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Abstract

Mitral valve disease is a common pathologic problem occurring increasingly

in an aging population, and many patients suffering from mitral valve disease re-

quire surgical intervention. Planning an interventional approach from diagnostic

imaging alone remains a significant clinical challenge. Transesophageal echocar-

diography (TEE) is the primary imagingmodality used diagnostically, it has limita-

tions in image quality and field-of-view. Recently, developments have been made

towards modelling patient-specific deformable mitral valves from TEE imaging,

however, a major barrier to producing accurate valve models is the need to derive

the leaflet geometry through segmentation of diagnostic TEE imaging. This work

explores the development of volume compounding and automated image analy-

sis to more accurately and quickly capture the relevant valve geometry needed to

produce patient-specific mitral valve models.

Volume compounding enables multiple ultrasound acquisitions from different

orientations and locations to be aligned and blended to form a single volume with

improved resolution and field-of-view. A series of overlapping transgastric views

are acquired that are then registered together with the standard en-face image and

are combined using a blending function. The resulting compounded ultrasound

volumes allow the visualization of a wider range of anatomical features within the

left heart, enhancing the capabilities of a standard TEE probe.

In this thesis, I first describe a semi-automatic segmentation algorithm based

on active contours designed to produce segmentations from end-diastole suit-

able for deriving 3D printable molds. Subsequently I describe the development of

DeepMitral, a fully automatic segmentation pipeline which leverages deep learn-

ing to produce very accurate segmentations with a runtime of less than ten sec-

onds. DeepMitral is the first reportedmethod using convolutional neural networks

(CNNs) on 3D TEE for mitral valve segmentations. The results demonstrate very
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accurate leaflet segmentations, and a reduction in the time and complexity to pro-

duce a patient-specific mitral valve replica. Finally, a real-time annulus tracking

system using CNNs to predict the annulus coordinates in the spatial frequency

domain was developed. This method facilitates the use of mitral annulus track-

ing in real-time guidance systems, and further simplifies mitral valve modelling

through the automatic detection of the annulus, which is a key structure for valve

quantification, and reproducing accurate leaflet dynamics.

Keywords: Mitral valve, ultrasound, transesophageal echocardiography, seg-

mentation, volume compounding, deep learning, patient-specific modelling
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Summary for Lay Audience

Three-dimensional ultrasound is widely used for obtaining images of the heart

for both preoperative-diagnostic and intraoperative-guidance purposes. For sur-

gical procedures targeting the mitral valve, which controls the flow of blood from

the left atrium to the left ventricle, 3D ultrasound images are acquired from a probe

inserted into the esophagus which provides clear 3D images of themitral valve and

surrounding tissues. Our objective is to develop and validate systems that leverage

advanced image processing approaches to improve information from diagnostic

ultrasound and use this information for training and planning interventions. Ul-

trasound imaging of the heart can show some features in a high level of detail, like

the mitral valve, but is very limited in use for important structures that lay in the

left-ventricle. I propose a workflow for acquiring and compounding, or stitching,

multiple separate 3D images together to reconstruct a single image showing the

entire left side of the heart in a process similar to a panoramic picture, enabling

clinicians to better plan for procedures. Additionally, automatic image segmenta-

tion, or labelling, will be used in a workflow for creating patient-specific silicone

replicas of the mitral valve, which surgeons can use to practice procedures and

compare various approaches to aid in the planning process. This will have appli-

cations in both surgical planning, as well as training, by providing a platform for

clinical users to practice and evaluate the successfulness of a procedure.
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Chapter 1

Introduction

1.1 Cardiology

The heart serves as the circulatory system’s pump, facilitating the transportation

of oxygen, nutrients, and metabolic waste throughout the entire body. Located in

the thorax alongside the lung, this organ is approximately the size of a clenched

fist. It is divided into two halves, the left and right side, each consisting of an

atrium and a ventricle, as well as two valves apiece.

During the cardiac cycle, the myocardial muscle exerts the primary force re-

quired to propel blood out of the ventricles and into the great vessels, namely the

aorta and pulmonary artery. In contrast, the atria play a relatively passive role, ex-

erting minimal force and primarily receiving blood from the veins before it enters

the ventricles.

Embedded within the fibrous cardiac skeleton, the valves ensure one-way

blood flow during normal, non-diseased functioning. The heart is divided by four

distinct valves. The mitral valve (MV) and tricuspid valve (TV) separate the atria

from the ventricles, and are referred to as atrioventricular valves. Additionally,

the aortic valve (AV) and pulmonary valve (PV) lie between the ventricles and the

1
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great vessels. Due to their leaflet shape, they are also referred to as semilunar

valves.

Figure 1.1: Illustration of the cross-sectional view of the heart with common
anatomical features and blood flow directionality. Credit: Eric Pierce, 2006, Wiki-
media Commons (CC BY SA 2.0).

1.1.1 Mitral Valve Anatomy

Leaflets

TheMV separates the left atrium (LA) from the left ventricle (LV), and opens at di-

astole to allow the LV to fill, and closes at systole to prevent back-flow into the LA.

The MV consists of two distinct leaflets that are attached to the atrioventricular

https://commons.wikimedia.org/w/index.php?curid=830253
https://commons.wikimedia.org/w/index.php?curid=830253
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junction, supported by tendinous chords and connected to the papillary muscles

(PMs). Clinicians commonly refer to these leaflets as the anterior and posterior

leaflets due to their noticeable structural differences [5]. The two leaflets are com-

posed of multiple thin layers of fibrous tissue, with a total thickness of approx-

imately 1mm. They are anchored to the endocardial wall through the annulus,

while the opposite end is known as the free edge [6].

The anterior leaflet exhibits a semi-circular shape and occupies about two-fifths

of the annulus, while the posterior leaflet has a quadrangular shape and covers the

remaining three-fifths of the annulus. The anterior leaflet is approximately twice

as long, measured from the annulus to its free edge, compared to the posterior

leaflet. At the junction where both leaflets meet, there are anterior and posterior

commissures. These commissures are positioned a few millimeters away from the

annulus and are located approximately above the corresponding papillary mus-

cles. The posterior leaflet features two additional indentations along the free edge,

which become visible during diastole when the MV opens. These indentations

divide the leaflet into three scallops, known as P1, P2, and P3. Similarly, the corre-

sponding segments on the anterior leaflet are labeled as A1, A2, and A3, as shown

in Figure 1.2.

Above the free edge lies the coaptation zone, where both leaflets come into

contact with each other during systole when the valve is closed. This area is typ-

ically rougher and irregularly thicker due to the insertion points of the chordae

tendineae, in contrast to the rest of the leaflet.

The size of the coaptation area is generally associated with the effectiveness

of mitral valve closure, and several studies have examined its correlation with

surgical success rates [7, 8]. However, due to its relatively small size, polymorphic

appearance, susceptibility to image artifacts, and potential confusion with chords,

accurately quantifying the coaptation area from imaging data can be challenging.
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Figure 1.2: Illustration of the en-face view of the mitral valve with labelled
leaflets. Credit: CardioNetworks, 2010, echopedia.org (CC BY SA 3.0).

Annulus

The mitral annulus is a D-shaped structure with a three dimensional (3D) con-

tour that connects the leaflets to the endocardium. It is not planar and exhibits

a prominent elevation between the trigones towards the atrioventricular region,

resembling a saddle shape. The annulus incorporates several structures along its

hinge point. The aortic valve is connected through fibrous continuity with the aor-

tic mitral leaflet (anterior) and the right and left fibrous trigones [9]. This specific

area of the annulus is primarily composed of fibrous tissue, making it less suscep-

tible to dilatation. However, beyond this region, the remaining two-thirds of the

annulus consist mainly of muscular tissue. In cases of significant mitral regurgi-
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tation, it is common to observe dilation in this muscular portion of the annulus,

as well as an increased likelihood of calcification [5].

Chordae Tendinae and Papillary Muscles

In a normal valve configuration, the leaflets are supported by fan-shaped chords

that originate from the papillary muscles and insert into the leaflets. Depending

on their attachment points, there are three types of chordae tendinae. The pri-

mary chords connect to the free edge of the rough zone present in both leaflets.

Secondary chords attach to the ventricular surface within the rough zone, which

corresponds to the body of the leaflet. Tertiary chords are exclusive to the mural

(posterior) leaflet, which includes a basal zone, and directly attach to the ventric-

ular wall [10].

The posteromedial PM contributes chords to the medial half of both leaflets,

including the posteromedial commissure, P3, A3, and half of P2 and A2. Similarly,

the anterolateral PM provides chords that attach to the lateral half of the mitral

valve leaflets, specifically the anterolateral commissure, A1, P1, and half of P2 and

A2. Within the secondary chords of the aortic (anterior) leaflet, two particular

chords stand out as the largest and thickest. Referred to as strut cords, they origi-

nate from the tip of each papillary muscle and are considered to be the strongest.

The PM bundles are typically categorized as anterolateral and posteromedial,

and they are situated along the mid to apical segments of the LV. The anterolat-

eral PM is commonly observed to attach at the border between the anterolateral

(lateral) and inferolateral (posterior) walls, while the posteromedial PM is located

over the inferior wall of the LV. In most adults, the PM can consist of up to three

heads, however, this distribution can vary significantly [11].
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1.1.2 Mitral Valve Pathology

Heart valve disease generally presents as either stenosis, where the valve is re-

stricted, or regurgitation, where the valve does not properly close and thus blood

leaks back into the LA, or a combination of both [12]. Mitral stenosis arises pri-

marily from post-inflammatory or rheumatic diseases, as well as congenital abnor-

malities. Valve area decreases from a typical measurement of around 4.0 cm2 to

1.0 cm2 or less, leading to elevated LA pressure and subsequent secondary pul-

monary hypertension and right heart failure [13]. Conversely, a multitude of

structural irregularities affecting the components of the mitral valve can lead to

mitral regurgitation. Enlargement of the LA, annulus, or LV; alteration of leaflets

and chordae due to myxoid transformation; as well as various modifications in

the leaflets or papillary muscles can induce leakage in the mitral valve [14]. Mitral

regurgitation can be classified as either primary regurgitation (an abnormality of

the valve itself), or secondary regurgitation (an abnormality of the LV).

1.1.3 Valve Interventions

Surgical intervention is the most common therapeutic approach for patients with

MV disease. Treatment options include tissue-preserving repair, or complete valve

replacement, with the former being favored due to its association with more favor-

able long-term outcomes [15, 16]. Both repair and replacement are performed as

open surgery requiring bypass, as well as minimally invasive approaches includ-

ing port access and trans-catheter interventions [17]. Minimally invasive inter-

ventions are preferred where possible due to reduced recovery time, fewer blood

transfusions and fewer septic complications [18]. However, minimally invasive

procedures introduce a greater demand for training and imaging due to reduced

access and surgeon vision [19].

Mitral valve replacement involves the surgical implantation of mechanical
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prostheses, which necessitates the administration of anti-coagulation medica-

tion to counteract antibody attacks and the formation of blood clots [20]. Valve

replacement requires careful consideration of subsequent restriction of the left

ventricular outflow tract (LVOT), as well as potential migration or malposition of

the implanted valve.

Mitral valve repair interventions aim to leave the existing valve in place and

address the specific pathology causing regurgitation or stenosis. As such, valve

repair includes a variety of techniques including annuloplasty rings, valve resec-

tion, leaflet clips and artificial chordae devices [21]. Annuloplasty rings are su-

tured into the MV annulus, with the aim of reducing the size of the valve opening

to improve leaflet closure. The majority of patients undergoing valve repair will

receive an annuloplasty ring in addition to other repair techniques [22].

Figure 1.3: Examples of the annuloplasty ring on the mitral valve using a running
suture technique (a), and an interrupted technique (b). Reproduced from Marin
Cuartas et al. [23] (CC BY-NC-ND 4.0).

Triangular resection of the leaflet is commonly performed in cases of leaflet

prolapse, and more recently has seen use in cases of degenerative disease [24]. In

leaflet resection, a section of the leaflet is cut away, and the remaining leaflet is

sutured together, addressing regurgitation caused by excess leaflet tissue. Leaflet

resection is most commonly applied to the anterior leaflet, however can also be

used on the posterior leaflet. Edge-to-edge, or Alfieri [25], repair is performed by
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tethering the anterior and posterior leaflet edges to reduce the opening of the valve

and limit regurgitation. Traditionally, using the Alfieri method, sutures were used

to join the leaflets together, however, studies have indicated prevalence of mitral

regurgitation after repair, suggesting additional techniques are needed [26]. More

recently, devices such as theMitraClip (Abbott Laboratories, Abbott Park, IL, USA)

have been introduced to simplify procedures. The MitraClip simulates edge-to-

edge surgical technique by clipping the leaflets together instead of suturing [27].

Figure 1.4: Example of posterior leaflet triangular resection. A: triangular resec-
tion of the posterior leaflet; B: posterior leaflet repair using running technique; C:
repair of the posterior leaflet using ventricularization technique; D: running clo-
sure of the posterior defect; E: final stitch next to the annulus. Reproduced from
Marin Cuartas et al. [23] (CC BY-NC-ND 4.0).

Artificial chordae can be implanted to address prolapsewhile preserving tissue,



ChapteR 1. IntRoduction 9

in contrast to resection. This is often used when prolapse is caused by a ruptured

chord. Expanded polytetrafluoroethylene sutures have been in use for artificial

chordae since 1985, with the sutures being passed through the papillary muscle

and leaflet to create varying chord structures [28]. More recently, minimally in-

vasive chord implantation has been enabled by devices such as the NeoChord Ar-

tificial Chordae Delivery System (NeoChord, Inc., St. Louis Park, MN, USA), in

which the device attaches to the leaflet in a beating heart, and allows the suture to

be pulled down and anchored to the papillary muscle [29]. This allows for artificial

chordae implantation without the need for pulmonary bypass, however places a

much greater demand on interventional imaging for guidance.

Mitral stenosis can be treated by balloon valvuloplasty, and this is the pre-

ferred method of treatment due to preservation of the subvalvular apparatus and

left ventricular geometry [30, 31]. Balloon valvuloplasty is performed by guiding

a catheter to the valve, inflating a balloon to widen the valve opening, then deflat-

ing the balloon and removing the catheter. In cases where balloon valvuloplasty

is not possible due to calcification, significant regurgitation, and severe chronic

symptoms, patients will instead undergo valve replacement [30].

It is often unclear whether MV surgery, transcatheter repair, or ongoing med-

ical therapy is the best option for specific patients from diagnostic imaging. Thus,

choosing the treatment approach, or combination of approaches for an individual

patient remains one of the largest clinical challenges in MV therapy [32].

1.2 Imaging the Mitral Valve

Accurate and clear imaging of the mitral valve is important for intervention plan-

ning, as well as intra-operative guidance. The mitral valve can be imaged using

cardiac computed tomography (CT), cardiac magnetic resonance imaging (CMR),
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and ultrasound, with ultrasound being the primary imaging modality used both

preoperatively and intraoperatively [33].

1.2.1 Echocardiography

Themitral valve can be imaged using both transthoracic echocardiography (TTE),

and transesophageal echocardiography (TEE). The primary form of ultrasound

used is 3D TEE, which enables real-time imaging of the valve using B-mode imag-

ing. Additionally, Doppler echocardiography is used for diagnostic purposes by

measuring blood flow to identify stenotic or regurgitant valves. Ultrasound probes

for 3D TEE imaging consist of a two dimensional (2D) phased-array transducer at

the tip of a tube similar to that of an endoscope, with a handle to adjust the angle of

the probe tip. The phased-array transducer enables real-time 3D ultrasound to be

acquired. The TEE probe is extended down the esophagus with the patient under

general anesthesia, with typical images being acquired from the mid-esophageal

position, however, the probe can be extended further to acquire views from a trans-

gastric position as well[34].

Mitral anatomy derived from 3DTEE correlates well with findings during open

heart surgery [33]. Key views acquired using TTE imaging include the 2D short-

axis and 2D long-axis views. Combined, these provide imaging of the LV and

mitral leaflets, and enable measurement of LA and LV dimensions for deriving

clinical measures such as stroke volume [36]. The typical view acquired with 3D

TEE is the surgical, or en-face view, which captures the mitral valve from behind

the LA with the probe in a mid-esophageal position.

1.2.2 Computed Tomography and Magnetic Resonance Imaging

Developments in cardiac CT and CMR have led to their increased use in valve

imaging. CMR delivers high quality soft tissue contrast and flow measurements,
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Figure 1.5: Terminology used to describe manipulation of the transesophageal
echocardiographic probe during image acquisition. (A) Terminology used for the
manipulation of the transesophageal echocardiographic probe. (B) Four standard
transducer positions within the esophagus and stomach and the associated imag-
ing planes. Reproduced with permission from Hahn et al. [35].

and has emerged as an adjunct to primary echocardiographic analysis [37]. How-

ever, CMR at this time is typically limited to 2D plus time slices, and is therefore

not able to capture the complex 3D geometry of heart valves. The feasibility of

CMR for use in planning MV interventions and predicting their success has not

yet been demonstrated [38].

Advances in cardiac CT have enabled its wider use in pre-operative imaging

of the mitral valve. Cardiac CT techniques use retrospective electrocardiogram

(ECG) gating to acquire 3D plus time volumes with very high spatial resolution.

Cardiac CT is used as a secondary imaging technique with patients being refered

onlywhen initial echocardiography assessment is deemed insufÏcient or inconclu-

sive [33]. The use of CT is most common for valve replacement procedures where

planning requires quantitative assessment to determine implant size, as well as to

avoid impairment of the aortic valve. Recommendations for cardiac CT imaging

suggest a heart rate of 60bpm or lower [39]. Additionally, the heart rate needs to
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Figure 1.6: Example of en-face view of the mitral valve captured with a 3D TEE
probe in the mid-esophageal position. Cross-sectional views include the anterior-
posterior (top-left), commissure-commissure (top-right) and axial (bottom-left).
Also shown is the 3D volume rendered view (bottom-right).

be regular to avoid misalignment artefacts [40]. The use of cardiac CT for valve

repair planning is still under investigation and not formally recommended [36].

While future developments in CT and CMR may see their increased use for

MV interventions, at this time echocardiography remains the standard-of-care di-

agnostic imaging approach used for patients [33].

1.3 Patient Specific Valve Modelling

Models of the mitral valve have long been of interest for investigating valve func-

tion, developing therapeutic devices, surgical training, and procedure planning.

Porcine models have been used as an analogue for the human heart as they exhibit

very similar anatomy and function [41]. Evaluation of artificial valves and research

into the efÏcacy of repair techniques could be done using live animal models, how-

ever, running these studies can prove costly and time-consuming. Excised porcine

valves have been used in conjunction with heart simulator devices to enable ex-

vivo study [42]. As an alternative to porcine models, patient-specific modelling
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has emerged to enable the study of valve function for an individual patient based

on models derived from imaging. Various approaches have been demonstrated

including computational models, static 3D printed models, and dynamic physical

models with heart simulators [43, 44, 45].

1.3.1 Computational Models

Several research groups have explored the possibilities of in-silicomodelling ofMV

mechanics, often utilizing finite elementmodels (FEMs). Computationalmodelling

studies have typically employed idealized geometries derived from mathematical

models, or personalized geometries with limited clinical datasets [46, 43, 47]. The

overarching goal has been to understand the significance of realistic material mod-

els and properties [48, 49, 50, 51], as well as the geometry of the annulus and sub-

valvular apparatus, concerning valve competence [52]. The overall goal of this

area of research is to enable predicting the effects of therapy in advance and to

obtain a better understanding of MV physiology with the goal of optimizing ther-

apies. Several studies have been performed specifically modelling annuloplasty

[53, 54], edge-to-edge repair [53, 55, 56] and MitraClip [57].

While computational modelling demonstrates promise in understanding valve

behaviour and develop improved therapies, their use in surgical training is lim-

ited by the lack of physical interaction with the model. Surgical simulation us-

ing entirely virtual models has been demonstrated using haptic feedback devices,

however the efÏcacy of these simulation systems is yet unclear [58].

1.3.2 Static Physical Models

Static 3D-printed replicas offer haptic and spatial appreciation of complex anatomy

for both surgical training and procedure planning. Static valve replicas have been

produced as direct-printed rigid models, as well as flexible models created using
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3D-printed molds. Static models have been validated to demonstrate accurate

replication of annular and leaflet geometry against native tissue evaluated intra-

operatively [44, 59]. Rigid models of the mitral valve are primarily targeted at un-

derstanding the complex geometry of the valve structure. However, due to their

rigid nature, they are of limited use for understanding the valve under dynamic

conditions. Softmodels made from silicone enable the simulation of surgical repair

techniques. Nia et al. [60] were able to simulate the prospective surgical repair of a

P2 prolapse within a static benchtop simulator using a deformable patient-specific

mitral replica derived from 3D TEE. This work was subsequently followed by a

successful real-life surgical repair matching the simulated procedure. Similarly,

Yang et al. [61] showed correlation between morphological and mitral dimensions

obtained on patient-specific silicone replicas and those obtained intra-operatively.

The authors also found morphological parameters such as coaptation depth and

leaflet/annulus ratio in repaired replicas to be associated with residual post oper-

ative mitral regurgitation therefore suggesting that these replicas can not only be

used for procedural planning but also modelling post-repair outcomes.

Static mitral valve replicas derived from patient TEE imaging have been

demonstrated to accurately reflect the geometry of the valve. Silicone valve

replicas offer a platform for surgical simulation by enabling repair techniques

to be practiced on a valve replica. However, there is no standardized approach

for segmenting the valve geometry, 3D printing the valve replica or mold, and

manufacturing valves, limiting the potential for translation of modelling work.

Furthermore, static models are limited to interaction with a stationary valve, and

valve function under dynamic conditions cannot be evaluated.
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1.3.3 Dynamic Physical Models

Evidence indicates the volume of MV repair cases that a surgeon performs is a

determinant not only of successful mitral repair rates, but also freedom from re-

operation and patient survival [62, 63]. Current training forMV repair is limited to

operating room observation, however, recent studies challenge this conventional

approach and suggest introducing simulation as a way of ensuring resident’s expo-

sure to rare cases and high-risk procedures without compromising patient safety

[64, 65].

Originally developed as an alternative to the use of live animal (porcine) mod-

els of the LV and mitral/aortic valves for testing new interventional procedures,

heart simulator technology has been adopted widely by both industry for evalu-

ation of technologies for imaging heart valves [66], and academia for the assess-

ment of modelled heart valves [67]. Heart simulators enable the evaluation of

dynamic valve replicas in hemodynamic environments. Dynamic patient-specific

valve replicas created frompatient TEE images have proven useful in surgical plan-

ning for specific cases [68]. Dynamic valve replicas extend the capability of static

silicone replicas by enabling the performed repair to be tested in a heart-simulator

and evaluated for residual regurgitation. As a tool for procedure planning, this

would enable various repair approaches to be tested pre-operatively to select the

surgical approach with the highest chance of success. Furthermore, for surgical

training the impact of various simulated repairs can be directly seen in the heart-

simulator.

Producing patient specific valve models requires extracting the valve geom-

etry from image data. This is an application for automated valve segmentation

from TEE volumes, as manual segmentation is a highly time consuming process.

Existing segmentation algorithms have not been tailored for valve modelling, and

have several drawbacks due to a different focus. As such, there is a need for im-
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Figure 1.7: The Mitral Valve Simulator pulse duplicator. A: side view showing
(from left) atrial reservoir/low pressure chamber with aortic outflow tower, left
ventricle/high-pressure chamber with mounted valve assembly, and motor assem-
bly; B: end viewwith TEE access port (top centre), and valve in place; C: closer end
view with the TEE probe in place and chordae and papillary posts visible through
the valve. Reproduced with permission from Ginty et al. [68].

proved segmentation specifically for patient-specific modelling, which is the focus

of chapters three and four in this thesis.

1.4 Echocardiography Image Processing

Various image processing techniques can be applied to echocardiography volumes

to enhance the clinical utility of standard imaging, as well as to automate mea-

surement and quantification steps. Volume compounding approaches have been

applied to ultrasound (US) imaging to improve image resolution and field-of-view,

and show promise for use in cardiac imaging. Automatic segmentation of various

anatomical regions of the MV apparatus can aid deriving quantitative measure-

ments, and are a critical step in valve modelling applications.

1.4.1 Volume Compounding

Ultrasound compounding, or mosaicing, is the process of combining multiple

seperate acquisitions into a single volume. This strategy has been proposed by

several groups to address limitations of 3D ultrasound and improve imaging capa-
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bility. By registering and blending together adjacent acquisitions from different

poses, we can expand the field of view and address the issue of signal dropout,

producing higher quality images with greater information for the clinician. Many

US probes use stitching techniques to produce wider field-of-view volumes from

a stationary position using an approach called elevational spatial compounding

[69]. Additionally, several image compounding techniques have been proposed

to register a set of ultrasound volumes acquired from different poses, all of which

demonstrate improved image quality and provide an avenue for combining com-

mon cardiac ultrasound views into a single volume with reduced noise, reduced

speckle, and fewer signal dropout artefacts[69]. Researchers have demonstrated

3D ultrasound compounding techniques with applications in cardiac, fetal and

breast imaging [70, 71, 72].

Spatial compounding of cardiac US volumes has been demonstrated using TTE

imaging, bothwith andwithout the use of external tracking. External tracking sys-

tems reduce the demand for image registration, as the pose of each acquisition is

known. Image registration is only used for fine alignment in this case, however the

requirement for incorporating a tracking system can be a limitation for clinical use.

Tracker-less compounding relies entirely on registration to align the separate ac-

quisitions, and can be less robust as a higher degree of overlap is required between

images to successfully align them. The resulting volumes using spatial compound-

ing demonstrate overall improved imaging. Although there is greater freedom of

movement of the probe with TTE imaging, due to the presence of the ribcage and

lungs the number of positions from which the heart can be imaged is limited, and

structures at the back of the heart are challenging to view even with spatial com-

pounding. In contrast, the use of spatial compounding of TEE volumes has been

limited [73]. The range of motion of the probe is highly constrained in TEE, and

is mainly limited to mid-esophageal and trans-gastric views of the heart. These
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two probe positions are nearly orthogonal, and as such are a promising applica-

tion of spatial compounding since a major limitation of TEE imaging is capturing

structures parallel to the US beam.

1.4.2 Valve Segmentation

Valve segmentation is an important step for quantification of valve parameters,

and patient-specific modelling applications. The rapid motion and considerable

anatomical complexity of the MV are a challenge for precise image-based model-

ing. Quantification of the mitral valve is important for surgical planning, with key

clinical measurements serving as indicators for repair complexity [74]. Common

clinical measurements of interest for the mitral valve include annular diameter in

the commisure-commisure and anterior-posterior axes, number of scallops on the

leaflet, leaflet area, leaflet length and chordae length [75, 76, 77].

Beyond valve quantification for surgical measurements, accurate segmenta-

tion of the valve apparatus is a critical step for mitral valve modelling applica-

tions. Computational, static, and dynamic valve modelling all require accurate

and consistent segmentation from patient image data. Traditionally, valve seg-

mentation was done manually, however, this is a very laborious process and is

subject to inter-user variability. Various semi-automatic and fully-automatic ap-

proaches have thus been developed with the goal for streamlining segmentation

of the mitral valve.

Manual Segmentation

Manual segmentation of the mitral valve from TEE is a highly labor intensive task,

often taking upwards of one hour to complete a single segmentation. Tools for

performing manual segmentation often have several built-in functions to speed

up the process, but general segmentation must be performed in a slice-by-slice
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fashion. This is both time consuming, and can lead to in-continuities between ad-

jacent slices and consequently a poor quality segmentation. Manual segmentation

of themitral valve has been shown to have high inter and intra-user variability due

to the need for interpretation of unclear imaging, and difÏculties capturing the 3D

geometry. A study by Jassar et al. [78] reported inter-user variability using a sur-

face distance metric ranging from 0.60 ± 0.17mm to 2.38 ± 0.76mm on different

cases. Additionally, they report intra-operator variability on repeated acquisitions

ranging from 0.46± 0.21mm to 1.45± 0.62mm. Due to the time requirements and

variability in manual segmentation, there is a demonstrated need for automated

approaches which can produce fast, robust and consistent results.

Semi-automatic Segmentation

Various semi-automatic approaches have been proposed in literature and indus-

try to address the limitations of manual MV segmentation and assessment. Semi-

automated approaches require some form of user input, often as a manual ini-

tialization that is further refined in an automated fashion. Semi-automated ap-

proaches can also be interactive, keeping the user in the loop as the segmentation

is refined.

Burlina et al. [79] proposed an interactive approach which first delineates the

entire left heart endocardial wall including the MV from 3D TEE images using

active contours. Active contours are based on level-sets, and iteratively refine a

segmentation contour based on an objective function often based on image gra-

dients to detect edges. Following initial active-contour segmentation, thin tissue

detection is used to identify the mitral leaflets. Thin tissue detection algorithms

use an image filter that responds to opposing image gradients, leading to a stronger

response in areas with thin structures such as the mitral leaflets. The motivation

of the work of Burlina et al. was for personalized computational modelling, how-



ChapteR 1. IntRoduction 20

ever, segmentation accuracy and runtime as well as size of the dataset have not

been reported.

Schneider et al. [80] proposed in a series of publications a semi-automatic ap-

proach based on deformable modelling of the leaflets. This work aimed to produce

segmentations over 3D plus time data, including the whole cardiac cycle. The ap-

proach consisted of several steps in a pipeline, beginning with annulus detection

and tracking, segmentation of the annulus at diastole, and leaflet motion estima-

tion with a deformable model [80, 81]. For automated annulus segmentation, the

annulus plane was estimated using a least-squares fit through a thin tissue detec-

tor response. Then graph cuts are used to estimate the annulus and refined using

active contour. The annulus is tracked throughout the cardiac cycle using optical

flow tracking. Finally the leaflets are segmented in diastolic frames from several

2D planes rotated around the annulus normal and center, again using a combina-

tion of thin tissue detectors and graph cuts. Schneider et al. reported surface error

of 0.8mm on a dataset of fifteen patients. However, this method only represents

the mitral leaflets as a single medial surface, rather than structures with thickness.

Commercial solutions implementing semi-automaic approaches are available,

such as TomTec’s 4D MV-Assesment tool (Tomtec Inc, Hamden, CT, USA), and

Phlips’ QLAB Mitral Valve Navigator tool with anatomic intelligence (Philips

Healthcare, Andover, MA, USA). TomTec’s solution automatically tracks manual

delineations of the valve using optical flow through systolic frames only [75].

Philips Mitral Valve Navigator tool automatically selects the end-systolic frame

based on the ECG waveform. Then the image is aligned by the user to a template

guided by a schematic illustration. Finally, several key points are automatically

placed by the software defining the annulus curve and leaflet coaptation. These

points are then manually refined by the user. This tool was validated on fifty-

two patient cases against manual segmentation and was demonstrated to have
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good agreement with the manual ground-truth, as well as improving intra- and

inter-user variability while reducing segmentation time [82].

Figure 1.8: Philips Mitral Valve Navigator tool in the QLAB software package.
Shown are the automatically placed key points, and the computed mitral annulus
and leaflets. Derived measurements are shown in the panel on the right.

Semi-automated methods have shown promise in reducing time and improv-

ing reproducible in mitral valve segmentations. However, these methods can still

introduce inter-user variability, and require varying levels of manual intervention

to use. This limits the reduction in time possible with semi-automatic segmenta-

tions.

Fully Automatic Segmentation

Several fully automatic segmentation methods have been proposed with the goal

of eliminating the need for manual initialization or adjustment, further improving

segmentation times.

Ionasec et al. [83] describe a technique which uses a large database of man-

ually labelled images and machine learning algorithms to locate and track valve

landmarks. In this work, sophisticated biomedical models are employed to track

and predict cardiac motion. This includes model-based tracking and delineation of
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both the aortic andmitral valve apparatus. The biomechanical models can be tuned

to patient-specific images via a set of parameters. This is done through a multi-

step process beginning with global alignment and rigid motion estimation using

feature detectors and a RANSAC estimator. Next, non-rigid local estimation is per-

formed to further refine the model parameters using a machine learning estimator

in the frequency domain, utilizing the discrete Fourier transform. Finally, non-

rigid shape estimation is performed accross the full cardiac cycle using a combina-

tion of steerable features, a manifold-based shapemodel and probabilistic boosting

trees [84]. While this method is fully automatic, the use of sparse landmarks po-

tentially limits the patient-specific detail that can be extracted. This method takes

roughly five seconds to compute, with reported accuracy of 1.54 ± 1.17mm on a

dataset of sixty five 3D plus time TEE sequences, with 1516 individual volumes.

Pouch et al. [85] also describe a fully automatic method which utilizes a set

of atlases to generate a deformable template which is then guided to the leaflet

geometry using joint label fusion. Multiple atlases are registered to the test im-

age using deformable registration, and weighted voting schemes based on image

similarity are used to fuse the associated labels from each atlas. A template mesh

model is then registered to the resulting segmentationmask and regularized by ad-

ditional terms to ensure smoothness. The surface error of this method is reported

at 0.7mm, however this is only achieved on healthy valves and performance is re-

duced when segmenting diseased valves. Additionally, this method is highly time

consuming, taking several hours for deformable registration, with an additional

thirty minutes for label fusion.

While existing methods have demonstrated the ability to accurately segment

the mitral valve structure, they remain highly time-intensive. Furthermore, some

of these published methods show decreased performance when applied to highly

diseased valves, demonstrating limitations in patient-specificity. Convolutional
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neural networks (CNNs) have been widely demonstrated to be effective for seg-

mentation tasks. However, there has been limited work in using CNN segmenta-

tion approaches for mitral valve segmentation in 3D TEE imaging. However, 3D

Unet based approaches have been used in other cardiac ultrasound applications

such as automatic annulus detection [86]. Working in 2D, UNet has been used for

mitral leaflet segmentation by taking a series of slices along the valve, and stitch-

ing together the resulting output into a 3D segmentation [87]. A major limitation

of using only 2D slices is the lack of spatial consistency between slices, and an

inability to account for dropout artefact. Thus far, a major limitation in the de-

velopment of fully 3D CNN based approaches is data availability, as deep learning

requires relatively large patient datasets. The lack of publicly available data also

limits the ability to directly compare developed methods against each other, as

there is no common benchmark to use. In this thesis, we report the first 3D CNN

based segmentation method for the mitral valve, as well as the release of a publicly

available dataset of 150 patient cases with 3D plus time sequences (Chapter 4).

1.4.3 Annulus Tracking

Segmentation of the mitral annulus is an important step in many cardiac appli-

cations. Current methods to delineate the mitral annulus often require extensive

user interaction. Several methods have been proposed to automate mitral annu-

lus segmentation, but often use methods which require sampling 2D planes from

the 3D volume, discarding some of the contextual information contained in the

original 3D volume. Identification of the mitral annulus shape during diagnosis

for a number of applications including identifying pathologies, surgical planning

and implant design[88, 89, 90]. The mitral annulus is currently typically identified

using manual or semi-automated methods, such as the Mitral Valve Navigator tool

in Philips QLab software, which introduces additional workload for clinicians. Ad-
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ditionally, for trans-catheter mitral valve procedures, real-time annulus tracking

significantly improves the procedure accuracy as part of an image guided surgery

(IGS) system [91].

Prior methods have been developed that initially identify the mitral annulus

using a manual approach, then apply image registration between subsequent ul-

trasound frames to warp the existing annulus, and in this way track and update

the annulus shape and position in real-time [92]. These methods are effective for

real-time tracking of the annulus, however they have the potential to accumu-

late error, as each position is updated based on the relative change compared to

the previous frame. Additionally, correspondence to the previous frame can be

lost, requiring re-initialization which may not be possible during surgery. Sev-

eral methods which directly segment the annulus from ultrasound volumes have

also been proposed. Early work based on optical flow can accurately identify the

annulus, however it could only be applied to systolic images, and took 30-60 sec-

onds to compute [81]. As a result, it is not possible to apply this technique for IGS

applications, and for use in planning the annulus cannot be viewed at other car-

diac phases. More recently, deep learning based approaches have been proposed,

primarily by taking 2D cross-sectional images through the 3D volume, which are

rotated around the mitral valve [93, 86].

1.5 Thesis Outline

The goal of this thesis is to address the challenge of producing patient-specific

mitral valve models through the development of volume compounding and auto-

mated image analysis to more accurately and quickly capture the relevant valve

geometry. Planning a surgical or transcatheter approach from diagnostic imaging

for mitral valve procedures remains a significant clinical challenge. While TEE
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is used as the primary imaging modality, it can suffer from poor image quality,

signal dropout artefacts and limited field-of-view, contributing to the difÏculty in

planning an interventional approach. The development of simulation approaches

utilizing patient-specific mitral valve models has shown promise for both training

and planning for mitral valve interventions. However, a major barrier to pro-

ducing accurate models of a patient’s valve is the necessity of deriving the leaflet

geometry from diagnostic TEE imaging.

In this thesis, I present a method to fuse multiple views acquired with a stan-

dard TEE probe to create an extended field-of-view volume (Chapter 2) to expand

the range of anatomy that can be visualized for diagnostics and procedure plan-

ning. The remaining chapters are focused on the automated detection of relevant

anatomy for patient-specific valve modelling from standard TEE images. I present

first a semi-automatic segmentation algorithm for the mitral leaflets (Chapter 3),

followed by a fully automatic approach (Chapter 4) made possible using a dataset

created using the semi-automated method. Finally, I present a mitral annulus de-

tection method (Chapter 5) that can track the annulus directly from the images

in real-time. While the methods developed in this thesis utilize a Philips Epiq 7

cardiac ultrasound machine, the methods developed apply to any commercially

available TEE system.

1.5.1 Chapter 2: Extended field-of-view cardiac ultrasound vol-

ume compounding

This chapter describes the methods used to register and blend multiple views ac-

quired with a standard TEE probe without external tracking hardware. Standard

TEE volumes can visualize the mitral valve, however, structures beyond the valve

are difÏcult to see. Alternative imaging approaches such as cardiac CT are often

needed to accurately image the sub-valvular structures, however, not all patients
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are eligible for CT. The work explores the acquisition protocol used to acquire the

separate views, as well as the registration algorithm used to align the volumes, and

the blending strategy used to create the final image. The results indicate that I suc-

cessfully demonstrated the creation of extended field-of-view volumes of the mi-

tral valve and LV, which can clearly visualize otherwise difÏcult-to-see structures

such as the chordae tendineae and papillary muscles using standard ultrasound

hardware.

1.5.2 Chapter 3: Semi-automatic segmentation of themitral valve

Identifying, or segmenting, the mitral leaflets from TEE volumes is an important

step in diagnosis for quantification of the valve, as well as patient-specific valve

modelling. Manual segmentation is a very time-intensive process and can have

wide variability between users. This chapter describes a semi-automatic workflow

that keeps the user in the loop with the goal of reducing the time required to pro-

duce segmentations of the mitral leaflets. This work explores the algorithms used

to dynamically segment the leaflets with continuous user feedback. The results

indicate that this workflow enables accurate segmentation with a reduction in the

time required. This serves to simplify patient-specific valve modelling workflow

and reduce the manual overhead required to derive measurements of the mitral

valve from TEE volumes.

1.5.3 Chapter 4: Fully automatic segmentation of the mitral

valve with DeepMitral

This chapter describes the methods used to produce fully automatic segmentations

of the mitral leaflets, building upon the previous semi-automatic methods. Fully

automatic segmentation is beneficial to minimize the manual effort required, as
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well as produce greater consistency in the segmentations. Streamlining the pro-

cess of segmenting the valve and generating a surface mold is important for the

scalability and accuracy of patient-specific mitral valve modelling. I describe a

deep learning architecture trained on a dataset created using the semi-automatic

method to produce the labelled volumes. The results demonstrate state-of-the-art

performance in segmentation accuracy, taking roughly five seconds to complete

a single segmentation. This provides a platform for producing very fast and accu-

rate segmentations that can be integrated into workflows for patient-specific valve

modelling and valve quantification.

1.5.4 Chapter 5: Real-time mitral annulus detection

Delineation of the mitral annulus is an important step for valve quantification,

patient-specific modelling, and real-time guidance applications. In this chapter, I

describe a fully automatic, real-time mitral annulus segmentation approach based

on a deep learning model. I present a novel approach using a regression model

predicting a Fourier coefÏcient representation of the coordinates composing the

annular ring directly from TEE volumes. This representation allows us to achieve

real-time inference speed, enabling the use of this work in surgical guidance ap-

plications. Overall, the results of this work demonstrate state-of-the-art runtime

speed, with good overall accuracy. The algorithm described can be integrated into

a patient-specific modelling workflow to further reduce manual overhead, and can

also enable more robust annulus tracking in surgical guidance applications.



Chapter 2

Extended field-of-view cardiac

ultrasound volume compounding

In efforts to improve the field-of-view of standard TEE imaging, we present a volume

compounding strategy to combine transgastric and mid-esophageal imaging of the

mitral valve apparatus. This chapter presents the registration and blending methods

and validation study of our volume compounding approach.

This chapter is adapted from the following manuscript:

[1] P. Carnahan, J. Moore, D. Bainbridge, E. C. S. Chen, and T. M. Peters, “Multi-

view 3D transesophageal echocardiography registration and volume compound-

ing for mitral valve procedure planning,” Applied Sciences, vol. 12, p. 4562, Apr.

2022

2.1 Introduction

Three dimensional ultrasound imaging is used extensively as a diagnostic and

guidance tool for cardiac procedures. Three dimensional echocardiography allows

for the acquisition of volumetric data of the heart, which can be analyzed in any

plane. The current standard of care for mitral valve procedures includes diagnos-

28
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tic imaging with a 3D TEE probe[94, 95]. This method of imaging provides a clear

view of the mitral valve, and including colour Doppler allows the cardiologist/-

cardiac surgeon to identify the mitral valve pathology. While echocardiography

is a powerful imaging technique, nevertheless it has some major limitations. The

field of view is limited when using 3D transducers, which can limit the range of

anatomy that can be easily viewed; structures further away from the image probe

may suffer from poor spatial resolution, and thin structures parallel to the ultra-

sound beam, having no surfaces normal to the incoming wave, suffer from signal

dropout artifacts.

Ultrasound compounding, or mosaicing, has been proposed by several groups

to address limitations of 3D ultrasound and improve imaging capability. By reg-

istering and blending together adjacent acquisitions from different poses, we can

expand the field-of-view and address the issue of signal dropout, producing higher

quality images with greater information for the clinician. Several image com-

pounding techniques have been proposed to register a set of ultrasound volumes,

all of which demonstrate improved image quality [69], and provide an avenue

for combining common cardiac ultrasound views into a single volume with re-

duced noise, reduced speckle, and fewer signal dropout artifacts. Researchers

have demonstrated 3D ultrasound compounding techniques with applications in

cardiac, fetal and breast imaging [70, 71, 72]. Common across all compounding

methods are two critical steps: global registration of all volumes and blending the

overlapping regions of the registered volumes to generate the resulting image [69].

Evaluation of registration frameworks has identified three main approaches con-

sisting of sequential alignment, semi-simultaneous, and fully simultaneous regis-

tration [96]. Using a sequential alignment approach, each acquisition is registered

to the next, however, this technique suffers from drift and error accumulation.

The semi-simultaneous approach treats each volume in turn as the moving object
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while the remaining volumes are fixed. This process is repeated for multiple cycles

until convergence is met. Since only the parameters of a single transform need to

be considered in optimization, this approach balances computational complexity

with optimal global alignment as every volume is considered at every step. The

final approach, fully simultaneous group-wise registration, optimizes the transfor-

mation parameters of all volumes simultaneously, applying a loss function as the

sum of pairwise losses. This approach is optimal for registration quality, however

is limited by computational complexity due to the number of parameters that need

to be optimized.

Figure 2.1: Compounded TEE volume of mitral valve with individual acquisitions
outlined.

For mitral valve imaging using the standard mid-esophageal probe position,

the limitations of 3D ultrasound result in the structures beyond the valve, includ-

ing the chordae tendineae, papillary muscles and LVOT, being difÏcult to iden-
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tify. While imaging from a different position (e.g. transgastric view) can capture

these structures, the field-of-view limits the utility of these images as at these po-

sitions the entire mitral valve apparatus cannot be captured in a single volume.

Currently, choosing the treatment plan that provides the greatest benefit to the

patient is one of the biggest clinical challenges for cardiologists and cardiac sur-

geons [32]. Determining optimal neochord length is one of the main issues that

cardiac surgeons must address in MV repair procedures [77], and it is particularly

challenging to define this length due to a general lack of accurate anatomical infor-

mation from standard diagnostic imaging, which includes only themid-esophageal

view of the mitral valve. Chordae tendineae length measurements are required for

mitral valve procedures involving the implantation of artificial chordae [76]. It is

nevertheless challenging to determine their optimal length because direct obser-

vation is limited to physical measurements made inside the flaccid heart during

surgery, along with 2D transgastric long-axis images which require that the image

plane be aligned with the entire chord to achieve accurate results [34]. While 3D

transgastric TEE ultrasound is safe and easily acquired during routine TEE imag-

ing (adding approximately 3-5 minutes to the procedure), it is rarely employed

due to the limited visibility of the leaflets, and field-of-view limitations prevent-

ing the entire length of the chordae from being captured. Without the ability to

see the entire subvalvular apparatus in the same image data as the standard mid-

esophageal view of the leaflets, transgastric image information is of very limited

clinical value.

In our prior work on volume compounding using TEE volumes, we explored a

workflow using only the semi-simultaneous registration strategy, and a distance-

basedweighted average blending [97]. Our prior approachwas able to successfully

produce compounded volumes, however, the registration component of the work-

flow was not robust, could fail depending on the order in which the volumes were
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processed, and the blending approach induced imaging artefacts. In this chapter,

we propose an improved method to register and compound transgastric and mid-

esophageal volumes utilizing a combination of semi and fully simultaneous regis-

trationwith a novel weighting function for blending overlapping regions to reduce

compounding artefacts. This provides an avenue for combining common cardiac

ultrasound views into a single volume with reduced noise and fewer dropout ar-

tifacts. Many image compounding techniques involve the use of a tracked probe

and were targeted at combining multiple transthoracic views [72]. Our method

differs from these previous methods as it does not require any external tracking

of the ultrasound probe, and it has been tailored for use with TEE probes to com-

bine 3D mid-esophageal and transgastric volumes that can be acquired as part of

a standard diagnostic imaging session. In the mid-esophageal volumes, the mi-

tral valve is clearly visible, and in the transgastric views, the chordae are very

clear, as these views are nearly perpendicular to each other. By combining both

the mid-esophageal and transgastric views, we can maintain optimal imaging for

both structures in a single compounded volume. Integrated leaflet and chordae

geometry in a single volume will greatly improve the cardiac surgeons’ ability to

accuratelymeasure the length of individual chordae (a crucial factor in neochordae

repair techniques [77]) and to plan their repair strategy.

2.2 Materials and Methods

2.2.1 Image Registration

Following local REB approval, we adapted standard diagnostic TEE acquisition

protocols to include multiple transgastric views in addition to the standard mid-

esophageal view. Volumes were acquired using ECG gating to align each image

with the appropraite phase of the cardiac cycle. Our imaging protocol requires
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a minimum of one mid-esophageal acquisition and four transgastric acquisitions

with at least 80 % spatial overlap or more between adjacent volumes for successful

registration of the acquisitions (Figure 2.1). The acquisition frame-rates should re-

main constant to avoid temporal misalignment between subsequent image acqui-

sitions. The transgastric acquisitions should begin at the mitral valve and proceed

along the ventricle to the papillary muscles. Compounding is then accomplished

by aligning over-sampled data through automated image registration, re-sampling

the aligned volumes into a consistent output space, and generating the output im-

age through the voxel-wise blending of the overlapping volumes. The compound-

ing workflow is shown in Figure 2.2.

Acquire 3D 
ultrasound volumes

Group registration of all 
volumes

• Rigid registration step at single 
time point

• Deformable registration for each 
time point

Resampling to 
common output 

space

Spatial compounding

• Compute weighting of 
input volumes

• Weighted average of all 
overlapping volumes for 
each voxel

Figure 2.2: Workflow of TEE compounding for the mitral valve.

Performing image registration of multiple volumes can be achieved using

pairwise, fully simultaneous, or semi-simultaneous approaches [98]. We imple-

mented both the semi-simultaneous and fully simultaneous approaches described

by Wachinger et al. [98]. This was performed as an extension of our initial work

on this method, in which only the semi-simultaneous approach was used [97].

We first perform rigid registration at end-systole between all volumes using

fully simultaneous group-wise registration, with the sum of pairwise normal-

ized cross-correlations (NCCs) as the loss function. This gives us a rough global

alignment of the volumes and is not dependent on input order. Then two cy-

cles of semi-simultaneous registration are performed, which we found achieved

better agreement between volumes than fully simultaneous alone. Finally, we

utilize non-rigid registration in the semi-simultaneous framework at each frame

in the acquisitions to account for slight deviations at different points of the car-
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diac cycle due to imperfect synchronization. For both semi-simultaneous steps,

the loss function used was the sum of NCC between the moving volume and

each fixed volume. At each step, optimization was performed using adaptive

stochastic gradient descent in a multi-resolution registration framework with

four resolution levels, each of which smooths the image by a factor of 2 over the

previous. We implemented this approach using the Elastix toolkit1 on the 3D

Slicer platform2. This open-source implementation of our work is available at

https://github.com/pcarnah/CardiacVolumeStitching.

2.2.2 Image Blending

After the volumes are registered, re-sampling and compounding are performed

at each cardiac phase to construct a 3D + time compounded volume with a wide

field of view. Before compounding, the volumes are re-sampled to a common grid

using cubic b-spline interpolation to ensure that there is complete voxel overlap

between volumes, so that the blending step (a weighted average of all overlapping

volumes at each voxel location), can be performed. The output grid is determined

by the extent of all overlapping input images, using isotropic spacing equal to the

minimum spacing in any dimension in any input image.

We evaluated multiple weighting strategies including the voxel-wise maxi-

mum, average, and weighted average using two different weighting schemes. The

voxel weighting methods we compared were the scaled distance from the image

probe, and a combination of distance from the probe and a feature detector based

on the monogenic signal [99].

The monogenic signal is a generalization of the analytic signal to higher di-

mensions. In one dimensional (1D) signal processing the analytic signal is com-

puted through the combinations of a signal with its Hilbert transformed counter-
1http://elastix.isi.uu.nl/
2https://www.slicer.org/

https://github.com/pcarnah/CardiacVolumeStitching
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Figure 2.3: Original image (top), with oriented symmetry measure from mono-
genic signal (bottom).

part [100]. The monogenic signal is thus formed by combining a signal in a higher

dimensional space, in this case 3D, with its counterpart transformed by a gen-

eralization of the Hilbert transform to higher dimensions. This method uses the

Riesz transform, derived by Felsberg et al. [99], which is one such generalization of

the Hilbert transform to Euclidean spaces of dimension greater than one. The 3D

monogenic signal is composed of one even part, and three odd components, one

for each spatial dimension. This is analogous to the real and imaginary compo-

nents of the 1D analytic signal. The monogenic signal allows for the derivation of

local energy and local phase, which correspond to overall local intensity and local

structure, such as lines and edges, respectively. Previous work has shown the 3D

monogenic signal to be useful in analyzing 3D volumetric ultrasound data[101].

The local phase measure derived from the monogenic signal had been previously

demonstrated as part of an application-specific loss function for ultrasound com-

pounding applications [102].

Through the use of multiple bandpass filters, the monogenic signal can be

tuned to structures of different sizes, and derived measures can be averaged across
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the different scales used. We use 4 filters tuned to spatial wavelengths of 6, 12, 24,

and 32mm. As a feature detector, we use the oriented phase symmetry measure,

which returns values from −1 to +1, with positive values being associated with

features of interest and negative values being associated with background noise,

as visualized in Figure 2.3. We implemented the 3D extension of the monogenic

signal in Python. The distance function assigns higher weights to voxels closer to

the image probe, with values ranging from 25 near the probe down to 0 with an

inverse-square law dropoff, which we used to approximate the reduction in res-

olution further away from a phased-array ultrasound probe. For a single voxel

position ? in a source volume 8 , the expression for the distance from the image

probe weighting 38 is

38 (?) = 25

©­«
10 −

10∗∥?−>8 ∥

max
@∈+8

(∥@ − >8 ∥)
ª®¬
2

102
, (2.1)

where >8 is the position of the probe origin in volume 8 . The oriented symmetry

weighting (8 is given as

(8 (?) =



10 ∗ B8 (?) if B8 (?) < 0

25 ∗ B8 (?) if B8 (?) ≥ 0

, (2.2)

where B8 is the value of the oriented symmetry measure from the monogenic signal

at position ? in volume 8 . The combined weighting function,8 of distance and

oriented symmetry is

,8 (?) = max (0.5, (8 (?) + 38 (?)) , (2.3)

giving the sum of the two weights with a minimum value of 0.5. Both the dis-
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tance weight 38 and symmetry weight (8 have a maximum value of 25, contribut-

ing equally to the overall voxel weighting. Finally, the expression for the final

weighted average output intensity � (?) is

� (?) =

∑
+8 |+8 (?)>0

(
+8 (?) ∗F8 (?)

)
∑

+8 |+8 (?)>0

(
F8 (?)

) , (2.4)

where +8 (?) is the intensity value in volume 8 at position ? , and F8 is either the

distanceweighting alone or the combined distance and oriented symmetryweight-

ing.

A visual comparison of the results of applying the different blending ap-

proaches can be seen in Figure 2.4. The voxel-wise maximum approach produces

a volume with very sharp features, but passes through any imaging artefacts and

highlights registration errors. Simple averaging produces a smoother image, but

lacks definition of smaller features, and boundary edges appear blurred. Distance

weighted averaging further improves image quality, taking advantage of the in-

creased US beam line density nearer to the probe and the corresponding increase

in spatial resolution, but small features and edge boundaries are still blurred, and

lack contrast to the background. The incorporation of the monogenic signal based

feature detector into the weighting function helps to reduce this blurring, and

makes the structures of interest more distinct without amplifying imaging and

registration artefacts.

2.2.3 Data Acquisition

Three patients were imaged using our acquisition protocol under REB approval,

using the Philips Epiq TEE system. These image sets were then registered and

combined using each of the four blending approaches. Visual inspection of the
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(a) (b)

(c) (d)

Figure 2.4: Results of blending functions max (a), average (b), distance weighted
(c), and oriented symmetry plus distance weighted (d).

resulting volumes was performed by an echocardiography specialist, to verify ap-

parent anatomical correctness, image quality, and clinical value. We validated

the geometrical accuracy of this volume compounding approach on two excised

porcine mitral valve units, shown in Figure 2.5. These valves were imaged using

a Philips Epiq system with an X8-2T TEE probe, with volumes being captured se-

quentially from a mid-esophageal point, along a 3D printed path simulating the

esophagus to a transgastric position. The valve was also stained with iodine and

imaged with a cone-beam CT scanner (Medtronic O-Arm) to provide ground truth

data. As shown in Figure 2.6, the ultrasound volumes were compounded using

our described registration approach with the monogenic signal based blending

method. Linear measurements were then made of the visible chordae structures

in both volumes.
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Figure 2.5: Excised porcine valve stained in iodine. Pictured on right is the valve
being imaged using a TEE probe from a transgastric position.

(a) (b)

(c) (d)

Figure 2.6: Original volumes simulating transgastric (a,b), and mid-esophageal
(c) views of porcine valve unit. Resulting volume from compounding (d).
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2.3 Results

2.3.1 Porcine Model

The compounded volumes visually replicated the anatomical structures visible in

the ground truth CT scan. As shown in Figure 2.7, the mitral valve leaflets, papil-

larymuscles, and individual chordae are clearly visible in the compounded volume.

The compounded volume and CT are compared in Table 2.1 for each valve. For

both volumes, four chordae that were easily visible in compounded echo and CT

were measured from the papillary muscle tip to the leaflet insertion point, and the

average absolute difference between US and CT length measurements was com-

puted. The measured chordae lengths ranged from 22.1mm to 36.4mm.

Figure 2.7: Side-by-side volume rendered comparisons frommultiple view points
of the CT data (top) and compounded echo (bottom).

Table 2.1: Volume comparison metrics between compounded echo and CT.
Excised Valve Chordae Measurement Absolute Difference (mm)
Valve 1 0.7 ± 0.6

Valve 2 0.6 ± 0.6

2.3.2 Patient Images

We processed image volumes acquired from two patients to create compounded

volumes that were visually inspected by a cardiac anaesthesiologist specializing
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in echocardiography. The general consensus was that both volumes maintain ac-

ceptable clinical quality for themitral valve leaflets, and that the chordae tendineae

were very clearly visible in the volumes for both patients. The compounding pro-

cess enabled the contrast between background noise and tissue to be more evident.

Overall, compounded volumes exhibit an improvement in image quality, and in-

clude a wider field of view with little signal dropout, as shown in Figure 2.8. The

overall conclusion was that these volumes represented an improvement over ex-

isting techniques, both in image quality, and range of structures visible.

Figure 2.8: Visualizations of compounded TEE data from five different TEE vol-
umes. Left, a volume rendered view. Middle, a commissure-commissure slice.
Right, an AP slice.

2.4 Discussion

Spatial compounding has been demonstrated for many applications to improve

field-of-view and image quality. Incorporating image information into the weight-

ing function shows clear improvement over prior blending approaches. The com-

bined distance and oriented symmetry weighting improves image quality and

helps eliminate blending artefacts where the separate image acquisitions did not

entirely agree. Compared to our previous results for this application, the regis-

tration strategy incorporating simultaneous group registration as the initial step
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improved robustness, and eliminated the effect of initialization order, helping to

prevent registration failure where the volumes do not reach alignment.

For the application of mitral valve procedure planning, we show that spatially

compounded 3D echocardiography volumes are able to capture the complex struc-

tures in the LV. Utilizing spatial compounding reduces image noise and provides a

single volume containing the mitral valve, chordae tendineae and papillary mus-

cles, enabling clinicians towork from a single volume, instead of reconcilingmulti-

ple separate volumes together. We demonstrate on porcine models that our spatial

compounding method using a 3D TEE probe can reproduce the structures cap-

tured by a CT scan with high geometrical accuracy. Although the chordae appear

thicker in the compounded volume, the separate individual chordae can still be

identified from leaflet to papillary muscle. We found that the length of the chor-

dae can be accurately measured from the compounded volume, as the thickening

artefact does not affect the measurement of the length of the chordae.

The workflow described here can be integrated into the clinical standard-of-

care, requiring only 4-5 acquisitions with approximately 80% overlap. Standard

practice currently includes diagnostic 3D TEE for patients undergoingmitral valve

procedures, and transgastric images are already acquired as part of this process in

the form of 2D long-axis views in an attempt to capture the chordae in their en-

tirety. This compounding technique enables the transgastric images to be acquired

as a series of 3D volumes instead of the traditional 2D views, while still maintain-

ing visibility of the entire chordae structures. Our workflow makes it possible for

clinicians to map almost the entire chordal structure in 3D from leaflet to anchor-

ing point in the LV, greatly improving the surgeon’s ability to optimize lengths

for introduced neochordae. Another instance where detailed, compounded 3D

echocardiography has potential, is the early diagnosis of endocarditis, where indi-

vidual 3D image volume analysis can often remain ambiguous [103]. The volumes
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produced by applying 3D spatial compounding to TEE imaging capture the entire

valve complex. Currently, many procedures require additional imaging in the form

of cardiac CT/CMR to accurately perform diagnoses or plan for procedures [104].

Spatially compounded multi-view echocardiography has the potential to enhance

the clinical imaging workflow by providing similar levels of information to cardiac

CT at high frame rates, low cost and no radiation exposure to patients. Further

validation of the clinical utility of this method will aim to demonstrate the ef-

fectiveness of compounded echo, in particular related to cases where currently

cardiac CT is necessary.

Future work on this compounding method may include further improvements

to registration speed and accuracy, as well as further exploration of blending ap-

proaches. Currently, the compounding process is performed ofÒine due to compu-

tational requirements, with the process taking roughly one hour for a five volume

data set of two beat acquisitions. However, further optimizations may enable a

real-time compounding approach where the final volume is created as the vol-

umes are acquired, which may also allow for guidance to be provided to the op-

erator to ensure the volumes are collected with sufÏcient overlap. Incorporating

image-based real-time tracking algorithms and graphics processing unit (GPU) ac-

celeration may allow for active guidance of the volume acquisition relative to the

initial position. Currently, this is a major drawback of the approach using ofÒine

processing, as in cases where the acquisitions have insufÏcient clarity or over-

lap, compounding will fail and the imaging session will have already concluded.

Deep-learning based pose estimation and image registration also show potential

for accelerating the volume compounding workflow. Real-time visualization of

compounded ultrasound could be achieved by utilizing an initial alignment pro-

vided by these methods alongside simple averaging, with more computationally

expensive processing steps performed ofÒine to produce the final volume. This ap-
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proach would enable a real-time preview of the results to the clinician to overcome

the difÏculties in adequate image acquisition, without sacrificing the accuracy of

the alignment between volumes or quality of weighted image blending in the final

compounded volume.

With improvements to the compounding process, extensions to the tricuspid

valve could also be possible, extending the range of clinical applications for this

work. Additional validation of the compounding approach for mitral chordae on

a larger cohort of patients would be necessary to evaluate how accurately artifi-

cial chordae lengths can be predicted from these extended volumes. Further work

needs to be performed to evaluate the effects of multi-view compounding on im-

age quality using additional patient image data. Quantitative evaluation of image

quality on a larger image set could be carried out by looking at potential improve-

ments in the contrast-to-noise ratio and image sharpness, as described in prior

volume compounding work [71, 72].

2.5 Conclusions

We have described a workflow for capturing a series of volumes using a TEE probe

during standard diagnostic imaging that can then be registered and compounded

together. We demonstrate improvements to the compounding process in registra-

tion robustness and final image quality. These compounded volumes capture the

sub-valvular structures of interest for cardiac procedure planning. Capturing the

necessary additional volumes can be performed while only adding an additional

ten minutes to the time for the current standard of care diagnostic imaging proto-

col. We validate the geometrical accuracy of the compounding approach on two

excised porcine valves, finding measurement error between compounded ultra-

sound and ground-truth CT to be 0.7 ± 0.6mm and 0.6 ± 0.6mm respectively.



ChapteR 2. TEE Spatial Compounding 45

This method is able to provide clinicians with a single volume that captures the

mitral valve and the sub-valvular structures using existing standard-of-care ultra-

sound imaging. For patients who are not eligible for cardiac CT imaging, this pro-

vides an alternative approach that captures the same anatomical detail which may

not otherwise be visible. Furthermore, we can incorporate the additional detail

available in compounded volumes to create more accurate patient-specific mod-

els, particularly in regard to the papillary muscles and chordae tendineae. Overall,

this represents potential improvements in both diagnostics and procedure plan-

ning from 3D TEE imaging.



Chapter 3

Semi-automatic segmentation of the

mitral valve

Patient-specific mitral valve modelling requires the accurate identification of the

leaflet geometry from diagnostic imaging data. This chapter presents a semi-automatic

workflow for segmenting the mitral valve and validation results on expert ground-

truth segmentations.

This chapter is adapted from the following manuscript:

[2] P. Carnahan, O. Ginty, J. Moore, A. Lasso, M. A. Jolley, C. Herz, M. Eskan-

dari, D. Bainbridge, and T. M. Peters, “Interactive-Automatic Segmentation and

Modelling of the Mitral Valve,” in Functional Imaging and Modeling of the Heart,

pp. 397–404, Springer International Publishing, June 2019

3.1 Introduction

The mitral valve is an anatomically complex, dynamic structure integral for efÏ-

cient blood flow and therefore healthy cardiac output. When it becomes dysfunc-

tional, it causesmitral regurgitation, and patients can face declining cardiovascular

health leading to cardiac failure and death. Furthermore, mitral regurgitation is

46
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the most common valvular disease affecting approximately 10% of those over 75

years old [105]. The preferred intervention for mitral regurgitation is repair, due to

superior patient outcomes compared to replacement [15, 16]. However, the repair

must be tailored to the patient-specific anatomy and pathology, which requires

expert training and experience. Consequently, there is a need for patient-specific

models that can permit the training and procedure-planning of patient-specific

repairs to minimize its learning curve and preventable errors [106, 19]. Previous

work has demonstrated the potential for patient-specific valve modelling for both

surgical training as well as preoperatively predicting surgical outcomes [45]. The

cause of mitral regurgitation varies across patients, as any failure of these struc-

tures can compromise the efÏcacy of the valve.

In order to prepare patient-specific models, the mitral valve must first be ex-

tracted from patient image data. Segmentation of the mitral valve is challenging

in that it requires the capture of dynamic complex anatomy. There is no intensity-

based boundary between leaflets and adjacent heart tissue, and distinguishing be-

tween the anterior and posterior leaflets in the coaptation zone during systole is

difÏcult due to the lack of an intensity-based boundary. Additionally, in diastole

there can be signal dropout which appears as gaps in the leaflets. To facilitate

clinical use and repeat-ability, several mitral leaflet segmentation methods have

been proposed. These methods focus on varying goals between deriving quantita-

tive valvemeasurements and extracting annular and leaflet geometry from 3DTEE

images. Burlina et al. [79] proposed a semi-automatic segmentation method based

on active contours and thin tissue detection for the purpose of computational mod-

elling. Scheinder et al. [80] proposed a semi-automatic method for segmenting the

mitral leaflets in 3D TEE over all phases of the cardiac cycle. This method utilizes

geometric priors and assumptions about the mechanical properties of the valve

to model the leaflets through coaptation with a reported surface error of 0.8mm.
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However, this method only represents the mitral leaflets as a single medial surface,

rather than structures with thickness. Additionally, several fully automatic meth-

ods have been proposed that are based on population average atlases. Ionasec et

al. [83] describe a technique which uses a large database of manually labelled im-

ages and machine learning algorithms to locate and track valve landmarks. While

this method is fully automatic, the use of sparse landmarks potentially limits the

patient-specific detail that can be extracted. Pouch et al. [85] also describe a fully

automatic method which utilizes a set of atlases to generate a deformable tem-

plate which is then guided to the leaflet geometry using joint label fusion. The

surface error of this method is reported at 0.7mm, however, this is only achieved

on healthy valves and performance is reduced when segmenting diseased valves.

Automatic 3D segmentation methods offer significant implications for the fea-

sibility of patient-specific modelling in clinical use. While existing methods have

demonstrated the ability to accurately segment the mitral valve structure, they re-

main highly time-intensive. Furthermore, some of these published methods show

decreased performance when applied to highly diseased valves, demonstrating

limitations in patient-specificity.

We aim to develop a segmentation method that can be applied to both normal

and highly diseased valves, to extract patient-specific leaflet geometry. Our focus

is on delineating the leaflet surfaces for the purpose of creating molds for our re-

lated patient-specific MVmodelling project, where silicone is applied to the molds

to create valves for use in surgical training and planning [45]. To accomplish this,

we propose a semi-automatic segmentation method based on active contours that

iterates using a user-in-the-loop strategy.
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3.2 Methods

3.2.1 Image Acquisition and Data Sets

Fifteen patients with mitral valve regurgitation undergoing cardiac surgery were

imaged preoperatively using Philips Epiq and iE33 systems as per clinical protocol.

Of the fifteen patient datasets, six were acquired at King’s College Hospital, Lon-

don, UK, from patients with severe mitral regurgitation, and nine were acquired

at University Hospital, London, Canada. The 3D TEE images were exported into

Cartesian DICOM format, which were imported into 3D Slicer using the Slicer-

Heart module [107]. Images at end-diastole were selected for image analysis.

The exported Cartesian format images have voxel spacing in the axial direction

of 0.3mm to 0.6mm.

3.2.2 Semi-Automated Image Analysis

Our software has been developed in the 3D Slicer1 platform and employs The In-

sight Segmentation and Registration Toolkit (ITK)2 software package. All code is

publicly available on GitHub3. To account for the high variability in TEE data the

iterative steps in our method do not use a fixed stopping point. Instead, the user

runs the segmentation steps in increments until they are satisfied with the results,

leading to an ideal compromise between human judgement in ambiguous cases

and guided automatic segmentation for ease of use and time efÏciency. In addi-

tion, a user can view the result of the next step of the segmentation, compare it

to the previous step, and make manual adjustments between active contour steps.

We base our segmentation on the end diastole image where the leaflets are least

likely to experience signal dropout, but where the anterior and posterior boundary
1www.slicer.org
2www.itk.org
3https://github.com/pcarnah/SlicerMitralValve

www.slicer.org
www.itk.org
https://github.com/pcarnah/SlicerMitralValve
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is still clearly identifiable.

Before beginning the segmentation process, the user must define the valve an-

nulus by placing a series of twelve points radially along the leaflets where they

meet the atrial wall. The hinge point of the leaflets is identified by observing ad-

jacent frames in the acquisition sequence to see the leaflet in motion. This is ac-

complished through the SlicerHeart software, which facilitates the placing of the

points and fits them with a smooth annulus curve [108]. This annulus definition

is used throughout the automated process to provide context for the valve centre,

orientation and boundaries.

(a) (b) (c)

Figure 3.1: Cross sectional views of a 3D TEE image and segmentation (a,b), with
the blood pool segmentation shown in green and the leaflet segmentation shown
in yellow. Rendering of extracted proximal surface mold (c).

Blood Pool Segmentation

We first segment the atrial blood pool (BP), which provides context for the leaflet

segmentation as well as the leaflet surface extraction. The image is first processed

using a Gaussian filter with a variance of 1.0mm, followed by a gradient mag-

nitude filter. This creates a feature image highlighting the contrast edges, which

determines the speed of the active contour growth. The centre of the defined an-

nulus is used to initialize a geodesic active-contour filter from ITK that grows to

complete the BP segmentation, as pictured in Figure 3.1. The active contour pro-

cess is run with curvature, advection, and propagation scaling parameters of 1.2,

1.0, and 0.9 respectively. The curvature parameter controls boundary smoothing,
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while the advection parameter influences attraction to edges. The propagation

scaling parameter applies an inwards or outwards force on the contour boundary

creating a bias to either grow or shrink.

Shrinking Leaflet Segmentation

The boundary region of the BP segmentation within a distance of 11 voxels, or

∼5.0mm is taken as the initial estimate for the leaflet segmentation. This estimate

is refined using another active contour approach which shrinks the segmentation

down to the desired result. The active contour approach used here differs from

the one used in the BP segmentation mainly in that it is biased to shrink. The

parameters used for this phase are 0.9, 0.1, and -0.4 for curvature, advection and

propagation scaling respectively. As the active contour process iterates, the seg-

mentation pulls back to the leaflet boundaries as pictured in Figure 3.1. Since our

approach is interactive, the user is able to view adjacent image frames during the

segmentation process to better inform their decision on the ideal stopping point.

In addition, a volume rendered view can also be displayed alongside a 3D mesh

of the segmentation, again providing more information to the user for completing

the guided segmentation.

Figure 3.2: Extracted atrial surface (left) to generated 3D mesh (middle) to 3D
printed positive molds (right).
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Proximal Surface Extraction

For manufacturing our physical MV models as described in previous work [45],

we require a geometric model of the valve surface proximal to the TEE transducer.

The proximal surface is extracted from the leaflet segmentation using the defined

annulus for context. Before proceeding, we utilize the ”Segmentations” modules

of 3D Slicer to produce a closed-surface mesh representation of the leaflet seg-

mentation. Subsequent processing is achieved using VTK4 on PolyData meshes.

The atrial surface algorithm is described in algorithm 1, and an example of the

resulting extracted surface can be seen in Figure 3.2.

Figure 3.3: Cross section of 3D TEE volume (top-left). 3D representation of leaflet
segmentation shown in green (top-right, bottom-left), positive mold generated
from atrial surface shown in red (bottom-left, bottom-right).

The extracted atrial surface is then thickened inwards towards the midplane

centre by 2.0mm using linear extrusion, and the portion below themidplane centre
4https://vtk.org/
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Algorithm 1: Algorithm to extract only atrial surface portion of segmen-
tation mesh
Data: < segmentation mesh
Result: extracted atrial surface mesh
Construct OBBTree from<;
Construct cylinder 2 with midplane normal as axis, at midplane centre,
with height 40mm and radius 10mm;
for each point ? in< do

if ? is above midplane then
Use OBBTree to compute interesection between< and line from ?

to midplane centre;
Discard point if self-intersection;

else
Find line ; from ? to closest point on cylinder;
Compute angle 0 between mesh normal at ? and line ; ;
Discard point if angle 0 > 1.5 rad

end
end

is filled in. To construct a flat base, the mold’s bottom half is extruded downwards

and clipped to account for any regions with a short segmentation. The results of

this process can be seen in Figure 3.3.

3.3 Evaluation and Results

To evaluate the accuracy of the proposed segmentation method, we compared au-

tomated segmentations to expert manual segmentations for images from 15 sub-

jects. The ground truth expert segmentations were created using manual segmen-

tations performed by two clinical users. Our semi-automatic system was then

used on the same images and reference frames. Our system was employed with

no manual user intervention between iterations in order to perform a baseline as-

sessment of the algorithm independent of manual influence. Comparisons were

made using the mean absolute surface distance (MASD) between the boundaries of

the complete segmentations, as well as the MASD between the extracted proximal
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surfaces.

Figure 3.4: Distancemaps of the proximal segmentation surface (top) and the distal
segmentation surface (bottom) for 3 cases. The largest regions of error are located
where the leaflets meet the atrial wall, as well as near the valve commisures.

The results indicate a MASD for the proximal surface of 1.01± 0.13mm, which

is on the order of one to two image voxels along the depth of the image. The

MASD for the complete valve boundary is higher at 1.40 ± 0.26mm, or two to

three image voxels. The maximum local error observed was 9.4mm occurring

at the boundary between the leaflet and the surrounding atrial tissue. The aver-

age completion time using the proposed semi-automated segmentation method

was 8.93± 2.31min, compared to the manual segmentation times which averaged

55.84±12.87min. There was an overall average speedup of 46.47±10.64min using

the semi-automated method over performing manual tracings.

3.4 Discussion

The proposed semi-automatic guided segmentation method enables the extraction

of mitral leaflet geometry from 3D TEE in a 3D printable form. This method allows

a user to rapidly segment the mitral valve at end-diastole to extract its atrial sur-

face for generating a patient-specific mold with minimal effort. The interactive,

iterative nature of this segmentation system allows it to be used on a wide variety
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of pathological valves, as well as consistently work with a large range of image

qualities from different systems.

Our results indicate similar overall performance to other semi-automaticmeth-

ods and is on the same magnitude as previously reported inter observer variability

of 0.60± 0.17mm [78]. They are also consistent with previous studies which have

observed that the greatest variability in manual and automatic segmentations oc-

curs at the boundaries of the model, rather than at the leaflet surfaces. As Fig-

ure 3.4 shows, we see a boundary displacement of 1mm or less for most of the

leaflet surface, and see larger displacement only at the boundary of the leaflet as

well as the chordae attachment points. This is a result of the somewhat arbitrary,

non-contrast boundary between the leaflets, the atrial wall, and the surrounding

tissue. In addition, our method shows improved results when only considering the

atrial valve surface, the surface of the valve more proximal to the TEE probe. This

region shows the best image contrast and is consequently the most consistently

identified between manual and automatic segmentations. Furthermore, since we

do not rely on any prior data or image atlases, our system does not demonstrate

any biases or drop in performance for previously unseen valve geometries. This

is a critical consideration when modelling highly diseased valves for preoperative

planning, as a wide variety of valve geometries can be observed. For the purposes

of patient-specific valve modelling, prior work has demonstrated the creation of

physical valve models using silicone and 3D printed molds based on the proximal

valve surface [45]. Our method is well suited to the task of extracting mitral valve

geometry for the creation of patient-specific models such as these.

3.4.1 Limitations and Future Work

In cases of very poor image quality, the automated segmentation maymiss regions

of dropout, or fail to capture the exact valve geometry. Expert users performing
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these same segmentations often use other points in the cardiac cycle to inform

their segmentation. Adapting this software to utilize additional time points may

help to improve the robustness of the method in very difÏcult cases. In addi-

tion, color Doppler images are often captured in order to diagnose mitral valve

regurgitation. This additional information could be used to increase the accuracy

of segmentations as it contains information about the flow of blood between the

leaflets. Further work validating the effectiveness of this systemmay be necessary

to ensure it accurately captures patient-specific detail across healthy, mildly dis-

eased and severely diseased valves. Our semi-automatic segmentation technique

was used as part of a prospective study which aimed to validate the effectiveness

of our dynamic silicone-based valves for predicting surgical outcomes [68].

3.5 Conclusion

Identifying, or segmenting, the mitral leaflets from TEE volumes is an important

step in diagnosis for quantification of the valve, as well as patient-specific valve

modelling. Manual segmentation is a very time-intensive process and can have

wide variability between users. In this chapter, we present a technique that en-

ables the extraction of mitral leaflet geometry from 3D TEE for creating 3D printed

models used in creating accurate patient specific physical models. Segmentations

from our software successfully replicate gold-standard MV segmentations within

reasonable tolerance with respect to image resolution. The overall mean surface

distance analysis demonstrates that our software can extract the proximal surface

of the MV to within approximately one millimeter. This level of accuracy is suit-

able for patient-specific mitral valve modelling applications. Through the integra-

tion of a semi-automated segmentation approach, and subsequent mesh modelling

steps into a user friendly 3D Slicer module, we have simplified the process to gen-
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erate a 3D printable mold from patient image data. This segmentation software

represents a critical step towards improving the translatability of the mitral valve

modelling process by reducing the time required for completing an accurate mitral

valve segmentation and automating part of the overall workflow.



Chapter 4

Fully automatic segmentation of the

mitral valve with DeepMitral

This chapter presents improvements upon the results from Chapter 3 through the

adoption of deep learning to create a fully automatic segmentation system with im-

proved accuracy and runtime.

This chapter is adapted from the following manuscript:

[3] P. Carnahan, J. Moore, D. Bainbridge, M. Eskandari, E. C. S. Chen, and T. M. Pe-

ters, “DeepMitral: Fully automatic 3D echocardiography segmentation for patient

specific mitral valve modelling,” in Medical Image Computing and Computer As-

sisted Intervention – MICCAI 2021, pp. 459–468, Springer International Publishing,

2021

4.1 Introduction

As discussed previously in Chapter 3, a key step in patient-specific modelling

workflows is delineating the mitral valve leaflets in patient ultrasound image data.

Extracting the patient-specific leaflet geometry which is used to form the basis

of the silicone valve replica remains a challenge. Performing manual segmenta-
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tions is very time consuming, taking upwards of two hours, which is a serious

bottleneck in modelling workflows. Several mitral leaflet segmentation methods

have been proposed, targeting a number of different applications. These methods

focus on varying goals between deriving quantitative valve measurements and ex-

tracting annular and leaflet geometry from 3D TEE images. These methods can be

divided into two categories: semi-automatic and fully automatic approaches. The

semi-automatic approaches all require some level of user intervention during the

segmentation process, while fully automatic methods do not.

In our prior work presented in Chapter 3, we developed a semi-automatic ap-

proach designed for patient-specific valve modelling and reported a surface error

of 1.4mm overall, and an surface error of 1.0mm for the atrial surface critical in

mitral valve model creation [2]. Previous semi-automatic methods have also been

presented in the literature. Scheinder et al. [80] proposed a semi-automaticmethod

for segmenting the mitral leaflets in 3D TEE over all phases of the cardiac cycle,

reporting a surface error of 0.8mm. Burlina et al. [79] proposed a semi-automatic

segmentation method based on active contours and thin tissue detection for the

purpose of computational modelling, reporting errors in the range of 4.0mm to

5.0mm.

Several fully automatic methods have been proposed that are based on popu-

lation average atlases. Ionasec et al. [83] describe a technique which uses a large

database of manually labelled images and machine learning algorithms to locate

and track valve landmarks, reporting a surface error of 1.5mm. While this method

is fully automatic, the use of sparse landmarks potentially limits the amount of

patient-specific detail that can be extracted. Pouch et al. [85] also describe a fully

automatic method that employs a set of atlases to generate a deformable template,

which is then guided to the leaflet geometry using joint label fusion. The surface

error of this method is reported as 0.7mm.
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Automatic 3D segmentation methods offer significant implications for the fea-

sibility of patient-specific modelling in clinical use. While existing methods have

demonstrated the ability to accurately segment the mitral valve structure, they re-

main highly time-intensive. Furthermore, some of these published methods show

decreased performance when applied to highly diseased valves, demonstrating

limitations in patient-specificity. CNNs have been widely demonstrated to be ef-

fective for segmentation tasks. However, to our knowledge no CNN segmentation

approaches have been reported for mitral valve segmentation in 3D TEE imaging,

although 3D Unets have been used in other cardiac ultrasound applications such

as automatic annulus detection [86]. Working in 2D, UNet has been used for mitral

leaflet segmentation [87].

In this chapter, we present DeepMitral, a 3D segmentation pipeline for mi-

tral valve segmentation based on the 3D Residual UNet architecture [109]. We

demonstrate the feasibility of CNN based segmentation for 3D TEE images, and

establish a baseline of performance for future methods. DeepMitral will have ap-

plications in patient specific valve modelling, enabling improvements in the work-

flow. DeepMitral has been made open source including our trained model and is

freely available on GitHub1.

There are several key roadblocks to the development of image analysis tech-

niques in the medical imaging domain. In the computer vision domain, Ima-

geNet [110] was transformational to research and development because it high-

lighted the importance of data curation and availability to feature and algorithm

generation. In the medical imaging field, the curation of large datasets is partic-

ularly challenging due to the need for clinical expertise to annotate images, and

privacy concerns limiting the sharing of data [111]. For algorithm design, sufÏ-

cient quantities of data are necessary to ensure that the methods generalize to the

1https://github.com/pcarnah/DeepMitral

https://github.com/pcarnah/DeepMitral
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broader population, a problemmade evident with the onset of deep learning-based

approaches. Furthermore, transparency in the validation approach used is neces-

sary for reproducibility, and when the data used is not made public, we cannot

effectively evaluate a reported method. This makes it difÏcult to compare new

algorithms directly against the existing state-of-the-art, and we must instead rely

on reported results by the authors. Image analysis competitions address these

concerns by centralizing the curation of high-quality datasets which are released

to the research community, and the consistent evaluation of submitted methods

fixed test set. This serves to increase data availability to the wider community, as

well as expedites the development cycle for new approaches. Currently, there are

no public challenges or datasets of 3D TEE imaging of the mitral valve, which has

been a major limiting factor in the evaluation and comparison of different meth-

ods. In this chapter, we report the curation and release of a dataset consisting of

150 cases of mitral valve TEE images with expert annotation, released as an image

segmentation competition.

4.2 Methods

4.2.1 Data Acquisition

Patients with mitral valve regurgitation undergoing clinical interventions were

imaged preoperatively as per clinical protocol with appropriate ethics approval

using a Philips Epiq system with an X8-2T transducer. The 3D TEE images were

exported in a Cartesian DICOM format, and the SlicerHeart module was used to

import the Cartesian DICOM files into 3D Slicer2 [107]. Images at end-diastole

were selected for image analysis due to the need formanufacturing patient-specific

valve replicas from this cardiac phase. The exported Cartesian format images have

2https://slicer.org

https://slicer.org
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voxel spacing in the axial direction ranging from 0.3mm to 0.6mm, and spacing

in the lateral directions of 0.4mm to 0.7mm.

We initially collected a total of 48 volumes, which were divided into training,

validation and testing partitions with 36, 4, and 8 volumes respectively. Annota-

tions for the training and validation sets were performed in 3D Slicer by multiple

trained users. These segmentations were performed via manual refinement of the

output of our previous semi-automatic segmentation tool as described in chapter

3 [2] and were then reviewed and modified as necessary by a single experienced

user to ensure consistency. The test set was annotated entirely manually by two

cardiac imaging clinicians using 3D Slicer. All model selection was performed on

this initial dataset.

Subsequently, we collected an additional 150 cases, which were initially seg-

mented with DeepMitral and manually edited where necessary by an expert clin-

ical user. We report results for both our initial dataset, and our combined final

dataset after retraining our model, keeping the network architecture consistent

for direct comparison. We released the additional 150 cases as a standalone public

dataset as part of the MVSEG2023 MICCAI challenge3.

4.2.2 Model Selection

Our initial training and validation sets of 36 and 4 cases were used to perform

model selection and hyper-parameter tuning on a variety of network architectures

including Residual UNet, VNet, AHNet and SegResNetVAE [109, 112, 113, 114]. We

trained each network with a selection of hyper-parameters and computed mean

Dice coefÏcient scores, mean surface error scores, and mean 95 % Hausdorff dis-

tance on the validation set. The best performing version of each network architec-

ture is shown in Table 4.1. Of the models, the Residual UNet architecture achieved
3https://www.synapse.org/MVSEG2023

https://www.synapse.org/MVSEG2023
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Table 4.1: Validation metrics for the tested network architectures.

Network MASD (mm) 95 % Hausdorff
(mm)

Dice CoefÏcient

Residual UNet 0.5 3.4 0.8

VNet 0.5 4.1 0.8

AHNet 0.7 5.2 0.8

SegResNetVAE 0.7 4.2 0.8

the best performance with respect to all validation scores, so it was chosen as our

final network for use in the DeepMitral pipeline.

4.2.3 DeepMitral Pipeline

Our 3D TEE volume segmentation platform was built using the MONAI4 frame-

work, that provides domain-optimized foundational capabilities for developing

healthcare imaging training workflows. This platform includes the implementa-

tion of many common network architectures for both 2D and 3D data, as well as

a number of medical imaging focused pre-processing methods.

Our workflow begins with a sequence of pre-processing operations from the

MONAI framework. First, we load the images, and transform them into channel-

first representation according to PyTorch image conventions. Next, we isotrop-

ically re-sample the volumes to 0.3mm spacing, using bilinear re-sampling for

the image data and nearest neighbour re-sampling for the label. Following re-

sampling, we re-scale the image intensities to the range of 0.0 to 1.0, then crop the

images to the foreground using the smallest possible bounding box that includes

all non-zero voxels. Finally, random sampling is performed on the volumes, tak-

ing 4 samples of size 96x96x96, centered on voxels labelled as leaflet. The final

random sampling step is recomputed at every epoch during network training. No

data-augmentation was performed, as adding rigid or deformable spatial trans-
4https://monai.io/

https://monai.io/
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formations resulted in no improvements in validation metrics, and a reduction of

training speed.

Our network uses a Residual UNet architecture [109], implemented by the

MONAI framework, with 5 layers of 16, 32, 64, 128 and 256 channels respectively.

Each of these layers is created using a residual unit with 2 convolutions and a

residual connection. Convolutions are performed with stride 2 at every residual

unit for up-sampling and down-sampling. The complete network architecture is

shown is Figure 4.1.

16@96x96x96

32@48x48x48

64@24x24x24

128@12x12x12

256@6x6x6

Up

Up

Up

Up

DeepMitral Network Topology

Network Units
Conv3D

Conv3D + Stride

PReLU

Batch Norm

Residual Unit

+ +

Upsample

ConvTrans3D + Stride

Concat

Figure 4.1: Network diagram showing Residual U-Net architecture used by Deep-
Mitral. The downsample path consists of Residual Units with strided convolutions.
The upsample path uses Residual Upsample Units with transposed convolution.
Skip connections are included at each layer of the network.

We trained our model using batch sizes of 32, composed of 8 different volumes,

with 4 random samples being taken from each volume. Training was performed

for 1500 epochs using an Nvidia RTX6000 graphics card with 24GB of ram. The

training process took roughly 3 hours on our initial dataset for DeepMitral v1,
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and 22 hours on our expanded dataset for DeepMitral v2. We employed the Adam

optimizer, with an initial learning rate of 1 × 10
−3, which is reduced to 1 × 10

−4

after 1000 epochs [115]. Batch normalization is used to help prevent over-fitting

of the model.

4.2.4 Evaluation

Final evaluation of our pipeline is performed using a separate test set consisting

of eight volumes with ground truth annotations that were performed manually by

two cardiac imaging clinicians. Prior to evaluating our model, we retrained the

network using combined training and validation sets. The primary comparison

metrics are the MASD between the boundaries of the complete segmentations,

as well as the 95 % Hausdorff distances, and Dice coefÏcient scores. We report

the validation metrics for the same eight test cases using both our initial model,

DeepMitral V1, and a retrained version of the same architecture using an expanded

dataset, DeepMitral V2.

4.3 Results

DeepMitral v1 trained on our initial dataset achieved a MASD of 0.59 ± 0.23mm,

average 95 % Hausdorff distance of 1.99± 1.14mm, and a Dice score of 0.8. In all 8

volumes used for testing the mitral leaflets were successfully segmented, with no

cases of complete failure to identify the leaflets. Overall, the scores are consistent

among 6 of the 8 examples, with 2 examples exhibiting lower performance. In

one instance, case P3, the leaflets are under-segmented near the leaflet tips, and in

another instance, P8, the chordae tendineae are mis-labelled as leaflet, as seen in

Figure 4.2. We see the corresponding metrics for these cases in Table 4.2, which

show higher surface distance errors and worse dice scores than the other cases.
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Table 4.2: MASD, 95 % Hausdorff Distance and Dice CoefÏcient scores for each of
the eight volumes in the test set for DeepMitral v1.

Test ID MASD (mm) 95 % Hausdorff
(mm)

Dice CoefÏcient

P1 0.43 1.18 0.84
P2 0.37 1.10 0.87
P3 1.04 3.53 0.65
P4 0.53 1.49 0.83
P5 0.49 1.25 0.83
P6 0.42 1.37 0.85
P7 0.71 1.97 0.76
P8 0.76 4.02 0.82
Average 0.59 ± 0.23 1.99 ± 1.14 0.81 ± 0.07

After expanding our initial dataset from 48 cases to 198 cases, we retrained

our model and recomputed our evaluation metrics. Version two achieves a MASD

of 0.52 ± 0.16mm, average 95% Hausdorff distance of 1.60 ± 0.58mm, and a Dice

score of 0.8. For the six cases in which DeepMitral v1 achieved good results, lim-

ited improvement is shown. However, for cases three and eight in which v1 had

poor performance, v2 has demonstrated improved results in line with the remain-

ing six cases. Overall, we note a small improvement in each metric, with better

consistency across all cases using DeepMitral v2, trained on a much larger dataset.

4.3.1 Inference Runtime Performance

Deep learning segmentation methods enable predictions to be performed for low

computational cost. We evaluated DeepMitral’s inference speed on our test set us-

ing both central processing unit (CPU) only (Intel i7-6700K) and GPU acceleration

(Nvidia GeForce GTX 1080). The size of the volumes range from approximately

160x160x160 to 300x200x200 voxels. Using only the CPU for inference, DeepMi-

tral takes on average 9.50±2.26 s to perform the inference itself, and 11.40±2.28 s

for overall runtime including startup overhead. When using GPU acceleration,
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Table 4.3: MASD, 95 % Hausdorff Distance and Dice CoefÏcient scores for each of
the eight volumes in the test set for DeepMitral v2.

Test ID MASD (mm) 95 % Hausdorff
(mm)

Dice CoefÏcient

P1 0.40 1.29 0.84
P2 0.37 1.12 0.87
P3 0.76 2.84 0.75
P4 0.51 1.34 0.84
P5 0.45 1.18 0.85
P6 0.37 1.26 0.87
P7 0.78 1.91 0.73
P8 0.51 1.88 0.82
Average 0.52 ± 0.16 1.60 ± 0.58 0.82 ± 0.05

these times are reduced on average to 3.50 ± 0.53 s for inference and 5.69 ± 0.66 s

for overall runtime. DeepMitral achieves fast inference times on both CPU and

GPU, with GPU acceleration reducing runtime by a factor of two on average. Ad-

ditionally, startup overhead is consistently around 2.0 s for both CPU and GPU.

This overhead would only occur once in the case of performing inference on mul-

tiple volumes in a single run.
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Figure 4.2: Cross sectional views of 3D TEE images and segmentations for each
volume in our test set for DeepMitral versions one and two. Ground-truth label is
shown in green, and predicted label is shown in blue.
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4.4 Discussion

These results demonstrate the feasibility of CNN based techniques formitral valves

segmentations in 3D TEE volumes. Trained with a relatively small dataset, Deep-

Mitral achieves an improvement in accuracy over the existing state of the art

approaches. Average surface error is reduced to 0.6mm on average, where the

best performing existing methods report an error of 0.7mm. Additionally, our re-

ported error is almost equal to typical inter-user variability, which was previously

reported as 0.60 ± 0.17mm [78]. Our reported MASD is approaching the axial

resolution of the ultrasound volumes, which is approximately 0.5mm on average.

These results indicate that while DeepMitral v1 is accurately labelling the valve

leaflets overall, we note the 95 % Hausdorff distances are typically larger, in the

range of 1.0mm to 4.0mm. We can see in Figure 4.3 that there are small regions of

the leaflets where accuracy is worse, contributing to these larger 95 % Hausdorff

errors, while the majority of the leaflet surface maintains sub-millimetre error. For

P8, we see that the leaflets themselves arewell identified, however the large protru-

sion where the chordae were mis-identified contributes to the poor error metrics

in the case. In Figure 4.4 we see the same two cases segmented using DeepMitral

v2, and the improvement in the boundary regions is evident. This demonstrates

the benefit and necessity of increasing the size of the training dataset when using

deep learning to improve generalizability.

Our results suggest deep learning-based approaches are able to capture unique

valve features. Although we tested DeepMitral on exclusively diseased valves, as

demonstrated by our test data, there is a range of distinct valve geometries, all of

which are accurately identified by our model. The areas of poor performance are

not due to systematic geometrical bias, but are instead caused by poor image data

and mis-identified structures.

CNN based approaches are particularly beneficial for use in valve modelling
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Figure 4.3: Distance comparison heatmaps for P4 (top) and P8 (bottom), show-
ing the distribution of error across the leaflet segmentation for predictions using
DeepMitral v1.

applications since they eliminate the computational time that prior methods have

reported, ranging from 15 minutes to 3 hours for a single segmentation. Deep

learning methods instead can perform a segmentation in seconds, which removes

a large bottleneck in valve modelling workflows. Additionally, since these meth-

ods are fully automatic, the resulting segmentations will be more consistent than

semi-automatic or manual approaches, where individual users can vary greatly

on how much of the atrial wall they label as leaflet. DeepMitral produces accu-

rate segmentations in most cases, however in instances where the segmentation

is sub-optimal manual editing of the result is still possible. DeepMitral has been

integrated into our 3D Slicer module described in Chapter 3, allowing for an initial

segmentation to be created very quickly, and then be verified and edited if neces-

sary before being used in any downstream applications. We successfully employed
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Figure 4.4: Distance comparison heatmaps for P4 (top) and P8 (bottom), show-
ing the distribution of error across the leaflet segmentation for predictions using
DeepMitral v2.

this approach using DeepMitral v1 to produce an additional 150 cases with manu-

ally refined s for further training. This module including DeepMitral has also been

used for producing segmentations for a further study validating dynamic patient-

specific mitral valves.

4.4.1 Public Dataset

To directly compare various segmentation methods against each other, a consis-

tent benchmark dataset is desireable. To date, there has been no publicly available

dataset of mitral valve imaging using 3D TEE. As part of the MICCAI 2023 con-

ference, we organized a challenge titled “Segmentation of the Mitral Valve from 3D

Transesophageal Echocardiography”, in which we curated and released a dataset of

150 cases with TEE imaging and expert ground-truth segmentations. These cases

represent a subset of the data used to train DeepMitral v2. This dataset includes
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only a single time-point selected at end-diastole, and not the full cardiac cycle.

Through the curation and release of a high-quality dataset, we aim to provide

a benchmark for future work on mitral valve segmentation. This will enable fur-

ther development and improvement of segmentation algorithms with the ability

to report results using a consistent dataset. We plan on further iterating on this

challenge to include additional tasks such as full-cycle four dimensional (4D) seg-

mentation, annulus tracking, and papillary muscle segmentation.

4.4.2 Limitations and Future Work

DeepMitral v1 fails to differentiate between chordae and leaflet in some images

where the chordae are very clear, as seen in case P8 and to a lesser extent case

P6 in Figure 4.2. The initial dataset has a lack of training data where chordae are

strongly delineated in the image, as this rarely occurs in TEE imaging. As a re-

sult, our model tends to classify the chordae as leaflet, as it presents as a similar

image feature when visible. This has been partially addressed through the expan-

sion of our dataset, and improved results at differentiating chordae are evident in

DeepMitral v2. This could be developed upon in future work by including an ad-

ditional label for the chordae in our training set to allow our model to learn how

to differentiate between leaflet and chordae, and label additional structures of in-

terest within the image. Additionally, sub-optimal image quality can cause the

segmentation to perform poorly. This is a fundamental limitation when working

with cardiac ultrasound, as it is possible for acquisitions to be very noisy, or lack

detail of the mitral leaflets due to signal dropout. Expanding our data-set to in-

clude wider variations in image quality has again improved results in DeepMitral

v2. Further investigation is still required to establish a threshold in image quality

for which automated segmentation is feasible.

The results demonstrated with DeepMitral show promise for further devel-
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opment in automated segmentation of 3D TEE volumes. We demonstrate good

performance only on a single, diastolic frame, however the patient cases all in-

clude 3D plus time volume sequences. DeepMitral could be trained on a dataset

with the complete cardiac cycle segmented to enable accurate segmentation at any

time point. Incorporating the cyclical nature of cardiac motion into the network

architecture could potentially further improve the accuracy of the segmentations.

Since different structures are better imaged at different phases of the cardiac cycle,

this technique has the potential to further improve our results and overcome lim-

itations due to image quality. Our methods could also be extended to other areas

of interest for cardiac ultrasound through transfer learning. This could be applied

to adult tricuspid valves, enabling improved results as data availability for the tri-

cuspid valve is more limited and image quality is generally poor. Additional areas

of interest could include transfer learning for the left atrial appendage segmenta-

tion, as well as the left-ventricular-outflow-tract, which are of clinical interest for

virtual modelling of device positioning.

4.5 Conclusions

In this chapter, we describe a deep learning architecture trained on a dataset cre-

ated using the semi-automatic method to produce the labelled volumes. The re-

sults demonstrate state-of-the-art performance in segmentation accuracy, taking

roughly five seconds to complete a single segmentation. This provides a platform

for producing very fast and accurate segmentations that can be integrated into

workflows for patient-specific valve modelling and valve quantification. The re-

sults from DeepMitral successfully replicate the gold standard segmentations with

improved performance over existing state-of-the-art methods. Sub-millimetre av-

erage surface error in the segmentation stage is sufÏcient for use in patient specific
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valve modelling without manual intervention. DeepMitral improves the workflow

of the mitral valve modelling process by reducing the time required for completing

an accurate mitral valve segmentation and providing more consistent results.

To our knowledge, we are the first to demonstrate the effectiveness of CNN

based segmentation approaches for the mitral valve leaflets from 3D TEE volumes.

We also report the first publicly available dataset of annotated TEE volumes with

labelled leaflets. This will enable the broader research community to build upon

this work to further improve the robustness and accuracy of automated mitral

valve segmentation. Overall this work represents progress towards robust, fully

automatic mitral valve segmentation which enables improvements in mitral valve

modelling and valve quantification workflows.



Chapter 5

Real-time mitral annulus detection

The mitral annulus is an important structure for valve quantification, and is a useful

visualization target for image guidance systems. In this chapter we present a fully

automatic mitral annulus segmentation framework with real-time performance.

This chapter is adapted from the following manuscript:

[4] P. K. Carnahan, A. Bharucha, M. Eskandari, D. Bainbridge, E. C. S. Chen, and

T. M. Peters, “Real-time mitral annulus segmentation from 4D transesophageal

echocardiography using deep learning regression,” inMedical Imaging 2023: Image

Processing (I. Išgum and O. Colliot, eds.), SPIE, Apr. 2023

5.1 Introduction

Echocardiography is used extensively in diagnostic and intra-operative imaging

for MV procedures. Transesophageal echocardiography uses a 3D ultrasound

probe which is passed through the esophagus, allowing for clear images of the

mitral valve from the mid-esophageal position, an example of which we see in

Figure 5.1. Identification of the mitral annulus shape is essential during diagnosis

for a number of applications including identifying pathologies, surgical planning

and implant design[88, 89, 90]. The mitral annulus is currently typically identi-

75
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fied using manual or semi-automated methods, such as the Phlips’ QLAB Mitral

Valve Navigator tool with anatomic intelligence (Philips Healthcare, Andover,

MA, USA), which introduces additional workload for clinicians. Additionally, for

trans-catheter mitral valve procedures, real-time annulus tracking significantly

improves the procedure accuracy as part of an IGS system by providing a clear,

simple target to navigate towards [91].

(a) (b) (c)

Figure 5.1: AP slice from TEE volume of mitral valve with annulus intersection
shown in blue (a). Mitral leaflet segmentationwith corresponding annulus contour
(b and c).

Prior methods have been developed that initially identify the mitral annulus

using a manual approach, then apply image registration between subsequent ul-

trasound frames to warp the existing annulus, and in this way track and update the

annulus shape and position in real-time [92]. While these methods are effective

for real-time tracking of the annulus, they have the potential to accumulate error,

as each position is updated based on the relative change compared to the previous

frame. Several methods which directly segment the annulus from ultrasound vol-

umes have also been proposed. Early work based on optical flow can accurately

identify the annulus, however it could only be applied to systolic images, and took

30-60 seconds to compute [81]. As a result, it is not possible to apply this technique

for IGS applications which require real-time tracking of the annulus throughout

the entire cardiac cycle.
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More recently, deep learning based approaches have been proposed, primarily

by taking 2D cross-sectional images through the 3D volume, which are rotated

around the mitral valve [93, 86]. These methods achieve good performance, and

achieve an accuracy of approximately 3.5mm measured by the symmetric curve-

to-curve error, which is computed by averaging the distances between each point

on both curves to the nearest point on the other. The drawbacks of these methods

are however, tied to the use of 2D images, where the mitral annulus is approxi-

mated by a spline fit through limited set of control points that ignores much of

the available information that could be useful for automated analysis. Recently,

Andreassen et al. [116] proposed a method utilizing fully 3D CNNs to predict a

heatmap, which is then converted into coordinates using the geometric median,

with reported accuracy of 1.9mm curve-to-curve distance error. Although they

are using 3D CNNs, they utilize a modified volume composed of a series of rota-

tional planes stacked together into a new volume, which may introduce issues re-

lated to the distance between points on adjacent rotational planes, which increases

further away from the centre of rotation. Additionally, only systolic frames were

used from the examinations in their experiments.

Currently, for real-time applications, semi-automatic annulus tracking meth-

ods are the only approaches with sufÏciently fast runtime to be suitable. Ex-

isting fully automatic approaches achieve very good accuracy, with the tradeoff

of runtime performance. The best deep-learning based approach by Andreassen

et al.[116] takes 1.8 seconds in full-resolution mode and 0.13 seconds in the re-

duced resolution fast mode. Ideally, for real-time ultrasound applications, runtime

should be below 0.06 seconds, or 15 frames-per-second.

We propose a novel deep learning based mitral annulus detection algorithm,

that performs directly in 3D, and is structured as a regression problem predict-

ing a set of Fourier coefÏcients that define the mitral annulus coordinates. In the
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SlicerHeart[117] extension for 3D Slicer, low-pass smoothing of the mitral annulus

is performed in the spatial-frequency domain, where a 1D fast Fourier transform

(FFT) of the coordinates in each of the three axes is completed, and then low-pass

filtering is applied, and the smoothed annulus coordinates are recovered using the

inverse FFT. In our work, we directly predict the corresponding Fourier coefÏ-

cients of the annulus, and then through the inverse Fourier transform we gener-

ate the resulting set of 3D coordinates describing the mitral annulus, bypassing

the need for an intermediate heatmap. This architecture was chosen in order to

enable highly optimized inference, with fewer post-processing steps enabling its

use in real-time surgical guidance applications.

5.2 Methods

From the 4D TEE datasets described in Chapters 3 and 4, we selected 90 cases to

perform annulus segmentation for this work. These 90 cases contain a total of 2190

volumes. We split our dataset by case into training, validation and test sets with

78, 6, and 6 cases, respectively, corresponding to 1862, 186, and 142 volumes, re-

spectively. We obtained ground-truth annulus labels through manual delineation

of a single frame by an expert clinical user. We then track the annulus through the

remainder of the cardiac cycle using an image registration approach, andmanually

verify and adjust the resulting annulus for each frame.

We apply a pre-processing pipeline to the volumes and annulus predictions

including re-sampling, data re-formatting, cropping, and train-time data augmen-

tation. We re-sample the ultrasound volumes to 0.5mm isotropic spacing, and

reorient them to the right-anterior-superior coordinate system for consistency be-

tween cases. Next, we centre crop the images to a constant size of 152 x 152 x 128

voxels. The annulus curves are initially defined as varying length lists of 3D coor-
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dinates relative to the left, posterior, inferior corner of the volume. We re-sample

the curves to a length of 200 points, and redefine the coordinates to be relative to

the image centre. This enables consistent prediction from centre cropped volumes,

as the locations in space of the corners may change, but the centre does not. Data

augmentation was employed during training consisting of random rotations, flips,

and translations applied to 25% of samples in each batch. Rotations of up to 20◦ are

applied randomly on each axis, translations of up to 6.0mm are used on all axes,

and flips are applied only on the right-left axis. These augmentations are used to

improve the generalizability of the prediction model, as the position of the valve

and annulus within ultrasound volumes can vary significantly between cases.

Our network architecture uses a regressor approach based on an encoder back-

bone using EfÏcientNetB0 [118], followed by five fully connected layers of size 64,

32, 16 and 33 nodes, as shown in Figure 5.2 . The final layer outputs 33 values

which then pass through a C0=ℎ activation function, scaling the output to between

-1 and +1. Of these 33 values, 3 represent the origin, or centroid of the annulus.

The remaining 30 values correspond to 5 magnitude, and 5 phase values for each

of the 3 spatial axes. The annulus centroid coordinates are rescaled to the range of

the image size given by ±48.0mm. The magnitude values are rescaled to the range

of 0 to 30, and the phase values to ±c . The magnitude and phase values are finally

converted into their corresponding real and imaginary components making up 5

smallest complex Fourier coefÏcients in each axis.

The final output of the model is in the shape (B, 6, 3, 2) where B is the batch

size. This corresponds to 5 complex-valued Fourier coefÏcients for each of the 3

axes of the image plus the annulus centroid encoded as the DC coefÏcient. Fol-

lowing prediction the full mitral annulus shape can be sampled by zero-padding

the coefÏcients to a size of 200, and taking the inverse FFT to produce set of 200

3D coordinates.
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Figure 5.2: Flowchart describing overall network architecture to predict Fourier
coefÏcients representing the mitral annulus.

The coordinate prediction error metrics reported in this work are the mean

symmetric curve-to-curve distance as used by Andreassen et al. [116], the mean

centroid distance, and mean perimeter error. The mean symmetric curve-to-curve

distance error is computed by taking the mean of the Euclidean distance to the

closest point from each coordinate on the predicted and ground-truth annulus to

the other. The centroid error is the Euclidean distance from the centroid of the

predicted annulus to the centroid of ground-truth. The perimeter error is the ab-

solute difference between the perimeter of the prediction and the perimeter of the

ground-truth.

For network training, we define our loss function as

;>BB = 2< + 0.52 + 0.1? + 0 (5.1)

where < is the mean curve-to-curve distance, 2 is the mean centroid distance, ?

is the mean perimeter error and 0 is given by the angle in radians between 2c
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and the total angular rotation of the prediction in the xy plane. This loss func-

tion incorporates all three evaluation metrics, with weighting determined through

hyper-parameter tuning. The centroid distance is included to ensure the predicted

annulus is centered in the correct position. The perimeter error and the final term

0 serve as regularization parameters to ensure the the predictions consist of one

single complete rotation in the xy plane.

5.3 Results

Case 1 Case 2 Case 3

Case 4 Case 5 Case 6

Figure 5.3: Predicted (blue) and ground-truth (yellow) annuli for six test set cases.
For each case included is the side-view (top) and top-down view (bottom).

On our test set of 6 cases and 146 volumes, our method achieves a curve-to-

curve error of 2.7± 0.4mm, a centroid error of 2.3± 1.3mm, and a perimeter error

of 8.7± 4.3mm. In our test data, average annulus diameter was 47.0± 7.7mm, and

average perimeter was 144.4 ± 21.6mm. As indicated in Figure 5.3, from the top-
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down view all six cases show good agreement between the predicted and ground-

truth annuli. In cases two, three and five, there is a larger error over just a small

portion of the annulus curve. From the side-on view, we see more inconsisten-

cies between the prediction and ground-truth. Notably visible in cases two and

five, the predicted annulus curve shows larger deviations, corresponding to a mis-

prediction of the height of the annulus along the MV leaflets. The training error of

our model reaches 0.46±0.21mm curve-to-curve distance, indicating our model is

at present over-fitting the training data. The large discrepancy between the accu-

racy achieved on the training set compared to the test set indicates that the model

is to an extent memorizing the training data, but does not generalize as well to

unseen test data.

As shown in Figure 5.4, the accuracy of the model has large variability between

cases, indicating that a larger dataset may be required to improve the consistency

of the model. Looking across the six test cases, we see that the curve-to-curve

and centroid errors are relatively similar between cases, with good accuracy in

the curve-to-curve error corresponding with good accuracy in the centroid error.

However, we see that in some cases where performance was poor in the curve-to-

curve and centroid metric, the perimeter error is not correspondingly poor. This

can indicate that the predicted annulus may be the correct size or shape, but po-

sitioned in the wrong location. We can isolate the curve-to-curve error by trans-

lating the predicted annuli to the ground-truth so the the centroids match, after

which curve-to-curve error is reduced to 2.2 ± 0.3mm. This demonstrates the

coupling between curve-to-curve error and centroid error, as the model needs to

accurately predict both the annulus shape and position relative to the image centre

to achieve a low curve-to-curve error.

Our model achieves a total runtime of 26ms when using GPU acceleration,

and 181ms when using only the CPU, when tested on a workstation with an Intel
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Figure 5.4: Results for all volumes separated by case including curve-to-curve
distance, circumference error and centroid error.

i7 6700k processor, 32gb of memory, and an Nvidia GTX 1080 GPU with 8gb of

memory. This runtime includes all stepss to go from the original US volume to

predicted annulus coordinates. Image re-sampling takes approximately 16ms, our

optimized model with GPU acceleration takes approximately 8ms, and the inverse

FFT using the GPU takes 2ms.

5.4 Discussion

Our results demonstrate similar performance to prior work utilizing 2D based

approaches with spline fitting to post process the predictions into a 3D annu-

lus shape. We currently see higher prediction error than Andreassen et al. [116],

who reported accuracy of 1.96 ± 1.62mm using the curve-to-curve distance met-

ric. However, we are not limited to using only systolic frames, which may have

introduced additional variability in the manual segmentations, as they were us-

ing a semi-automated approach which can only be used at systole. Our method

achieves real-time performance, taking only 26ms per frame to produce an annu-

lus prediction, (approximately 40 frames-per-second). This approach would there-

fore be suitable for use in real-time applications such as image-guided procedures,
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compared to prior methods[116] which take 1.7s at full resolution, or 0.17s at a

reduced resolution with a reduction in accuracy to results similar to those shown

here. By including the full cardiac cycle, our model will be able to track the mi-

tral annulus at all points, enabling applications in image guidance where mitral

annulus tracking can be beneficial [92].

To our knowledge, this is the first work to apply a regression model directly

predicting Fourier coefÏcients tomitral annulus segmentation. This approach con-

tributes to a well-defined, continuous and smooth annulus profile, which can be

re-sampled to any number of points without compromising the annular shape.

Since we only predict five coefÏcients, there is an inherent low-pass filter applied

to the final annulus shape. This is not the case in heatmap based methods, where

a single miss-prediction can create an incontinuity in the annulus, which is not

desirable when performing quantification. As such, we see greater potential in

the Fourier coefÏcient based approach for generalizing to new cases.

Currently, our reported error is slightly higher than existing state-of-the-art

methods, although with greater potential inference speed. This work provides a

foundation for further development, as we have demonstrated the feasibility of

direct regression of the mitral annulus from 3D volumes. The use of the Fourier

coefÏcient predictions enables very fast inference speeds and point sampling us-

ing the inverse FFT. Currently, our training set only includes 75 cases, which is

sufÏcient for mitral valve leaflet segmentation [3], however may be insufÏcient

for the less bounded annulus identification problem. Although we have a total of

1862 volumes for training, since they come from only 75 cases, there are limits in

terms of range of valve pathology and image quality, as these will be relatively

consistent within a single case. Heatmap based approaches may generalize bet-

ter with a small number of images as they solve a segmentation problem, which is

then sampled to identify the annulus as a set of coordinates. By directly predicting
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the annulus shape, our model may have a greater ability to fit the data, however

this also leads to a greater data requirement during training.

We see that our model is currently still over-fitting the training data, as there

is a very small training error corresponding to relatively high validation and test

error. Through hyper-parameter tuning we found that common techniques, such

as employing dropout and data augmentation, produced only small improvements

in validation error with our given architecture. To address this in future work

we will aim to further increase the size of the dataset to provide a wider range

of training examples. Additionally, further exploration of alternative encoding ar-

chitectures may yield models with greater ability to generalize to the test data. Vi-

sion transformer networks have shown promise in medical imaging applications

such as image registration due to their ability to encode non-local spatial rela-

tionships, which conventional CNN based approaches cannot[119]. Alternatively,

there is a wide range of architectures that can be used for CNN based encoders

that offer various trade offs between complexity and performance, with differing

data requirements for training. Since our network architecture is separated into

two components, with a CNN based encoder followed by flattening and a predic-

tion head using fully-connected layers, we can further experiment with drop-in

replacements to the EfÏcientNet based encoder used here.

5.5 Conclusions

Delineation of the mitral annulus is an important step for valve quantification,

patient-specific modelling, and real-time guidance applications. In this chapter,

we present a 3D CNN basedmodel for segmenting themitral annulus. Our method

uses a novel approach in which a regression model predicts the five smallest

Fourier coefÏcients of the mitral annulus in each of the three axes, which can then
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be converted to coordinates with any desired sample density through the inverse

Fourier transform. This representation allows us to achieve real-time inference

speed, enabling the use of this work in surgical guidance applications. Overall,

the results of this work demonstrate state-of-the-art runtime speed, with good

overall accuracy. The algorithm described can be integrated into a patient-specific

modelling workflow to further reduce manual overhead, and can also enable more

robust annulus tracking in surgical guidance applications.



Chapter 6

Conclusions

Mitral valve disease is a common pathologic problem occurring increasingly in an

aging population. Many patients suffering from mitral valve disease require sur-

gical intervention to restore normal valve function. Diagnostic imaging available

for the mitral valve includes ultrasound, cardiac CT, and CMR, with ultrasound

in the form of 3D TEE being the primary method used. Mitral valve interven-

tions are difÏcult procedures, and planning a surgical or transcatheter approach

from diagnostic imaging alone remains one of the most significant clinical chal-

lenges. While TEE is used as the primary imaging modality, it can be limited in

image quality, signal dropout and field-of-view, contributing to the difÏculty in

planning an interventional approach. The development of simulation approaches

utilizing patient-specific mitral valve models has shown promise for both training

and procedure planning. However, a major barrier to producing accurate mod-

els of a patient’s valve is the necessity of deriving the leaflet geometry through

segmentation of diagnostic TEE imaging. The goal of this thesis is to address the

challenge of producing patient-specific mitral valve models through the develop-

ment of volume compounding and automated image analysis to more accurately

and quickly capture the relevant valve geometry.

87



ChapteR 6. Conclusions 88

6.1 Thesis Contributions

In this thesis I present a collection of methods aimed towards addressing the chal-

lenges in using cardiac ultrasound imaging for mitral valve quantification and

modelling. Chapter 2 describes the methods used to register and blend multiple

views acquired with a standard TEE probe without external tracking hardware.

Standard TEE volumes can visualize the mitral valve, however, structures beyond

the valve are difÏcult to see. Alternative imaging approaches such as cardiac CT

are often needed to accurately image the sub-valvular structures, however, not all

patients are eligible for CT imaging. The work explores the acquisition protocol

used to acquire the separate views, as well as the registration algorithm used to

align the volumes, and the blending strategy used to create the final image. The

results indicate that I successfully demonstrated the creation of extended field-of-

view volumes of the mitral valve and LV, which can clearly visualize otherwise

difÏcult-to-see structures such as the chordae tendineae and papillary muscles

using standard ultrasound hardware. I have described a workflow for capturing

a series of volumes using a TEE probe during standard diagnostic imaging that

can then be registered and compounded together. I demonstrate improvements

to the compounding process in terms of registration robustness and final image

quality. These compounded volumes capture the sub-valvular structures of in-

terest for cardiac procedure planning such as the LVOT, chordae tendineae and

papillary muscles. This method is able to provide clinicians with a single vol-

ume that captures the mitral valve and the sub-valvular structures using existing

standard-of-care ultrasound imaging. For patients who are not eligible for cardiac

CT imaging, this provides an alternative approach that captures the same anatom-

ical detail which may not otherwise be visible. Furthermore, we can incorporate

the additional detail available in compounded volumes to create more accurate

patient-specific models, particularly in regard to the papillary muscles and chor-
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dae tendineae. Overall, this represents potential improvements in both diagnostics

and procedure planning from 3D TEE imaging.

Identifying, or segmenting, the mitral leaflets from TEE volumes is an impor-

tant step in diagnosis for quantification of the valve, as well as patient-specific

valve modelling. In Chapters 3 and 4 I present methods developed for automating

the segmentation process, as well as the curation and release of a public dataset

through a conference challenge. In Chapter 3 I describe a semi-automatic work-

flow that keeps the user in the loop through an iterative active contour algorithm.

The results indicate that this workflow enables accurate segmentation with a re-

duction in the time required when compared to manual annotation. I also describe

the 3D Slicer module that serves as the user interface for this method, as well as

the automated further mesh modelling steps required to generate a 3D printable

mold. Overall, the software presented in this chapter enables a user to quickly go

from a patient TEE volume to a 3D printable mesh in a series of four steps. This

serves to simplify patient-specific valvemodelling workflow andwas actively used

as part of a study evaluating physical valve replication and simulation through the

use of a pulse duplicator device. There is a strong need for purpose built software

for valve modelling applications to enable clinical translation, as relying on com-

plicated computer-aided-design software and manual segmentations maintains a

burden of expertise and time that may not be feasible for clinical or commercial

adoption.

In Chapter 4 I present a follow up method to that discussed in Chapter 3 ex-

panding on my work on mitral valve segmentation. While the semi-automatic

approach achieved sufÏcient accuracy for the application of patient-spefic mod-

elling, there was room to improve upon both the speed and accuracy of the ap-

proach. The goal of this chapter was to develop a fully automatic mitral valve

segmentation pipeline based on deep learning using CNNs. The first challenge I
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addressed towards using deep learning was the requirement of a sufÏciently large

dataset to train and evaluate a machine learning method. Through the use of my

semi-automatic segmentation software in the valve modelling validation study, I

was able to curate a dataset sufÏcient for demonstrating the applicability of CNNs

for mitral valve leaflet segmentation with DeepMitral v1. Moving from active con-

tours to deep learning enabled the reduction in runtime from ten minutes down to

only a few seconds, while simultaneously improving the accuracy of the segmen-

tation to sub-millimetre average surface distance. This represents a substantial

step towards fully automating leaflet segmentation, both for valve modelling and

additional clinical quantification work. DeepMitral v1 was then integrated into

the 3D Slicer module described in Chapter 3, and I continued to work on curating

a larger dataset of expert annotations suitable for public release. The culmination

of this work was a public dataset of 150 cases with 3D TEE and labelled mitral

valve leaflets, initially released through a MICCAI 2023 challenge. This will serve

as a valuable resource to the wider research community working on the mitral

valve, and may open opportunities of research not otherwise possible due to lim-

ited access to data.

While the previous two chapters focused on automated segmentation of the

mitral valve leaflets, there are many other structures of interest related to the

mitral valve. Chapter 5 moves beyond the valve leaflets to dicuss the automatic

detection and tracking of the mitral valve annulus. Leaflet segmentation is the

most important step for mitral valve modelling to accurately capture the valve

geometry, however, to accurately replicate the valve dynamics it is necessary to

identify the annulus to determine the hinge point of the leaflet. In addition to its

importance for replicating valve dynamics, the annulus is used as a key structure

for valve quantification and classification of pathology, and has also been used

as a visualization target in surgical navigation systems for trans-catheter mitral
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valve procedures. This chapter demonstrates how a deep learning method using a

CNN backbone can directly predict the mitral annulus shape and position through

the use of the Fourier representation of the annulus curve’s 3D coordinates. This

method works directly with 3D volumes, and can be deployed in real-time using

GPU acceleration. This annulus detection algorithm contributes to the research

community by demonstrating the feasibility of a novel approach to annulus track-

ing in real-time, and could be integrated into future projects incorporating the

annulus as a structure of interest in surgical navigation systems.

It is my hope that by developing the techniques described in this thesis mitral

valvemodelling and procedure planning using TEE imaging can be improved. This

thesis demonstrates how volume compounding can expand the field-of-view and

range of structures visible with a standard TEE probe, expanding the potential

clinical utility of the existing standard-of-care imaging modality. Furthermore, it

demonstrated how automated processing 3D TEE volumes of the mitral valve can

automatically extract key geometric information critical for valve modelling and

valve quantification. This geometric information was used to automate several

steps in a mitral valve modelling workflow helping to improve the accessibility

and consistency of the valve replicas. These advances have the potential to enable

clinicians to better plan their mitral valve repair strategy through the combination

of improved imaging, automated ultrasound image analysis, and more accessible

patient-specific valve modelling.
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