267 research outputs found

    Machine learning approaches to model cardiac shape in large-scale imaging studies

    Get PDF
    Recent improvements in non-invasive imaging, together with the introduction of fully-automated segmentation algorithms and big data analytics, has paved the way for large-scale population-based imaging studies. These studies promise to increase our understanding of a large number of medical conditions, including cardiovascular diseases. However, analysis of cardiac shape in such studies is often limited to simple morphometric indices, ignoring large part of the information available in medical images. Discovery of new biomarkers by machine learning has recently gained traction, but often lacks interpretability. The research presented in this thesis aimed at developing novel explainable machine learning and computational methods capable of better summarizing shape variability, to better inform association and predictive clinical models in large-scale imaging studies. A powerful and flexible framework to model the relationship between three-dimensional (3D) cardiac atlases, encoding multiple phenotypic traits, and genetic variables is first presented. The proposed approach enables the detection of regional phenotype-genotype associations that would be otherwise neglected by conventional association analysis. Three learning-based systems based on deep generative models are then proposed. In the first model, I propose a classifier of cardiac shapes which exploits task-specific generative shape features, and it is designed to enable the visualisation of the anatomical effect these features encode in 3D, making the classification task transparent. The second approach models a database of anatomical shapes via a hierarchy of conditional latent variables and it is capable of detecting, quantifying and visualising onto a template shape the most discriminative anatomical features that characterize distinct clinical conditions. Finally, a preliminary analysis of a deep learning system capable of reconstructing 3D high-resolution cardiac segmentations from a sparse set of 2D views segmentations is reported. This thesis demonstrates that machine learning approaches can facilitate high-throughput analysis of normal and pathological anatomy and of its determinants without losing clinical interpretability.Open Acces

    Generative Interpretation of Medical Images

    Get PDF

    Role of deep learning in infant brain MRI analysis

    Get PDF
    Deep learning algorithms and in particular convolutional networks have shown tremendous success in medical image analysis applications, though relatively few methods have been applied to infant MRI data due numerous inherent challenges such as inhomogenous tissue appearance across the image, considerable image intensity variability across the first year of life, and a low signal to noise setting. This paper presents methods addressing these challenges in two selected applications, specifically infant brain tissue segmentation at the isointense stage and presymptomatic disease prediction in neurodevelopmental disorders. Corresponding methods are reviewed and compared, and open issues are identified, namely low data size restrictions, class imbalance problems, and lack of interpretation of the resulting deep learning solutions. We discuss how existing solutions can be adapted to approach these issues as well as how generative models seem to be a particularly strong contender to address them

    3D statistical shape analysis of the face in Apert syndrome

    Get PDF
    Timely diagnosis of craniofacial syndromes as well as adequate timing and choice of surgical technique are essential for proper care management. Statistical shape models and machine learning approaches are playing an increasing role in Medicine and have proven its usefulness. Frameworks that automate processes have become more popular. The use of 2D photographs for automated syndromic identification has shown its potential with the Face2Gene application. Yet, using 3D shape information without texture has not been studied in such depth. Moreover, the use of these models to understand shape change during growth and its applicability for surgical outcome measurements have not been analysed at length. This thesis presents a framework using state-of-the-art machine learning and computer vision algorithms to explore possibilities for automated syndrome identification based on shape information only. The purpose of this was to enhance understanding of the natural development of the Apert syndromic face and its abnormality as compared to a normative group. An additional method was used to objectify changes as result of facial bipartition distraction, a common surgical correction technique, providing information on the successfulness and on inadequacies in terms of facial normalisation. Growth curves were constructed to further quantify facial abnormalities in Apert syndrome over time along with 3D shape models for intuitive visualisation of the shape variations. Post-operative models were built and compared with age-matched normative data to understand where normalisation is coming short. The findings in this thesis provide markers for future translational research and may accelerate the adoption of the next generation diagnostics and surgical planning tools to further supplement the clinical decision-making process and ultimately to improve patients’ quality of life

    Learning Disentangled Representations in the Imaging Domain

    Full text link
    Disentangled representation learning has been proposed as an approach to learning general representations even in the absence of, or with limited, supervision. A good general representation can be fine-tuned for new target tasks using modest amounts of data, or used directly in unseen domains achieving remarkable performance in the corresponding task. This alleviation of the data and annotation requirements offers tantalising prospects for applications in computer vision and healthcare. In this tutorial paper, we motivate the need for disentangled representations, present key theory, and detail practical building blocks and criteria for learning such representations. We discuss applications in medical imaging and computer vision emphasising choices made in exemplar key works. We conclude by presenting remaining challenges and opportunities.Comment: Submitted. This paper follows a tutorial style but also surveys a considerable (more than 200 citations) number of work

    Automated Extraction of Biomarkers for Alzheimer's Disease from Brain Magnetic Resonance Images

    No full text
    In this work, different techniques for the automated extraction of biomarkers for Alzheimer's disease (AD) from brain magnetic resonance imaging (MRI) are proposed. The described work forms part of PredictAD (www.predictad.eu), a joined European research project aiming at the identification of a unified biomarker for AD combining different clinical and imaging measurements. Two different approaches are followed in this thesis towards the extraction of MRI-based biomarkers: (I) the extraction of traditional morphological biomarkers based on neuronatomical structures and (II) the extraction of data-driven biomarkers applying machine-learning techniques. A novel method for a unified and automated estimation of structural volumes and volume changes is proposed. Furthermore, a new technique that allows the low-dimensional representation of a high-dimensional image population for data analysis and visualization is described. All presented methods are evaluated on images from the Alzheimer's Disease Neuroimaging Initiative (ADNI), providing a large and diverse clinical database. A rigorous evaluation of the power of all identified biomarkers to discriminate between clinical subject groups is presented. In addition, the agreement of automatically derived volumes with reference labels as well as the power of the proposed method to measure changes in a subject's atrophy rate are assessed. The proposed methods compare favorably to state-of-the art techniques in neuroimaging in terms of accuracy, robustness and run-time

    Machine Learning Approaches to Human Body Shape Analysis

    Get PDF
    Soft biometrics, biomedical sciences, and many other fields of study pay particular attention to the study of the geometric description of the human body, and its variations. Although multiple contributions, the interest is particularly high given the non-rigid nature of the human body, capable of assuming different poses, and numerous shapes due to variable body composition. Unfortunately, a well-known costly requirement in data-driven machine learning, and particularly in the human-based analysis, is the availability of data, in the form of geometric information (body measurements) with related vision information (natural images, 3D mesh, etc.). We introduce a computer graphics framework able to generate thousands of synthetic human body meshes, representing a population of individuals with stratified information: gender, Body Fat Percentage (BFP), anthropometric measurements, and pose. This contribution permits an extensive analysis of different bodies in different poses, avoiding the demanding, and expensive acquisition process. We design a virtual environment able to take advantage of the generated bodies, to infer the body surface area (BSA) from a single view. The framework permits to simulate the acquisition process of newly introduced RGB-D devices disentangling different noise components (sensor noise, optical distortion, body part occlusions). Common geometric descriptors in soft biometric, as well as in biomedical sciences, are based on body measurements. Unfortunately, as we prove, these descriptors are not pose invariant, constraining the usability in controlled scenarios. We introduce a differential geometry approach assuming body pose variations as isometric transformations of the body surface, and body composition changes covariant to the body surface area. This setting permits the use of the Laplace-Beltrami operator on the 2D body manifold, describing the body with a compact, efficient, and pose invariant representation. We design a neural network architecture able to infer important body semantics from spectral descriptors, closing the gap between abstract spectral features, and traditional measurement-based indices. Studying the manifold of body shapes, we propose an innovative generative adversarial model able to learn the body shapes. The method permits to generate new bodies with unseen geometries as a walk on the latent space, constituting a significant advantage over traditional generative methods

    Doctor of Philosophy in Computing

    Get PDF
    dissertationStatistical shape analysis has emerged as an important tool for the quantitative analysis of anatomy in many medical imaging applications. The correspondence based approach to evaluate shape variability is a popular method, based on comparing configurations of carefully placed landmarks on each shape. In recent years, methods for automatic placement of landmarks have enhanced the ability of this approach to capture statistical properties of shape populations. However, biomedical shapes continue to present considerable difficulties in automatic correspondence optimization due to inherent geometric complexity and the need to correlate shape change with underlying biological parameters. This dissertation addresses these technical difficulties and presents improved shape correspondence models. In particular, this dissertation builds on the particle-based modeling (PBM) framework described by Joshua Cates' 2010 Ph.D. dissertation. In the PBM framework, correspondences are modeled as a set of dynamic points or a particle system, positioned automatically on shape surfaces by optimizing entropy contained in the model, with the idea of balancing model simplicity against accuracy of the particle system representation of shapes. This dissertation is a collection of four papers that extend the PBM framework to include shape regression and longitudinal analysis and also adds new methods to improve modeling of complex shapes. It also includes a summary of two applications from the field of orthopaedics. Technical details of the PBM framework are provided in Chapter 2, after which the first topic related to the study of shape change over time is addressed (Chapters 3 and 4). In analyses of normative growth or disease progression, shape regression models allow characterization of the underlying biological process while also facilitating comparison of a sample against a normative model. The first paper introduces a shape regression model into the PBM framework to characterize shape variability due to an underlying biological parameter. It further confirms the statistical significance of this relationship via systematic permutation testing. Simple regression models are, however, not sufficient to leverage information provided by longitudinal studies. Longitudinal studies collect data at multiple time points for each participant and have the potential to provide a rich picture of the anatomical changes occurring during development, disease progression, or recovery. The second paper presents a linear-mixed-effects (LME) shape model in order to fully leverage the high-dimensional, complex features provided by longitudinal data. The parameters of the LME shape model are estimated in a hierarchical manner within the PBM framework. The topic of geometric complexity present in certain biological shapes is addressed next (Chapters 5 and 6). Certain biological shapes are inherently complex and highly variable, inhibiting correspondence based methods from producing a faithful representation of the average shape. In the PBM framework, use of Euclidean distances leads to incorrect particle system interactions while a position-only representation leads to incorrect correspondences around sharp features across shapes. The third paper extends the PBM framework to use efficiently computed geodesic distances and also adds an entropy term based on the surface normal. The fourth paper further replaces the position-only representation with a more robust distance-from-landmark feature in the PBM framework to obtain isometry invariant correspondences. Finally, the above methods are applied to two applications from the field of orthopaedics. The first application uses correspondences across an ensemble of human femurs to characterize morphological shape differences due to femoroacetabular impingement. The second application involves an investigation of the short bone phenotype apparent in mouse models of multiple osteochondromas. Metaphyseal volume deviations are correlated with deviations in length to quantify the effect of cancer toward the apparent shortening of long bones (femur, tibia-fibula) in mouse models

    Analysis of Sub-Cortical Morphology in Benign Epilepsy with Centrotemporal Spikes

    Get PDF
    RÉSUMÉ Au Canada, l’épilepsie affecte environ 5 à 8 enfants par 3222 âgés de 2 à 37 ans dans la population globale. Quinze à 47 % de ces enfants ont une épilepsie bénigne avec des pointes centrotemporelles (BECTS), ce qui fait de BECTS le syndrome épileptique focal de l’enfant bénin le plus fréquent. Initialement, BECTS était considéré comme bénin parmi les autres épilepsies car il était généralement rapporté que les capacités cognitives ont été préservées ou ramenées à la normale pendant la rémission. Cependant, certaines études ont trouvé des déficits cognitifs et comportementaux, qui peuvent bien persister même après la rémission. Compte tenu des différences neurocognitives chez les enfants atteints de BECTS et de témoins normaux, la question est de savoir si des variations morphométriques subtiles dans les structures cérébrales sont également présentes chez ces patients et si elles expliquent des variations dans les performence cognitifs. En fait, malgré les preuves accumulées d’une étiologie neurodéveloppementale dans le BECTS, peu est connu sur les altérations structurelles sous-jacentes. À cet égard, la proposition de méthodes avancées en neuroimagerie permettrait d’évaluer quantitativement les variations de la morphologie cérébrale associées à ce trouble neurologique. En outre, l’étude du développement morphologique du cerveau et sa relation avec la cognition peut aider à élucider la base neuroanatomique des déficits cognitifs. Le but de cette thèse est donc de fournir un ensemble d’outils pour analyser les variations morphologiques sous-corticales subtiles provoquées par différentes maladies, telles que l’épilepsie bénigne avec des pointes centrotemporelles. La méthodologie adoptée dans cette thèse a conduit à trois objectifs de recherche spécifiques. La première étape vise à développer un nouveau cadre automatisé pour segmenter les structures sous-corticales sur les images à resonance magnètique (IRM). La deuxième étape vise à concevoir une nouvelle approche basée sur la correspondance spectrale pour capturer précisément la variabilité de forme chez les sujets épileptiques. La troisième étape conduit à une analyse de la relation entre les changements morphologiques du cerveau et les indices cognitifs. La première contribution vise plus spécifiquement la segmentation automatique des structures sous-corticales dans un processus de co-recalage et de co-segmentation multi-atlas. Contrairement aux approches standards de segmentation multi-atlas, la méthode proposée obtient la segmentation finale en utilisant un recalage en fonction de la population, tandis que les connaissances à prior basés sur les réseaux neuronaux par convolution (CNNs) sont incorporées dans la formulation d’énergie en tant que représentation d’image discriminative. Ainsi, cette méthode exploite des représentations apprises plus sophistiquées pour conduire le processus de co-recalage. De plus, étant donné un ensemble de volumes cibles, la méthode proposée calcule les probabilités de segmentation individuellement, puis segmente tous les volumes simultanément. Par conséquent, le fardeau de fournir un sous-ensemble de vérité connue approprié pour effectuer la segmentation multi-atlas est évité. Des résultats prometteurs démontrent le potentiel de notre méthode sur deux ensembles de données, contenant des annotations de structures sous-corticales. L’importance des estimations fiables des annotations est également mise en évidence, ce qui motive l’utilisation de réseaux neuronaux profonds pour remplacer les annotations de vérité connue en co-recalage avec une perte de performance minimale. La deuxième contribution vise à saisir la variabilité de forme entre deux populations de surfaces en utilisant une analyse morphologique multijoints. La méthode proposée exploite la représentation spectrale pour établir des correspondances de surface, puisque l’appariement est plus simple dans le domaine spectral plutôt que dans l’espace euclidien conventionnel. Le cadre proposé intègre la concordance spectrale à courbure moyenne dans un plateforme d’analyse de formes sous-corticales multijoints. L’analyse expérimentale sur des données cliniques a montré que les différences de groupe extraites étaient similaires avec les résultats dans d’autres études cliniques, tandis que les sorties d’analyse de forme ont été créées d’une manière à réduire le temps de calcul. Enfin, la troisième contribution établit l’association entre les altérations morphologiques souscorticales chez les enfants atteints d’épilepsie bénigne et les indices cognitifs. Cette étude permet de détecter les changements du putamen et du noyau caudé chez les enfants atteints de BECTS gauche, droit ou bilatéral. De plus, l ’association des différences volumétriques structurelles et des différences de forme avec la cognition a été étudiée. Les résultats confirment les altérations de la forme du putamen et du noyau caudé chez les enfants atteints de BECTS. De plus, nos résultats suggèrent que la variation de la forme sous-corticale affecte les fonctions cognitives. Cette étude démontre que les altérations de la forme et leur relation avec la cognition dépendent du côté de la focalisation de l’épilepsie. Ce projet nous a permis d’étudier si de nouvelles méthodes permettraient de traiter automatiquement les informations de neuro-imagerie chez les enfants atteints de BECTS et de détecter des variations morphologiques subtiles dans leurs structures sous-corticales. De plus, les résultats obtenus dans le cadre de cette thèse nous ont permis de conclure qu’il existe une association entre les variations morphologiques et la cognition par rapport au côté de la focalisation de la crise épileptique.----------ABSTRACT In Canada, epilepsy affects approximately 5 to 8 children per 3222 aged from 2 to 37 years in the overall population. Fifteen to 47% of these children have benign epilepsy with centrotemporal spikes (BECTS), making BECTS the most common benign childhood focal epileptic syndrome. Initially, BECTS was considered as benign among other epilepsies since it was generally reported that cognitive abilities were preserved or brought back to normal during remission. However, some studies have found cognitive and behavioral deficits, which may well persist even after remission. Given neurocognitive differences among children with BECTS and normal controls, the question is whether subtle morphometric variations in brain structures are also present in these patients, and whether they explain variations in cognitive indices. In fact, despite the accumulating evidence of a neurodevelopmental etiology in BECTS, little is known about underlying structural alterations. In this respect, proposing advanced neuroimaging methods will allow for quantitative assessment of variations in brain morphology associated with this neurological disorder. In addition, studying the brain morphological development and its relationship with cognition may help elucidate the neuroanatomical basis of cognitive deficits. Therefore, the focus of this thesis is to provide a set of tools for analyzing the subtle sub-cortical morphological alterations in different diseases, such as benign epilepsy with centrotemporal spikes. The methodology adopted in this thesis led to addressing three specific research objectives. The first step develops a new automated framework for segmenting subcortical structures on MR images. The second step designs a new approach based on spectral correspondence to precisely capture shape variability in epileptic individuals. The third step finds the association between brain morphological changes and cognitive indices. The first contribution aims more specifically at automatic segmentation of sub-cortical structures in a groupwise multi-atlas coregistration and cosegmentation process. Contrary to the standard multi-atlas segmentation approaches, the proposed method obtains the final segmentation using a population-wise registration, while Convolutional Neural Network (CNN)- based priors are incorporated in the energy formulation as a discriminative image representation. Thus, this method exploits more sophisticated learned representations to drive the coregistration process. Furthermore, given a set of target volumes the developed method computes the segmentation probabilities individually, and then segments all the volumes simultaneously. Therefore, the burden of providing an appropriate ground truth subset to perform multi-atlas segmentation is removed. Promising results demonstrate the potential of our method on two different datasets, containing annotations of sub-cortical structures. The importance of reliable label estimations is also highlighted, motivating the use of deep neural nets to replace ground truth annotations in coregistration with minimal loss in performance. The second contribution intends to capture shape variability between two population of surfaces using groupwise morphological analysis. The proposed method exploits spectral representation for establishing surface correspondences, since matching is simpler in the spectral domain rather than in the conventional Euclidean space. The designed framework integrates mean curvature-based spectral matching in to a groupwise subcortical shape analysis pipeline. Experimental analysis on real clinical dataset showed that the extracted group differences were in parallel with the findings in other clinical studies, while the shape analysis outputs were created in a computational efficient manner. Finally, the third contribution establishes the association between sub-cortical morphological alterations in children with benign epilepsy and cognitive indices. This study detects putamen and caudate changes in children with left, right, or bilateral BECTS to age and gender matched healthy individuals. In addition, the association of structural volumetric and shape differences with cognition is investigated. The findings confirm putamen and caudate shape alterations in children with BECTS. Also, our results suggest that variation in sub-cortical shape affects cognitive functions. More importantly, this study demonstrates that shape alterations and their relation with cognition depend on the side of epilepsy focus. This project enabled us to investigate whether new methods would allow to automatically process neuroimaging information from children afflicted with BECTS and detect subtle morphological variations in their sub-cortical structures. In addition, the results obtained in this thesis allowed us to conclude the existence of the association between morphological variations and cognition with respect to the side of seizure focus
    • …
    corecore