to be accessible to those with a basic knowledge of echocardiography. Additionally, the chapters are meant to be stimulating and educational to the experts and investigators in the field of echocardiography. This book is aimed primarily at cardiology fellows on their basic echocardiography rotation, fellows in general internal medicine, radiology and emergency medicine, and experts in the arena of echocardiography. Over the last few decades, the rate of technological advancements has developed dramatically, resulting in new techniques and improved echocardiographic imaging. The authors of this book focused on presenting the most advanced techniques useful in today's research and in daily clinical practice. These advanced techniques are utilized in the detection of different cardiac pathologies in patients, in contributing to their clinical decision, as well as follow-up and outcome predictions. In addition to the advanced techniques covered, this book expounds upon several special pathologies with respect to the functions of echocardiography

    Automated deep phenotyping of the cardiovascular system using magnetic resonance imaging

    Get PDF
    Across a lifetime, the cardiovascular system must adapt to a great range of demands from the body. The individual changes in the cardiovascular system that occur in response to loading conditions are influenced by genetic susceptibility, and the pattern and extent of these changes have prognostic value. Brachial blood pressure (BP) and left ventricular ejection fraction (LVEF) are important biomarkers that capture this response, and their measurements are made at high resolution. Relatively, clinical analysis is crude, and may result in lost information and the introduction of noise. Digital information storage enables efficient extraction of information from a dataset, and this strategy may provide more precise and deeper measures to breakdown current phenotypes into their component parts. The aim of this thesis was to develop automated analysis of cardiovascular magnetic resonance (CMR) imaging for more detailed phenotyping, and apply these techniques for new biological insights into the cardiovascular response to different loading conditions. I therefore tested the feasibility and clinical utility of computational approaches for image and waveform analysis, recruiting and acquiring additional patient cohorts where necessary, and then applied these approaches prospectively to participants before and after six-months of exercise training for a first-time marathon. First, a multi-centre, multi-vendor, multi-field strength, multi-disease CMR resource of 110 patients undergoing repeat imaging in a short time-frame was assembled. The resource was used to assess whether automated analysis of LV structure and function is feasible on real-world data, and if it can improve upon human precision. This showed that clinicians can be confident in detecting a 9% change in EF or a 20g change in LV mass. This will be difficult to improve by clinicians because the greatest source of human error was attributable to the observer rather than modifiable factors. Having understood these errors, a convolutional neural network was trained on separate multi-centre data for automated analysis and was successfully generalizable to the real-world CMR data. Precision was similar to human analysis, and performance was 186 times faster. This real-world benchmarking resource has been made freely available (thevolumesresource.com). Precise automated segmentations were then used as a platform to delve further into the LV phenotype. Global LVEFs measured from CMR imaging in 116 patients with severe aortic stenosis were broken down into ~10 million regional measurements of structure and function, represented by computational three-dimensional LV models for each individual. A cardiac atlas approach was used to compile, label, segment and represent these data. Models were compared with healthy matched controls, and co-registered with follow-up one year after aortic valve replacement (AVR). This showed that there is a tendency to asymmetric septal hypertrophy in all patients with severe aortic stenosis (AS), rather than a characteristic specific to predisposed patients. This response to AS was more unfavourable in males than females (associated with higher NT-proBNP, and lower blood pressure), but was more modifiable with AVR. This was not detected using conventional analysis. Because cardiac function is coupled with the vasculature, a novel integrated assessment of the cardiovascular system was developed. Wave intensity theory was used to combine central blood pressure and CMR aortic blood flow-velocity waveforms to represent the interaction of the heart with the vessels in terms of traveling energy waves. This was performed and then validated in 206 individuals (the largest cohort to date), demonstrating inefficient ventriculo-arterial coupling in female sex and healthy ageing. CMR imaging was performed in 236 individuals before training for a first-time marathon and 138 individuals were followed-up after marathon completion. After training, systolic/diastolic blood pressure reduced by 4/3mmHg, descending aortic stiffness decreased by 16%, and ventriculo-arterial coupling improved by 14%. LV mass increased slightly, with a tendency to more symmetrical hypertrophy. The reduction in aortic stiffness was equivalent to a 4-year reduction in estimated biological aortic age, and the benefit was greater in older, male, and slower individuals. In conclusion, this thesis demonstrates that automating analysis of clinical cardiovascular phenotypes is precise with significant time-saving. Complex data that is usually discarded can be used efficiently to identify new biology. Deeper phenotypes developed in this work inform risk reduction behaviour in healthy individuals, and demonstrably deliver a more sensitive marker of LV remodelling, potentially enhancing risk prediction in severe aortic stenosis

    Enhanced Ultrasound Visualization for Procedure Guidance

    Get PDF
    Intra-cardiac procedures often involve fast-moving anatomic structures with large spatial extent and high geometrical complexity. Real-time visualization of the moving structures and instrument-tissue contact is crucial to the success of these procedures. Real-time 3D ultrasound is a promising modality for procedure guidance as it offers improved spatial orientation information relative to 2D ultrasound. Imaging rates at 30 fps enable good visualization of instrument-tissue interactions, far faster than the volumetric imaging alternatives (MR/CT). Unlike fluoroscopy, 3D ultrasound also allows better contrast of soft tissues, and avoids the use of ionizing radiation.Engineering and Applied Science

    Évaluation de la biomécanique cardiovasculaire par élastographie ultrasonore non-invasive

    Get PDF
    L’élastographie est une technique d’imagerie qui vise à cartographier in vivo les propriétés mécaniques des tissus biologiques dans le but de fournir des informations diagnostiques additionnelles. Depuis son introduction en imagerie ultrasonore dans les années 1990, l’élastographie a trouvé de nombreuses applications. Cette modalité a notamment été utilisée pour l’étude du sein, du foie, de la prostate et des artères par imagerie ultrasonore, par résonance magnétique ou en tomographie par cohérence optique. Dans le contexte des maladies cardiovasculaires, cette modalité a un fort potentiel diagnostique puisque l’athérosclérose modifie la structure des tissus biologiques et leurs propriétés mécaniques bien avant l’apparition de tout symptôme. Quelle que soit la modalité d’imagerie utilisée, l’élastographie repose sur : l’excitation mécanique du tissu (statique ou dynamique), la mesure de déplacements et de déformations induites, et l’inversion qui permet de recouvrir les propriétés mécaniques des tissus sous-jacents. Cette thèse présente un ensemble de travaux d’élastographie dédiés à l’évaluation des tissus de l’appareil cardiovasculaire. Elle est scindée en deux parties. La première partie intitulée « Élastographie vasculaire » s’intéresse aux pathologies affectant les artères périphériques. La seconde, intitulée « Élastographie cardiaque », s’adresse aux pathologies du muscle cardiaque. Dans le contexte vasculaire, l’athérosclérose modifie la physiologie de la paroi artérielle et, de ce fait, ses propriétés biomécaniques. La première partie de cette thèse a pour objectif principal le développement d’un outil de segmentation et de caractérisation mécanique des composantes tissulaires (coeur lipidique, tissus fibreux et inclusions calciques) de la paroi artérielle, en imagerie ultrasonore non invasive, afin de prédire la vulnérabilité des plaques. Dans une première étude (Chapitre 5), nous présentons un nouvel estimateur de déformations, associé à de l’imagerie ultrarapide par ondes planes. Cette nouvelle méthode d’imagerie permet d’augmenter les performances de l’élastographie non invasive. Dans la continuité de cette étude, on propose une nouvelle méthode d’inversion mécanique dédiée à l’identification et à la quantification des propriétés mécaniques des tissus de la paroi (Chapitre 6). Ces deux méthodes sont validées in silico et in vitro sur des fantômes d’artères en polymère. Dans le contexte cardiaque, les ischémies et les infarctus causés par l’athérosclérose altèrent la contractilité du myocarde et, de ce fait, sa capacité à pomper le sang dans le corps (fonction myocardique). En échocardiographie conventionnelle, on évalue généralement la fonction myocardique en analysant la dynamique des mouvements ventriculaires (vitesses et déformations du myocarde). L’abscence de contraintes physiologiques agissant sur le myocarde (contrairement à la pression sanguine qui contraint la paroi vasculaire) ne permet pas de résoudre le problème inverse et de retrouver les propriétés mécaniques du tissu. Le terme d’élastographie fait donc ici référence à l’évaluation de la dynamique des mouvements et des déformations et non à l’évaluation des propriétés mécanique du tissu. La seconde partie de cette thèse a pour principal objectif le développement de nouveaux outils d’imagerie ultrarapide permettant une meilleure évaluation de la dynamique du myocarde. Dans une première étude (Chapitre 7), nous proposons une nouvelle approche d’échocardiographie ultrarapide et de haute résolution, par ondes divergentes, couplée à de l'imagerie Doppler tissulaire. Cette combinaison, validée in vitro et in vivo, permet d’optimiser le contraste des images mode B ainsi que l’estimation des vitesses Doppler tissulaires. Dans la continuité de cette première étude, nous proposons une nouvelle méthode d’imagerie des vecteurs de vitesses tissulaires (Chapitre 8). Cette approche, validée in vitro et in vivo, associe les informations de vitesses Doppler tissulaires et le mode B ultrarapide de l’étude précédente pour estimer l’ensemble du champ des vitesses 2D à l’intérieur du myocarde.Elastography is an imaging technique that aims to map the in vivo mechanical properties of biological tissues in order to provide additional diagnostic information. Since its introduction in ultrasound imaging in the 1990s, elastography has found many applications. This method has been used for the study of the breast, liver, prostate and arteries by ultrasound imaging, magnetic resonance imaging (MRI) or optical coherence tomography (OCT). In the context of cardiovascular diseases (CVD), this modality has a high diagnostic potential as atherosclerosis, a common pathology causing cardiovascular diseases, changes the structure of biological tissues and their mechanical properties well before any symptoms appear. Whatever the imaging modality, elastography is based on: the mechanical excitation of the tissue (static or dynamic), the measurement of induced displacements and strains, and the inverse problem allowing the quantification of the mechanical properties of underlying tissues. This thesis presents a series of works in elastography for the evaluation of cardiovascular tissues. It is divided into two parts. The first part, entitled « Vascular elastography » focuses on diseases affecting peripheral arteries. The second, entitled « Cardiac elastography » targets heart muscle pathologies. In the vascular context, atherosclerosis changes the physiology of the arterial wall and thereby its biomechanical properties. The main objective of the first part of this thesis is to develop a tool that enables the segmentation and the mechanical characterization of tissues (necrotic core, fibrous tissues and calcium inclusions) in the vascular wall of the peripheral arteries, to predict the vulnerability of plaques. In a first study (Chapter 5), we propose a new strain estimator, associated with ultrafast plane wave imaging. This new imaging technique can increase the performance of the noninvasive elastography. Building on this first study, we propose a new inverse problem method dedicated to the identification and quantification of the mechanical properties of the vascular wall tissues (Chapter 6). These two methods are validated in silico and in vitro on polymer phantom mimicking arteries. In the cardiac context, myocardial infarctions and ischemia caused by atherosclerosis alter myocardial contractility. In conventional echocardiography, the myocardial function is generally evaluated by analyzing the dynamics of ventricular motions (myocardial velocities and deformations). The abscence of physiological stress acting on the myocardium (as opposed to the blood pressure which acts the vascular wall) do not allow the solving the inverse problem and to find the mechanical properties of the fabric. Elastography thus here refers to the assessment of motion dynamics and deformations and not to the evaluation of mechanical properties of the tissue. The main objective of the second part of this thesis is to develop new ultrafast imaging tools for a better evaluation of the myocardial dynamics. In a first study (Chapter 7), we propose a new approach for ultrafast and high-resolution echocardiography using diverging waves and tissue Doppler. This combination, validated in vitro and in vivo, optimize the contrast in B-mode images and the estimation of myocardial velocities with tissue Doppler. Building on this study, we propose a new velocity vector imaging method (Chapter 8). This approach combines tissue Doppler and ultrafast B-mode of the previous study to estimate 2D velocity fields within the myocardium. This original method was validated in vitro and in vivo on six healthy volunteers
    • …
    corecore