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ABSTRACT

Machine Learning Approaches to Human Body Shape Analysis

Marco Piccirilli

Soft biometrics, biomedical sciences, and many other fields of study pay particular attention to
the study of the geometric description of the human body, and its variations. Although multiple
contributions, the interest is particularly high given the non-rigid nature of the human body,
capable of assuming different poses, and numerous shapes due to variable body composition.
Unfortunately, a well-known costly requirement in data-driven machine learning, and particu-
larly in human-based analysis, is the availability of data, in the form of geometric information
(body measurements) with related vision information (natural images, 3D mesh, etc.). We in-
troduce a computer graphics framework able to generate thousands of synthetic human body
meshes, representing a population of individuals with stratified information: gender, Body Fat
Percentage (BFP), anthropometric measurements, and pose. This contribution permits an ex-
tensive analysis of different bodies in different poses, avoiding the demanding, and expensive
acquisition process. We design a virtual environment able to take advantage of the generated
bodies, to infer the body surface area (BSA) from a single view. The framework permits to
simulate the acquisition process of newly introduced RGB-D devices disentangling different
noise components (sensor noise, optical distortion, body part occlusions). Common geometric
descriptors in soft biometric, as well as in biomedical sciences, are based on body measure-
ments. Unfortunately, as we prove, these descriptors are not pose invariant, constraining the
usability in controlled scenarios. We introduce a differential geometry approach assuming body
pose variations as isometric transformations of the body surface, and body composition changes
covariant to the body surface area. This setting permits the use of the Laplace-Beltrami opera-
tor on the 2D body manifold, describing the body with a compact, efficient, and pose invariant
representation. We design a neural network architecture able to infer important body seman-
tics from spectral descriptors, closing the gap between abstract spectral features, and traditional
measurement-based indices. Studying the manifold of body shapes, we propose an innovative
generative adversarial model able to learn the body shapes. The method permits to generate new
bodies with unseen geometries as a walk on the latent space, constituting a significant advantage
over traditional generative methods.
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Chapter 1

Introduction

1.1 Human Body Shape Analysis: A Vision-Driven Approach

Measuring the body of humans is a significant activity, which has long been performed to de-

scribe subjects for a variety of very different tasks. In biometrics, for instance, we are interested

in finding some stable descriptors to identify, verify, or classify subjects. Nutritionists and

physicians are interested in body indexes capable of assessing a patient’s health status. Er-

gonomists and stylists are interested in the body dimensions to design accessories, equipment,

clothes, and comfortable spaces. To all these fields, the compact and robust representation

of the body shape is fundamental. Traditional techniques have been used for years to describe

the body shape and are still in use in many fields of everyday life. However, despite the intro-

duction of many useful solutions, a compact description is always a hard problem due to the

large number of poses that a body can assume, the vast variety of shapes, and nonetheless, the

perceived appearance of the body from different views. A successful and reliable solution for

this highly nonlinear problem will constitute the holy grail, not just for one discipline, but for

a good section of the modern society, where style and appearance are at the center of our lives.
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The human vision system can process (visual) signals in a fraction of the time that will be re-

quired by other systems (smell, hearing, taste, touch). This formidable capability places visual

information at the center of all human activities, but it also makes understanding of the visual

system tremendously complex.

Due to the still increasing importance of the visual information, the field of computer vision

is having an exponential growth in research and publication, boosted by the recent technological

advances that permit storage and signal processing unthinkable a decade ago. Machine learning,

moreover, is another field taking advantage of the technological advance that is contributing to

the computer vision boost. The refreshed deep techniques are playing a major role in the success

of computer vision techniques.

1.2 Human Body Shape Analysis: A Soft-Biometrics View-

point

Soft Biometrics [169] is defined as any anatomical or behavioral characteristic that provides

some information about the identity of a person, but that is not sufficient to identify the subject.

Gender, ethnicity, age, height, weight, eye color, scars, marks, tattoos, and voice accents are

typical soft biometrics traits. Typically, soft biometrics is often used as a complement to tradi-

tional hard biometrics (fingerprint, iris, face, etc.) to improve the recognition accuracy. More

recently, soft biometrics has had a life on his own with the advent of surveillance systems and

long-range cameras (NIR, LF IR) where the traditional biometric traits are not available, and

due to the uncooperative nature of the acquisition, only soft biometric traits are useful.

Soft biometrics, however, present different problems concerning reliability and accuracy.

Combining many traits (gender, ethnicity, age, height, etc.), soft biometric systems usually lack

persistence: the anthropometric features (e.g., height) can vary significantly for the same age
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group (intra-group variation). They also lack distinctiveness: skin color or eye color cannot

be used for distinguishing between individuals with the same ethnicity (inter-group variation).

Finally, the considerable time, effort, and training required to get reliable measurements is a

major cause of errors in the measurements. Two important challenges need to be addressed to

effectively incorporate the soft biometric information into the traditional biometric framework.

The first challenge is the automatic and reliable extraction of soft biometric information in a

nonintrusive manner, without causing any inconvenience to the users, which we’ll study in this

thesis. The second, the fusion with primary biometrics, is out of the scope of this work.

Anthropometric soft biometric systems have been shown to obtain good results. In [3]

we have shown that soft biometrics system can be used successfully in challenging situations.

In particular, we have assessed the correlation and predictability of body measurements in a

population of individuals. Using three seed measurements to predict the other 41 measurements,

and using both measurements for gender prediction produced a classification rate of 88.9 % on

the testing set.

Although we obtained encouraging results on the CEASAR [244] and MoCap [67] datasets,

we had less reliable results on our small acquisition and contradictory performances on the data

from video. For the first dataset, we attribute the poor performance to different population age.

Our acquisition, composed mostly of undergraduate and graduate students was quite different

from the CAESAR dataset [244], comprised mostly of adults. More interesting were the results

using the measurements from video. We quickly realized that traditional body measurements,

using devices like Microsoft Kinect [285] were less stable, with higher relative error than hand-

made measurements. In the next section, we’ll review some essential works on soft biometrics

and present the motivation for our work.
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1.2.1 Related Work in Soft-Biometrics

The first biometric system built by Alphonse Bertillon in 1883 [135] used anthropometric fea-

tures, such as the length and breadth of the head and the ear, length of the middle finger and

foot, height, along with attributes like eye color, scars, and tattoo marks. These measurements

were obtained manually. Although (intra-user) variability was observed, a combination of sev-

eral measurements was sufficient to identify a person with reasonable accuracy. This biometric

system can be considered as the first soft biometrics system by modern definitions, later was

replaced by a fingerprint-based system [135].

Recently, there has been an increased interest in soft biometric features, though the robust

extraction of these features is still an open problem. When traditional biometrics features are

available, soft biometric traits can be extracted more efficiently. For instance, given the face

image, various attributes can be extracted with sufficient reliability, e.g., gender [50], ethnicity

[111], age [154, 156], and eye color. However, the need for the primary biometric features

is a key limitation. Soft biometric systems are reviewed in recent surveys by Dantcheva et

al. [77, 78], Nixon et al. [208, 239], and others [131, 243].

Between the anthropometric measurements, the stature is the easiest to acquire. However,

depending on the acquisition device, different challenges are encountered. Criminisi, taking

advantage of the well-known work on single view metrology [72], developed an uncalibrated

method for stature measurement [73]. Nguyen et al. [207] used a new technique called cross-

ratio in parallel with the vanishing point method, for static stature measurement, and dynamic

measurement when the subject is walking. Another crucial area of soft biometrics is weight

prediction. Cao et al. [49] predicted weight and gender using a copula model with measure-

ments taken from the CAESAR dataset [244]. Velardo et al. [290], inspired by [264] on height

estimation, proposed a model-based approach to correlate the weight with common anthropo-

metric measurements. Unfortunately, the analysis was based on hand-made measurements from
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the NHANES [56] dataset, and on a limited set of RGB images. The anthropometric measure-

ments from the images were extracted manually assuming an oval shape for the body section.

Although the method produces good results, the approach is far from being automatic. In [291]

the same authors extended the former method using a neural network approach, instead of a

multilinear regressor. The datasets used are the well known NHANES [56] dataset, and a new

acquisition with the Microsoft Kinect RGB-D sensor [285]. This new dataset, however, was

limited in size, to only 15 subjects. The method shows the sound capabilities of the Kinect

sensor, but the small RGB-D dataset limits the evaluation of the results to a restricted number

of body shapes.

Recently Madadi et al. [189] presented a novel method to extract anthropometric measure-

ments using depth sensors, and the body parts tracking algorithm [266]. This method assumes

a multi-parts labeled training dataset, and that the subject is aligned to the best model in the

dataset. These constraints, although familiar to many 3D matching frameworks, make this ap-

proach quite limited, and not scalable to a high number of poses.

1.3 Human Body Shape Analysis: A Medical Science View-

point

In medical sciences, the human body is at the center of all analysis. From the ancient Greek

culture to Leonardo’ Vitruvian man, and to the modern age, the human body composition, func-

tions, and shape have been deeply studied. A portion of today’ studies regards the understanding

of, and the fight against, important diseases. Today, a significant focus is on the role of body

shape in the understanding, prediction, and fight against important diseases.

In the last decades, medicine and biomedical focus was on developing efficient and vital

diagnostic tools for use by every physician.
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Often these techniques need to be done in a hospital by specialized personnel. Major limitations

include the problem of scheduling frequent analysis with high potential for human error when

the machine is not entirely automated.

For the above reasons, the medical community has been looking for fast and reliable screen-

ing techniques that can work in an unconstrained environment, with less intervention of spe-

cialized, costly physicians. One approach is to identify easy-to-compute indicators that reflect

essential health conditions. Common indicators have been used by physicians and nutritionists

to specify the human body mass and fat ratio. Less conventional measures have been used in

other areas like pharmacology, for drug rate estimation [83], and recently for mortality predic-

tion [234].

1.3.1 Body Mass Index

Body mass index (BMI) is the primary measure of obesity [198]. It’s defined as the ratio

between body mass and the squared height:

BMI =
Weightkg
Stature2m

(1.1)

BMI represents a measure of the body mass with respect to the height, thus serves as an indicator

of relative obesity. BMI was explicitly cited by Keys [146] as appropriate for population studies

and inappropriate for evaluating an individual [29].

The BMI is not a perfect measure because it does not directly assess body fat. Muscle and

bone are denser than fat, so an athlete or muscular person may have a high BMI, yet not have

too much fat. But most people are not athletes, and for most people, BMI constitutes a good

gauge of their level of body fat [43]. Research has shown that BMI is correlated with the gold-

standard methods for measuring body fat [99]. And it is an easy way for clinicians to screen who
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might be at greater risk of weight-related health problems [94], [95]. The interest in an index

that measures body fat came with increasing obesity in prosperous Western societies. Some

researchers now argue that this flawed and overly reductive measure is skewing the results of

research in public health. For years, critics of the body mass index have griped that it fails to

distinguish between lean and fatty mass (muscular people are often misclassified as overweight

or obese). The measure ignores the distribution of body fat, a critical consideration when it

comes to health risks.

1.3.2 Body Surface Area

The whole body surface area (WBSA) is the 2D measured surface area of a human body. Accu-

rate determination of the whole body surface area (WBSA) is one topic that has been actively

studied over the last century. From the initial estimate of Du Bois and Du Bois in 1916 [83]

to recent work [137], and despite many critiques [259], the WBSA has attracted a lot of atten-

tion, driven primarily by the variety of its applications. For many clinical purposes, WBSA

is a better indicator of metabolic mass than body weight, since it is less affected by abnor-

mal adipose mass [214]. WBSA is used primarily in pharmacology to estimate drug dosage

rates [83] since it is proportional to the absorbing rate [141]. WBSA has been used in medicine

to help determine dosing rates and strategies for anticancer drugs and radiation dose estima-

tion [89], [270]. The renal clearance is usually divided by the BSA to gain an appreciation of

the correct required glomerular filtration rate (GFR) [13], [214]. WBSA is also used to quan-

tify skin burn areas [122]. An assessment of the burned body surface area is indispensable for

evaluating whether the patient requires hospitalization for intravenous fluid resuscitation [93].

In [137], [13] the WBSA was used to account for different body sizes in patients with aortic

stenosis. Aortic valve area (AVA) is divided by body surface area (BSA) to calculate the indexed

AVA (AVAindex). Calculating the surface area is particularly important in plastic surgery [157]
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to determine the area of the skin needed. WBSA is used in the fashion industry for size dresses

and accessories [162], and in ergonomic design [254].

We believe that the WBSA coupled with computer vision techniques can successfully

overcome the usual problems with BMI, namely the inability to capture the distribution

of body mass, and failure to distinguish between lean and fatty mass. Measuring the WBSA

is, however, a problematic task involving the surface estimation of a non-rigid 3D object. The

WBSA as the measure of the surface area, differently from the BMI, is a physical attribute. This

fact is fundamental, since the WBSA can be measured directly with computer vision techniques,

instead of estimating using the pair of weight and stature.

Historically, the only easy way to get this measure (WBSA) is through some empirical formu-

lae that consider just two human body parameters (body weight and stature). The large variety

of body shapes, body composition, and race make the use of a fixed formula highly question-

able. Thus there has been a continuous stream of efforts to accommodate different individuals

[200],[101],[76], [142], [305], [304], [187]. Other recent approaches is to use direct measure-

ments using a three dimensional (3D) whole body scanner [304], [292], [295]. The problem is

that such scanners are expensive and costly to run, thus limiting their availability to users. Yu

et al. [304] provide more detailed analysis on some of these problems.

Automated measurement of the WBSA that is accurate, cheap, reliable, and convenient to

the subject still remains a fundamental challenge.

1.3.3 Body Fat Percentage (BFP)

The body fat percentage (BFP) is a measure of fitness level and is one of the few measurements

that can measure a person’s relative body composition without regard to height or weight. The

BFP of a human or animal is the total mass of fat (WeightFAT ) divided by total body mass
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(WeightT ); body fat includes essential body fat and storage body fat.

BFP (%) =
WeightFAT

WeightT
(1.2)

Essential body fat is necessary to maintain life and reproductive functions. The percentage of

essential body fat for women is greater than that for men due to the demands of childbearing

and other hormonal functions. The percentage of essential fat is 3 − 5% in men, and 8 − 12%

in women [134]. Storage body fat consists of fat accumulation in adipose tissue, part of which

protects internal organs in the chest and abdomen. The minimum recommended total body fat

percentage exceeds the essential fat percentage value reported above [134].

A number of methods are available for determining body fat percentage, such as measure-

ment with calipers, underwater weighing, Whole-body air displacement plethysmography, also

called BodPod, near-infrared interactance, or through the use of bioelectrical impedance analy-

sis. There are also some anthropometric methods for estimating body fat, often using a formula

relating the body measurements to density [84]. These methods are therefore inferior to a direct

measurement of body density and the application of just one formula to estimate body fat per-

centage. One way to regard these methods is that they trade accuracy for convenience since it is

much more convenient to take a few body measurements than to submerge individuals in water.

The chief problem with all statistically derived formulae is that to be widely applicable, they

must be based on a broad sample of individuals. The ideal statistical estimation method for an

individual is based on a sample of similar individuals. For instance, skinfold estimation methods

are based on a skinfold test, also known as a pinch test, whereby a pinch of skin is precisely

measured by calipers at several standardized points on the body to determine the subcutaneous

fat layer thickness [256]. A skinfold based body density formula developed from a sample of

male collegiate rowers is likely to be much more accurate for estimating the body density of a
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male collegiate rower than a method developed using a sample of the general population. Since

the sample is narrowed down by age, sex, physical fitness level, type of sport, and lifestyle

factors. On the other hand, such a formula is unsuitable for general use.

1.4 Human Body Shape Analysis, A New Approach

In this chapter, we have introduced some problems related to human metrology, soft biometrics,

and medical science. We have found some common grounds in these disciplines to conclude

that a unique approach can be taken. We also realized that there is space for a new method in

the analysis and representation of the human body. Fundamental to our approach is the use of

computer vision and machine learning techniques, and recent innovations in acquisition devices.

In particular, the current data-driven approaches show superior performances and more robust

results compared to model-based approach.

One key problem in body shape analysis is the lack of suitable datasets for scalable analysis.

An appropriate dataset is expected to meet some key criteria:

• Comprehend accurate measurements as well as related 2D/3D data.

• A considerably large number of individuals.

• Significant diversity in the samples forming the dataset.

• Should be freely available

Despite the actual trend in computer vision, where the amount of data has seen exponential

growth (e.g., ImageNet challenge [250]), other fields have only experienced moderate or limited

growth. The causes are mainly due to the nature of the data: 3D data is still expensive to acquire

and store, and the labeling process is slow and costly. Today datasets meeting these criteria are
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still scarce. The CAESAR dataset [244] partially meet these criteria. CAESAR 3D, composed

of measurements and 3D mesh of individuals has been used for this kind of analysis but is not

free, costing $10,000 and contains only 2300 individuals.

To overcome the limited amount of data, we decided to use synthetic data in the form of skinned

mesh models. In particular, we created a virtual environment able to generate virtual subjects,

with the critical capability to control the generation process. This special characteristic permits

to create a new dataset composed of “virtual” subjects, with anthropometric measurements that

resemble a population of real humans. Nonetheless, the virtual environment allows control-

ling other essential aspects of the new samples, like the automatic labeling of the subjects. In

Chapter 2 we introduce the new dataset composed of virtual subjects, and the new flexible and

controllable environment for automatic labeling. In Chapter 5 we expand the method to bodies

in multiple poses.

We prove the usefulness of the new dataset, designing a computer vision system able to

estimate the WBSA from a single viewpoint. The particular approach developed in Chapter 3 is

unique and quite intuitive but masks a well-known problem in computer vision: the evaluation

of the surface area of a non-rigid 3D object (body) from a single view. According to Marr’s

information processing [193], the viewer-centered description is also called 2.5D view. This

representation is a mid-level representation between the raw primal sketch, which is mainly

concerned with the description of the intensity changes in the image and their local geometry,

and the 3D model, which is an object-centered representation of three-dimensional objects.

In Chapter 4 we introduce the use of Spectral Geometry (SG), a sub-field of geometry

processing, in the computation of a pose-invariant human body description. A common problem

in anthropometric measurements is that of pose variation. The human body can assume a large

variety of poses, and since it is a non-rigid object, the shape changes significantly between the

poses. Often, body measurements involve the computation of circumferences, and rectilinear
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measures on ill-defined points (e.g., torso size, breast, etc.). These situations, usually easy for

a human, are still quite challenging for a machine. We discuss important relations between

SG descriptors, and human body indicators: Body Fat Percentage (BFP), as well as BMI and

WBSA. Specifically, we assess the invariance of the spectral descriptors with vertical (constant

BMI), and horizontal (increasing BMI) variations of the body mass.

In Chapter 5 we describe an accurate statistical analysis that proves the variability of the

anthropometric measurements under pose variations. Using classification and retrieval tasks,

we show that the performance of anthropometric measurements degrades with increasing body

pose variation. The Chapter also compares the introduced SG techniques with the traditional

anthropometric measurements in a typical soft biometric scenario. In this work, we describe a

new machine learning architecture able to regress traditional human understandable descriptors

(measurements) from abstract spectral features. The approach we take is entirely new for this

field, mainly because we want to overcome the limitations and constraints as discussed earlier

in this chapter.

In human body modeling, it is of particular interest to find a parametric representation of

body variations. For instance, BMI and WBSA have been used to track the body changes of

subjects, but suffer from various drawbacks as cited earlier. Considering the Waist-to-Height

ratio (WHR), is interesting to analyze the semantic characterization of different subjects. This

method can be beneficial to study the space of the body variations: high dimensional, non-

linear, difficult to analyze. In Chapter 6 we propose a new generative approach to analyzing

geometric body variations. Taking advantage of the recent development in deep learning [126]

and adversarial learning [104], we design a generative model, able to create new bodies com-

prises in the similar distribution of body measures. The method explores a lower dimensional

space learned by an unsupervised adversarial technique. We discover unusual patterns in body

variations when adopting different sampling strategies.
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In the appendix, we describe some interesting techniques complementing the work re-

ported in the core chapters. Inspired by the WBSA analysis in Chapter 3, and by recent

work [274], [275] we build a renderer to create real “views” of the 3D human body(Ap-

pendix A). This system is capable of generating millions of views from the subjects in the

dataset, permitting us to simulate the human body in a real environment. In Appendix B we

report some important proof regarding Spectral Geometry. Although we limited the extensive

mathematical framework, we tried to build a substantial background able to explain the 3D body

shape.
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Chapter 2

VirtualBody: A Virtual Dataset for Body

Shape Analysis

2.1 Introduction

The commonly used body shape datasets in soft biometrics and health assessment include:

CAESAR [244], MoCap [67] and NHANES [56] datasets. These datasets are interesting re-

sources to study the human body shape in a large variety of applications: healthcare, medical

sciences, ergonomic studies, soft biometrics, forensics, etc. A feature common to all three

datasets is the possibility to obtain anthropometric measures of the body. However, given the

different nature and specific goals of these collections, each focus on a particular problem.

CAESAR [244] and NHANES [56] datasets lean more toward clinical applications, with sup-

plemental geometric information (CAESAR 3D). MoCap dataset [67], instead, did not have the

measure of the body shape, as it’s primary goal. It’s focus was to track and detect the motion and

pose of the body. The data acquisition is done using an automatic system (Vicon) composed

of a set of synchronized cameras that detect the position of reflective markers on the body.
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Given the location and numbers of markers on the body, it is possible to extract antropometric

measurements from the data. This methodology is definitely useful for body shape analysis,

but unfortunately the available datasets do not represent a population of subjects with sufficient

statistics. This is a common problem, since collecting a significant amount of data from dif-

ferent subject classes: gender, race, ages, health conditions is expensive, time-consuming, and

sometimes challenging.

The acquisition of 2D/3D data from subjects is often a challenge. Fast and reliable methods

for 3D acquisition only became available recently. A common issue in data acquisition from

humans is the subject privacy. Unfortunately, data-driven machine learning algorithms need

training data from a large number of body shapes with significant diversity.

Since collecting this large amount of data is expensive, and infeasible for a research lab-

oratory, we decided on a virtual approach. We propose a generative-based framework where

elements are virtual subjects, associated with computer vision and computer graphics tech-

niques for the human body analysis. Under this framework, we generate a large number of

virtual subjects (3D mesh data) that can capture variations in body shape and body size due to

gender, race, and age. This virtual population needs to capture the statistical attributes of a real

population with all the possible body shapes. The generation of synthetic data is not new in

computer vision (e.g. [266], [45]). However, our dataset is unique in its focus on human body

shape, its size, and diversity.

2.2 Shape Semantics

In this chapter, we focus on the generation of meaningful data where the semantic information

is the most valuable asset. Semantics (e.g., meaning or functionality in a given context) is

still an overlooked feature for data in shape analysis. This is partly due to the lack of methods
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for automatic extraction of semantic content from digital shapes, otherwise known as semantic

annotation, and partly to the evolution of research on shape modeling, which in the past years

was highly focused on the geometric aspects of shapes. The principal benefit of generating a

virtual dataset is the capability to associate powerful semantic features to the generated data.

This peculiarity will allow us in the next chapters to develop powerful techniques able to “learn”

features and concepts not usually available or not easy to annotate in real data. When we talk

about semantics related to the human body we can define different levels of features, for various

applications.

Due to the nature of our study we are interested in all the quantities, and subject conditions

that influence the visual appearance. Thus, the number of features can be quite large, since the

human body can assume different shapes with age, gender, race, health status, and body pose. It

is a non-rigid object. Although there has been some significant work to lower the complexity in

the analysis of body shape, the representation of the human body is still an open problem. The

approach that seems most promising is to use a parametric model that can describe the body

using a pool of parameters. These parameters can be considered as many semantic features

(anthropometric measurements), or as unique features when a set of parameters define a subject

as fat, or lean. In our approach, we use a parametric model to define each subject. Then a

graphics engine will create the final mesh given the model parameters and body pose data.

Here, we focus more on shape analysis without motion, which is the most common situation in

a physician’s clinic. However, the same framework can be used to track and analyze subjects in

different poses.
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2.3 Related Work

Related work can be found in body modeling, human body measurements, and computer graph-

ics. However, although there are many published works in these areas, just a few present a

dataset with a significant number of subjects. Traditionally, there have been many models to

represent the human body. From 1D structure living in 3D space, skeleton-based, to 2D and

3D models. To restrict our attention to the most related and recent work, we will focus on 3D

non-rigid body models.

2.3.1 Datasets

SCAPE [7]: Scape is one of the most popular non-rigid parametric models is the SCAPE

method, but the meshes used to train and test the model has been released as 3D dataset. The

dataset contains 71 registered meshes of a particular person in different poses. With the original

dataset has been published the morphs of the template models, the scape-completion of each

scan, and the correspondences between the template and each scan. Although the mesh descrip-

tion is very accurate, the number of subjects in the dataset is not statistically significant for the

human body shape analysis.

CAESAR 3D [244]: The Civilian American and European Surface Anthropometry Resource

Project is an extensive 3D database including measurements from the entire North American

population sample (2400 male and female subjects, aged 18-65) including demographics. This

database is the first to include 3D model scans together with traditional 1-D measurements.

Scanned poses are: standing, relaxed seated, and coverage poses. In addition, the database con-

tains 40 traditional (1-D) anthropometric measurements done with a tape measure and caliper.

This dataset is the most complete 3D dataset from real scans available. However, this dataset is
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not free, and for human shape analysis can lack significant variability in the shape population.

TOSCA [36]: Bronstein et al. created a dataset for 3D shape retrieval. Shape retrieval fo-

cuses on the design of a shape descriptor or signature, which captures the unique properties of

the shape, and is invariant to a certain class of transformations. In rigid shape analysis, com-

mon transformations are rotation and translation. In shape retrieval problems, the number of

transformations is more vast: scale, missing parts, different sampling and triangulation. The

database contains a total of 80 objects, including 11 cats, 9 dogs, 3 wolves, 8 horses, 6 centaurs,

4 gorillas, 12 female figures, and two different male figures, containing 7 and 20 poses respec-

tively. Since is not composed only of human figures, it is very limited for human body shape

analysis.

SHREC’10 [37]: Bronstein et al. extended the Tosca dataset adding more challenges: ro-

bust large-scale retrieval, correspondence, and features detection and description. The database

contains a total of 148 objects, including 9 cats, 11 dogs, 3 wolves, 17 horses, 15 lions, 21

gorillas, 1 shark, 24 female figures, and two different male figures, containing 15 and 20 poses

respectively. Unfortunately, the number of human subjects had only a slight increase.

FAUST[31]: Bogo et al. takes advantage of the new scanning technologies to create a new

dataset of human bodies. This work is manly focus on surface registration. The registration

is particularly challenging for non-rigid and articulated objects like human bodies. The au-

thors address the registration problem with a novel mesh registration technique that combines

3D shape and appearance information to produce high-quality alignments. The new FAUST

dataset contains 300 scans of 10 people in a wide range of poses together with an evaluation

methodology. This dataset present data of real subjects in a variety of poses, but it is still very

limited in the number and diversity of subjects.
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NHANES [56]: The National Health and Nutrition Examination Survey (NHANES) is a pro-

gram of studies designed to assess the health and nutritional status of adults and children in

the United States. Findings from this survey will be used to determine the prevalence of major

diseases and risk factors for diseases. This dataset is composed only of numerical values in

the form of tables. There are no images or 3D data of the subjects, although, it presents an

enormous source of information on health, habits, and morphology of the subjects as anthro-

pometric measurements. This dataset, although it appears not very relevant from a computer

vision viewpoint, it will be very useful for the statistical analysis of the population, and as we

will see later, for generating virtual subjects.

2.3.2 Models

Below we describe some 3D skinned body mesh models:

SCAPE [7]: One of the most popular non-rigid parametric models is the SCAPE method [7].

The SCAPE method is a data-driven method for building a human body model that spans vari-

ations in both shape and pose. The method is based on a representation that incorporates both

articulated and non-rigid deformations. Learning the model is constituted by two operations:

learning a pose deformation model from a subject with multiple poses, and learning a shape

model from many subjects with a neutral pose. The decoupling of shape and pose deforma-

tions in the SCAPE model has a significant limitation: 3D meshes of different individuals can

change similarly for the same pose change. Various efforts have been made to improve accuracy

and constraints of the SCAPE model. Chen et al. [61], proposed a new improved body model

promising more accuracy and faster fitting time from real data, by exploring a tensor decompo-

sition technique. This decomposition permits to model the deformation as a joint function over

both shape and pose parameters to preserve the dependency between them.
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BlendSCAPE [127]: Hirshberg et al. confront the ill-posed problem of joint modeling and

registration together. The solution is minimizing a single objective function, obtaining high-

quality registration of noisy, incomplete, laser scans, while simultaneously learning a highly

realistic articulated body model. This model drammatically improves robustness to noise and

missing data. Since the model explains a corpus of body scans, it captures how body shape

varies across people and poses.

Delta [30]: Delta is a method to estimate the 3D geometry and appearance of the human

body from a monocular RGB-D sequence of a user moving freely in front of the sensor. RGB-

D data in each frame is aligned with a multi-resolution 3D body model in a coarse-to-fine

process. Then using multi-frame geometry and image texture, obtain accurate shape, pose, and

appearance information could be extracted despite unconstrained motion, partial views, varying

resolution, occlusion, and soft tissue deformation. The novel body model has variable shape

detail, allowing it to capture faces with a high-resolution, deformable head model and body

shape with lower-resolution.

Dyna [227]: Dyna focused on soft tissue deformations, like those of real people, using a high-

resolution 4D capture system. The method accurately registers a template mesh to sequences

of 3D scans. Using a powerful acquisition system, it’s possible to acquire over 40,000 scans

of ten subjects. At this frame rate, the system can learn how soft tissue motion causes mesh

triangles to deform relative to a base 3D body model. The Dyna model uses a low-dimensional

linear subspace to approximate soft-tissue deformation and relates the subspace coefficients

to the changing pose of the body. Dyna models how deformations vary with a persons body

mass index (BMI), producing different deformations for people with different shapes. Dyna

realistically represents the dynamics of soft tissue for previously unseen subjects and motions.

Besides the good results, the proposed work is still based on a small number of subjects, already
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released in the FAUST dataset [31]. As explained earlier, there is still some confusion on the

use of BMI as a relative measure of body fat.

SPML [313]: Zuffi et al. propose a new 3D model of the human body that is both realistic and

part-based. The model represents the body by a graphical model in which nodes of the graph

correspond to body parts that can independently translate and rotate in 3D as well as deform to

capture pose-dependent shape variations. This model defines a “stitching cost” for pulling the

limbs apart, giving rise to the stitched puppet model (SPM).

Hasler et al. [116]: focus their attention on the generation and animation of realistic humans.

In this work Hasler proposed a unified model that describes both, human pose and body shape,

permitting to accurately model muscle deformations not only as a function of pose but also

dependent on the muscle bulging of the subject. The proposed model is based on statistical

analysis of over 550 full body 3D scans taken of 114 subjects. All subjects are measured with

a commercially available impedance spectroscopy body fat scale and a medical grade pulse

oximeter. Although the dataset includes information on anthropometric measurements and body

composition, 114 subjects is still a small number to learn a complete population. However, this

data will be useful in the future when we want to use real data.

2.3.3 Methods

Lie Bodies [96]: Freifeld et al. show how to characterize the set of all possible deformations

in a human body. This unique approach, grounded in differential geometry, provides an elegant

approach to the representation of the spaces of subjects from different classes (gender, weight,

etc.). In this case, each subject lies on the surface of a lie manifold embedded in R3. The

deformations applied to each body mesh form a Lie group, and the authors proved that all the
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rules are valid for this environment. Freifeld et al. extended this framework in [97] combining

transfer learning and parallel transport to improve the learning of datasets with missing subjects.

Black’s framework is based on triangular meshes of subjects contained in the CAESAR 3D

dataset [244]. This dataset includes mainly Caucasian subjects (Europe and North America)

with minorities as Asian and Afro-American.

Kinect @Home [295]: Weiss et al. proposed one of the first methods to acquire 3D structure

of a body in a more relaxed environment. This method, taking advantage of the new Microsoft

Kinect [285] obtained good results. However, the joint optimization involved in the registration

and fitting of the 4 point clouds on the body model makes the system extremely slow (40 min

for one subject).

OpenDR [183]: Loper et al. improve the acquisition system with a new technique. The in-

verse rendered technique attempts to take sensor data and infer 3D geometry, illumination,

materials, and motions such that a graphics renderer could realistically reproduce the observed

scene. Renderers, however, are designed to solve the forward process of image synthesis. To in-

vert the process, the authors propose an approximate differentiable renderer (DR) that explicitly

models the relationship between changes in model parameters and image observations.

MoSh [184]: is a marker-based motion capture (MoCap) system. In the last decade, these

systems have been widely criticized as producing lifeless animations. The authors argue that

important information about body surface motion is present in standard marker sets but is lost

in extracting a skeleton. This approach automatically extracts this detail from mocap data,

estimating body shape and pose together using sparse marker data by exploiting a parametric

model of the human body. In contrast to previous work, MoSh solves for the marker locations

relative to the body and estimates accurate body shape directly from the markers without the
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use of 3D scans; this effectively turns a mocap system into an approximate body scanner. MoSh

is able to capture soft tissue motions directly from markers by allowing body shape to vary over

time.

2.4 3D Body Model and Virtual Body Framework

In our work, we take advantage of a different body model. Makehuman [16] (MH) is an open-

source 3D computer graphics application, designed for the prototyping of photorealistic hu-

manoids to be used in 3D computer graphics. MH takes advantage of 3D morphing technology.

Starting from a (unique) average human base mesh, it can be transformed into a great variety

of characters (male, female, African, Caucasian, Asian, adult, kid, etc.), using a linear interpo-

lation of different target models. Using this technique, one can reproduce different characters

with very different body shapes. The model has two types of parameters:

• macro parameters: stature, weight, gender, ethnicity and muscularity (fat / muscle ra-

tio).

• micro parameters: body part measurements (waist circ., torso, thigh circ., etc.).

Macro and micro parameters constitute the parameter sets that define each subject. MH is

specifically designed for modeling virtual humans as characters in virtual reality and gaming,

with a simple and complete pose system that includes the simulation of muscular movement.

The parameterized model and the extreme simplicity in creating characters make MH a handy

tool for our environment.

However, our goal is to generate an entire population of thousands or more of individuals

with some specified statistical distribution. To realize this task, MH was not directly usable,

since it was built to design game characters one at the time. To overcome this limitation we
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develop a new plugin able to take advantage of MH graphics engine.

2.4.1 Generation of Virtual (Synthetic) Humans

MakeHuman has been used before to create a dataset of realistic human bodies. The main

applications have been in the generation of a human population for bed fitting [286], for learning

a random forest in a computer vision system [45],[44], and on camera positioning [224]. All

these works, although, do not present an efficient technique to generate a population of subjects

with parameter variance similar to a real population.

The MH parametrized model can be stored efficiently in a file containing the parameter

values. Useful available parameters include skin texture and clothes as part of the model. In

our work we included the Caucasian skin texture in all the subjects in the datasets as shown in

Figures 2.6 and 2.7, but we have available African, and Asian skin textures too.

We developed a plugin able to read a set of parameters for each subject from a file, auto-

matically create the desired mesh structure and save it in the right format. The pipeline of the

generation process is shown in Figure 2.1. With this plugin, we can create thousands of bodies

in a relatively small time (∼ 2h30min on a quad core CPU for 20000 subjects). Since a mesh is

a real 3D object with physical measures, we implement a semantic features generator. We take

advantage of the MH measuring tool library to measure the generated mesh and store them in

a table of body measurements in NHANES [56] style. This tool is the critical part of the plu-

gin because it allows us to automatically store all the parameters, measurements, and semantic

information. The plugin has been designed while considering the different possible scenarios

where the generated data can be used. We describe two possible situations (or datasets), but the

plugin can be re-configured easily.

• Completely random virtual dataset (20000 subjects), called Virtual Random dataset.
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• NHANES-based dataset [56] called virtual NHANES dataset (12500 subjects).

Table 2.1 provides some statistical data on the two introduced datasets.

MH
Parametric

Model

Stature

Weight

BFP

...
Anthro.

Measures

MH Engine
Virtual

Measuring
Tool

Measurements
Tables:
Stature
WBSA
Waist

...

Figure 2.1: VirtualBody Method Pipeline.

Virtual NHANES dataset

This Virtual dataset has the goal to mimic a real human population for health assessment stud-

ies. Since we can easily and freely obtain datasets with body part measurements (CAESAR

1-D [244], NHANES [56]), we decided to use these measurements to build the respective vir-

tual subjects mesh. We use the subject measurements available from the National Health and

Nutrition Examination Survey III (NHANES III) dataset (ages 10-85) [56]. Using the body

measurements from NHANES we generated the corresponding set of macro and micro parame-

ters for our model, and subsequently the triangular meshes and the annotation table. The process

runs automatically, reading the subject measures from the NHANES tables and generating the

outputs without human intervention. The parameters used for the generation are: gender, age,

height, race, breast size, upper leg height, upper arm length, upper arm circumference, thigh

circumference, and waist circumference. MH represents all the macro parameters and some mi-

cro parameters as a normalized value between 0 and 1. For some of these parameters, we know

the range used by MH, in which case we can recover the real measure. For some, we do not.
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We decide to allow these parameters to be variable in the data range. The first reason for doing

so is that since MH use a normalized weight, it could be misleading to normalize the NHANES

weight with the MH range. The second reason lies in the targeted experiments for this dataset:

study the health indicators related to body shape. Changing weight and muscle ratio, but keep-

ing the other parameters fixed is like varying the body mass of the subject. But at the same

time, by varying the muscle/fat ratio, we obtain a fat version and a skinny version of the same

individual. This is very interesting since it can be used to learn how the WBSA change with the

respective variations in weight and muscle/fat ratio. In fact, analyzing NHANES dataset [56],

we discover that many individuals are very similar, and we couldn’t get a larger and continuous

shape variation. Thus, we generated a population composed of a total of 12500 subjects for

the Virtual NHANES dataset: 25 meshes for each subject, for 500 original subjects. As a side

note, we specify that the physical measurements obtained as output measuring the mesh are real

values in cm, and these are part of the values stored in the output table.

Virtual Random dataset

The Virtual NHANES dataset is aimed at mimicking a real population with some interesting

augmentation. However, actual data often come in the form of subjects with random statistics

that can assume some distribution. This kind of data can be very challenging because there can

be somebodies that could be hard to find in a real population. We designed a new modality

in the plugin able to generate a random population with a specified distribution. The result is

our Virtual Random dataset. To create this dataset, we allow the plugin to generate random

values for the following macro parameters (stature, gender, race, weight, and muscle ratio). To

increase the variability of the obtained bodies, we generated these parameters using a uniform

distribution rather than a normal distribution. Real population distributions for the parameters is

close to a normal distribution, however using a uniform distribution guarantees a higher number

26



of subjects at the extremes of the possible ranges. In fact, as shown in [4], the WBSA of subjects

at the extremes (e.g., kids, and very obese subjects) can create significant problems in the body

shape analysis. However, to avoid the creation of subjects that are too dissimilar from real

human bodies we restrict the randomly generated parameters to more realistic intervals. The

Virtual Random dataset is important in evaluating the performance of body shapes analysis

methods at extreme body shapes and body sizes.

2.5 Results: Virtual dataset

Figure 2.2 shows the mesh model for one of the generated subjects, while Figure 2.3 shows

the distribution of the WBSA in the datasets. Figures 2.4, and 2.5 show the distributions of

the stature and Waist-to-Stature-Ratio (WSR) for the Virtual NHANES dataset, and Virtual

Random datasets. Virtual NHANES values are in the range of a real population since the mea-

surements are extracted from the NHANES dataset. Virtual Random, as defined above, has a

higher number of unusual subjects. In fact, from the histogram on the left of Figure 2.4 the tails

of the histogram are longer than the Virtual NHANES. However, although highly unlikely, is

not impossible since there is a record of a man that is 2.73 meters tall [82]. Samples of males

and females for different muscle/fat ratios in the dataset are shown in Figures 2.6 and 2.7. MH

defines a texture for a given subject based on gender, age, and races. It is also possible to add

some other structures such as short or long hair. However, this feature has not been used. Ta-

ble 2.1 shows the compositions of the generated datasets. We have included information on the

EORTC (European Organization for Research and Treatment of Cancer [270],[253]) dataset for

comparison. For the generated datasets the WBSA is computed from the original mesh. For the

EORTC, the WBSA is computed using the traditional formulae. The Virtual Random dataset

has a notably larger variance containing many varieties of subjects. The Virtual Random dataset
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includes subjects that are hard to find in the modern population (notice that in Figure 2.3, left,

there are subjects with WBSA approaching 400dm2!). The EORTC has an average WBSA

higher than the Virtual NHANES. Since the EORTC considers cancer patients, it is composed

almost exclusively of adults. Our dataset instead is comprised of a large variety of ages.

Figure 2.2: MakeHuman mesh model.
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Figure 2.3: Distribution of WBSA in the proposed datasets:Virtual Random (left) and Virtual
NHANES (right).
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Table 2.1: Statistics on the datasets.

Virtual NHANES Virtual Random EORTC
Total subjects 12500 19995 3000

Males 6348 10049
Females 6152 9946

Kids (≤ 15) yrs 4123 5786
Adults (> 15 yrs) 8377 14209

Small (H ≤ 130 cm) 3172 14209
Normal (H = 130− 200 cm) 9213 12449

Big ( H > 200 cm) 76 4612
Ages 10− 85 12− 70 adult

Mean WBSA (dm2) 137 167 173
SD WBSA (dm2) 51 66
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Figure 2.4: Distribution of the Stature in the proposed datasets:Virtual Random (left) and Virtual
NHANES (right).
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Histogram Virtual Random Dataset
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Figure 2.5: Distribution of the WSR in the proposed datasets:Virtual Random (left) and Virtual
NHANES (right).

Figure 2.6: Male subjects in Virtual NHANES dataset.

Figure 2.7: Female subjects in Virtual NHANES dataset.
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Chapter 3

Whole Body Surface Area Estimation

3.1 Introduction

Accurate determination of the whole body surface area (WBSA) is one topic that has been ac-

tively studied over the last century. In section 1.3.2 we introduce the importance of the accurate

determination of this critical indicator. In this chapter, we propose a virtual framework able to

study the whole body surface area WBSA. Fundamental of this chapter is the belief that since

the WBSA is a geometric measure, it can be estimated more accurately with computer vision

techniques, rather than with weight and stature. The WBSA computed with the usual formulae

[83] suffer from the same problem as BMI: it doesn’t consider the body composition, but the

error from the real value has a different effect. However, the WBSA computed with computer

vision techniques can easily overcome the usual problems with BMI, namely the inability to

capture the distribution of body mass and inability to distinguish between lean and fatty mass.

Because fat and lean mass density are way different, then higher Body Fat Percentage (BFP)

will have a different effect on the visual appearance.

Historically, the only easy way to get this measure (WBSA) through some empirical formulae
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that consider just two human body parameters (body weight and stature). The large variety of

body shapes, body compositions, and races makes the use of a fixed formula highly question-

able. Thus there has been a continuous stream of efforts to accommodate different individuals.

Another recent approach is to use direct measurements using a three dimensional (3D) whole

body scanner. The problem is that such scanners are typically costly, costing hundreds of thou-

sands of dollars, and have to be used by trained personnel, thus limiting their availability to

users.

3.1.1 WBSA: Measurements and Estimation

The conventional methods for WBSA calculation are through some well-known formulae. The

most widely used formula for WBSA calculation is the one devised by Du Bois and Du Bois in

1916 [83]. Molds of plaster of Paris for nine subjects were cut into small pieces in an attempt

to measure the two-dimensional surface area of the skin. Each subject’s body/skin surface area

was then calculated, and Du Bois and Du Bois determined that WBSA was related to stature

and weight by the formula: 0.007184×W 0.425×H0.725 [83], where W is the weight (in kg), and

H is the stature (in cm) of the subject. Notably, this formula was derived from 9 subjects only,

one of whom was a child. Since the bodies of the subjects studied in the middle of the First

World War are unlikely to be similar to the patients of the modern society, Mosteller proposed a

new calculation of WBSA in 1987 [200]. This formula is a modification of the WBSA equation

by Gehan and George [101].

Today there are many studies related to the verification of meaningful differences between

WBSA measurements taken using a whole body three-dimensional (3D) scanner (criterion mea-

sure) and the estimates derived from each WBSA equation identified from systematic reviews

[76], [142], [305], [304], [187]. In these studies, the 3D scanners used are often cumbersome

and slow and have to be operated by specially trained personnel. The formulae are still in use,
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but many corrective factors are appearing to adapt the formulae to today’s special cases (e.g.,

very obese people) [292],[255],[182], or race [5], [305]. Verbraecken et al [292] examined the

WBSA based on Mosteller’s formula in normal-weight (BMI, 20 − 24.9 kg/m), overweight

(BMI, 25 − 29.9 kg/m), and obese (BMI, > 30 kg/m) adults (> 18 years old) in comparison

with other empirically derived formulae. With obesity, weight increases without a proportional

rise in stature. Consequently, it is possible that the WBSA-predicting equations, which include

stature coefficients, could systematically miscalculate WBSA for obese patients. Because many

clinically essential measurements are indexed to WBSA, systematic errors in WBSA estimation

can adversely affect the clinical care of obese patients. Similarly, [255] and [182] showed that

the well known WBSA formulae (DuBois and Dubois ) fail to accurately predict the WBSA

at the extreme of the normal weight range (10-80 kg). Different scenarios are analyzed in

[5],[14],[305] each requiring a different modification of the basic WBSA formula.

Measurements using body scanner

An alternative to the use of WBSA formulae is whole-body 3D scanning. There are three

significant issues with the 3D laser scanners: cost, speed, and physical space requirement.

Classic 3D laser scanners use a laser beam to illuminate the surface. At the same time, a

receptor registers the beam distortion on the surface and computes the respective depth. The

beam needs to cover all the space of the surface, and it takes time to do so. The process requires

that the object is almost immobile and small movements can cause errors in the reconstruction.

Modern laser scanners are fast enough to avoid this distortion, but still, require a large room to

contain the device.

The result of the scanning operation is usually “raw” data in the form of a 3D (x, y, z) point

cloud. To reconstruct the mesh surface from the raw data, a surface reconstruction algorithm

has to be applied. Without the face information, it is not possible to relate the vertices to a
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face and thus compute the area of the surface. The 3D data, after surface reconstruction, is

completed by other information than (x, y, z) points. The triangles tessellation, for instance,

fits many little triangles every 3 points. Then the calculation of the whole body surface area

is reduced to a simple summation of the areas of all the triangles composing the mesh. This

solution, unfortunately, is not as reliable and efficient as it looks. Key challenges in 3D body

scanning include occluded areas [304], body parts registration [292], [295], device complexity

and portability. Yu et al. [304] provide more detailed analysis on some of these problems.

RGB-D Cameras

State-of-the-art RGB-D cameras are getting smaller, more accurate, and cheaper. This class

of devices is led by the well known Microsoft Kinect for XBox [199]. This device permits

to acquire 3D data with a simple home setting. However, Microsoft Kinect [199] is far to be

portable, since it requires a minimal pc to work, and the power requirement for both is not

negligible. To overcome these drawbacks we designed as a lateral project a structured light

system composed of a smartphone and a low power pico projector [221]. We tested the system

on the face acquisition task. Although the great performance we were not able to use this device

for the impossibility to recruit a sufficient number of subjects.

A surprising result was reported by Weiss et al. in [295]. With only one device in a home

setting, they develop a system capable of reconstructing the 3D mesh using four views of the

subject. This methodology avoided the use of cumbersome 3D scanners but has some limitation.

Acquiring many different views of the subject requires a robust registration process. Moreover,

the registered views are used to fit a model, in this case, the SCAPE model [7], to build the

parametrized body model. This process, unfortunately, is still computationally expensive and

requires a lot of time. The method in [295] requires almost 1 hour to reconstruct the body model.

Recently Loper et al. [183] introduced an innovative inverse rendering framework able to speed
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up the registration process taking advantage of the modern GPU architecture. The method is

significantly faster than [295] with almost the same accuracy, but more prone to errors in the

differentiation process if the environment is not well constrained. A challenging problem for

the 3D scanner methods, and unfortunately for RGB-D devices, is how to measure occluded

areas.

3.1.2 The Problem

The two major streams of work on WBSA (corrective factors for the formulae, and 3D acquisi-

tion techniques), have a common problem: both require trained personnel. In fact, the standard

WBSA and BMI calculations use prediction equations which are accurate only for patients sim-

ilar in size to the original study subjects. Using formulae can be apparently more natural in

the traditional way that physicians evaluate a subject through weight and height. However, this

estimation misses a fundamental component: the body composition. Consider the behavior of

the Body Mass Index (BMI) between athletic and overweight subjects. Both have a BMI greater

than 25, but one is a healthy athletic subject while the other is an obese subject. This index,

unfortunately, is not capable of distinguishing subjects with different body fat percentage. This

fact is a common problem in measuring the radiation dose estimation [89] for obese people,

where a wrong surface area estimate will create an underdosage of the treatment. To avoid this

miscalculation, only trained personnel can establish when a predicting equation is sufficiently

accurate or when to use a corrective factor for the given subject. At the same time, classical

3D body scanners, which give a better estimate, cannot be used without supervision either. The

use of trained personnel, which can be expensive, could lead to human errors, and is not always

feasible, like in an auto-assessment scenario. A simpler, faster and more reliable method to

determine the WBSA could provide some significant advantages. Moreover, the formulae have

some validity issues with young subjects (< 15 years old) [117], the obese [292], and race di-
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versities [14], [5]. Finding new variations or corrective terms for the formulae is very expensive

because using the old-fashioned technique with wraps and molds of plaster of Paris or using

the modern 3D scanners will require the finding of these subjects, and then spending more time

on the measurement process. Unfortunately, using standard 3D datasets such as CAESAR 3D

[244] does not solve the problem. In fact, these datasets are limited in subject diversity, and

using datasets from different countries can be a solution, but at a cost, and they are not always

available.

3.1.3 Virtual Environment

Given these multiple problems, we decided to approach the WBSA calculation with an unusual

methodology for this area. Our goal can be summarized with the following idea. Using a simple

Kinect device we want to obtain an accurate estimate of the WBSA for any given person regard-

less of differences in gender, race, obesity, with the subject merely facing the device without the

supervision of trained personnel. We want to use just one device that can acquire only one view

of the subject, simplifying the setting required for accurate estimation, and making possible

the precise estimate in a home setting. The device will acquire just the visible portion of the

body (View Body Surface Area: VBSA), and a subsequent prediction stage will reconstruct the

overall WBSA.

To study this problem, traditional computer vision, and medical trial consider the acquisition

of a dataset with real subjects. We decided to avoid this costly solution for a more cheaper

solution involving a Virtual clinic.

To obtain the same result of a real 3D acquisition process, like in a clinic, we need to

simulate the acquisition process. This stage constitutes the main part of the system, able to

reconstruct one view of the body (the side that has been viewed by the camera) from the whole

mesh immersed in a virtual 3D room. Analyzing 3D data from a single point of view, usually
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away from the surface increase the complexity, since only the visible part of the body can be

acquired and analyzed. However, using a virtual environment and virtual subjects constitutes

a considerable advantage because we can control at the same time the distortion caused by the

acquisition process and the high variability of body measurements when acquired by a non-

contact device.

With this setup we seek to find the relationship between the surface area computed from one

single viewpoint (we call it view body surface area, VBSA) and the whole body surface area

(WBSA) as a function of the camera position through different body shapes. Learning this

relation will be extremely useful since we can predict the WBSA of the subject from just one

shot.

We targeted a classical physician’s office setup with the subject in front of the device. Al-

though designed for WBSA estimation, the presented framework can be used to study a more

general problem, such as the behavior of the WBSA, or other geometric measures, in a more

unconstrained scenario like video surveillance environment.

In this setting, the position of the body with respect to the camera, the body pose, the camera

intrinsic parameters and camera lens distortion all play a huge role in the final measure. The

proposed Virtual Environment can tackle all these parameters in one unique model capable of

computing the WBSA from the single view (one 3D camera cannot measure the WBSA of the

body in one single shot).

3.2 Methods

The method is based on a Virtual camera setup with the subject at the coordinate origin and the

camera free to move on the surface of a sphere with the same origin. For this project, we’re

using the virtual dataset developed in Chapter 2. In the subsequent section, we will analyze the
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dataset used, the algorithm behind the virtual camera, and the prediction algorithm.

3.2.1 Dataset

We use the Virtual random and Virtual NHANES datasets developed in Chapter 2. These

two datasets contain the WBSA information for each subject computed in the mesh genera-

tion phase. For this experiment we don’t use the RGB texture because the measure is totally

geometric.

3.2.2 Virtual Camera

In computer graphics, a virtual camera system aims at controlling a camera or a set of cameras

to display a view of a 3D virtual world with the purpose to show the action at the best possible

angle; more generally, they are used in 3D virtual worlds when a third person view is required

There are mainly three types of camera systems: fixed camera systems, tracking cameras, and

interactive camera systems. Our system can be considered an interactive camera system.

There is a large body of research on how to implement a camera system [273]. Our situation,

however, is a bit different than usual virtual camera setup. Given a 3D environment, simple

rendering techniques can create different views of the object, containing only 2D information,

as in a standard RGB picture. We need to recover, instead, the 3D information from the given

camera position, the same result obtained from RGB-D devices, like Microsoft Kinect [199].

This kind of projection has to be based on ray casting technique [248].

Ray casting [248] is the most basic and popular of many computer graphics rendering al-

gorithms that use the geometric algorithm of ray tracing [296]. Ray tracing-based rendering

algorithms operate in image order to render three-dimensional scenes to two-dimensional im-

ages. Geometric rays are traced from the eye of the observer to sample the light (radiance)
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traveling toward the observer from the ray direction. The speed and simplicity of ray casting

comes from computing the color of the light without recursively tracing additional rays that

sample the radiance incident on the point that the ray hit. This eliminates the possibility of

accurately rendering reflections, refractions, or the natural falloff of shadows; however all of

these elements can be faked to a degree, by creative use of texture maps or other methods.

The ray tracing technique implemented works in the follow modality. We define a frame

composed of “pixel” of the same resolution of the camera model. For each “pixel” we shoot a

ray in the direction of the camera. The direction of this ray is due to the intrinsic parameters of

the camera (see camera model 3.2.2) and the orientation (extrinsic parameters). For each ray,

we compute the point in space (x,y,z) intersection between the ray and the object surface. The

obtained point of cloud is the visible part of the object. Rays without intersection are set to

zero, following the convention of an organized point cloud. In the next sections, we exploit the

role of the camera calibration in the ray casting algorithm, the computation of the surface area,

and the VBSA ground truth.

Camera model

The ray casting method gives only the framework to reconstruct a view given the position of the

camera. To simulate a real camera we need to add to the ray casting algorithm the camera lens

characteristics: intrinsic parameters [114]. We use the pinhole camera model to describe the

image acquisition process, which is largely employed to parametrize a large number of cameras.

The pinhole camera model defines the geometric relationship between a 3D point and its 2D

corresponding projection onto the image plane. This geometric mapping from 3D to 2D is often

called a perspective projection. We denote the center of the perspective projection (the point in

which all the rays intersect) as the optical center or camera center and the line perpendicular

to the image plane passing through the optical center as the optical axis. Additionally, the
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intersection point of the image plane with the optical axis is called the principal point. The

pinhole camera (see Figure 3.1) models a perspective projection of 3D (X,Y, Z) points onto

the image plane (x, y), and can be described as follows:

(X,Y, Z)>
Projection−−−−−−→ (x, y)>

The equations of perspective projections are given by

x = f
X

Z
y = f

Y

Z
(3.1)

where f is the focal length of the camera, i.e., the distance between the image plane and the

pinhole.

Intrinsic/Extrinsic Parameters. The complete camera model can be represented with the

following relation.
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The matrix Π0 is the canonical projection matrix. The matrix K consists of the intrinsic

parameters of the camera. Here f is the focal length of the camera, sx and sy give the relative

aspect of each pixel. ox and oy specify the coordinates of the image center. sθ is the skew in

the shape of the pixel, i.e., its deviation from an axis-aligned rectangle. The matrix g defines

the pose of the camera. The elements of g constitute the extrinsic parameters of the camera
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Figure 3.1: Pinhole camera model

(the position of the camera center with relative to the world coordinates). Here, R is a 3 × 3

rotation matrix and T is a vector in R3. These two quantities represent rotation and translation

of the camera relative the world coordinate. To find all the parameters (K and g matrices) of the

camera model we need to calibrate the camera [309]. In our case, the device is a 2.5D camera.

In this kind of device the information acquired by the sensor is not the chromatic information

(RGB) but an intensity value proportional to the distance of the point P (see Figure 3.1). These

devices, however, still follow the pinhole camera model [114], but the camera calibration proce-

dure is different [307], [121], and the final parameters are still the same as in the above equation.

We calibrate the Microsoft Kinect for Xbox [199] using the method in [121] and we use the

calibration intrinsic data to simulate this camera in our Virtual Environment framework.

Apart from the intrinsic parameters in the pinhole model, the Virtual Environment also

needs to account for other non-ideal behavior of the device. The geometric characteristics
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of the camera are captured in the camera model, but we need to account for the electrical

characteristics of the sensor. The sensor and the electrical components connected to it convert

the light into electrical signals, and then into digital signals (gray level intensities). In this

process, the signal is typically corrupted by noise, which in the case of a 2.5D device will result

in distorted surfaces.

Some general methods can be used to de-noise the depth map, and some proved to be very

useful. However, in our Virtual Environment, the goal is to simulate a real camera, using a

model that can replicate the real camera behavior. We implement the method proposed by

Nguyen et al. [206]. This method measures both lateral and axial noise distributions, as a

function of both distance and angle of the Kinect to an observed surface. Using this procedure,

we can simulate different scenarios, add noise to the final acquisition, and implement de-noising

strategies able to reduce the effect of noise on the WBSA calculation.

3.2.3 Whole Body Surface Area from a Single View

The Body Surface Area is the 2D area of the external body skin. In our case, we are using the

virtual subjects mesh as an approximation of the skin area. Common meshes are composed of

vertices, faces, and edges. The faces can be regarded as 2D polygonal with the given vertices

that constitute the surface of the 3D object. Figure 2.2 shows the wireframe representation

of the body mesh used. An object acquired with a 3D scanner can have around 50000 faces.

The computation of the total area of a mesh is nothing more than the sum of the 2D area of

each face [174]. The area calculation can be done using common geometric formulae utilizing

the edge lengths of each face. Unfortunately, there are some complications in this apparently

simple operation. As mentioned, the human body can assume a large variety of poses, and it

can assume different shapes changing the observation angle. In this situation, occlusions and

surface curvature make the area calculation more complicated than usual.
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The result of the ray cast method is a point cloud obtained by the intersection of the rays

with the subject (Figures 3.12). The density of the point cloud depends on the resolution of

the sensor and the distance from the camera (equation 3.1). From the point cloud, we need to

reconstruct the mesh surface to be able to calculate the surface area. The literature on this topic

is vast, especially in computer graphics. Traditional methods include marching cubes [185],

Poisson surface reconstruction [143], greedy surface reconstruction [68]. All these methods

present different reconstruction performance that varies depending on the surface complexity.

Unfortunately, this step cannot be avoided, with the noise associated with it, since is fundamen-

tal in every 3D system that uses surface data. However, to be able to analyze the VBSA-WBSA

without the reconstruction noise we need to calculate the mesh triangles area visible by the cam-

era directly from the original mesh. We realized this approach keeping a list of the observed

triangles. For each ray incident on the mesh surface, we store the triangle ID a list. At the end

of the ray casting method we order, sort and eliminate multiple ID inputs, given by multiple

rays intersecting the same triangle, and finally, we compute the areas of the triangles on the list.

The sorting and elimination task is required since multiple rays can intercept the same triangle.

This method gives us accurate results, but it can overestimate the real area. In fact, if a triangle

is partially visible, this method will still compute the whole triangle area. However, since each

body mesh is composed of roughly 28000 triangles, each triangle has a minimal contribution,

and a portion of a triangle has an even smaller contribution.

With this method, we can study the relationship between the WBSA of a subject, and the

VBSA, related to the camera position, without the additive noise coming from the surface re-

construction process. Interestingly, the developed framework is the ideal setting to test a new

reconstruction algorithm since we can analyze different sources of errors that are camera po-

sition dependent. For example, under this framework, we can acquire the ground truth of the

surface area directly from the original mesh, then we can calculate the distortion introduced
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by the reconstruction algorithm, and the prediction error using the VBSA. All these processes

using our framework can be treated separately, each with its additive noise model.

Surface Area Calculation

As an application of the presented framework, we analyze the relationship between WBSA and

VBSA while varying the camera position. The initial surface area value for the whole mesh

has been calculated from the MH plugin and stored with the subject measurements. After ray

casting, we need to calculate the surface area from the visible part of the mesh (VBSA). The

surface area algorithm is the same as the one used in MH. Given the edges u and v (see

Figure 3.2) of a triangle, to obtain the surface area, we use the standard relation:

A =
1

2
|u× v| (3.3)

Where × denotes the cross product between the two vectors u and v, and | | denotes the mag-

nitude of the cross product. The magnitude of the cross product is the area of the parallelogram

whose edges have length u and v (see Figure 3.2). This is twice the area of the triangle whose

edges are u and v. The result of this operation is the surface area of a single triangle. Our initial

MH mesh is composed of about 28000 faces, but given the simplicity of this operation, it can

be done almost in real time.

3.2.4 WBSA Prediction

Given the VBSA value, we want to predict the WBSA for each position of the camera. We

expect a behavior somehow linear when the camera is front to the subject, but will rapidly

diverge when overlapping areas and fat subjects are examined. In this section, we’re going to

introduce the statistical model used for the prediction.
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Figure 3.2: Mesh surface calculation

WBSA-VBSA formulation

We use a polar coordinate system (Figure 3.3), where the subject is at the origin, and the camera

is free to move on a sphere with the same center pointing the origin, and radius the distance from

the subject.

Given the VBSA observations from a given view, say at (θ0, φ0) at a fixed distance = r:

VBSA(θ0, φ0) = (VBSA1(θ0, φ0),VBSA2(θ0, φ0),VBSA3(θ0, φ0), . . . )
T (3.4)

we want to infer the WBSA from a single observation at angle (θ0, φ0) : WBSA = f(VBSA(θ0, φ0)).

Due to the symmetric nature of the human body, the visible portion is close to half of the total

body area. Although, in [304], where the body is scanned by parts and subsequently fused

together, the frontal part of the body account for more than 50%(52%) of the WBSA. This

means that the front and the back contribute in slightly different proportions. In general, for

a given angle, the surface visible is directly proportional to the body dimension, then to the

WBSA. VBSA of that view. The approach is as follows. We process the bodies generated in the

Virtual NHANES dataset and Virtual Random dataset with the Virtual Environment, positioning

the camera at different orientations. The set of all positions of the camera span a solid angle

covering almost all the possible camera views of the body. The solid angle was chosen within
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Figure 3.3: Polar coordinate system.

−90 ≤ θ ≤ 90 and −90 ≤ φ ≤ 90. Since the virtual datasets are composed of symmetric

subjects, we limit the azimuth angle on the left side of the subject covering the angles from

the front left side to the back left side (see Figure 3.3). We limit the body pose to the default

pose in Figure 2.2 and maintain a constant distance between the subjects and the camera. This

distance has been found empirically by considering the tallest subject in the dataset. However,

using different distances, we did not see any drastic difference in performance when the range

comprises in the 3.5− 4.5 meters.

Statistical analysis

To find the relation between WBSA and VBSA, we need to assume the statistical model to be

used for the inference. From a first plot of VBSA vs. WBSA (Figure 3.4), we can see that a

linear regression model can potentially obtain good results. With this assumption the vectors

vbsa(θ, φ) and I(θ, φ) in equation 3.5 are the unknowns of our system:

WBSA = α(θ, φ)V BSA(θ, φ) + I(θ, φ) (3.5)
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where I is the intercept and a is the view area linear coefficient. To avoid overfitting in the

prediction, we use a k-fold cross validation with k=10. We repeat the fitting for different par-

(a) Virtual Random VBSA-WBSA rela-
tion for θ = 0◦φ = 0◦

(b) Virtual NHANES VBSA-WBSA rela-
tion for θ = 0◦φ = 0◦

Figure 3.4: WBSA-VBSA relation.

titions of the dataset: males, females, kids, adults, small stature (s ≤ 140cm), normal stature

(s = 140 − 200cm), big stature (s > 200cm). Another interesting analysis is the use of some

measurements in the prediction. As we can see from the correlation matrix in Figure 3.5, some

measurements are highly correlated with the WBSA (ρ > 0.9). But since our actual system

permits to acquire the stature with good accuracy, we conduct this analysis with the intent to

show some possible gain in the use of body measurements. Using the stature, the inference

takes the form of a multi-linear regression:

WBSA = α(θ, φ)V BSA(θ, φ) + β(theta, φ)Stature+ I(θ, φ) (3.6)

Since we work with a calibrated camera, and due to the morphology of the human body, we can

retrieve the stature almost from every angle, and it’s independent of the view angle. It’s also

worth mentioning that the stature is the most accessible measure to acquire and most reliable.
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Figure 3.5: Correlation Matrix.

Theoretically, having a system able to capture other measurements will possibly lead to a better

prediction.

3.3 Results

In this section we present the result for the WBSA prediction.

3.3.1 WBSA Prediction

A first interesting analysis is the correlation of the available quantities (WBSA, VBSA and

body measurements). Figure 3.5 shows the correlation matrix for the analyzed quantities for

all subjects in the Virtual Random dataset for (θ = 0◦, φ = 0◦). We use the Spearman’s ρ

as our statistic. The WBSA is strongly correlated with the VBSA (ρ = 0.9992). The WBSA

is also strongly correlated (ρ > 0.9) with the following quantities: stature, hip circumference,
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frontal chest. Other measures that have high correlation (ρ > 0.8) with the WBSA include waist

circumference, bust circumference, underbust circumference and neck circumference. The cor-

relation between WBSA and stature is trivial since the stature is one of the parameters directly

connected with the body surface area (all the WBSA formulae are based on stature and weight).

The correlation is an interesting indicator since it can help us to determine which parameters

can give a better prediction of the WBSA.

3.3.2 Linear Regression Analysis

Figure 3.4 shows the scatter plot using VBSA and WBSA in abscissa and ordinate respectively.

Each subject is represented by a point of coordinate (VBSA, WBSA). The relation is linear.

Thus we analyze the performances of a linear regression model. We use the R regression DAAG

Tool model [232] to find the unknowns of the model. We use a k-fold (k=10) cross-validation

to calculate the prediction error for the models defined in Equation 3.5 and Equation 3.6. We

repeat the experiments using different partitions of the data (all subjects, males, females, adults,

kids, small stature, normal stature, big stature).

Figures 3.6-3.8 show the results of this prediction. Each row corresponds to an orienta-

tion of the camera concerning the subject. For each subject, we analyzed the angles θ =

0◦, 30◦, 45◦, 60◦, 90◦, 120◦, 135◦, 150◦, 180◦ for the azimuth, and φ = 0◦,±30◦,±45◦,±60◦,±90◦

for the elevation. For φ = ±90◦ we only had θ = 0◦ since changing the azimuth angle will not

affect the view area. In the tables we report some statistical indicators needed to evaluate the fit

as t-value and standard deviation and different prediction errors given by R: residual standard

error, cross-validation root mean square error, cross-validation mean square prediction error,

cross-validation mean absolute prediction error.

We calculated these quantities for (θ = 0◦, φ = 0◦) position of the camera; we’ll see later

that for some view of the camera, the model will diverge from the linear model, and will see if
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a linear model still can be used with good performances.

As we can see from Figure 3.4 the relation is linear and can be easily fitted. The values for

Multiple R2 and adjusted R2 are very high (0.9975) that means that the residuals are closer to

the linear model (low variance), but doesn’t tell much about the best fit. From Figure 3.4 we

can see that the residuals are close to the median value, and hence the R2 value is high, but

in this situation, we cannot use this value for establishing which prediction is better. A more

useful statistic is the standard error (SE) of the residuals. Also indicative is the distribution of

the residual given by min max 1st and 3rd quantile.

3.3.3 Impact of Azimuth and Elevation on Computed WBSA

As expected, the camera orientation (as captured by the azimuth θ and elevation φ) has a sig-

nificant impact on the computed WBSA, see Figures 3.6 and 3.7. Figures 3.6a and 3.7a show

the variation of the VBSA linear coefficient (α) and the regression RMSE (Root Mean Square

Error) as the azimuth angle change for different elevation angles. For azimuth angle θ = 0◦, the

subjects appear with the maximum area (VBSA) of the body facing the camera, and the linear

coefficient (α) is at the minimum value. As the azimuth angle increases to θ = 90◦, the VBSA

decreases, and the linear coefficient (α) increases. At θ = 90◦, the area facing the camera is at

the minimum since it’s the angle where the camera can see only one side of the body. As the

azimuth angle goes from 90◦ to 180◦, the body shape is similar to the frontal part, but due to the

body pose, the occluded areas make the difference: the VBSA increases, since the area facing

the camera increases and the coefficient α decreases. For the cross-validation error, (Figure 3.6a

left), the RMSE has a singular behavior. For all the azimuth angles θ ≤ 90◦ the error increase,

but it reaches the maximum at θ = 60◦ and not for θ = 90◦ as predicted. This unexpected

behavior is confirmed for the elevation angles φ = 30◦, 45◦, 60◦. Intuitively the azimuth angle

with the lowest accuracy should be θ = 90◦ because the body presents less area to the camera.
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Instead, this is true for the angle θ = 60◦. The explanation for this behavior is that for this angle

the body presents more overlapped areas. For the reciprocal angle, θ = 150◦ it doesn’t happen,

because the arms slightly bent upwards it does not affect that view and make the prediction for

θ = 60◦ the one with the worst accuracy. This behavior is not happening for every elevation

angle. At φ = 0◦ the lowest accuracy is at θ = 90◦ because with the camera aligned with the

body center the maximum overlap is observed at θ = 90◦, but, as the elevation increase, less

and less area faces the camera thus more artifacts can appear.

Varying the elevation angle, just as changing the azimuth, less area is visible by the camera.

But, differently, from the azimuth case, this behavior is not linear and smooth as described

before. In fact, observing the plots in Figure 3.9 we can see that the VBSA coefficient does not

always increase linearly. See the results at θ = 30◦, 45◦, 60◦. For these angles, the overlapped

areas, due to the left arm and leg, make the relation to divert from being linear. The intercept

I has a maximum at approximately θ = 60◦. The intercept is associated with the bias of the

prediction, an offset to add to the linear increase of the VBSA. The WBSA and VBSA are

linearly correlated. For θ = 60◦, there are many occlusions, and the legs are overlapped so the

other arm that remains almost entirely occluded. Thus we can see that the relation diverts from

being linear.

To evaluate the prediction we used a k-fold cross validation setup. We randomly compose the

folds using the function from the CVTOOL package in R [231]. We measure BSA prediction

performance regarding prediction errors: root means square error (RMSE) under k-fold cross-

validation, denoted as CV RMSE in the tables, but also CV MSPE (mean squared prediction

error) and CV MAPE (mean absolute prediction error). Since the WBSA and VBSA are cal-

culated from a mesh with the base unit in decimeter (dm), the WBSA is in decimeter squared

(dm2). The cross-validation root means square error (CV RMSE) is in decimeter squares too,

while the cross-validation mean absolute prediction error (CV MAPE) is in percentage (%).
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CV RMSE varies from a maximum value of 5.5 dm2 when the camera is at the unfavorable

position of 90◦ in elevation, to a minimum of 0.71 dm2. These can be considered relative to the

average WBSA, for the virtual dataset, the average is 167 dm2, and the relative error is 0.6%.

The behavior of the CV RMSE is not straightforward, but it seems connected with the occluded

areas and consequently with the position of the camera. In all the predictions CV RMSE was

higher for the positions of the camera in front of the subject (azimuth 0-90) and has a high value

at around θ = 60◦. The highest value, however, is for the elevation of 90◦ where the camera

can see only the footprint of the body. In this case, the stature component is missing from the

image, but the prediction can still get a decent estimate for obese subjects.

3.3.4 Regression with Stature

Since the WBSA is high correlated with the stature (see Figure 3.5), we expect improved results

by including the stature in the prediction model (Equation 3.6). Figures 3.6b, 3.7b and 3.8

show the impact of including stature in the model. In general, we obtain a lower prediction

error for most analyzed angles, as can be seen in Figure 3.8 thought the improvement might

not be as significant in some cases, e.g., as azimuth angle θ moves away from 90◦. However,

it’s not always possible to acquire the stature with accurate precision; this is not the case in a

physician’s clinic, where the controlled environment, always permits the detection. However,

in a more unconstrained environment, we should consider the stature detection error and its

influence on the WBSA estimation. Out of the scope of this work.

3.3.5 Regression with Grouping

We investigate the performances of the system for different specified human categories. We

grouped our virtual subjects into five different classes (males/females, adults/kids, small/nor-
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mal/big stature), and we use these partitions to learn the linear system. Then using 10-fold cross

validation, we compute the prediction error. Figures 3.6, 3.7 and 3.8 show the VBSA coeffi-

cient α, the RMSE error and a comparison of the errors for cases with and without grouping.

Grouping has a different effect on the prediction error. Surprisingly, grouping did not always

lead to an improvement. In fact, the errors for adults seems larger than the error obtained for

all subjects. Instead, we have some improvement for kids, small stature, and normal stature.

Using the stature in the group models results in a significant improvement for most groups (see

Figure 3.6,3.7).

3.4 Discussion

In this work, we presented an integrated computer vision framework able to infer the relation-

ship between the Whole Body Surface Area (WBSA) and the View Body Surface Area (VBSA)

for a given viewpoint of the subject. In this section, we discuss some observations from the

obtained results. Figures 3.6a,3.7a,3.8 show the WBSA prediction errors for different exper-

imental settings using the two datasets. Other plots that show the WBSA error behavior can

be found in Supplementary Material. In all the WBSA prediction plots we can see a logically

natural pattern: the error remains low for azimuth angles between 0− 45◦ and 135− 180◦, but

higher for 60 − 150◦. From this behavior, we discuss some interesting observations, some of

which are not so apparent. Some of these effect are very difficult to observe.

3.4.1 Frontal VBSA Vs Rear VBSA

An interesting observation is the difference in behavior of the VBSA (and hence computed

WBSA) when the subject is viewed from the front or from the back. As reported in [83] and

[304], the front accounts for more than 50% of the total WBSA. As we can see from the RMSE
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(Figures 3.6a, 3.6b), the errors from the rear part are always inferior relative to those from the

corresponding angles from the front. There could be several explanations. Since the hands

are bent slightly upfront, the occlusions are greater seeing the mesh from the front. Moreover,

the frontal part of the human body and consequently the mesh has many more curved surfaces

on the front, and hence more challenging to model. This effect can be noted by comparing

the RMSE error from males and females. Despite some irregular behavior (males have higher

RMSE at θ = 90◦, than at θ = 60◦) the average RMSE for the males is lower, for the frontal

angles (0◦ ≤ θ ≤ 90◦), than females.

3.4.2 Non-Linearity in the WBSA-VBSA Relationship

Figures 3.6, 3.7 and 3.8 show the RMSE error increase as the azimuth angle, approaches 90◦.

The same behavior can be seen as the elevation angle φ approach ±90◦. Intuitively, for these

angles, the VBSA can hardly infer the WBSA of the subject (Figure 3.11). In these situations,

there are many overlapped areas other than the usual occlusions (feet, armpit, crotch, etc.).

Since we obtain a higher error in a linear prediction, that means that the relation VBSA-WBSA

diverges from linearity. Figure 3.10 shows the VBSA-WBSA relation for the two datasets at

θ = 60◦ φ = 60◦. Observe that for these angles the homoscedasticity condition (constant

variance) fails. People with small WBSA have small variance, instead, big people have very

large variance. In this situation, a linear model can still be used, assuming that we accept a

slight decrease in performance, for subjects with small WBSA, but it will strongly impact the

performance for high WBSA subjects. Figure 3.8 shows the performance of the linear model

for different categories. For high and very high WBSA values, a different approach (non-linear)

has to be considered.
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3.4.3 Evaluating WBSA Measurements

One problem in every WBSA study is the availability of data. In this kind of studies, real people

have to be measured to constitute the ground truth. Our method instead, uses the ground truth

of virtual subjects. We generate these subjects making sure that they are very close to real

people. Although, we cannot compare our method with the familiar formulae. In fact, our lab

is not equipped with wraps and mold to compute the WBSA. Also, the 3D acquisition through

a cumbersome scanner doesn’t guarantee the correctness of the method.

3.4.4 Reconstruction

As explained in Section 3.2.3, the WBSA retrieval is based on the triangular mesh area calcu-

lation. The subjects in the datasets are represented as a mesh with the WBSA calculated from

the MH plugin. However, the ray cast result is a point cloud as shown in Figures 3.11, 3.12. A

fundamental step to retrieve the VBSA is surface reconstruction. Since surface reconstruction

is a hot topic in computer graphics and is beyond our goals in this work, we decided to study

its impact with just one known algorithm: the greedy surface reconstruction algorithm [68]. In

this experiment, we use the default setting that should give good results.

Before applying the reconstruction algorithm, an intermediate step is the points normal

calculation. For this we used an algorithm based on integral images [129] implemented on

the PCL library. We estimated a reconstruction time of ≈ 0.5s in average for one subject

(subjects with more overlapped areas slow down the algorithm). Figure 3.13a shows the cross-

validation error for the linear regression using VBSA computed from the reconstructed surface.

We observe that, at the indicated elevation angle φ = 0◦, the errors are still generally lower for

the azimuth angle 0◦ ≤ θ ≤ 45◦ and 135◦ ≤ θ ≤ 180◦ (less than about 6% for MAPE, and less

than about 5.0 for RMSE).
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These results show the reconstruction error as an additive noise on the VBSA. This noise

is composed of two main components. The first is the error due to the points normal. In fact,

errors in the normal direction will impact the subsequent surface reconstruction. Unfortunately,

due to the very complex nature of the human body and the additional complexity due by the

perspective view in the ray cast operation, computing the normals is not that easy. Missing

neighboring points, surfaces with weird angles due to the non-rigid nature of the body make this

operation complex and prone to errors. Figure 3.12 shows the result of the normals calculation.

The surface reconstruction operation is the second source of the noise. This basic operation

is responsible for transforming a raw or basic representation of the subject (i.e., a cloud of

data points) into a closed manifold mesh. One of the main challenges to surface reconstruction

algorithms is hole filling. A hole in the mesh structure is possibly caused by gaps in the mesh

structure, which if left untouched would result in a surface with numerous jagged boundaries.

This phenomenon is the main source of error in the surface area calculation. In fact, since we

just compute the areas of the single triangles, erroneous reconstruction will create unwilling

boundaries that increase the calculated surface area. This behavior has been observed during

the software setup. To correct this effect, smoothing with least mean square and sampling with

voxels algorithm stages have been added before the final reconstruction.

Usually, every surface reconstruction algorithm is tested using SSD or similar measures.

Unfortunately, since the surface area computation is based on triangle area computation, the

usual measures don’t always consider the reconstructed topology of the final mesh. These

distortions in the topology can drastically degrade the surface area calculation.

All these methods are accurate and can produce a reliable surface. However, they need a

significant amount of time to reconstruct the partial surface of the subject. Simulating a 2.5D

device, gives us what is called an organized point cloud (the x,y,z points are organized in a

matrix fashion like the pixels of an image), and we can use faster and simpler methods for the

56



reconstruction, for example [128].
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Figure 3.6: Virtual Random dataset.
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Figure 3.7: Virtual NHANES dataset.
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(b) Virtual NHANES all subjects.

Figure 3.8: WBSA prediction errors at elevation angle φ = 0◦.
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Figure 3.9: Virtual Random dataset. Impact of camera orientation (Azimuth and Elevation) on
the VBSA prediction.
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(a) Virtual Random VBSA-WBSA rela-
tion for θ = 60◦φ = 60◦

(b) Virtual NHANES VBSA-WBSA rela-
tion for θ = 60◦φ = 60◦

Figure 3.10: Relationship between VBSA and WBSA.

Figure 3.11: Point clouds from raycast. Subject 8 from Virtual NHANES dataset at θ = 60◦ φ =
60◦.
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Figure 3.12: Point cloud results from Virtual Environment. Subject 8 from Virtual NHANES
dataset at θ = 60◦ φ = 60◦ seen by different angles. From these shots, it is possible to see the
missing parts of the body as result of raycasting operation with the camera at the above angle.
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(b) Virtual NHANES dataset.

Figure 3.13: Mesh reconstruction results at elevation angle φ = 0◦.

64



Chapter 4

3D Body Shape Analysis

In the previous chapters we introduced a new dataset, then we used it to find a useful relationship

between the whole body surface area and the visible part of the body surface. In this chapter,

we start a more detailed study on body shape and its description. After a brief introduction of

related topics in computer vision and geometry processing, we propose techniques to classify

body shapes in terms of their Body Fat Percentage (BFP), a label contained in the introduced

dataset. The analyses contained in this chapter are based on the entire mesh structure, and some

newly introduced operators that are intrinsic to the mesh surface. As we’ll see, using Spectral

Geometry techniques in this setup constitute a novelty with enormous potentials.

4.1 Shape Analysis in Computer Vision

Over the past 40 years, a vast collection of work has been devoted to the definition and analysis

of the shape, and shape spaces, as mathematical objects, and to their applications to various

domains in computer graphics and design, computer vision and medical imaging. In computer

vision and medical imaging an important scientific field has started, initiated by U. Grenander
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and M. Miller, called computational anatomy [109][108][110]. One of the primary goals

of computational anatomy is to analyze diseases via their anatomical effects on the shape

of the organs. Shape analysis has demonstrated itself as a compelling approach to characterize

brain degeneration resulting from neuro-cognitive impairment like Alzheimer’s or Huntington’s

diseases and has contributed to a deeper understanding of disease mechanisms at early stages

[173].

Whether represented as a curve, or a surface, or as an image, a shape requires an infinite

number of parameters to be mathematically defined. It is an infinite-dimensional object, and

studying shape spaces requires mathematical tools involving infinite-dimensional spaces (func-

tional analysis) or manifolds (global analysis). Some examples are reviewed in the survey paper

from Bauer et al. [18]

In the context of pattern theory [107], a shape is represented as a deformation of another

(fixed) shape, called template. The deformable template paradigm is rooted in the work of

D’Arcy-Thompson in his celebrated treatise (On Growth and Form) [283], and developed in

Grenander’s theory. Even if pattern theory can be more general, recent models of deformable

templates in shape analysis focus on deformations represented by diffeomorphisms acting on

landmarks, curves, surfaces or other structures that can describe shapes [272].

In the last two decades, the attention has been mainly on feature descriptors. In fact, feature

descriptors play a crucial role in a wide range of geometry analysis and processing applications,

including shape correspondence, retrieval, and segmentation. For 2D images, well known de-

scriptors like SIFT [186], HOG [203], MSER [194], and shape contexts [21]. Early works in

geometry processing such as spin images [138], shape distributions [210], and integral volume

descriptors [192] were based on extrinsic structures that are invariant under Euclidean transfor-

mations.

The next generation of feature descriptors introduced intrinsic structures, such as geodesic
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distances [85] that are preserved under isometric deformation and entirely invariant for the em-

bedding. The geodesic distance, however, suffers from strong sensitivity to topological noise,

which limits its usefulness in real applications. A different branch of shape analysis has been

developed with the use of harmonic methods on surface embedded in 3D manifolds. The ori-

gin of this methodology can be traced to the original article “Can One Hear the Shape of a

Drum?” [140] published by Mark Kac in 1966.

The frequencies at which a drumhead can vibrate depends on its shape. These frequencies are

the eigenvalues of the Laplacian in the space. A central question ”can the shape be predicted if

the frequencies are known?” known as inverse problem. Is it possible for two different shapes to

yield the same set of frequencies? The answer came in 1992 when Gordon, Webb, and Wolpert

constructed a pair of regions in the plane that have different shapes but identical eigenvalues

[105]. So, the answer to Kac’s question is: for many shapes, one cannot hear the shape of the

drum completely. However, some information can be inferred.

Unfortunately, the spectrum does not completely determine the shape of the underlying

manifold, even though geometrical data is contained in the eigenvalues. Manifolds with

identical spectra will be called isospectral manifolds. Although the spectral analysis cannot

give a unique solution to isospectral objects, it can provide good properties that we list in Ap-

pendix B.1.1. In the next section, we discuss how the spectral content can be used in geometry

processing.

Other techniques used for human shape analysis comprise the silhouette analysis [113],[120].

Despite the good results, these methods suffer from the single view perspective of the body, very

difficult to solve without heavy constrain the problem or with important prior information (3D).
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4.2 Spectral Analysis

In response to the question “can one hear the shape of a drum?”, it is possible to hear the

following information from the spectrum:

• It has been shown that if two compact Riemannian manifolds M and M̃ are isospectral,

then dim(M) = dim(M̃) and (Riemannian) volume(M) = volume(M̃). Hence, the

spectrum determines the dimension and the volume of a Riemannian manifold. McKean

and Singer [196] showed the equality of the respective curvature integrals for the scalar

curvature K (e.g., the Gauss curvature in case of a surface) for isospectral manifolds

(
∫
M
k =

∫
(̃M)

K̃).

• In the case of a compact d-dimensional manifold M with a compact (d-1)-dimensional

boundary B in addition to the previous results, the (Riemannian) volume of the boundary

B can be heard [196]. However, to obtain the curvature integral of M and the integrated

mean curvature (
∫
B
J) the spectrum of the double of M is needed.

• In the cases of a closed surface (dim = 2 human body mesh) and of a planar domain with

a smooth boundary, McKean and Singer [196] deduced the possibility to hear the Euler

characteristic from the spectrum. Thus, Kacs conjecture of hearing the number of holes

in the case of a planar region M with smooth boundary B can be obtained. For surfaces

with smooth boundary, the Euler characteristic and the geodesic curvature integral of the

boundary curve can be obtained from spectral data as well, if one additionally employs

the spectrum of the surface double.

Spectral Analysis has given rise to a long stream of works, especially in the areas of shape

retrieval. Coifman et al. [69] introduced invariant metrics known as diffusion distances, which

correspond to the L2-norm difference of energy distribution between two points initialized with
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unit impulse functions after a given time. The diffusion distance is more robust to topological

noise than the geodesic distance. Subsequent works are based on the eigenvalues and eigenfunc-

tions of the Laplace-Beltrami Operator (LBO) [118]. Since the result of this decomposition has

a beautiful physical interpretation: the square roots of the eigenvalues
√
λi are the eigenfre-

quencies of the membrane, and ψixp are the corresponding amplitudes at xp. In particular, the

second eigenvalue corresponds to the sound we hear the best. The LBO [118] constitutes the

Swiss-knife for all the works in geometry processing. For a more detailed treatise of the LBO,

operator see the Appendix B.1 and the most recent book on harmonic analysis [118]. We

briefly describe a few recent works on this topic below.

ShapeDNA, Reuter et al. [241]: Lévy [164] showed that the eigenfunctions of the Laplace-

Beltrami operator could be well adapted to the geometry and the topology of an object.

Reuter et al. [241] adopted the eigenvalues of the LBO to construct a global shape descriptor,

called ShapeDNA. At the heart of this method is the assumption that the Laplace-Beltrami

spectra can be thought as the fingerprints for surfaces and solids. Since the spectrum is isometry

invariant, it is independent of the objects representation including parametrization and spatial

position. Additionally, the eigenvalues can be normalized so that uniform scaling factors for

the geometric objects can be obtained easily. Therefore, checking if two objects are isometric

needs no prior alignment (registration/localization) of the objects but only a comparison of their

spectra. However, two non-isometric but isospectral solids that cannot be distinguished by the

spectra of their bodies and present evidence that the spectra of their boundary shells can tell

them apart.

ShapeDNA can be used (like DNA-tests) to identify objects in practical applications. As in real

life, the DNA does not completely characterize a subject. Identical twins exist with different

shape but the same ShapeDNA. Even though these twins are shaped differently, they still have
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quite a few familiar geometric properties (precisely those properties that are determined by the

spectrum).

Heat Kernel Signature, Sun et al. [276]: An important work on feature descriptors for

deformable shape analysis is the Heat Kernel Signature (HKS). HKS is based on the equation

of heat diffusion over a surface. Given the well-known heat equation:

(
∆+

∂

∂t

)
u(x; t) = 0 u(x; 0) = uo(x), u(∂Ω) = . . . (boundary conditions) (4.1)

Where u : Ω ∈ Rm ×R+ → R is the heat distribution at point x ∈ Ω at time t > 0, u0(x) is the

heat distribution on the surface at time t = 0. ∆ is the LBO defined in Appendix B. The heat

kernel ht(x, y) relates the amount of heat transferred from point x to point y on the surface after

time t. Given the equation:

ht(x, y) =
∑
l≥1

eλltφl(x)φl(y) (4.2)

The heat kernel fully characterizes shapes up to an isometry and represents increasingly global

properties of the shape with increasing time. The heat kernel is invariant under isometric

transformations and stable under small perturbations to the isometry.

Since ht(x, y) is defined for a pair of points over a temporal domain, using heat kernels directly

as features would lead to high complexity. Sun et al. [276] proposed using the diagonal of

the heat kernel as a local descriptor, referred to as the Heat Kernel Signatures (HKS). HKS

restricts itself to just the temporal domain by considering only ht(x, x). HKS inherits most of

the properties of heat kernels under certain conditions. For each point x on the shape, its heat

kernel signature is an n-dimensional descriptor (vector) of the form p(x):

p(x) = c(x)(Kt1(x, x), . . . , Ktn(x, x)) (4.3)
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where c(x) is chosen in such a way that ||p(x)||2 = 1. The HKS descriptor has many ad-

vantages. First, the heat kernel is intrinsic (i.e., expressible solely regarding the Rieman-

nian structure of X), and thus invariant under isometric deformations of X. This makes HKS

deformation-invariant. Second, such a descriptor captures information about the neighborhood

of a point x on the shape at a scale defined by t. It captures differential information in a small

neighborhood of x for small t, and global information about the shape for large values of t.

Thus, the n-dimensional feature descriptor vector p(x) can be seen as analogous to the multi-

scale feature descriptors used in the computer vision community. Third, for small scales t, the

HKS descriptor takes into account local information, which makes topological noise the only

local effect. Fourth, Sun et al. [276] prove that, if the LBO of a shape is nondegenerate (i.e.,

does not contain repeated eigenvalues), then any continuous map that preserves the HKS at

every point must be an isometry. This latter property led Sun et al. to call the HKS provably

informative.

The computation of the HKS descriptor relies on the calculation of the first eigenfunctions and

eigenvalues of the LBO, which can be done efficiently and across different shape representa-

tions. Thus makes HKS applicable to different geometric data, as well as triangular meshes.

An extension of this work is a new intrinsic spectral shape descriptors that are dense and

isometry-invariant by construction [276].

ShapeGoogle, Bronstein A.M., et al. [38]: A well known feature-based approach in image

retrieval is to represent an image as a collection of primitive elements (visual “words”) and

use the methods from text search such as the “bag of words” paradigm. Then, each image is

compactly encoded into a vector of frequencies of occurrences of visual words; a representation

referred to as a “bag of features” (BOF) [133]. Images containing similar visual information

tend to have same bags of features, and thus comparing bags of features allows retrieval similar
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images.

An initial work based on this idea was published initially by Ovsjanikov et al. [211], and later

expanded by Bronstein et a.l[38]. The former method uses a feature detector and descriptor

based on the heat kernels of the LBO, inspired by Sun et al. [276]. The descriptors are used

to construct a vocabulary of geometric words. That is a representation of the shape. This

representation is invariant to isometric deformations, robust under a wide class of perturbations,

and allows one to compare shapes undergoing different deformations. Traditional quantization

and pooling methods were used to generate the bag of features, and a final SVM classifier for

classification.

Although the method produced good results, Behmo et al. [19] showed that one of the disadvan-

tages of the bag of features approaches is that they lose information about the spatial location

of features in the image, and proposed the commute graph representation, which partially pre-

serves the spatial information. In [38] the authors improved the method adopting an iterative

approach based on dictionary learning, technique widely used in the computer vision [136].

The method was complemented with a compact representation using binary code indexing and

matching with the Hamming distance.

Scale-Invariant Heat Kernel Signatures (SI-HKS), Kokkinos et al [40]: A disadvantage of

the HKS is its dependence on the global scale of the shape. If X is globally scaled by β, (i.e.

x′ = x//beta) the corresponding HKS for x′ is β−2Kβ−2t(x, x) = β−2hβ−2t(x, x).

It is possible in theory to perform global normalization of the shape (e.g., normalizing the area

or Laplace-Beltrami eigenvalues), but such a normalization is impossible if the shape has, for

example, missing parts. As an alternative, a local normalization was proposed in Bronstein and

Kokkinos [40] based on the properties of the Fourier transform. By using a logarithmic scale-

space t = ατ , global scaling results in HKS amplitude scaling by β−2, and shift by 2 logα β in
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the scale-space. This effect of scaling is undone by the following sequence of transformations:

pdif (x) = (logKατ2 (x, x)− logKατ1 (x, x), . . . ,

logKατm (x, x)− logKατm−1 (x, x)),

p̂(x) = |(Fpdif (x))(ω1, . . . , ωn)||,

where F is the discrete Fourier transform, and (ω1, dots, ωn) denotes a set of frequencies at

which the transformed vector is sampled. Taking differences of logarithms removes the scaling

constant, and the Fourier transform converts the scale-space shift into a complex phase, which

is removed by taking the absolute value. Typically, a large m is used to make the representation

insensitive to large scaling factors and edge effects.

Wave Kernel Signature (WKS), Aubry et al. [11]: As the HKS derive from the heat

equation model, the Wave Kernel Signature arises from the quantum particle model from the

Schrödingers Equation: (
i∆+

∂

∂t

)
Ψ(x; t) = 0 (4.4)

Although similar to the heat equation the induced dynamics are quite different (oscillations

rather than mere dissipation).

The main idea of this descriptor is to simulate the behavior of a quantum particle on the manifold

possessing some initial energy distribution. The wave function of the particle is given by:

ΨE(x, t) =
∞∑
k0

eiEktφk(x)fE(Ek) (4.5)

At time t = 0 the measurement of its energy isE, obtaining an energy probability distribution f 2
E

with expectationE. The probability to measure the particle at a point x ∈ X is then |ΨE(x, t)|2.
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The WKS is defined as the average probability (over time) to find a particle in x:

WKS(E, x) =
∞∑
k=0

φk(x)
2fE(Ek)

2 (4.6)

since the functions eiEkt are orthogonal for the L2 norm. For a better understanding of all the

properties of the WKS, we remand to [11]. Here we remark the differences with the HKS. The

HKS decomposition in eqn. 4.2 make the HKS composed of low-pass filters, thus is mainly

affected by the global shape of the manifold. The WKS, instead, is composed by band-pass

filters. This difference is fundamental when we analyze local deformations of the shape.

4.2.1 Generic 3D Shape Retrieval techniques

Shape retrieval [167] is the field where geometry processing techniques have constantly been

developed. In this section, we briefly revisit some of the difficulties as well the methods in-

volved. Topology-based methods compare 3D models based on the difference in their global

topological structures. Among the various topology representations, Reeb graphs [125], which

are rooted in the Morse theory, are considered one of the most popular. View-based techniques

use a set of rendered views to represent a 3D model. The visual similarity between the views of

two models is regarded as the model difference. A special survey has been published in [178].

Efforts along this line are mostly devoted to two stages: extraction of descriptive features from

specific view images, and appropriate comparison between sets of visual features. Recently,

Ding and Liu [81] defined a view-based shape descriptor named Sphere Image that integrates

the spatial information of a collection of viewpoints and their corresponding view features that

are matched based on a probabilistic graphics model.
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Shape Retrieval. Common tasks in shape retrieval include: intrinsic shape descriptors, shape

retrieval, and shape correspondence. Generating intrinsic shape descriptors is the task of pro-

ducing intrinsic pose and subject-invariant descriptors for human shapes [176]. Ideal descrip-

tors need to have good localization capabilities and discriminative, as well as robust to different

kinds of noise, including isometric and non-isometric deformations, geometric and topologi-

cal noise, different sampling, and missing parts. Shape retrieval [223] is the task to retrieve

an object using a query shape, typically after some pose or scale transformation. The job is a

hard, fine-grained classification problem since some of the human subjects look nearly identi-

cal. Shape retrieval is an established research area with many approaches and methods. For a

recent detailed review, see Tangelder and Veltkamp [279].

In Rigid shape retrieval the shape of the object is not subject to any deformation or artic-

ulation. Well known methods in this area are: global descriptors based on volume and area

[57], wavelets [212], statistical moments [98], self-similarity (symmetry) [145], and distance

distributions [210]. Methods reducing the 3D shape retrieval to image retrieval use 2D views

[144]; [60]. Graph-based methods based on skeletons [278]; Biasotti et al. [27] are capable of

dealing with deformations, for example, matching articulated shapes. Lipman and Funkhouser

[175] proposed the Mobius voting scheme for sparse shape matching.

Non-rigid Methods. Unlike generic 3D model retrieval for rigid models, non-rigid 3D model

retrieval techniques are dedicated to retrieving the specific and ubiquitous non-rigid 3D models

with various poses or articulations. Due to the non-rigid properties of the models, it is more

challenging to perform the retrieval. Some important surveys on the topic are [166], and [168].

Despite the elegance and popularity of these spectral methods, they require the input of 3D

models to have a manifold data structure, which is unrealistic for most models collected from

the web. Therefore, extra preprocessing is needed to remesh the surfaces before feeding them
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into the framework.

4.3 Human Body Shape: A Spectral Geometry Approach

In this section, we define the problem and our goal. A human body shape is naturally a non-rigid

object that can assume a variety of poses. One property that each shape analysis method “must”

have is the pose-invariance. Pose variation is a kind of transformation applied to the mesh.

This transformation, which cannot modify the metric of the surface (inelastic deformations of

the surface), but only deform it, has been considered an isometry, or in a broad sense a quasi-

isometric transformation [237]. As discussed, many of the spectral geometry methods are based

on the LBO. Thus these methods are isometry invariant, and for the skinned mesh models pose

invariant (see Appendix B.1.1 for the properties of the spectrum). This fact constitutes our

fundamental assumption on using spectral geometry techniques for shape analysis problems in

soft biometrics, and medical science.

With this assumption, we’ll be able to analyze the human body invariant to pose and orientation

in a large sense, since we can still use the same spectral content for the shape analysis.

Another benefit of the intrinsic characteristic of spectral analysis is the invariance of the body

parametrization, a fundamental property since we are working on a discretized surface (trian-

gular mesh).

4.3.1 Challenges in non-rigid shape analysis and Spectral Analysis.

Despite the many good properties and the fundamental constraint, working with spectral geom-

etry methods have some difficulties. Methods and techniques for spectral geometry have been

developed mainly for a triangular mesh. In fact, for this kind of surface discretization, there are

some simple and efficient solutions for the LBO operator [276]. Another possible discretization
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is the point-cloud. Liu et al. [180] proposed a method for computing the LBO on point-clouds.

However, for this kind of discretization K-d tree [24] has to be used to efficiently compute the

nearest points [59], before the surface area.

From a feature-based viewpoint work with 3D features is entirely different from the tra-

ditional 2D world. The type of invariance in non-rigid shapes is different from one required

in RGB images. Typically, feature detectors and descriptors in images are made invariant to

affine transformations, which accounts for different possible views of an object captured in

the image. In the case of nonrigid shapes, the richness of the transformations is much larger,

including changes in pose, bending, and connectivity. Since many natural shape deformations

(such as articulated motion) can be approximated by isometries, basing the shape descriptors on

intrinsic properties of the shape will make it invariant to such deformations. However, shapes

are typically less rich in features than images, making it harder to detect a large number of

stable and repeatable feature points. This fact poses a challenging trade-off in feature detection

between the number of features required to describe a shape on the one hand and the number of

features that are repeatable on the other. This dilemma motivates our decision to avoid feature

detection all together and use dense descriptors instead.

Unlike images which in the vast majority of applications appear as matrices of pixels, shapes

may often be represented as triangular meshes, point clouds, voxels, level sets, etc. Therefore,

it is desirable to have local features computable across multiple representations. Finally, since

shapes usually do not have a global system of coordinates, the construction of spatial relations

between features is a challenging problem.
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4.4 WBSA and the Spectrum

In mathematics, especially spectral theory, Weyl’s law [8] describes the asymptotic behavior of

eigenvalues of the Laplace-Beltrami operator. This behavior is of particular importance since it

relates the spectral content of a surface to the surface area.

4.4.1 Weyl’s Law on the asymptotic behavior of the eigenvalues.

Let D be a bounded region in Rd, with piecewise smooth boundary B. Let 0 ≤ λ1 ≤ λ2 . . . λn

be the spectrum, and N(λ) the number of eigenvalues ≤ λ, counted with multiplicity. Then

N(λ) =
vol(D)

(4π)d/2Γ(d
2
+ 1)

λd λ→ ∞ (4.7)

where vol(D) is the volume of D. For the two common cases we have:

λn ∼ 4π

vol(D)
n for d = 2 (4.8)

and

λn ∼
(

6π2

vol(D)

)2/3

n2/3 for d = 3 (4.9)

Remark: On a surface (dim(M) = 2), the Riemannian volume of M is the surface area (A)

and the Riemannian volume of the boundary is its length. Then the equation can be written as:

λn ∼ 4πn

A
n→ ∞ (4.10)

or, alternatively:

lim
n→∞

λn
n

=
4π

A
(4.11)
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In section 4.4.4 we prove the theorem in the case of a rectangular interval. The proof of more

general cases is not always easy since we need to evaluate the Dirichlet boundary condition.

Before we introduce the new theoretical results let’s explain this important theorem in practice.

One of the properties of the LBO spectrum is that is a diverging sequence. What Weyl’

formula is saying is that: in general, the eigenvalues asymptotically tend to a line with a slope

dependent on the surface area of the 2D manifold. Therefore, a change in the surface area

corresponds to a change in the slopes of the eigenvalues asymptotes. Figure 4.1 shows two

family of shapes from Virtual NHANES dataset 2.4.1, both females. We can see that for each

family the slope change quite a bit; it gets asymptotically very dissimilar. The same behavior is

observable for other families of subjects. This makes quite a challenge to compare two shapes.

A solution, proposed by Reuter [241] is to normalize the eigenvalues by the surface area to align

the spectra.
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Figure 4.1: LBO Spectrum for two shapes family, females

A quite interesting finding is that the surface area is contained in the spectrum, as the Weyl’s
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formula showed. This leads to the conclusion that shapes with the same surface area (isometric)

can be comparable but is not enough, since the spectrum contain more information about the

shape.

4.4.2 LB Spectra of Subdomains

A very interesting problem is the division of the domain D into a finite number of subdomains

D1, . . . , Dn, with each subdomain composed of smooth surfaces S1, . . . , Sn (see Figure 4.2).

Every subdivision now is a 2D surface, with a border ∂Di. On these piecewise smooth bound-

aries we can apply the Dirichlet and Neumann conditions. Given the Helmotz equation:

∆ψn(x) = λnψn(x) (4.12)

with λn eigenvalues and ψn(x) the eigenfunctions, the boundaries conditions are:

µn(x) = 0 x ∈ ∂Di (Dirichlet) (4.13)

∂

∂n
µn(x) = 0 x ∈ ∂Di (Neumann) (4.14)

From the above conditions, there are the Dirichlet eigenvalues λ1 ≤ λ2 ≤ . . . , and Neumann

eigenvalues λ̄1 ≤ λ̄2 ≤ . . . . Every subdomain D1, . . . , Dn has its own series of eigenvalues.

Combining all Dirichlet eigenvalues of all subdomains D1, . . . , Dn into a single increasing se-

quence µ1 ≤ µ2 ≤ . . . , and the respective Neumann eigenvalues into another single sequence

µ̄1 ≤ µ̄2 ≤ . . . . By the maxmin principle [252], each of these quantities can be obtained

as the maximum over piecewise continuous functions y1, . . . , yn−1 of the minimum over trial

functions ω orthogonal to y1, . . . , yn−1. The trial functions can be defined in all of D simply by
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making them vanish in the other subdomains. They will be continuous but not C2 in the whole

domainD. Thus each of the competing trial functions for µn has the extra restriction, compared

with the trial functions for λn, vanishing on the internal boundaries.

It follows that:

λn ≤ µn for each n = 1, 2, . . . (4.15)

Then, the trial functions defining λ̄n for the Neumann problem in D are arbitrary C2 functions.

All above prove the following Theorem:

µ̂n ≤ λ̂n ≤ λn ≤ µn. (4.16)

Figure 4.2: Subdomain decomposition.

In a simple 2D case with D = D1 ∪ D2 ∪ . . . , each µn corresponds to one of these sub-

divisions D1, D2, . . . . Let A(DP ) be the area of one of the subdivisions, and let M(λ) the

enumeration function for the sequence µ1, µ2, . . . introduced above. Then adding the points

which are located within the ellipses, we get:

lim
λ→∞

M(λ)

λ
=

∑
p

A(DP )

4π
(4.17)

as for the case of a single rectangle. Since M(µn) = n, the reciprocal of 4.17:

lim
n→∞

µn

n
=

4π

A(D)
(4.18)
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and similarly:

lim
n→∞

µ̄n

n
=

4π

A(D)
(4.19)

From theorem 4.16 follow that all the limits are equal: limλn/n = lim λ̄n/A(D). This result

extends theorem 4.11 for the union of 2D domains. The above discussion has been conducted

on simplified rectangular subdomains, but it can expanded to more general domains.

4.4.3 Extension to Body Parts

From the above discussion, we obtain some interesting insight on the domain subdivision. This

situation can be found in the analysis of body parts. More generally, it is not always possible

to get the whole 3D mesh, but only a scanned portion, with a surface Ω ideally smooth, and

the respective border ∂Ω. In this situation, it can be possible to extend the spectral analysis to

Figure 4.3: Subdomain decomposition in human body parts.

“open” manifolds. Moreover, if we have the body surface subdivided as body parts, the validity
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of the Weyl’ formula on these subdomains will permit further spectral analyses on the body

parts.

Figure 4.3 shows an MH body model with body parts labeled with different colors. This sample

has been obtained from the MH engine with a MoCap [67] animation. Extending the WBSA

computation to body parts, and the relative Spectral analysis will make the harmonic analysis

applicable to situations where a noncomplete mesh is available.

The behavior of the eigenvalues for this setting (partial matching) is highly dependent on the

missing portion. LBO eigenvalues are global features of the mesh, and thus not directly suitable

for partial matching. Local descriptors (e.g. HKS [276], SIHKS [40]) are better at exploiting

the local features. However, if we normalize the eigenvalues with the surface area, as seen in

[241], the LBO eigenvalues can still be used for partial shape matching.

4.4.4 Weyl proof for the 2D rectangular interval case

Let us consider the domain D = {0 < x < a, 0 < y < b} in the plane. The eigenvalues are of

the form:

λn =
l2π2

a2
+
m2π2

b2
(4.20)

with the eigenfunctions sin(lπx/a) · sin(mπy/b). Let’s introduce the enumeration function:

N(λ) as the number of eigenvalues that do not exceed λ. If the eigenvalues are written in

increasing order then N(λn) = n. N(λ) can be expressed using 4.20. N(λ) is the number of

points (l, m) that are contained within the quarter-ellipse:

l2

a2
+
m2

b2
≤ λ

π2
(l > 0,m > 0) (4.21)

83



in the (l,m) plane. Each such point is the upper-right corner of a square lying within the quarter

ellipse. Therefore, N(λ) is at most the area of this quarter ellipse:

N(λ) =
λab

4π
(4.22)

For large λ, N(λ) and this area may differ by approximately the length of the perimeter, which

is of the order
√
λ. Precisely,

λab

4π
− C

√
λ ≤ N(λ) ≤ λab

4π
(4.23)

for some constant C. Substituting λ = λn and N(λ) = n, we obtain:

λnab

4π
− C

√
λn ≤ n ≤ λnab

4π
(4.24)

where the constant C does not depend on n. Therefore, dividing by n:

lim
n→∞

λn
n

=
4π

ab
(4.25)

the Weyl’s law for a rectangle.

4.5 Body Fat Percentage using Spectral Analysis

In this section, we introduce a spectral analysis-based method for estimating the Body Fat Per-

centage (BFP). As will see ahead, these methods are mostly task driven, where a handcrafted

descriptor has to be designed for the specific operation. Taking advantage of the generated Vir-

tualBody dataset in Chapter 2, and the available labels, we develop a spectral method that can

classify a given body shape by its BFP by analyzing the harmonic content of the shape. Our
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approach benefits from the isometry and intrinsic LBO properties. Moreover, using the scale-

invariant Heat Kernel Signature (SI-HKS) [40], the system will be utterly invariant to the scale

of the subject. This is one of the fundamental characteristics. Since the body fat percentage

is relative to the weight, and not an absolute measure, a non-invariance to scale will make the

system biased toward tall subjects.

4.5.1 Problem Definition

In medical science, a common task is the acquisition of some basic measurements, like weight,

stature, pressure, etc. For nutritionists, more specific measurements are needed to assess the

percentage of body fat. In Chapter 1 we reviewed some of the body composition indicators and

the downsides in using the BMI as body fat measure.

Measuring the BFP is a difficult task. Common methods used by physicians are hand mea-

sures of the waist and height as recommended by the WHO [130], fat calipers, scale with bio-

electrical impedance analysis, and bodpod analysis (Figure 4.4). The bioelectrical impedance

analysis is the only cost-effective automatic method. It permits to have a measure of the BFP,

BMI, weight, and water in the body in a matter of seconds, just stepping on the scale, every-

one at home can use it. However, the accuracy is sometimes not good. This method is highly

affected by the water in the body, and the skin conductivity.

Hand measurements, calipers, and bodpod provide accurate measurements, but the methods

need trained physicians or a lab technician for the bodpod. The bodpod is also an expensive

machine (Figure 4.4). The recurring use of a physician is often costly and not feasible when

the subjects live in remote areas. Self-assessment can often be biased by the individual, and

cannot be used as a reliable measure. Moreover, monitoring the body composition over time is

an important task and needs to be made a lot easier and cost-effective. A reliable, cost-effective,

automatic system will make the prevention and monitoring of obesity much easier.
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Figure 4.4: BodPod setup. Courtesy of lorainccc.edu.

A system with the above specification can be used without major constraints as a soft bio-

metric. Weight prediction has been proposed as soft biometric feature in [49],[3],[290],[291].

Similarly, BFP can be used as a soft biometric feature if it can be easily detected.

For the above reasons a system capable of a fast and reliable estimate of the BFP is valuable for

many disciplines and research areas.

We present a system that can take advantage of modern 3D acquisition systems and tech-

niques in spectral analysis to estimate the BFP for humans. This system will benefit from the

pose-invariant nature of the spectral techniques, making the approach immune from the usual

anthropometric measurement problems (Chapter 1).

4.5.2 Proposed method

Given a 3D acquisition of the body subject, our goal is to detect in which BFP class he/she

falls. The World Health Organization (WHO) defines some predictive values regarding Waist-

to-Height ratio (WHR) [9] and BMI as related to cardiovascular and weight-related diseases

[262]. In particular, the WHO recommended being extremely careful when the WSR is greater

to 0.6. Table 4.1 shows values of WHR and their corresponding classification [9].

Using the VirtualBody dataset presented in Chapter 2 we develop a system to categorize
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Children (< 15) Men Women Categorization
< 0.34 < 0.34 < 0.34 Extremely Slim

0.35 to 0.45 0.35 to 0.42 0.35 to 0.41 Healthy Slim
0.46 to 0.51 0.43 to 0.52 0.42 to 0.48 Healthy
0.52 to -.63 0.53 to 0.57 0.49 to 0.53 Overweight

0.64 + 0.58 to 0.62 0.54 to 0.57 Very Overweight
0.63+ 0.58+ Morbidly Obese

Table 4.1: WHR values and relative categorization [9].

subjects. For simplicity, we define three classes: lean, that corresponds to the healthy slim class

of Table 4.1, then average, and fat classes, for respectively, healthy and overweight classes of

Table 4.1.

We group the subjects from the VirtualBody dataset in these three classes, by considering their

WHR values independent of age. This is a critical design decision. We want to be robust

with respect to age. This, in practice, is a scale-invariant problem. Children can be as tall as

120 centimeters in our dataset, while adults, can be more than 2 meters. This is a significant

difference considering the dimensionality of each mesh model. To create an invariant system

will be more difficult and requires more sophisticated techniques.

4.5.3 Interaction between BFP and Body Weight.

The Body Fat Percentage is a relative measure of the body mass portion constituted by fat. The

interaction of BFP and weight on the visual appearance is not well understood. This interaction

is unfortunately nonlinear and quite complex. Moreover, different categories: males, females,

as well as different races and age groups have significantly different patterns.

The weight of a subject can be considered as a global measure of the shape. When weight in-

creases, the total shape change, although, changes in weight could be due to different factors.

From the early age of childhood till the adulthood, the typical growth is the primary cause of
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change in weight, thus shape. The shape changes mainly due to the stature, but it can also

change due to an increase in fat when healthy habits are not followed. Pediatricians and nu-

tritionists have the famous growth charts to monitor a correct growth. However, waist or hip

measures are not uncommon, since these are the areas where an accumulation of fat is most

probably to occur. Then, we can conclude that: in general, concerning the visual appearance,

subjects with low BFP have a shape that changes globally (mostly in the stature dimension) with

weight increases, while those with high BFP exhibit more local changes of their shape (waist,

hips, torso).

With this in mind, accurately classify people by their BFP, the system needs to be able to detect

these local changes in body shape with changing weight.

To better understand the change of the small BFP variations in the shape, it is indispensable

to have a dataset with enough variations and descriptive labels. The Virtual NHANES collec-

tion 2.4.1 of the VirtualBody dataset presented in Chapter 2 is designed with this in mind. The

Virtual NHANES population (Section 2.4.1) is composed of families of shapes of the same sub-

jects, with the same stature but with variations in weight and fat percentage. These labels and

corresponding shapes will be extremely useful in the subsequent learning stage.

Apparently, the proposed method is similar to the well-known shape retrieval task [37].

However, our dataset presents more challenges. As discussed in Chapter 2, Tosca [36], Scape

[7], the new FAUST dataset [31], and the SHREC’10 datasets [37] are quite challenging, but the

number of subjects and the nuisances are designed to test some properties, e.g., invariance in

pose (isometry transformation) and different kind of noise (topological, holes, remeshing, etc).

Our newest dataset is completely different since it presents challenges very different than the

previous dataset.

To understand the data we need to introduce some important concepts in human body com-

position. The two main variables are weight and BFP. Since BFP changes the weight, the effects
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on the visual appearance for low weight subjects is very different with respect to high weight.

Increasing the weight, the BFP effect on the shape is greater (e.g., a very little effect can be

seen on the shape when the subject is anorexic). Moreover, biologically it is unlikely to have

a body composed of zero or 100 % of fat. This natural behavior is correctly interpreted in the

MakeHuman engine [16], and confirmed in the virtual NHANES dataset 2.4.1.

To further investigate and quantify this behavior, we measure the Hausdorff distance [245] be-

tween the meshes. The results are shown as graphs in Figures 4.7, 4.9. Each graph represents

a family of meshes for one individual in the Virtual NHANES 2.4.1 dataset. In the dataset,

there are 25 variations of the same subject (in the graph only some are shown). The varia-

tions are obtained by changing weight and BFP. The graphs can be considered as having an

origin at the bottom left corner. The Y-coordinate corresponds to the weight dimension, while

the X-coordinate corresponds to the BFP dimension. Each node corresponds to one of the 25

variations on a subject shape. The value at each edge is the Hausdorff distance between two

shapes.

Shapes of the same weight, are along the X-coordinate. Shapes with the same BFP are

aligned along the Y-coordinate. From this representation we can verify the above assertions.

If we consider shapes with maximum weight, (top row W1), the Hausdorff distance between

the state with low BFP and high BFP is quite high: subject 10 Male (Figure 4.7) at W1

dist(M0,M1)w1 = 1, 278. Let’s consider shapes with minimum weight, bottom row W0. The

distance between shapes with the same BFPs: dist(M0,M1)w0 = 0.460. Thus dist(M0,M1)w1 >

dist(M0,M1)w0, for the same BFP values: M0,M1.

A second very interesting effect is the behavior of the average and lean subjects. These

shapes fall on the right portion of the graph. If we consider these shapes we can see that the

Hausdorff distance is quite small. This corresponds with the natural behavior, subjects in good

health with right BFP are more difficult to detect since they look alike. These situations can be
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Figure 4.5: BMI chart.

quite challenging to overcome. This challenge is at the center of a recent topic called metric

learning.

Although the exciting graph representation (Figures 4.7 to 4.9), where each node has the

same probability to occur, it does not consider the probability that a certain shape can occur. In

fact, the generation of the subjects in Chapter 2 has been done independently from the statistics

of the population but just using some measurements and the MH morphing capabilities. This

assumption is totally fine for designing and testing a new approach because the algorithm needs

to be robust to a greater number of transformations. However, a correct representation of the

families of shapes is to account for the probability that a certain state (shape) in the diagram

can occur. Useful prior information can be extracted from an accurate statistical analysis of the

NHANES dataset [56]. Other useful information can be the BMI charts in use by physicians

(Figure 4.5) A statistical model often applied in pattern recognition and machine learning, used

for structured prediction is the Conditional Random Fields (CRFs)[155]. CRFs are a type of

discriminative undirected probabilistic graphical model. It is used to encode known relation-
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Figure 4.6: Interaction between body weight (y-axis) and BFP (x-axis). Each node represents
the body shape generated by varying the weight (W0-W1), and BFP (M0-M1) of the average
subject located at (W0.5,M0.5). Edges represent the Maximum Hausdorff distance between the
body shapes at the associated nodes. Results shown only 11 variations of Subject 10, a male
subject.

ships between observations and construct consistent interpretations. It is often used for labeling

or parsing of sequential data, such as natural language text or biological sequences [155] and in

computer vision [119][62].
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Figure 4.7: Interaction between body weight (y-axis) and BFP (x-axis). Each node represents
the body shape generated by varying the weight (W0-W1), and BFP (M0-M1) of the average
subject located at (W0.5,M0.5). Edges represent the RMS Hausdorff distance between the body
shapes at the associated nodes. Results shown only 11 variations of Subject 10, a male subject.
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Figure 4.8: Interaction between body weight (y-axis) and BFP (x-axis). Each node represents
the body shape generated by varying the weight (W0-W1), and BFP (M0-M1) of the average
subject located at (W0.5,M0.5). Edges represent the Maximum Hausdorff distance between the
body shapes at the associated nodes. Results shown only 11 variations of Subject 7, a female
subject.
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Figure 4.9: Interaction between body weight (y-axis) and BFP (x-axis). Each node represents
the body shape generated by varying the weight (W0-W1), and BFP (M0-M1) of the average
subject located at (W0.5,M0.5). Edges represent the RMS Hausdorff distance between the body
shapes at the associated nodes. Results shown only 11 variations of Subject 7, a female subject.
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4.5.4 Bag of Features Approach

Given the triangular mesh, modeled as a two-dimensional manifold S, and sampled at n points

s1, . . . , sn. The next step is to compute the local descriptors x(si). We denote the LBO of

S as ∆S, and we use the cotangent method [226] to obtain the discretized version. This dis-

cretization preserves many important properties of the continuous Laplace-Beltrami operator,

such as positive semidefiniteness, symmetry, and locality. The eigenfunctions and eigenvalues

of the LBO ∆Sφl = λlφl are denoted {φl, λl}l≥1 where, λi i = 1, . . . are the eigenvalues, and

φi i = 1, . . . the eigenfunctions.

The features used in this work are obtained from the scale-invariant Heat Kernel Signature [40].

The HKS descriptor [276] ht(si, sj) has many advantages, but unfortunately is dependent on

the global scale. It can be made scale-invariant using the technique discussed in Section 4.2.

Such invariance is critical in our case since we deal with meshes at different scales: kids and

women are typically smaller, and the invariance concerning the subject weight is related to the

invariance of the global shape. Figure 4.10 shows the variance of the LBO eigenvalues for two

families of subjects. As discussed before, the variations in the family are due to weight and

BFP. Given a fixed stature, the shape deformations are localized mainly where the fat is stored

(waist, torso, etc.), and the muscle bulging is more evident. As we can see from Figure 4.10, in

these areas the LBO response is very high. Instead, there are some areas where the variation is

very low, e.g., face, feet, hands. We believe the MH engine does not model well this body parts

against BFP and weight variation. This, however, it does not affect our study, which is focused

on the overall body shape, and not on single body parts.

In this work, we adopt the Bag of Features (BOF) method [133], a popular approach in

computer vision. Given a set of q-dimensional descriptors at all the n points of the shape, we
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Figure 4.10: Area Variance: (Left) Short Male, (Right) Muscular Female.

represent the shape as q × n matrix:

X = (x1, . . . ,xn) = (x(s1), . . . ,x(sn)). (4.26)

A Bag-Of-Features is a global descriptor composed by quantized elements in a geometric dic-

tionary and then computing the frequency of these geometric words.

A geometric dictionary is a q × v matrix D = (d1, . . . ,dv), whose columns are descriptors,

called “geometric words”, or atoms, where v is the dimension of the dictionary.

The dictionary is constructed offline using a large collection of shapes, clustering the respective

descriptors (q-dimensional space) into v Voronoi regions, using the k-means algorithm.

Quantization. Given a dictionary D, each local descriptor x(si) is replaced by the closest word

in the dictionary:

Z(X,D) = arg min
i=1,...,v

||x− di||2 (4.27)

This process is called vector quantization. Integrating the feature distribution over the entire
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shape S we obtain a vector n× 1:

f(X) =

∫
s

X(s)dµ(s) (4.28)

which is called Bag of Features. The operation of integral is intended as “pooling” together

with the contributions of the different local features. This operation, executed over the entire

shape, makes the representation insensitive to the spatial locations of the features. However, if

we randomly change the position of the features, but keeping the same distribution the system

will give precisely the erroneous same result. In case of shapes, this phenomenon may be even

more pronounced, as shapes, being poorer in features, tend to have many similar geometric

words. The analogy of expressions in shapes would be spatially-close geometric words.

Instead of looking at the frequency of individual geometric words, a better approach will be to

consider the frequency of word pairs, thus accounting not only for the frequency but also for

the spatial relations between features.

Overall, the former representation is very convenient since comparing two shapes is just

matter of a simple operation:

dBOF (X,Y ) = ||f(X)− f(Y )||1 (4.29)

Classification. Our ultimate goal is to classify the shapes with respect to Body Fat Percentage

(BFP). This classification task is significantly different from the shape retrieval framework,

where spectral distances are computed to retrieve the shape. The BOFs, together with the

labels are used to train a classifier. We use the SVM classifier [33]. SVMs have become

the method of choice to solve difficult classification problems in a wide range of application

domains [17][287][124][280]. Training involves optimization of a convex cost function, and

there are no false local minima to complicate the learning process. SVM has many benefits, for
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example, the model constructed has an explicit dependence on the most informative patterns

in the data (the support vectors). Hence interpretation is straightforward. SVMs are a well-

known class of algorithms which use the idea of kernel substitution, making them able to find

non-linear solutions.

In the general case of two class problem, given a set of instance-label pairs (xi, yi), i =

1, . . . , l x ∈ Rn, yi ∈ {+1,−1} the method solve the following unconstrained optimization

problem with loss functions ξ(ω;xi, yi):

min
ω

1

2
ωTω + C

l∑
i=1

ξ(ω;xi, yi), (4.30)

where C > 0 is a penalty parameter. For SVM, the two common loss functions are max(1 −

yiω
Txi, 0) and max(1− yiω

Txi, 0)
2. The former is referred to as L1-SVM, while the latter is

L2-SVM. One can show that the solution has the form:

ω̂ =
∑
i

αixi (4.31)

where αi = λiyi. The xi for which αi > 0 are called support vectors; these are points which

are either incorrectly classified, or are classified correctly but are on or inside the margin.

The multi-class problem is formalized as a One-Vs-The-Rest strategy. This strategy, also known

as one-vs-all, consists in fitting one classifier per class. For each classifier, the class is fitted with

all the other classes. The samples of that class are the positive samples and all other samples as

negatives. This strategy requires the base classifiers to produce a real-valued confidence score

for its decision, rather than just a class label; discrete class labels alone can lead to ambiguities,

where multiple classes are predicted for a single sample [28].
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4.6 Results

To assess our method, we performed shape classification. We used the human body shapes from

The Virtual NHANES dataset and subdivided these into three classes: Lean, Fat, and Average,

as described before. The basic method: after features extraction using the scale invariant Heat

Kernel Signature (siHKS), compute the dictionary using the k-means algorithm. The quantized

signature is then used to train an SVM classifier.

4.6.1 Dataset Preparation

Our task is subject categorization based on the BFP, invariant to the subject weight. We partition

the dataset as shown in Figure 4.11, where, each category is composed of subjects with different

weights.

From the above discussion on shape distances vs. weight, we repeat different experiments

with various weight groups. The first experiment is using shapes with weight in the range

(W0.5-W1). The second experiment considers (W0-W1). We repeat these experiments for

males and females subjects. We also create another significant partition. The HKS and thus

the siHKS are local descriptors, thus are insensible by stature variations. However, the BOF

framework is positively affected by this variation as we discussed above. With this experiment

we expect to find some decrease in performance.

4.6.2 siHKS Features

The scale-invariant Heat Kernel Signature has two main parameters, time intervals, and sam-

pled frequencies. The time intervals determine the spatial frequencies analyzed. The second

parameter determines the sampled frequencies from the LBO eigen-decomposition. We use a

relatively small number of frequencies (from 2 to 20 with a step of 0.2), considering only the
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Figure 4.11: Categorization of subjects in VirtualBody dataset. Yellow for Fat, Green for Aver-
age, Blue for Lean.

first 20 components from the LBO.

4.6.3 Training

For all the experiments we split the samples in the ratio 70/30 between training and testing. For

the experiments with limited weight, we used 240/104 shapes for class, for train and testing

respectively. For the experiment with all the weights classes, we used a more substantial num-

ber: 700 and 490. We decide to use a linear SVM from the liblinear library [88] to keep the

training time reasonably low, but we use the homogeneous kernel map [289] to take advantage

of additive kernels, in our case χ2.
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4.6.4 Performance

The results of the classification are shown in Table 4.2 in terms of classification accuracy. As

expected, using all the weight variations the system produced a low performance. This behavior

was expected since the basic dictionary learned is not capable of accounting for the complex

distances between groups. We believe that with a more refined discriminative-generative learn-

ing technique we can obtain significant improvements. For instance, using a different pooling

strategy, like tf-idf, or in general, learn the “pool” operator. Constraining the shape variations

limiting the stature and age (global variations) we can see that the performances increase signif-

icantly. From Table 4.2 we notice an unexpected difference in the results for males and females.

The phenomenon is because the female shape is more complex and the variations are harder

to describe [234]. Unfortunately, we cannot compare this results with any other work since

this is the first of this kind. Works on body weight estimation cannot be easily compared with

the present without making some drastic unfair assumptions. Table 4.2 reports the classifica-

tion accuracy for two clusters: all body, and adults. We can observe that for childs and small

bodies, the above assumption on females shapes do not hold. In this scenario the two groups

(males,females) are very similar, and the experiment is not conclusive since the two classes can

be unbalaced. Unfortunately, for these subjects the shape information is not enough descriptive.

Results
Males Females

Weights W0-W1 Weights W0.5-W1 Weights W0-W1 Weights W0.5-W1
All statures, all ages

Accuracy 71.93 % 77.19 % 84.93 % 86.32 %
Stature > 140 cm. > 15 yrs old

Accuracy 95.49 % 96.39 % 89.74 % 89.10 %

Table 4.2: Classification results.
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4.7 Conclusion and Future Work

In this chapter we have introduced the Spectral Geometry (SG) to the problem of human body

description. SG permits to describe non-rigid objects under heavy isometric deformations. This

characteristic is particularly interesting for developing a robust description of the body under

pose variation.

Taking advantage of the above theory we have presented an original work on the BFP esti-

mation. The present method is based on spectral geometry techniques, robust to body pose and

deformations, based on the intrinsic description of the shape, thus invariant to any reference sys-

tem and camera orientation. The algorithm has been developed using the new introduced dataset

for body shape analysis, permitting the creation of very challenging conditions.

We also exploit some new, and well-known limits using the traditional BOF framework. Learn-

ing the dictionary in an unsupervised manner has its limits and is one of the areas where we

can make new contributions. A possible solution is to learn a sparse dictionary in a supervised

manner. There are many recent works on this topic [12], and the area of dictionary learning

with sparse representation is moving quite fast.

We propose to model the transformations of the shape when it is subjected to weight variations,

but contained in the same BFP group. Inspired by the work [211] on functional maps, we

can learn the deformations the shape can sustain with weight variations. Thus decoupling the

variations due to the weight from the changes due to the BFP. Another contribution is to learn

the dictionary using spectral analysis techniques. Using local spectral descriptors (HKS, siHKS,

WKS, etc.), we can learn the optimal transfer function [176] for the learning process.

A future study to obtain a better representation of families of shapes would be the use of

probabilistic graphical models (PGM) or conditional random fields (CRF). In particular, we

want to infer some useful prior knowledge in the graph representation, modeling the shape
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transformations as state transitions in the CRF model.
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Chapter 5

Pose Invariant Soft Biometrics

A soft biometric [169],[135] is defined as any anatomical or behavioral characteristic that pro-

vides some information about the identity of a person, but may not be sufficient to identify the

subject. Gender, ethnicity, age, height, weight, eye color, scars, marks, tattoos, and voice ac-

cents are typical soft biometric traits. In particular, the anatomical characteristics of the human

body, in the form of anthropometric measures: height, waist circumference, torso, etc., con-

stitute the geometric description of the body, that we call anthropometric soft biometrics. The

first biometric system, established by Alphonse Bertillon in 1883 [135], long before the notion

of soft biometric, was based on anthropometric measurements, and other soft-biometric traits

like tattoo and scars. Subsequently, with the introduction of hard biometrics (e.g., fingerprint,

iris, face, etc.), the soft biometrics has been used mainly to complement the former to improve

recognition accuracy [135]. Recently, soft-biometrics has taken a life on his own with the ad-

vent of modern surveillance systems, long-range cameras, and the recent consumer products

such as Microsoft Kinect [71], and Intel RealSense [197]. These permit to easily acquire tradi-

tional natural images, as well the additional geometric information. Due to their compact form

factor, these can be used in many settings, previously inaccessible to traditional cumbersome
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laser scanners. Moreover, the recent advances in sensing technology applied to self-driving

cars, robotics, and drones (e.g., solid state lidar [70]), has ushered new environments where

3D data assumes a vital role in the detection, recognition, and avoidance of objects, and most

importantly humans [205]. In these new settings, there is an increasing demand for more pow-

erful and fast algorithms, capable of efficient representation and utilization of the geometric

information of the human body. Unfortunately, anthropometric measurements, relying on tradi-

tional body part measures are becoming inadequate, and restrictive for these recent applications,

where partial bodies in unconstrained pose are acquired from random views. Traditionally, an-

thropometric measurements have been acquired manually, and the existing collections of an-

thropometric data, such as CAESAR [244], NHANES [56], and ANSUR [86] are based on

elaborate methodologies for hand measuring human bodies. Leveraging computer vision tech-

niques to automatically extract these measures has been investigated before. However, simple

automation without introducing novel and reliable descriptors is restrictive and akin prone to

creating a computerized version of the manual hand-measuring process, without exploiting the

real machine vision capabilities.

A key challenge, often ignored by the previous work on anthropometric measurements is the

problem of the pose. The human body can assume a high number of poses (see Fig. 5.1), and

can take an equally high number of body shapes, due to the non-rigid nature of its composition

(e.g., fat/lean ratio). This has a significant impact on how we extract the measurements, and how

we represent them. While the problem of pose has been recognized in other related areas, such

as computer vision [80], and body shape modeling [115, 127, 227], it has been largely ignored

in anthropometric soft biometrics, which typically assumes the person is constrained to a certain

standard pose [3, 22, 188, 244, 291]. In this work, we investigate the pose problem performing

a detailed statistical analysis of the anthropometric measurements under pose variation show-
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ing their dispersive behavior. With the increasing use of anthropometric soft biometric in more

unconstrained scenarios, we must find ways to address the challenge of the body representation

under pose variation. We approach the anthropometric body description recurring to spectral

geometric techniques, able to represent non-rigid objects under non-Euclidean transformations.

The main contribution is the comparison of the new pose invariant representation against the

traditional anthropometric measurements under pose variation. This new study has been pos-

sible introducing a new dataset of virtual subjects, containing anthropometric measurements,

as well as 3D data for each pose assumed by the subjects. This novelty constitutes a huge ad-

vantage not only in anthropometric soft biometrics, but also in medicine, robotic vision, and

in all the applications which use RGB-D, and lidar [112, 179, 303] devices, where a geometric

pose invariant description of the body is needed. Interestingly, the present method can be used

in a more general framework as a labeling stage for training new machine learning algorithms,

similar to the Kinect body tracker algorithm [266], that made the success of RGB-D devices.

A Common problem in representation learning is the description of semantically meaning-

ful quantities, like the anthropometric measurements, with non-human interpretable descriptors,

like the new description. We propose a simple method able to predict traditional anthropomet-

ric measures using the new spectral geometric representation, bridging the gap between the two

descriptions. The proposed solution differs from the previous works in anthropometric soft bio-

metrics since it makes use of recent innovations in body modeling, spectral geometry, computer

graphics, and machine learning. In Section 5.1, we provide a background to the work, and de-

scribe major related efforts in soft biometrics, with a focus on 3D body shape. In Section 5.2,

we perform a new statistical analysis to show the performance loss of traditional anthropometric

measurements under pose transformations. Section 5.3 introduces our proposed spectral geom-

etry approach, to address the problem of pose, and the semantic predictor. In Section 5.4.1
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we describe the new dataset method to label the geometric information of human bodies. Sec-

tion 5.4 presents experimental results using both real and synthetic datasets.

Figure 5.1: The 18 poses in the Virtual Pose Dataset (VPD), (from left to right, top to bottom):
Benchmark, Default, Fight1, Standing6, Fight2, Fight3, Fly1, Fly2, Fight4, Standing3, Gym1,
Tpose, Standing5, Run1, Standing1, Standing2, Sit1, Standing4.

5.1 Background and Literature Review

Recently, there has been an increased interest in soft biometric features, where the robust extrac-

tion of these features is still an open problem. When traditional biometric features are available,

soft biometric traits can be extracted more efficiently. For example, given the face image, vari-

ous attributes can be extracted with sufficient reliability, e.g., gender [50], ethnicity [111], age

[154, 156], and eye color. However, the need for the primary biometric features is a key limita-
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tion. Soft biometric systems are reviewed in recent surveys by Dantcheva et al. [77, 78], Nixon

et al. [208, 239], and others [131, 243]. The computer vision community considers soft biomet-

ric features as describable visual attributes useful for the representation of an image. For human

identification, this representation can describe gender [260], ethnicity [261], accessories [35],

clothing style [269], and facial-shapes [260]. See also [213, 251, 312].

Anthropometric attributes have been used to measure the geometry, and shape of the face, body,

and skeleton. These soft biometric traits have become important as middle-level features in

some applications: from human identification to gender, ethnicity, and age estimation to emo-

tion or expression recognition, and others. Adjeroh et al. [3], Cao [49], and Lucas [188] show

that the correlation of the body and face measurements can be successfully used to predict some

unknown body measurements, including weight, and to successfully discriminate duplicates in

a dataset. These findings are quite important as they imply we can obtain good identifica-

tion performance with only some anthropometric measurements. However, these results are

based on handmade measures of the body, a highly constrained scenario, difficult to obtain in a

surveillance setting. As noted in [77], in practical applications these methods have to account

for several factors: correlation of the geometric measurements [3, 106], variations in sensor and

calibration [72, 310], and fusion of the information from different sources (e.g., in multi-view

systems).

5.1.1 Anthropometric Features From the Body

Natural Image Techniques

Among the many anthropometric measurements, the body height is the most prominent and

easy to acquire. However, different challenges remain, including the human pose, which con-

stitutes a primary nuisance. A simple solution adopted by BenAbdelkader and Davis [22] is
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to take the average of different body measurements over different poses. They consider shoul-

der breadth in addition to height for improving multi-target tracking across multiple cameras.

Other related works include Criminisi et al., taking advantage of the well-known work on single

view metrology [72], [73], Nguyen et al. [207] using a cross ratio technique in parallel with

the vanishing point method, and Madden and Piccardi [47] from surveillance video. Velardo

et al. [290], inspired by [264] on height estimation, proposed a model-based approach to study

the correlation between weight and other common anthropometric measurements. The analysis

was based on manual measurements on a barely sufficient set of natural images, but using the

anthropometric measurements from the NHANES [56] dataset for training.

3D Techniques in Anthropometric Soft Biometric

The natural setting for the acquisition of anthropometric measurements is the 3D space. Pre-

vious work, principally in 2D, have used simple geometric rules to extract the real measure

from pixel distances. However, measuring curved surfaces with the respective projection can

quickliy lead to erroneous measurements. Recently, leveraging the introduction of cheap 3D

acquisition devices, such as Microsoft Kinect [71], has made it possible to acquire geometric

information, with low hardware requirements. The key advantage of using Microsoft Kinect is

the availability of the body tracker [266], which can detect the pose assumed by the body and

retrieve the skeleton. Velardo et al. [291] extended the weight prediction scheme introduced in

[290] by extracting anthropometric measurements automatically using the skeletal joints from

the body parts tracker [266]. The method showed good results, but the small RGB-D dataset

limits the evaluation to a restricted number of body shapes (15 subjects) assuming the same

pose. Recently, Madadi et al. [189] presented a method to extract soft biometric features using

depth sensors, and the body parts tracking algorithm [266]. This method assumes a multi-parts

labeled training dataset, and that the subject is aligned to the best model in the dataset. These
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constraints, although familiar to many 3D matching frameworks, make this approach quite lim-

ited, and not scalable to a high number of poses.

Body Shape Modeling

Related to 3D soft-biometrics, but not exploited in previous works, is the massive work in body

modeling and character generation. Weiss et al. [295] showed that the Microsoft Kinect could

effectively reconstruct the 3D representation of a body in a less constrained environment. How-

ever, the joint optimization involved in the registration and fitting of the 4 point clouds to the

body model makes the system extremely slow (40 min for one subject). Recently, Bogo et

al. [30] introduced a new method, and a new body model using only a frontal view of the body.

However, this method requires previously selected skeleton joints on the image. For a deep un-

derstanding of the human body shape (and thus the anthropometric measurements) under pose

transformation, we need to consider the body composition, and soft-tissue deformations under

pose variation. Classical model-based human character modeling in computer graphics is based

on the “layered character construction” framework [58]. A skeleton drives soft-tissue motions

including kinematic deformations and dynamics (e.g., muscle bulging), with the fat/tissue layer

represented by a low-resolution mass-spring model. Many methods have been developed for

controlling the dynamic simulation of general rigged models [52] 2002, [51] 2007, using finite

element methods (FEM). These physically-based models are often based on material properties

of human soft tissue [195],[10],[161]. Recently, data driven approaches are becoming more

popular [6],[7],[115],[127],[61]. Pons-Moll et al. [227] extended the SCAPE model [7] to de-

formations due to dynamic movement of the body using a high-resolution 4D capture system.

These models can be particularly useful, not just for the body representation, but also for the

synthesis of new bodies. Impressive was the work by Sutton et al. [266] on real-time tracking

of body parts. They trained a complex random forest classifier using only synthetic data, gener-
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ated by rendering synthetic characters. However, in [266], the number of different bodies was

limited to less than 30, but the body poses were augmented by “moving” the character through

MoCap data [67]. Recently, Piccirilli et al. [222] generated an entire population of synthetic

individuals to predict the Body Surface Area (BSA). Remarkable is the possibility to generate

characters with different body compositions, in particular, different lean/fat ratios. In this work,

we extend the technique to multiple poses and anthropometric measurements.

5.1.2 Anthropometric Datasets

One difficult challenge in studying pose variations in human anthropometry is the lack of suit-

able datasets. Common datasets used in geometry processing lack anthropometric measure-

ments, and are typically limited regarding the number of subjects, and thus cannot capture

the large variations in a human population. On the other hand, datasets used for anthropometric

measurements lack a rich set of 3D data for different poses. Prior related work [290],[291],[189]

have conducted a small in-house acquisition using available cheap 3D cameras, and manual

measurements for a few individuals. A commonly used anthropometric dataset is the CAESAR

dataset [244]. This is however expensive, with a limited number, and diversity of subjects (2400

subjects). These are now becoming inadequate for population-based study, especially, when de-

mographic stratification is considered. Perhaps more importantly, the dataset did not consider

the pose problem, and hence individuals were not measured under different poses. For a better

understanding of human body shape and measurements under pose transformations, we need to

have the anthropometric measurements under various poses. We are not aware of any human

anthropometric dataset with this key information.
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5.1.3 Main Contributions

We introduce four major contributions in the area of anthropometric soft biometrics. We de-

scribe these briefly below. Analysis of pose variation in human anthropometry. We present

a detailed statistical analysis establishing the difficult challenge of using anthropometric mea-

surements as soft-biometric traits under pose variations. Although the problem is intuitive, to

our knowledge, this is the first detailed statistical analysis of the impact of the pose on human

anthropometry in the biometrics literature.

Spectral geometry approach to soft biometrics. One crucial requirement for a modern

surveillance system is the pose invariance. Pose variation can be formalized as a Euclidean

transformation applied to the skeleton joints. However, due to the soft-tissue composition of

the human body, the body shape gets deformed following nonlinear laws. Such non-linearity

depends on various factors, such as age, gender, and body composition [74]. We present an SG

approach to the traditional biometric tasks of identification, verification, and retrieval of body

shape under pose variation. We use known local spectral descriptors capable of representing

deformations of the body due to individual body morphology, but still able to be invariant to

pose transformations. At the same time, we report the results obtained using the anthropometric

measurements as geometric features, and comparing the two methods. To our knowledge, the

present work constitutes the first attempt at using spectral geometry techniques for soft biomet-

ric description.

Semantic prediction via spectral geometry. Soft biometric, and anthropometric measures

constitute semantically informative features since they carry important information about the

body that can be described by humans [238](e.g., height: 5’2”: short, waist circ. 45”: chubby,

etc.). Unfortunately, spectral descriptors are machine oriented and less human interpretable.

To recover the semantic information we propose a predictor able to regress common geomet-

ric attributes from the spectral representation. We show prediction results of common global
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measure, e.g., waist-to-height ratio, under pose deformations, a hard task for many automatic

systems, as well as handmade measurement systems.

Virtual Pose Dataset (VPD). Given the lack of datasets for studying the impact of pose vari-

ations in human anthropometry, in this work, we introduce a new synthetic dataset composed

of 3D body shapes of different individuals in various poses, along with their anthropometric

measurements. We call this the Virtual Pose Dataset (VPD). Example poses from this dataset

are shown in Fig. 5.1. This dataset constitutes the ideal setting to study body geometries along

pose variations in a more controlled environment.

5.2 Variability of Anthropometric Measurements under Pose

Transformations

Given the human body composition (bone, cartilage, and soft-tissue), and the numerous poses

it can assume, there is a significant variation in the human body appearance, as well in the ge-

ometry, and thus in the anthropometric measurements. This behavior is known but has never

been studied in an anthropometric soft-biometric setting. Traditional approaches often con-

strain the measurements to a few well known (canonical) poses and consider only measurement

errors on the same pose. These are now becoming inadequate, especially for unconstrained

environments, or uncooperative/deceptive individuals. We conduct a statistical analysis of the

traditional anthropometric measurements to understand the variability of these measurements

under pose transformation. We use three techniques: repeated measures, post-hoc analysis, and

mixed effect analysis.
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Repeated measures

Given a population W of N subjects W = {S1,...,N} in a default pose T: WT = {Sjp j =

1, . . . , N p = T}, each anthropometric measurement gi has a mean value, and variance, over

the entire population:

ḡi(WT ) =
1

N

N∑
j=1

gi(SjT ) (5.1)

σ2(gi(WT )) =
1

N

N∑
j=1

(gi(SjT )− ḡi(WT ))
2 (5.2)

If each subject in the population WT can assume P poses Sjp p = 1, . . . , P , we consider the

mean value, and variance of the anthropometric measurement gi for the individual Sj over the

entire set of poses:

ḡi(Sj) =
1

P

P∑
p=1

gi(Sjp) (5.3)

σ2(gi(Sj)) =
1

P

P∑
p=1

(gi(Sjp)− ḡi(Sjp))
2 (5.4)

In this new framework, the variability introduced by the pose transformation will additionally

degrade the subject discriminability from the anthropometric measurements. Traditional soft-

biometric systems operate on subjects with the same pose, thus on a subset of the original

set (Wp=T ⊂ W ), ignoring the pose. We consider a repeated-measures design, where each

participant provides the anthropometric measurements at multiple poses. In this scenario, the

assumption on the model errors is different for variances present between subjects. In fact, the

population of subjects at pose T is not independent of the population in other poses, since the

population is composed of the same subjects, which vary under different poses. In literature, this

situation has been called with different names: block design, multilevel modeling, and repeated-

measure design [102]. We partition the variability attributable to the differences between groups
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of poses (SSBG SS : sum of squares) and variability within groups (SSWG) exactly as we do

in a between-subjects (independent) ANOVA. However, with a repeated measures ANOVA,

as we are using the same subjects in each group (dependent condition), we can remove the

variability due to the individual differences between subjects, referred to as (SSM ), from the

within-groups variability (SSWG). We treat each subject as a block (of poses), and we can

calculate this variability as we do with any between-subjects factor. Now that we have removed

the between-subjects variability, our new error (SSR) only reflects individual variability to each

condition.

SSTotal = SSBG + SSWG (5.5)

SSWG = SSM + SSR (5.6)

Given the subjects in pose P WP , and the anthropometric measurements gi=1,...,l(WP ). Let

ḡi(WP ) denote the mean over the P-th group of measurement i. Our goal is to test

H0 : ḡi(W1) = ḡi(W2) = · · · = ḡi(WP ) (5.7)

hypothesis that the means for the measurement i of the P dependent groups of poses are equal.

To verify we compute the test statistic F, rejecting the hypothesis if F ≥ f , where f is the 1−α

quantile of an F -distribution. For more details about the method, we refer to Wilcox [297].

Post Hoc analysis

The above method is designed to verify the null hypothesis, but it does not specify how the

groups differ and how much they differ. A common procedure is to do pairwise comparisons

between the groups, (e.g., H1 : ḡi(Sj1) = ḡi(Sj2), ḡi(Sj1) = ḡi(Sj3), . . . , ḡi(SjP−1) = ḡi(SjP ).
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However this procedure is complicated by the fact that the individual tests are not all indepen-

dent. We develop our Post Hoc analysis using multiple comparison among dependent groups

using Rom’s method [246] for controlling the family-wise error (FWE). The sequentially re-

jective method from Rom [246] computes significance levels for each of the C = (P 2 − P )/2

tests, and rejecting all the test with ordering label less than the critical value. The algorithm will

run until all the C hypotheses have been tested.

Mixed effects analysis

The above methods test the null hypothesis (H0), and compare the different groups (H1) re-

spectively. However, we have not shown any result proving that the pose information can affect

the anthropometric measurements in a regression framework. To show that, we use a multilevel

model [268] approach, designed as a simple regression that allows for the errors to be depen-

dent on each other (as the pose condition is repeated within each participant). This method is

composed of a linear mixed-effects model.

y ∼ x+ ε (5.8)

A mixed-effects model consists of two parts, fixed effects (x) and random effects (ε). Fixed-

effects terms are usually the conventional linear regression part, and the random effects are

associated with individual experimental units drawn at random from a population. The random

effects have prior distributions modeled as random intercepts, whereas fixed effects do not.

Mixed-effects models can represent the covariance structure related to the grouping of data by

associating the common random effects to observations that have the same level of a grouping

variable [15].

Similar to any approach to model testing, we want to see if our predictive model, augmented
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(with the pose) is better than a simple one parameter mean model. Thus, we specify a baseline

model in which the anthropometric measurement gi, is predicted by its overall mean gi ∼ ḡi.

Second, we specify our model of interest, in which the anthropometric measurement gi is pre-

dicted by the pose other than the mean gi ∼ ḡi + pose, which was repeated within subjects.

Multiple responses (measurements) from the same subject (at different poses) cannot be re-

garded as independent of each other. Every person has a different body shape, and this is going

to be an idiosyncratic factor that affects all responses from the same subject, thus making these

different responses inter-dependent rather than independent. Adding a random effect for each

subject allows us to resolve this non-independence by assuming a different “baseline” mea-

surement value for each subject. For instance, within the male and the female groups, you see

lots of individual variation, with some people having relatively higher values for their sex and

others having relatively lower values. We can model these individual differences by assuming

different random intercepts for each subject. In the mixed model, we add one or more random

effects to our fixed effects. These random effects essentially give structure to the error term ε. In

the case of our model here, we add a random effect for subject/pose, and this characterizes the

idiosyncratic variation that is due to the grouping of the subjects by pose. In R style notation:

gi = ḡi + pose+ (1|subject/pose) + ε (5.9)

The general error term ε is necessary because even if we accounted for individual variation, there

is still going to be “random” differences between the measurements of individual subjects. The

results of this analysis on the VPD data set are presented in Section 5.4.
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5.3 Spectral Geometry Approach to Soft Biometrics

In this section, we present our approach to addressing the problem of pose in whole-body soft

biometrics. We start with the spectral features, the cornerstone of our approach.

Spectral features

For a given subject, we model the shape as a two-dimensional Riemannian manifold S sampled

at n points s1, . . . , sn and represented as a triangular mesh. Let f be a real-valued function, with

f ∈ R2 , defined on S. A generalization of the Laplacian operator ∆ for Riemannian manifold

surfaces is:

∆Sf = div(∇(f)) =
1√

det(gij)

∑
i.j

∂i(g
ij
√
det(gij)∂jf) (5.10)

with

gij =

 〈∂if, ∂if〉 〈∂if, ∂jf〉

〈∂jf, ∂if〉 〈∂jf, ∂jf〉

 (5.11)

the first fundamental form, gij = (gij)
−1, and ∇:gradient.

Let V and W be vector spaces, and let T : V → W be an injective linear transformation. T is

said to be isometric if for all v, v′ ∈ V

〈T (v), T (v′)〉W = 〈v, v′〉V , (5.12)

and by definition keep the same surface area. As the Laplace-Beltrami operator (LBO) ∆S

depends only on gij , for each u, v ∈ S

〈T (gij(u)), T (gij(v))〉S′ = 〈gij(u), gij(v)〉S. (5.13)
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Then ∆S = ∆S′ for any isometric function TS → S ′. Thus for body transformations that are

isometries, the LBO can completely characterize the shape without loss of information. How-

ever the LBO depends to the surface area considered by the Laplacian operation (det(gij)).

Thus, in presence of more general transformations the LBO can become not invariant (e.g.,

scaling: T : αS → S ′, α∆S = ∆S′). The LBO spectra is obtained as the solutions of the Hel-

motz equation ∆sφl = λlφl, denoted as {φl, λl}l≥1. In particular, the eigenvalues λl, assume

the global descriptors of the shape. Interestingly, the eigenvalues λl are covariant with det(gij),

thus with the surface area. This means that the body surface area is part of the LBO spectra, and

theoretically can be used as an anthropometric feature. Local descriptors X , instead, try to rep-

resent the geometric structure within a small neighborhood of a point. For each sample location

si ∈ S we can compute a q-dimensional local descriptor X(si) = (X1(si), . . . , Xq(si))
T . The

use of local descriptors in this work is motivated by the local deformation of the shape with the

body composition (e.g., lean/fat ratio), but invariant to global transformation.

HKS The Heat Kernel Signature (HKS) [276] is based on the heat diffusion process over the

shape, governed by:
∂S

∂t
(x, t) = ∆S(x, t) (5.14)

The heat kernel associated with ∆S is given by:

ht(si, sj) =
∑
l≥1

eλltφl(si)φl(sj) (5.15)

where φl represents the l-th eigenfunction, λl the l-th eigenvalue of the LBO, and t the time

intervals considered for the diffusion process. Sun et al. [276] proposed to use the diagonal of

the heat kernel taken at q log-sampled time values (t = ατ , τ = 1, . . . , q) as a local intrinsic
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feature descriptor, called the heat kernel signature (HKS)

HKS(si) = (hατ1 (si, sj), . . . , hατq (si, sj))
T . (5.16)

This formulation, however, is only invariant to isometric deformation, but not to scale transfor-

mations.

siHKS To make the HKS scale invariant, Kokkinos and Bronstein [40] developed a scale-

covariant heat kernel

ĥτ (si, si) =

−
∑
l≥1

λlα
τ logαe−λlα

τ
φ2
l (si)∑

l≥1

e−λlατφ2
l (si)

(5.17)

that undergoes shift in τ by 2 logα c as a result of shape scaling by a factor of c. In the Fourier

domain, this shift results in a complex phase Ĥ(ω)e−iω2 logα c, where Ĥ(ω) denotes the Fourier

transform of ĥτ w.r.t τ . The scale-invariant HKS (siHKS) is constructed by taking the absolute

value of H(ω) and sampling |H(ω)| at q frequencies:

siHKS(si) = (|H(ω1), . . . , H(ωq)|)T (5.18)

WKS The wave kernel signature (WKS) [11] follows a similar idea to the HKS, replacing the

heat equation with the Schrödinger wave equation. Assuming that the Laplace spectrum of the

shape has no repeated eigenvalues, the wave function of the particle is given by:

ΨE(x, t) =
∞∑
k=0

eiEktφk(x)fE(Ek) (5.19)

where f 2
E(Ek) is the energy probability distribution with expectation value E. The probability

of measuring the particle at a point x ∈ S is then |ΨE(x, t)|2. Aubry et al. [11] define the WKS
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as the average probability, over time, to measure a particle in x:

WKS(E, x) =
∞∑
k=0

φk(x)
2fE(Ek)

2 (5.20)

Thus the energy is directly related to the LBO eigenvalues, and therefore to an intrinsic notion

of scale in the shape.

5.3.1 Spectral and Anthropometric Matching

To evaluate the performance of the defined local spectral descriptors against the traditional

anthropometric measurements, we devise a biometric scenario, where the descriptors with a

higher degree of pose invariance will have a high similarity value for the same subject under

different poses and lower values with all other subjects in whatever pose. Given a set of local q-

dimensional spectral descriptors (e.g.,HKS, siHKS, WKS) computed without loss of generality

at n sampled points of the shape (mesh vertices), we represent them as a q × n matrix X

X = (x1, . . . ,xn) = (x(s1), . . . ,x(sn)). x = {x1, . . . , xq}T (5.21)

The matrix X represents a dense description of the subject’s shape. A simple distance met-

ric can be used by computing the Frobenius norm of the respective matrices ||Xi − Xj||F .

Similar to the spectral matrix, we construct an anthropometric descriptor for the shape S as

the set of a anthropometric measurements (gi(S), i = 1, . . . , a). Each measurement is given

by the distances of the mesh vertices that constitute the minimum path on the body surface

gi =
∑

l ||sl − sl+1||2, l = {si ∈ P (gi)} (see Fig. 5.2). Each path P is constituted by a set of

different number of points, thus the matrix M of sampled anthropometric measurements is not

square. For simplicity we just consider the vector mi of anthropometric measurements as the
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Figure 5.2: Some anthropometric measurements using the MakeHuman (MH) mesh model.

anthropometric features:

m = (g1(S), . . . , ga(S)). (5.22)

With this formulation, the similarity metrics for two shapes Si and Sj is theL2 norm ||mi−mj||2

of the anthropometric vectors. We devise the follow experiment: for each subject’ shape Sj , we

consider a family F (j) = {Sji, i = 1, . . . , k} of shapes composed of the original and k shapes

obtained with a pose transformation. For each Sji ∈ F (j), j = 1, . . . , n in the population W ,

we compute the anthropometric measurements, together with the spectral descriptors. A simple

classifier, using the above metrics, will try to classify the subjects as a genuine (same subject, but

different poses), or as an impostor member (different subjects). From a biometric standpoint, the

problem is highly challenging because the body soft-tissue is subject to nonlinear deformations,

affecting the shape and thus the respective anthropometric measurements.

5.3.2 Soft Biometrics from Spectral Features

The spectral representation X(S) of the shape S has been previously used in 3D shape re-

trieval [215],[241],[171],[165],[223]. However, these methods “retrieve” the semantic informa-
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tion of the shape (lean, fat, similar, cat, dog, etc.) by comparing the given shape with other

well known (canonical) shapes. The major reason is due to the lack of semantic information as

meta-data in the dataset. Using the proposed framework, where are available anthropometric

measurements as well as spectral descriptors, we can learn semantically meaningful represen-

tations. In the present framework, we identify the semantic information as anthropometric

soft-biometrics, not necessarily in the form of anthropometric measurements. In fact, more

meaningful indicators, such as those used in medicine, corresponding to a combination of two

or more anthropometric measurements can be used as soft-biometrics. A well-known indica-

tor is the body mass index (BMI) [29]. Although computed from stature and weight, we do not

consider here since it is not a geometric information. Two examples of these “combination indi-

cators” are the recently introduced ABSI (A Body Shape Index [151]), and SBSI (Surface-based

Body Shape Index [234]), both of which were shown to outperform the BMI in mortality pre-

diction. Another index is the whole body surface area (WBSA) [83]. This quantity, other than

providing useful medical information, it assumes a principal role in spectral geometry as seen

before. Interestingly, the WBSA can be predicted with computer vision techniques, even when

the body is partially visible [222]. In this work, we focus on the waist-to-height ratio (WHR or

WtHr) as a global semantic attribute for two major reasons. The WHR is known to be a more

valid health indicator than BMI [160],[41],[9]. The WHR, as a shape index, easily captures the

body shape appearance (slender athletic vs. obese) using just anthropometric measurements.

We devise a supervised framework able to predict a semantic characterization of the body

shape from its spectral description. Given the pairs {X(Si), yi}Li=1 composed of the subject’s

spectral shape representation X(S), and the corresponding shape semantic value y, the system

will be able to retrieve the soft biometric information from the shape representation X(S) under

pose variation.
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Encoding

Given the high number of samples from the surface (thousands), with low discriminative power,

an essential step is to encode the spectral features in a compact and richer representation.

This problem has driven different works from machine learning (feature encoding [38], dic-

tionary learning [177]) and information theory [176] to non-rigid shape representation. A

common computer vision solution is the use of encoding techniques such as the Fisher vector

(FV) [217],[218]. The FV is an encoding of the features obtained by pooling local descriptors.

It is frequently used as a global image descriptor in visual classification. Let X = {xt, t =

1, . . . , T} be a set of d-dimensional local descriptors (e.g., SIFT, HKS, WKS). Assuming inde-

pendent samples (assumption relaxed in the normalization step [218]), the Fisher vector G of

shape S is given by:

Gλ(X) =
1

T

T∑
t=1

Lλ∇λ log µλ(xt) (5.23)

as the sum of normalized gradient statistics Lλ∇λ log µλ(xt). Here, uλ is a Gaussian mixture

model (GMM) with diagonal covariance of parameter λ, which models the generation process

of local descriptors, traditionally called universal (probabilistic) visual vocabulary [217]. Lλ is

the Cholesky decomposition of the Fisher information matrix of uλ. The FV encoding creates

an embedding of the local descriptors xt in higher-dimensional space, which is more amenable

to linear classification. Moreover, each subject’s spectral representation X(S) ∈ Rq×n is en-

coded in a single vector, representing the deviation from a “universal” generative model, learned

offline from a large set of samples. This characterization is given as a gradient vector w.r.t. the

parameters of the model (λ). The FV ∈ R2×k×d, where k is the number of atoms in the visual

vocabulary, and d the dimensionality of the descriptors.
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Semantic Feature Prediction

Given the pairs {ϕi, yi}Li=1, where ϕ = Gλ(X(sk)) is the Fisher vector of X(S), and y ∈ R

a numerical value representing the semantic feature to predict (e.g. Waist-to-Height-Ratio

WHR), our goal is to learn a mapping: ϕ → y able to predict the subject’s semantic in-

formation. We parametrize the transformation as a regression function T (ϕi,Θ) such that

yi ≈ T (ϕi,Θ), with Θ the regressor parameters. We minimize the mean square error as in a

typical regression task:

L(Θ) =
J∑

j=1

1

2
||yi − T (ϕi,Θ)||22 (5.24)

We use a multi-layer feed-forward neural network (see Fig. 5.3) as high capacity regressor

T (ϕi,Θ). The network will learn a relation between the Fisher encoding of the spectral fea-

tures, and the semantic feature (WHR). With this framework, it is theoretically possible to

regress almost all geometric quantities (including anthropometric measurements) of the body

from the spectral description. However, there are some limitations in the representation power

of the spectral descriptors. Reuter proved that it is possible to create continuous families of

manifolds with the same spectrum (isospectral), which does not entirely determine the object

geometry [240]. Although, the compactness theorem [26] shows that the spectrum does place

some strong constraints on the geometries allowed by a given spectrum.

5.4 Results

In this section, we present the datasets and the results of the proposed methods. For the spectral

descriptors, we used the methods and codes from [11, 38] in Matlab. The statistical analysis of

the anthropometric features was done in R [232]. The regression framework was implemented

with Keras [64], and Tensorflow [1].
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Figure 5.3: Anthropometric soft-biometrics predictor.

5.4.1 Datasets

In this section we present a new data framework.

Virtual Pose Dataset (VPD)

We designed a new synthetic dataset composed of 3D body shapes from different individuals

assuming various poses. We call this the Virtual Pose Dataset (VPD). Building on Piccirilli et

al. [222] work, we used the MakeHuman (MH) tool [16] to create different human characters

with their 3D mesh and relative anthropometric measurements. MH uses a layered character

construction framework [58], where the subject body dimensions can be decided, and measured

via manuals controls. The presented framework is general, and can be easily upgraded with

more elaborate body models, for instance [227],[30],[31]. The huge advantage in using [222]

is the automatic generation of thousands of subjects, without manual intervention. Using the

well known NHANES [56] dataset, we can automatically replicate subjects with given anthro-

pometric dimensions in the 3D mesh. The novelty is the extension of [222] to multiple poses

(Fig. 5.1), with the possibility to save the anthropometric measurements automatically for each
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pose (see sample measurements in Fig. 5.2). In the present work, we do not use clothes on the

synthetic characters, although present in MH, since the focus is on the soft-tissue deformation

under pose variations. Moreover, since the dataset is used to benchmark the anthropometric

measurements under pose variations, the clothing component just an additional layer on the 3D

layered skinned model, thus adding a “noisy” component to the measures. Although there have

been different attempts to body analysis under clothing [46],[116],[65], we refer to them for

more information. MH body model is a triangular mesh composed of 14444 vertices (samples),

and 28796 faces. Its deformation engine permits to obtain bodies with different measures, and

poses, with limited mesh artifacts.

The VPD contains 132 subjects (66 males, 66 females) with anthropometric measurements.

For each subject, we selected 18 different poses (Fig. 5.1), for a total of 2376 total meshes. We

decided to select poses from different groups: standing, gym, sit, and some more unlikely: fly,

and fight, to cover a broad range of variations for a more thorough analysis.

For every subject, MH computes 19 measurements, namely, WBSA [83], height, hips circum-

ference, waist circumference, bust circumference, under-bust circumference, neck circumfer-

ence, front chest, upper arm length, upper arm circumference, lower arm length, wrist circum-

ference, shoulder distance, upper leg height, thigh circumference, calf circumference, lower leg

circumference, ankle circumference, and knee circumference. The measures are based on the

geodesic distance on the body surface, similar to a measuring tape. Bulging, and swelling of

soft-tissues with the pose will inevitably affect these measures. For the stature, being a measure

independent of the body composition, we could just report the ground truth at the default pose

T. However, measuring the stature of different poses can be a daunting task. Using geodesic

methods lead to the same soft-tissue deformation problem. An attractive solution is to use the

lengths of the skeleton bones. Although Kinect body tracker [71] offers good results, the accu-

racy of the measurement is heavily dependent on the tracker performance. We decided to limit
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our analysis to two simple methods: surrounding bounding box of the body (Height BB), and

toe to head Euclidean distance (Height HT).

FAUST

To evaluate the performance of the developed method on acquired real data, we used the FAUST

dataset [31]. FAUST contains data on ten subjects. The subject meshes are obtained from high-

speed acquisitions of moving subjects, containing more natural deformations. The mesh models

have missing parts caused by occlusion, and topological noise where touching body parts are

fused together, or just hidden (e.g., under feet, armpit). The dataset also contains some non-

manifold vertices and edges, which some retrieval methods cannot handle. We, therefore, used

a version of the data from which these non-manifold components were pre-processed, creating a

watertight manifold for each model, as specified in the FAUST challenge [31]. However, these

reconstructed areas still affect the total surface area, thus the descriptors. Unfortunately, the

FAUST dataset does not provide anthropometric measurements. We report the results only for

spectral feature evaluation.

5.4.2 Anthropometric Measurements – Impact of Pose

In Fig. 5.4 we report some statistics of the anthropometric measurements for the subjects in stan-

dard T-pose for the VPD dataset. More extensive information is available in the supplementary

material.

Repeated Measures ANOVA

We execute one way repeated measure analysis using the Wilcox robust estimation and testing

package [190]. In this setting, each anthropometric measurement is analyzed in comparison

with multiple dependent trimmed groups (10% of trimming), see Table 5.1. The test statistic
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Figure 5.4: Statistics of anthropometric measurements for the T pose over subjects in the VPD.
Points represent raw data, vertical bar indicates central tendencies, bean represents a smoothed
density, colored rectangle denotes highest density interval quantities.

presents high values for the majority of the body measurements (test >> 1). However, as noted

in [297], this does not mean that the null hypothesis is invalid for all the measurements. In

fact, the explanatory measure of effect size ξ̂ ranges from small to medium effect size. For

an improved understanding of the behavior of the different anthropometric measurements, we

perform post-hoc tests on different groups of poses.

Comparing Dependent Groups

Post-hoc tests consist of pairwise comparisons of all of the different combinations of the group

means. We take every pair of groups and perform a t-test on each pair. The price paid for doing

lots of tests is that each test is corrected to make it stricter so that across all tests the error rate is
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Table 5.1: Repeated Measurement Anova results for some measurements.

Measure test1 ξ̂2 df13 df23

Waist 762.31 0.08 1.43 149.71
Calf 20372.52 0.06 1.00 105.47
Ankle 451.89 0.06 1.02 107.53
Bust 1131.03 0.07 1.20 125.87
Ubust 603.72 0.07 1.17 123.28
Neck 5448.16 0.13 2.20 230.73
Hips 896.90 0.10 1.66 174.46
Knee 22322.01 0.06 1.06 111.66
Thigh 3086.26 0.10 1.69 177.42
Wrist 7311.34 0.06 1.06 110.98
Uarmcirc 5511.86 0.12 2.07 217.34
Uarmlen 2464.09 0.13 2.28 239.13
lowleg 2310.32 0.06 1.05 110.76
Fchest 6743.97 0.11 1.83 192.23
WHR 6574.10 0.07 1.26 132.04
Hbb 18113.94 0.07 1.26 132.31
Htoe 13572.36 0.09 1.54 161.84
BSA 1135.97 0.07 1.22 128.31

1 F-test statistic ; 2 Measure of effect size;
3 degree of freedom;

controlled. We use the function rmmcp from the package [190] on trimmed means. Table 5.2

shows some of the key results (more in Supplementary Material). For instance, the waist cir-

cumference for poses 2 and 6: default vs. fight4 (see Fig. 5.1), presents a high value for the test

statistic. Thus the waist circumference is affected by the pose transformation. However, for the

same groups, other measurements are not affected, e.g., bust and calf circumference. In general,

different measurements are affected differently by pose transformations (see Table 5.2, and Sup-

plementary Material). Limb measurements covariant with the fat percentage are more prone to

variations. For some groups of poses (e.g., standing), the pose transformation is limited to some

body parts. Then only some anthropometric measurements may be affected. However, it is hard
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to quantify the effect of the transformation, since the dynamic motion has a nonlinear effect on

the soft tissues. In conclusion, the null hypothesis of the anthropometric measurements under

pose transformation is often violated. Moreover, comparing different groups of poses shows an

unpredictable behavior of the anthropometric measurements under pose transformation. This

constitutes the main problem when attempting to use traditional regression methods since sparse

outliers can drastically impact the overall performance.

Table 5.2: Some results of the Post-hoc analysis for comparing dependent groups on 10%
trimmed means.

Measure Gr1 vs Gr2 test1 p.value p.crit ψ̂2 ci lower3 ci upper3

Waist 2 vs 6 154 0.00 0.0009 0.9498 0.9267 0.9730
Calf 2 vs 6 -2.65 0.01 0.00 0.00 0.00 0.00
Bust 2 vs 6 -0.52 0.60 0.02 -0.01 -0.06 0.05
Neck 2 vs 6 93.66 0.00 0.00 1.72 1.65 1.79
Hips 2 vs 6 -42.22 0.00 0.00 -5.25 -5.72 -4.79
Tight 2 vs 6 121.74 0.00 0.00 0.24 0.24 0.25
Ankle 11 vs 13 -8.07 0.00 0.00 -0.04 -0.18 -0.07
Ankle 11 vs 14 -3.14 0.00 0.00 -0.04 -0.11 0.01
Ankle 11 vs 15 -4.48 0.00 0.00 -0.04 -0.13 -0.01
Ankle 11 vs 16 -1.67 0.10 0.00 -0.04 -0.09 0.03
Ankle 11 vs 17 4.22 0.00 0.00 0.15 0.01 0.13
Ankle 11 vs 18 -6.72 0.00 0.00 -0.04 -0.16 -0.05
Waist 10 vs 18 -38 0.00 0.0003 -1.7725 -1.9474 -1.5976
Waist 4 vs 7 -0.45 0.65 0.0169 -0.0007 -0.0068 0.0053

1 T-test; 2 value of the test statistics; 3 confidence intervals;

Multilevel Analysis

We used R [232] and the nlme [225] package to perform a mixed effects analysis of the impact

of the pose on the anthropometric measurements gi. For the fixed effects term we consider the

simple mean value (without interaction term), and the grouping effect of the pose as random

effect term. In Table 5.3 we report the results of this analysis for some anthropometric measure-
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Table 5.3: Linear mixed-effects model fit.

Measure Model AIC1 BIC2 logLik3 L.Ratio4

baseline 5157.30 5180.39 -2574.65
Waist

posemodel 7.31 128.55 17.34 5183.99
baseline 10286.05 10309.14 -5139.03

Hips
posemodel 4795.55 4916.79 -2376.78 5524.50

baseline 5401.40 5424.49 -2696.70
Ubust

posemodel 1020.70 1141.94 -489.35 4414.69
baseline 8486.49 8509.58 -4239.24

Bust
posemodel 2986.22 3107.45 -1472.11 5534.27

baseline 590.68 613.78 -291.34
Thigh

posemodel -7158.37 -7037.14 3600.19 7783.06
baseline 4511.65 4534.74 -2251.82

Wrist
posemodel -4959.02 -4837.78 2500.51 9504.67
baseline6 9943.26 9966.35 -4967.63

Knee
posemodel -1370.83 -1249.59 706.42 11348.09

baseline 4850.44 4873.53 -2421.22
Neck

posemodel -4130.85 -4009.61 2086.42 9015.29
baseline 3934.71 3957.81 -1963.36

UArm
posemodel -4656.24 -4535.00 2349.12 8624.95

baseline 1308.94 1332.03 -650.47An-
kle posemodel -2784.76 -2663.53 1413.38 4127.70

baseline -3775.55 -3752.45 1891.77
Calf

posemodel -15401.41 -15280.17 7721.70 11659.86
baseline 12854.44 12877.54 -6423.22

Lleg
posemodel 6101.80 6223.03 -3029.90 6786.65

baseline 9428.50 9451.59 -4710.25ULeg
Ht posemodel 2590.62 2711.86 -1274.31 6871.88

1 Akaike Information Criterion; 2 Bayesian Information Criterion;
3 Log-likelihood; 4 Log-likelihood Ratio;

ments with some important model fit indicators. Generally, with AIC (i.e., Akaike information

criterion) and BIC (i.e., Bayesian information criterion), lower values indicate a better model,

as it implies either a more parsimonious model, a better fit, or both. The log likelihood ra-

tio assumes values from 4128 to 11659, verifying our assertion about the dependence of the

anthropometric measurements on the pose. From these results, it is evident that a traditional

regression framework [3, 290, 291] should include the pose information to avoid a performance
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loss in the prediction. However, estimating the pose transformation is not easy, and adds more

complexity to the system.

5.4.3 Spectral Features for Soft Biometrics

In this section, we compare the discriminative power of the spectral features against tradi-

tional anthropometric measurements. We use the spectral descriptors (HKS, siHKS, WKS),

and the anthropometric vector on the VPD dataset, and the spectral descriptors on the FAUST

dataset [31]. We pre-process the two datasets to extract the spectral features, while the an-

thropometric measurements were given by the VPD framework. We used the same pipeline

as in [11],[38]: we compute the LBO eigenvalues from the body mesh with the cotangent

formula [226], and subsequently the local spectral descriptors: HKS, siHKS, WKS. We con-

sider 300 eigenvalues λl. The HKS has been computed for 23 time intervals ti = 2τ , τ =

{5, 5.5, . . . , 16}, the siHKS for 19 scaling factors ω = {2, . . . , 20}, and the WKS for 20 time

intervals. We evaluate the performances on the task of verification, identification, and retrieval.

We note that soft-biometrics are seldom used independently for these tasks, given their low per-

formances. However, Lucas [188] showed that it is possible to come close to the identification

rate of hard biometrics systems (fingerprints, iris), using body and face measurements. Lucas’

work, although interesting, cannot be compared with the present framework since we do not

consider facial measurements, and the method in [188] does not consider pose variations.

For the verification task, we compute the ROC curve in Fig. 5.5 using the round robin

method [170]. We consider 18 samples for each subject in VPD dataset, for a total of 20,196

genuine, and 2,801,304 impostor scores. While ten samples for each of the ten subjects in the

Faust dataset, for 4,500 genuine, and 495,000 impostor scores. In the VPD dataset, the HKS

obtained the best performance with Area Under Curve (AUC)=0.99, then siHKS AUC=0.91

and the WKS with AUC=0.61. The anthropometric descriptor obtained AUC=0.66.
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We evaluate the closed-set identification performance computing the cumulative match char-

acteristic (Fig. 5.6). We used the same round-robin method to compute the identification rate.

In the VPD dataset the HKS is still the best descriptor with an identification rate at rank-1 of

98.66 %, then siHKS with 12.34 %, and the WKS with 6.55 %. Using the Faust dataset we

obtain different results, with WKS at 84.44 %, HKS 65.55 %, and siHKS 56.66 %. Although,

the results on the Faust dataset are less reliable given the weakness of the CMC curve on small

gallery size. The identification rate for the anthropometric vector is 5.16 %, the lowest of the

tested descriptors.

We evaluate the performance in the retrieval task of recovering the subject independently by

the pose using the precision-recall curve (Fig. 5.7). For this experiment, we consider relevant

the subjects with the same identity. On the VPD dataset, the HKS produced the best perfor-

mance, followed by the siHKS, and WKS, that still underperform the anthropometric vector.

Interesting how, for low recall rate the anthropometric vector obtain 80 % precision. However,

for increasing recall rate the precision rapidly decrease to under 10 %. Results for spectral

features decrease less rapidly, performing better for high recall rates. For the FAUST dataset,

the behavior is similar to previous observations, Table 5.4 reports some significant indicators to

understand the performance.

The HKS largely outperform the traditional anthropometric features. However, we observe

an unexpected behavior: siHKS and WKS underperform the HKS, also by a large margin, with

WKS underperforming even the anthropometric vector. This behavior contradicts previous re-

sults in non-rigid shape retrieval, where newly developed descriptors (siHKS, WKS), allowing

larger families of invariances, like scale, and topological transformations, reach the state of the

art. In our setting, with a large population of bodies, the scale invariance property makes the

spectral features of similar subjects but differing by a scale factor, identical. As a consequence,

the scale invariance makes the surface area, fundamental information in the LBO spectrum, in-
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sensible to different subjects. Unfortunately, while it is a suitable property for shape retrieval,

where the goal is the retrieval of the correct shape (e.g., kids and adults are in the same cate-

gory: human), it is unacceptable in anthropometric soft-biometric, where the principal task is

the discrimination of body geometries. WKS, which allows a more substantial degree of in-

variance, and also attenuating lower frequencies of the spectrum, where global information are

stored, perform poorly on the challenging VPD, but usually is state of the art in shape retrieval

tasks. Although, the scenario changes in the presence of real data. We can see on the FAUST

dataset, where there is more reconstruction noise, the HKS advantage, due to the limited surface

area variation under isometric transformation, is drastically attenuated, limiting the descriptor

performance. WKS, and siHKS being more robust, can outperform the HKS on more challeng-

ing data. This result constitutes a remarkable novelty, giving interesting information for future

work.

Table 5.4: F-measure and D-prime.

Descr. F-measure D-prime

VPD HKS -0.5933 0.8402
VPD siHKS -0.6093 1.0979
VPD WKS -0.2106 0.4686

VPD Anthro -0.2346 0.4686

FAUST HKS -1.3286 2.0219
FAUST siHKS -07956 1.4643
FAUST WKS -0.8117 1.6211

5.4.4 Predicting Semantic Features

The goal of the proposed prediction framework is to regress some geometric information of the

body independently of the pose using the spectral features. For this experiment, we use the

waist-to-height ratio (WHR) in the T-pose as a reference value. WHR is an important indica-
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Figure 5.5: Receiver operating characteristics for the L2 classifier based on spectral, and An-
thropometric features for the Virtual and FAUST datasets.

tor since it can describe the body appearance at a distance (fat, slender, short, tall). For each

mesh in the dataset Si, we compute the Fisher vector ϕi for different dictionary dimensions

(4,16,64). The feed-forward network T (ϕi,Θ) consists of 4 fully-connected layers with recti-

fied linear unit (ReLu) activation function [204] (see Fig. 5.3). The network hyperparameters

Θ are optimized using RMSprop [284], with MSE loss function, for 60 epochs. We evaluated

the method over all the 2376 subjects using K-fold cross validation with K=10 (9/10 training,

1/10 test). Table 5.5 shows the K-fold cross-validation results for different dictionary sizes.

Interestingly, the siHKS descriptor produced the best overall performance, followed closely by

HKS, and WKS. High dictionary dimensions are not required for the spectral descriptors (see

Table 5.5), due to the low descriptive power of the shape features. Typical WHR values are

in the range of (0.3∼0.7). Thus, the prediction error using siHKS accounts for 1/10th of the

values, which is acceptable for both medical and soft-biometric applications.

136



10 0 10 1 10 2 10 3

Rank (t)

0

10

20

30

40

50

60

70

80

90

100

Id
e
n
ti
fi
c
a
ti
o
n
 r

a
te

 %

CMC curve

Virt_HKS

Virt_siHKS

Virt_WKS

Virt_Anthro

Faust_HKS

Faust_siHKS

Faust_WKS

Rank-1
HKS

 =98.6631

Rank-1
siHKS

 =12.344

Rank-1
WKS

 =6.5508

Rank-1
Anthro

 =5.1693

Rank-1
Faust HKS

 =65.5556

Rank-1
Faust siHKS

 =56.6667

Rank-1
Faust WKS

 =84.4444

Figure 5.6: CMC for the L2 classifier based on spectral, and Anthropometric features for the
Virtual and FAUST datasets.

Table 5.5: WHR regression results. K=10 Fold cross validation.

Descr Dict.1 MSE±std2 MAE±std3

HKS 64 0.00097±0.00076 0.0224±0.009
HKS 16 0.00092±0.00058 0.0158±0.002
HKS 4 0.00107±0.00037 0.0252±0.008

siHKS 64 0.00014±0.00014 0.0116±0.004
siHKS 16 0.00031±0.00023 0.0108±0.005
siHKS 4 0.00028±0.00024 0.0117±0.005

WKS 64 0.00215±0.00050 0.0349±0.005
WKS 16 0.00224±0.00047 0.0379±0.004
WKS 4 0.00273±0.00043 0.0414±0.003

1 GMM dimension;
2 Mean Squared Error with Standard deviation;
3 Mean Absolute Error with Standard deviation;
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5.5 Conclusion

Anthropometric soft-biometrics is an emerging field that is gaining more attention with the in-

troduction of more powerful and efficient computer vision techniques. Leveraging these meth-

ods, we present an innovative framework to study the variability of human anthropometric mea-

surements under pose transformations. Prior works on this topic have been heavily limited due

to the lack of detailed data with pose information. We propose a virtual solution that circum-

vents the expensive burden of data acquisition. Using recent results in human body modeling,

we can reproduce soft tissue deformations that profoundly affect the human body shape, and

thus the anthropometric measurements. We present the Virtual Pose Dataset (VPD), a new

dataset with 3D body models from multiple subjects under different poses. We show the inef-

ficiency of traditional anthropometric measurements under pose deformation. To address the

pose problem, we introduce a spectral geometry approach to anthropometric soft-biometrics,
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defined as the geometric description of the human body. Our work is closely related to efforts

in non-rigid shape retrieval. However, there are significant differences. Our notion of semantics

is different from a similarity measure, connecting concepts from soft-biometric, medical indica-

tors, and body modeling. We exploit these differences to propose a novel method for predicting

body shape semantics based on the spectral geometric description of the human body. In doing

so, we present an interesting application of the spectral description in learning useful medical,

and soft-biometric quantities, namely, the combination body shape indices (e.g., WHR, WBSA)

under pose variations, a task that has never been attempted in the literature. Experimental re-

sults on both our newly introduced virtual (VPD) and FAUST datasets with limited real data

demonstrate the superiority of the spectral geometry approach to anthropometric soft biomet-

rics. Future works will be focusing on testing more realistic scenarios, with only a portion of

the body available as point clouds. This will be the most recurrent data in future surveillance

systems, acquired from mobile or fixed lidar devices, RGB-D sensors, or simply as multi-view

stereo reconstruction.
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Chapter 6

Exploring the Human Body Manifold

In Chapter 4 (Figures 4.7-4.8) we introduced a graphical representation for a family of bod-

ies. We also related this representation to known Probabilistic Graphical Models (PGM: CRF,

MRF) [150]. The principal interest was the possibility to predict new bodies with semantic

characteristics related to the family components. In this chapter, we generalize this idea to di-

rected graphical models such as neural networks, and in particular, the new deep generative

models [104],[103].

Let’s suppose we have two non-similar subjects, given a similarity measure (e.g., waist

circumference, stature, gender, WHR, etc.). We can ask a biometric system (e.g., the method

proposed in section 4.5.3) to infer all the body variations occurring between these two subjects

as new bodies. These new bodies are not part of the original dataset, however they need to

be drawn from the same data-generating distribution. The system has to learn this distribution

efficiently, as a low dimensional manifold embedded in a higher dimensional space, where the

data reside. Discovering the structure of this space permits the analysis of body attributes, and

the variations through different categories: male, female, adults, kids, etc., allowing the design

of better machine learning systems for identification, and verification, as well as to regress
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critical medical indices.

Assuming the space of bodies follow the manifold hypothesis [55],[263],[249]: natural data

(images, videos, speech, etc.) are clustered in low dimensional compact manifolds with high

prior, we can explore this domain by sampling, finding new bodies and evaluating those new

results.

Given the problematic evaluation process of generated data: new bodies not present in train-

ing and test sets have no labels. We design a new regressor network, able to infer body char-

acteristics, such as the WHR, from the unseen bodies. This method is unique, being able to

annotate body proportions from generated data.

After an initial introduction to human body representation learning (Sections 6.1, 6.2), we

describe recent deep generative models. Then we formalize the body generation problem (Sec-

tion 6.3), as well as the evaluation method, and subsequently, we present the relative results. In

this work, we use a rendered version of the VirtualBody dataset (Chapter 2). The new dataset

creation is described in Appendix A.

6.1 Representation Learning: The Manifold Hypothesis

The performance of machine learning algorithms depends on the data representation. We hy-

pothesize that this is because different representations can entangle or hide different explanatory

factors of variation in the data. The features in your data are essential to the predictive models

and will influence the resulting outcome. The quality and quantity of the features will have

great influence on whether the model is good or not. In machine learning, feature learning or

representation learning [23] is a set of techniques that allows a system to automatically discover

the representations needed for feature detection or classification from raw data. This replaces

manual feature engineering and allows a machine to both learn the features and use them to
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perform a specific task.

One of the most useful ways to uncover the structure in high dimensional data is to project

it down to a subspace, such as a 2-D plane, where hidden features may become visible. Mani-

fold learning is based on the assumption (manifold hypothesis) that the features lie on or near

a lower dimensional surface in the higher dimensional coordinate space of the data. Low di-

mensional structures typically arise due to constraints arising from physical laws. For instance,

the laws that govern the acquisition of natural images, or the formation of speech. The first

observation in favor of the manifold hypothesis is that the probability distribution over images,

text strings, and sounds that occur in real life is highly concentrated. Uniform noise essen-

tially never resembles structured inputs from these domains. Many rigorous methods have been

developed to prove the manifold assumption [55],[263],[249], and many others. A reported em-

pirical study [54] of a large number of 3 × 3 images represented as points in R9 revealed that

they approximately lie on a two dimensional manifold knows as the Klein bottle.

Standard dimensionality reduction techniques, such as principal component analysis (PCA)

and factor analysis (FA), work well when the data lie near a linear subspace of high dimensional

space. They have substantial performance loss when the data lie near a nonlinear manifold.

These problems can be reformulated as optimization problems, generalizing the projection the-

orem in Hilbert space [20]. As seen before in Chapter 4 the tools available in Non-Euclidean

geometry are quite numerous and permit a more accurate analysis. In this chapter, we recall

manifold learning techniques of interest in the space of body variation, leaving a deeper formu-

lation for a later stage.
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6.2 Human Body Manifold Learning

Representation learning takes an entirely new role in the area of human body representation.

Understanding the structure of the body representation can help in a better understanding of

the relations between body shapes. As seen in Chapters 2, and 4, representing the human body

geometries is particularly important in biometrics and biomedical science. Although the use

of anthropometric measurements makes it easy for humans to analyze body geometries, this

representation is insufficient when applied to unconstrained scenarios (Chapter 5). In such

situations, limiting the description to a few sample body measurements makes the geometric

representation confined to trivial scenarios, and error-prone.

The human body is per se a 2D manifold in a 3D space and is a non-rigid object that can

assume a variety of shapes due to body composition and pose. Moreover, for each individual,

the body is also subject to change over time, due to growth or nutrition changes. The space of

all body variations is high dimensional, making the design of machine learning algorithms com-

plex, and computationally inefficient. Although, the geometric information, like natural images

acquired by cameras, being governed by the laws of physics verify the manifold assumption.

6.2.1 Human Body Manifold

In the area of skinned parametric body modeling, we have seen different parametric models that

permit accurate parametrization of poses as well as the shapes (See Section 5.1.1). However, one

of the major problems is the availability of 3D body mesh with large variations in body shape.

Previous work, leveraging the CAESAR [244] dataset, were able to learn a low dimensional

manifold of the model parameters. In [96], Freifeld et al. showed how to characterize the set

of all possible deformations in a human body using a Lie manifold. This approach provides

an elegant solution to the representation of the space of variations for subjects from different
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Figure 6.1: Visualization of the Body Manifold from Freifeld et.al. [97].

classes (e.g., gender, weight, etc.). In [97], they extended the previous framework using parallel

transport as transfer learning method to improve the learning of datasets with missing subjects

(Figure 6.1). The method is based on the Levi-Civita (LC) connection, a fundamental tool in

Differential Geometry [25]. This construction leads to an ordinary differential equation (ODE)

whose solution coincides with the LC parallel transport. Spectral decomposition (Chapter 4) can

be used to transfer the style [100] between individuals. The results are quite impressive [32],

though the method is affected by numerical instabilities.

Recently, given the importance of 3D acquisition devices like the lidar [70] devices, the

interest has shifted toward raw data like the point cloud, instead of meshes. Some recent ex-

citing works based on this idea have adopted new optimization techniques using Deep learn-

ing [230],[2]. Although these are promising ideas, they cannot be compared to traditional

methods using meshes, or against the performance of Convolutional Neural Networks (CNN)

on 2D data. For instance, the astonishing performance of very deep network on the challenging

Imagenet challenge [301]).

Moreover, although there have been tremendous efforts to replace the convolution operation

144



in non-Euclidean spaces, some issues are still open and are far from being resolved [267]. For

this reason, we believe that traditional natural image representation, with its efficiency, and the

current maturity level of optimization algorithms is predominantly imposing the State-of-The-

Art (SoTA) in representation learning.

Human body modeling from natural images is a more difficult task since part of the shape

information is not accessible. Moreover, illumination, occlusions, and common distortions

make the task harder to solve. In this area, there have been important works, such as deformable

part models [90], and more recently, using CNNs [209].

We leverage the 2D rendering of the Virtual NHANES dataset to study the space of body

representations. In this space, we hope to find useful relations that permits a fast semantic

characterization of different body attributes (e.g., body proportions). The present work is the

first of its kind, extending our understanding of human body representations, and using the

human body shape manifold to address various questions on body shape semantic analysis.

6.3 A Generative Model Approach for Human Body Seman-

tics

In this section, we introduce the generative models used to learn a latent representation of the

human body. We are particularly interested in learning a structured latent space of the human

body variations, able to give a disentangled representation of the attributes (weight, WHR).

Given the vast literature we focus on the recent architectures: Generative Adversarial Networks

(GANs), Variational Autoencoder (VAEs), leaving a more detailed description to more recent

surveys [103]
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6.3.1 Generative Models

In probability and statistics, a generative model is a method for generating all values of a pro-

cess. Generative models are used in machine learning for either modeling data directly (e.g.,

modeling observations drawn from a probability density function), or as an intermediate step

to forming a conditional probability density function. Generative models are typically proba-

bilistic, specifying a joint probability distribution over observation and target (label) values. A

conditional distribution can be formed from a generative model through Bayes’ rule.

Generative Neural Networks (GNNs) are trained to produce samples that resemble the train-

ing set. Contrarily to Deep Neural Networks (DNNs), the number of model parameters is sig-

nificantly smaller than the training data. Thus the models are forced to discover efficient data

representations. These models are sampled from a set of latent variables in a high dimensional

space, here called a latent space. Learned latent representations often also allow semantic

operations with vector space arithmetic.

A GNN model includes an encoder to map from the feature space into a latent space, and

a decoder, to map from the latent space back into the feature space. If the encoder-decoder

transformation is an identity function, the goal is to reconstruct the input through the model.

This network architecture, called autoencoder [293] (AE), has been at the center of research in

neural networks in the last decade.

Many different variations of the original formulation have been proposed, to name a few: reg-

ularized, sparse, and contractive AE. The AE per se is not a generative model, but it can be

easily modified to generate instances represented by a vector (z) sampled from the latent space.

The simplest solution is the transformation of the deterministic latent vector in a sample drawn

from a given probability distribution.

Today, two popular generative models for image data are the Variational Autoencoder (VAE [147])

and the Generative Adversarial Network (GAN [104]). VAEs can be easily interpreted as proba-
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bilistic graphical models [150] with the objective of maximizing a lower bound on the likelihood

of the data. GANs instead formalize the training process as a game between two adversaries: a

generative network and a separate discriminative network.

Though these two frameworks are very different, both construct high dimensional latent spaces

that can be sampled to generate images resembling training set data. Moreover, these latent

spaces are highly structured and can enable complex operations on the generated images by

simple vector space arithmetic in the latent space [158].

Variational Autoencoder (VAE)

VAEs are specified by a parametric generative model pθ(x | z) of the visible variables x given

the latent variables z, a prior p(z) over the latent variables and an approximate inference model

qφ(z | x) over the latent variables given the visible variables. It can be shown that [147]:

log pθ(x) ≥ −KL(qφ(z | x), p(z)) + Eqφ(z|x) log pθ(x | z). (6.1)

where the right hand side of Eq. 6.1 is called the variational lower bound or evidence lower

bound (ELBO). If there is φ such that qφ(z | x) = pθ(z | x) we would have

log pθ(x) = max
φ

{−KL(qφ(z | x), p(z)) + Eqφ(z|x) log pθ(x | z)}. (6.2)

However, in general, this is not true, so that we only have inequality in Equation (6.2). When

performing maximum-likelihood training, our goal is to optimize the marginal log-likelihood

EpD(x) log pθ(x), (6.3)
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where pD is the data distribution. Unfortunately, computing log pθ(x) requires marginalizing out

z in pθ(x, z) which is usually intractable. Variational Bayes uses inequality (6.1) to rephrase the

intractable problem of optimizing Equation (6.3) into

max
θ

max
φ

EpD(x)

[
−KL(qφ(z | x), p(z)) + Eqφ(z|x) log pθ(x | z)

]
. (6.4)

Due to inequality (6.1), we still optimize a lower bound to the true maximum-likelihood objec-

tive (6.3).

The quality of this lower bound depends on the expressiveness of the inference qφ(z | x).

Usually, qφ(z | x) is taken to be a Gaussian distribution with diagonal covariance matrix whose

mean and variance vectors are parametrized by neural networks with x as input [147, 242].

While this model is very flexible in its dependence on x, its dependence on z is very restrictive,

limiting the quality of the resulting model. Indeed, it was observed that applying standard

Variational Autoencoders to natural images often results in blurry images [158].

Generative Adversarial Networks (GANs)

The basic idea of GANs is to set up a game between two players: the generator G, and the

discriminator D (Figure 6.2). GANs are structured probabilistic models [103] with latent vari-

ables z and observed variables x. The generator G creates samples that are intended to come

from the same distribution as the training data. The discriminator D, instead, examines sam-

ples to determine whether they are real or fake. The discriminator is a function D that takes

x as input and uses θ(D) as parameters. The generator is defined by a function G that takes

z as input and uses θ(G) as parameters. Generator and discriminator are usually deep neural

networks. The discriminator tries to minimize J (D)
(
θ(D),θ(G)

)
while optimizing only θ(D).

The generator, instead tries to minimize J (G)
(
θ(D),θ(G)

)
while optimizing only θ(G). In this
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scenario, each network’s cost depends on the other network’s parameters, but each one cannot

control the other’s parameters. This scenario is more intuitive to describe as a game rather than

as an optimization. In game theory, the solution of a game is the Nash equilibrium [236]. A

Nash equilibrium (θ(D),θ(G)) is reached when J (D) falls in a local minima with respect to θ(D)

and a local minimum of J (G) with respect to θ(G).

The discriminator learns using traditional supervised learning techniques, dividing inputs into

two classes (real or fake). The generator is trained to fool the discriminator. GANs make ap-

proximations based on using supervised learning to estimate a ratio of two densities. The GAN

approximation is subject to the failures of supervised learning: overfitting and underfitting. In

principle, with perfect optimization and enough training data, these failures can be overcome.

Other models make other approximations that have other failures.

G(z)

D(x)

z ∼ pz(z)

Fake Image

Real
x ∼ pdata(x)

Fake/Real

Figure 6.2: Generative Adversarial Network architecture.

The relation between the two networks, is “adversarial”, given the optimization race, but

also “cooperative” since the discriminator estimates this ratio of densities and then freely shares

this information with the generator. From this point of view, the discriminator is more like a

teacher instructing the generator in how to improve than an adversary. The discriminator strives

to makeD(G(z)) approach zero while the generator strives to make the same quantity approach
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1. If both models have sufficient capacity, then the Nash equilibrium of this game corresponds

to the G(z) being drawn from the same distribution as the training data, and D(x) = 1
2

for all

x.

A generative model must be able to generate a whole series of different outputs, for ex-

ample, different faces, or different bedroom images. A set of latent variables zi is drawn at

random every time the model needs to generate an output. These latent variables are fed to a

generator G that produces an output x̂ (e.g., an image) x̂i = G(zi). Different drawings of the

latent variable result in different images being produced and the latent variable can be seen as

parameterizing the set of outputs.

The discriminator’s cost, J (D)

The discriminator cost functions, J (D), used in all the GANs implementations is always the

same. Instead, they vary for the cost function used for the generator, J (G). The cost used for the

discriminator is a commonly used binary cross-entropy (BCE):

J (D)(θ(D),θ(G)) = −1

2
Ex∼pdata logD(x)− 1

2
Ez log (1−D (G(z))) . (6.5)

The difference from a common binary classifier is that is trained on two mini-batches of data;

one coming from the dataset, where the label is 1 for all examples, and one coming from the

generator, where the label is 0 for all examples. This training modality permits to estimate

the ratio pdata(x)/pmodel(x) at every point x, enabling us to compute a wide variety of diver-

gences and their gradients. This is the main difference that sets GANs apart from variational

Autoencoders and Boltzmann machines.
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The generator’s cost, J (G)

For the Nash equilibrium the game is a zero-sum game, in which the sum of all player’s costs

is always zero:

J (G) = −J (D). (6.6)

Since J (G) is directly related to J (D), we can write the entire cost as a value function specifying

the discriminator’s payoff:

V
(
θ(D),θ(G)

)
= −J (D)

(
θ(D),θ(G)

)
.

Zero-sum games can be interpreted as minimax games because their solution involves mini-

mization in an outer loop and maximization in an inner loop:

θ(G)∗ = argmin
θ(G)

max
θ(D)

V
(
θ(D),θ(G)

)
.

Interestingly, the minimax interpretation can have a deeper connection with traditional opti-

mization approaches. In fact, it resembles minimizing the Jensen-Shannon divergence between

the data and the model distribution, that converges to its equilibrium if both players’ policies can

be updated directly in function space. In practice, the players are represented with deep neural

nets and updates are made in parameter space, so these results, which depend on convexity, do

not apply.

6.3.2 The DCGAN Architecture

Beside the Goodfellow et al. original paper [104], adversarial architectures for vision are loosely

based on the DCGAN architecture [233]. DCGAN stands for “Deep Convolutional GAN”.

Figure 6.2 shows the basic architecture, the generator (G(z)), and the discriminator (D(x)).
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The key insights of the DCGAN architecture are:

• Use of batch normalization [132] layers in most layers of both the discriminator and the

generator, with the two mini-batches for the discriminator normalized separately. The last

layer of the generator and first layer of the discriminator are not batch normalized, so that

the model can learn the correct mean and scale of the data distribution. See Figure 6.3.

• The overall network structure is mostly borrowed from the all-convolutional net [271].

This architecture contains neither “pooling” nor “unpooling” layers. When the generator

needs to increase the spatial dimension of the representation it uses transposed convolu-

tion with a stride greater than 1.

• The use of the Adam optimizer rather than Stochastic Gradient Descent (SGD) with mo-

mentum.

DCGANs can generate high-quality images when trained on restricted domains of images, such

as images of bedrooms, faces, and as we will show, bodies. DCGANs also clearly demonstrated

that GANs learn to use their latent code in meaningful ways, with simple arithmetic operations

in latent space, having a clear interpretation of arithmetic operations on semantic attributes of

the input.

6.4 Method: Creating New Body Shapes

The GAN architecture permits us to “learn” a generator as a map from a low dimensional

latent space to a high dimensional space like images, audio, and video spaces. Moreover, it

has been proved [233] that the unsupervised adversarial learning can learn a “structured latent

space”, with different semantics and stratification. Once the generator G has been learned, we

can generate new bodies x̂i by just sampling new latent vectors zi from the latent distribution
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Figure 6.3: The generator network used by DCGAN. Figure reproduced from [233].

Z, and feed the generator. Our focus in this work is the study of the sampling operation as

an exploration on the manifold of the human bodies. Given bodies with different geometries

(different WHR, stature, etc.), we want to find a particular sampling operation that captures a

specific relationship between the generated bodies (e.g., increasing WHR, constant WHR, etc.).

Thus, the sampling is performed in a way that enforces the relationship of interest between the

bodies generated by the sampling operation on the latent space.

6.4.1 Latent Space Z

We assume a latent space, generated by a normal or uniform distributionZ ∼ {N (0, 1),U(−1, 1)}d

with dimension d. On this space the sampling method will draw a batch S of latent vectors

zi ∈ S ⊂ Z, i = 1, . . . , n. The desired outcome is the generation of bodies x̂i ∈ G(S) where

for zA ≈ zB → x̂A = G(zA) ≈ x̂B = G(zB). We use the WHR as measure of body simi-

larity, thus for zA ≶ zB → WHR(x̂A) ≶ WHR(x̂B). This formulation permits to compare

the generated bodies efficiently. Traditional works on faces, or scene generation using GANs,

instead, rely on the visual inspection by the human. The presented framework can be seen as a
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supervised system, contrarily to GANs framework that are mostly unsupervised.

Both VAEs, and GANs operate by placing a prior distribution over a latent space p(Z) and

learning a mapping from the latent space, Z, to the space of the observed data x̂ ∈ X . Thus

the latent space will have some areas dense with bodies. Unfortunately, given the unsupervised

nature of these generative models, it is difficult to understand the structure of the latent space.

However, we can expect to find areas with low prior, creating some holes in the manifold. We

also expect different behaviors of the generator given the non-Euclidean nature of the latent

space.

Sampling Techniques

Generative models are often evaluated by examining samples from the latent space. Frequently

used techniques are random sampling and linear interpolation. These can result in sampling

the latent space from locations very far outside the manifold of probable locations. When

sampling the latent space is preferable to be close to locations that are more likely given the

prior of the model. This technique has been used in the original VAE method [147] which

adjusted sampling through the inverse CDF of the Gaussian to accommodate the Gaussian prior.

The second principle is to consider that the dimensionality of the latent space is often artificially

high and may contain dead zones that are not on the manifold learned during training [191]. In

this work we focus on two interpolation techniques: a linear interpolation, and a spherical

linear interpolation (See Figures 6.4, 6.5), in addition to the traditional random sampling

technique.

Interpolation

Interpolation is used to find new points between two known locations in latent space (Fig-

ure 6.4). It has been used as a way of demonstrating that a generative model is not directly
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Figure 6.4: Sampling operation on the manifold.

memorizing the training examples, but is learning the manifold representation of the data [233].

Linear Interpolation Given two samples zA, zB ∈ Zd as the extremes of the line, the inter-

mediate samples are computed as zi = zB · ti + zA · (1 − ti) with ti = 0, . . . , n, where n is

the batch size. Linear interpolation, (see Figure 6.4) is easily understood and implemented, but

often inappropriate as the latent spaces of most generative models are high dimensional (> 50

dimensions). In such a space, linear interpolation traverses locations that are extremely unlikely

given the prior. Let’s consider a 100 dimensional space with the Gaussian prior N (0, 1). All

random vectors will have a length very close to 10 (standard deviation < 1). However, linearly

interpolating between any two samples will usually result in the vector magnitude decreasing
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from roughly 10 to 7 at the midpoint, which is over 4 standard deviations away from the ex-

pected length.

Spherical Linear Interpolation Considering the latent space as a 2D manifold (e.g., sphere

surface, Figure 6.5) we can consider the great circle on the sphere surface. We can sample points

on the surface of the sphere on the path of the great circle. In particular, using slerp spherical

linear interpolation [265] allows us to move at constant-speed along a unit-radius great circle

arc, given the ends and an interpolation parameter between 0 and 1. This formula is a symmetric

weighted sum, thus any point on the curve must be a linear combination of the endpoints.

Slerp(zA, zB; t) =
sin([1− t]Ω)

sin(Ω)
· zA +

sin([tΩ])

sin(Ω)
· zB (6.7)

where zA, zB are the endpoints of the arc, and t is the parameter, 0 ≤ t ≤ 1. We compute Ω as

the angle subtended by the arc so that cos(Ω) = zA − zB, the n-dimensional dot product of the

unit vectors from the origin to the ends. A slerp path is an equivalent in spherical geometry of

a path along a line segment in the plane. Thus a great circle is a spherical geodesic [265].

A

B

.........................................................................................................................................................................................................

X

Y

Z

Figure 6.5: Sperical Interpolation of two samples zA, zB on the latent space.
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Random Sampling Random sampling is interesting for the simplicity of the method, but also

because is a simple test that can tell if the latent space is “biased” toward some of the modes.

It’s also interesting because it can shows bodies not accessible with other techniques.

6.4.2 Evaluation Network

The evaluation of generative models is a challenging task. The fundamental difficulty resides

in the ill formulation of this task. The generation of new images, never seen before, but gen-

erated from the same distribution, can be cast as density estimation. For density estimation,

log-likelihood (or equivalently, the KL divergence) has been the standard for training and eval-

uating generative models. However, the likelihood of many exciting models is computationally

intractable. Generative models are also often compared regarding properties more readily ac-

cessible than likelihood. For instance, visualizations of model samples, interpretations of model

parameters, Parzen window estimates of the models log-likelihood, and evaluations of model

performance in surrogate tasks such as denoising or missing value imputation.

Given the objective of the generator: create new bodies with realistic shapes, we believe that

a reliable evaluation method would be to measure some critical body semantics, together with

the visual inspection of the results. We use the Waist-to-Height ratio (WHR) as a body shape

indicator. This ratio is directly connected with the body appearance (Chapter 5), and do not

suffer from the drawbacks occurring with BMI, and BSA. To estimate this indicator, we train

a convolutional neural network able to regress this value from the natural images. However,

training the network on the same dataset used to learn the generative model will most likely

overfit the regressor. Thus, we decided to follow a transfer learning approach.
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WHR Regressor Network

We use a pre-trained model for face classification on the CelebA dataset [181], composed of 4

convolutional layers (4 × 4 kernels size, 2 × 2 stride, and leaky-Relu activation function, and

batch normalization). The use of the pre-trained model is motivated by the transfer learning

assumption in vision. Neural networks mimicking the human vision system, “store” in the

lower layers the basic components of images, such as corners and edges. Higher layers, instead,

store high-level knowledge about the image. Transfer learning assumes that the basic structures

in vision are common for the natural images, thus it is correct to train on larger dataset (greater

generalization), but we test on a different one. Before fine-tuning on the WHR regression task,

we modify the network adding a convolutional layer with leaky ReLU [300], another fully

connected layer with ReLU activation function, and a Sigmoid function. Given the image size

(64x64), and the number of training data, we decided not to use a very deep neural network.

To avoid memorizing effects of the network we freeze the pre-trained layers, and we train the

remaining layers. For these layers, a weight initialization with normal statistic is used. The

training is conducted using the Adam algorithm [148] with the mean squared loss function.

We use a schedule policy for the learning rate and decay rate. Figure 6.6 shows the regressor

network architecture used for the evaluation task.

6.5 Results

The body generator is based on the DCGAN [233] architecture, while the regressor is a seven

layer network. The experiments consist in verifying that certain characteristics of the gener-

ated bodies characteristics are consistent with some expected patterns. Generative models can

produce a latent space that is not tightly packed, and the dimensionality of the latent space is

often set artificially high. As a result, the manifold of trained examples can be a subset of the
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Figure 6.6: WHR regressor network.

latent space after training, resulting in dead zones, or abrupt changes in the expected prior. This

situation can be easily verified by observing Figure 6.7. From a body with decreasing WHR,

traveling on the great circle, the prior changes, generating child bodies with high WHR (around

subject 58). A similar situation can be observed for the linear interpolation in Figure 6.10. We

sample batches of vectors in the latent space with a given prior (normal or uniform distribu-

tions). We feed the generator network with these batches, and we evaluate the WHR of the

corresponding set of images. When close points on the latent space generate bodies with close

WHR values, we can say that those points lie on a high prior area.

Spherical Linear Interpolation In Figure 6.7 we report the generated bodies relative to sam-

ples zi obtained with a spherical interpolation (slerp) on the latent space Z ∼ N (0, 1). Inter-

estingly the bodies relative to these latent vectors have decreasing WHR values, as we can see

from Figure 6.7 (top) until the interpolation gets close to the “manifold edge”. When sampling

in this area with low prior, the generator gets unstable, generating noisy, shaded bodies (Fig-
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Figure 6.7: Results using Spherical Linear Interpolation on the Latent Space. Above the WHR
of the batch of subjects. Below the generated images. Images are labeled row wise: from left to
right, and top to bottom.
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ure 6.9). This behavior can be explained by different hypothesis. First, the used dataset has a

low number of small bodies, creating a bias toward adult bodies that constitute the main modes,

thus associated with the areas of high priors. Second, for small skinny subjects the network

cannot generate clear bodies. The used CNN has convolutional filters with large receptive fields

and hence lead to coarse outputs when generates pixel-level objects. Although the absence of

max-pooling layers in the network model, the current implementation is not be able to extract

fine-grained structures in the image, like face, and muscle. Last, but not least, we notice that

there can be an entanglement problem between skinny bodies and the shading augmentation

present in the Virtual NHANES rendered dataset. Unfortunately, this last drawback is more dif-

ficult to prove since we need more exploratory processing of the training and generated images.

Even with these drawbacks, we can conclude that the spherical interpolation permits to generate

bodies with varying WHR, similar to an increase of body weight. This behavior is similar to a

variation of body fat, thus movement on the x-axis in Figures 4.7-4.8.

Linear Interpolation Using a linear interpolation in nonlinear high dimensional space can

lead to suboptimal results since it has a high probability to fall in areas with low prior. How-

ever, when the extremes are close enough to be contained in a small area, we can find interesting

results. In Figure 6.10 we can see, after some samples outside the manifold, that the generated

bodies have almost constant WHR. Observing the generated bodies, we can see some relevant

differences: subjects in 3rd to 5th row in Figure 6.10 are closer to a male shape (hip circum-

ference is small). Instead, 6th to 8th rows are closer to a female shape. In general, while the

spherical interpolation walk on the manifold of similar subjects with varying WHR, the linear

interpolation crosses between male and female subjects with constant WHR. Therefore, in a

sense, the spherical interpolation answers the question of walking in the manifold from point A

to point B, along the path having an increasing or decreasing value (depending on the seman-
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(a) 0.538 (b) 0.526 (c) 0.520 (d) 0.516

(e) 0.538 (f) 0.484 (g) 0.481 (h) 0.438

(i) 0.419 (j) 0.418 (k) 0.420 (l) 0.426

Figure 6.8: Some results of Spherical Linear Interpolation with relative WHR.

(a) 0.438 (b) 0.563 (c) 0.627 (d) 0.615

Figure 6.9: Spherical interpolation: Examples of bodies outside the high prior manifold. Num-
bers indicate the WHR values.

tic relation of interest). The linear interpolation, on the other hand, addresses the question of

walking on a path with a constant value for the relation of interest.
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Figure 6.10: Linear Interpolation on the Latent Space. Above the WHR of the batch of subjects,
below the generated images. Images are labeled row-wise: from left to right, and top to bottom.

Random Sampling For some applications, we may need to create a random population of

subjects from a set of random vectors. In this situation, we can use random sampling on the
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latent space. However, given the implicit structure of the latent space, with small areas with

high priors, we can easily overshoot these locations, generating an unrealistic population. In

Figure 6.11(top) we can see the WHR distribution of a random batch of bodies. Although

there are a few cases with low prior and high shading, the majority of the subjects span a large

number of shapes and dimensions, not seen before with the interpolation experiments. This

experiment proves that the generator can generate many modes (body shapes), although the

manifold structure is more sparse with many locations with very high priors.

6.6 Conclusion

In this Chapter, we proposed an innovative generative model for the exploration of the human

body manifold. The task is particularly challenging given the instability of the GAN architec-

ture. To overcome the problem related to the evaluation of generative methods we designed a

regressor network able to retrieve the Waist-to-Height Ratio given the generated body image.

We analyzed the generator latent space as a manifold, adopting different sampling techniques.

The generative method is particularly interesting because permits the inference of new bodies

with a simple arithmetic operation on the latent vectors and the fast-forward pass in the genera-

tor network. We discover exciting patterns on the latent space, but we also verified the presence

of low prior areas, leading to the conclusion that the learned manifold is not compact, or it can

still be reduced to a lower dimensional space.
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Figure 6.11: Random Sampling with Gaussian noise on the Latent Space. Images are labeled
row-wise: from left to right, and top to bottom.
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Chapter 7

Conclusion and Future work

7.1 Conclusion

In this thesis, we analyzed the human body variations and representation from a machine learn-

ing perspective. The human body visualization and representation has a long history dating

back many centuries ago. Today we are witnessing the Artificial Intelligence (AI), and Ma-

chine Learning (ML) revolution. For modern AI/ML systems, it is important to understand the

real world, and the living beings that populate it. We motivate the work focusing our attention

on biometrics, and biomedical science, however, the developed techniques can cover a larger

spectrum of applications.

In this work, we pay particular attention in the design of the key components of a modern

ML/AI system, with many contributions in different areas. Fundamental for a data-driven sys-

tem, we introduce a new method (VirtualBODY) able to generate a population of 3D human

models with rich semantics, and detailed anthropometric measurements (Chapter 2). A unique

feature of this method is the generation of body measurements, showing that the generated pop-

ulation is statistically comparable with populations of real subjects. This method allowed us to
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generate three datasets able to tackle most common problems in human body shape analysis:

high number of subjects, high variance of the dimensions (stature, weight, gender, race, etc.),

and measurements under pose variation (Chapter 5).

Taking advantage of the newly introduced dataset, we proved that with a single-view RGB-

D camera it is possible to infer the whole body surface area of a human. In this work, we

realized a virtual environment able to simulate the physician office and the acquisition process

by an RGB-D camera. The WBSA, as proved in a subsequent chapter, characterize the spectrum

of the shape, and has important applications in medicine, and can also be a useful soft biometric

feature.

We introduced a Spectral Geometry approach for body fat analysis (Chapter 4). Spectral

geometry has been used before mostly for shape retrieval, but it has never been applied to body

shape analysis in medical science, or in soft biometrics. 3D spectral analysis is based on the

Laplace-Beltrami Operator (LBO). LBO has the important property of being invariant to defor-

mations of the shape that maintain the metric on the surface (isometry and quasi-isometry).

Classical body deformations due to different poses are parts of these transformations, thus mak-

ing our system largely independent of the pose. This innovation permits some interesting anal-

ysis for automatic health assessment. We present a spectral method for semantic classification

of Body Fat percentage (BFP). In the same chapter, we introduced some theoretical results

exploring the interaction between spectral analysis, BFP, and body surface area.

A capital task in computer vision and ML is to obtain a representation invariant to some

nuisances. In human body analysis, the body pose is the most critical factor that introduces

uncertainty. In analysis of human anthropometry, the pose invariance is rarely analyzed. Using

the VirtualBody framework, we conduct a detailed statistical analysis to show which body

measurements can be considered invariant to a common set of pose changes (Chapter 5). This

study is the first in the literature that focus the attention to pose invariance in human body shape
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analysis. It can also be used for future studies with real data to improve the robustness of ML

systems.

Human body variations are due not only to pose but also to growth. A common problem in

medical science is to track, but also predict the variations of the human body due to some event

(e.g., changes in nutrition, diseases, etc.). Traditional techniques have been based on BMI,

and WBSA indices, however, are inadequate, as discussed in (Chapter 1). In Section 4.5.3 we

presented an initial solution to the problem of representing a family of bodies with related or

common characteristics. However, learning a CRF model can be a daunting task, given the

bidirectional relation in an undirected graph. In Chapter 6, we propose a solution based on

Deep Generative models. This method permits us to explore the body manifold with a simple

sampling operation on the latent space. Given the fast-forward speed of the convolutional neural

networks (CNN) for inference problems, we can analyze a large number of bodies in relatively

short time. Moreover, the generator latent space can be analyzed with traditional vector calculus

tools, as well as more complex statistical learning methods. We have reported some main results

based on different sampling operations on the latent space.

7.2 Future Work

Given the exponential progress in ML and AI, and the growing interest in human-centric appli-

cations, there can be many future directions from this study. We can divide the possible future

contributions in two main areas: Spectral Geometry/3D based geometric processing, and 2D

computer vision techniques.
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7.2.1 Spectral Geometry/3D based Geometric Processing

Spectral Geometry, based on the Laplace Beltrami operator (LBO) is still constrained due to the

computational requirements for large meshes, and the inability to perform the convolution oper-

ation efficiently in 3D space. There are some new directions, based on deep learning that permit

us to lower the computational burden due to the optimization process. See for instance [39]. An

alternative work can be the design of a Laplace operator as a neural network layer. This basic

operation is at the base of many spectral methods on graphs. Used in a 3D neural network

architecture, will permit the fast extraction of essential features, that can be easily fused with

traditional 2D features.

7.2.2 2D Computer Vision

Although the 3D based processing is growing at a good pace, the growth is not as fast as the 2D

methods. In this work, we cited multiple times the causes of this gap. Expanding the intuition

in Chapter 6, an unusual direction would be the use of more powerful techniques to analyze

the generator latent space. This highly structured space contains useful information about the

relationship between bodies. The proposed sampling techniques, although simple and efficient

limit the possible explorations. Using more powerful statistical learning methods, we can obtain

a better understanding of this space. For instance, we can design a body shape classifier based on

the latent space, as well as impose different relationships between the bodies with a conditional

distribution.

Another problem worth to mention is the application of these methods on the real domain.

With the knowledge acquired from some recent works [202], [201] we believe we can develop

new techniques to transfer the learned knowledge on synthetic data to real scenarios. This task,

known as “Domain Adaptation” is particularly appealing, attracting significant attention in the
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latest major computer vision, and ML conferences [216].
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Appendix A

Multi-views Body Fat Percentage

A.1 Introduction

A longstanding question in computer vision concerns the representation of 3D shapes for recog-

nition: should 3D shapes be represented with descriptors operating on their native 3D formats,

such as voxel, grid or polygon mesh, or can they be effectively represented with view-based

descriptors? [274] This is one of most crucial debate in computer vision.

In this work we face the task of human body BFP classification using traditional natural image

descriptors. In Chapter 5 we leveraged intrinsic or pose/view-invariant descriptors. The present

work, instead, considers a human body representation dependent on the coordinate system, and

camera position.

For this task we use the recent findings in “Deep learning”, which has the convolutional

neural network (ConvNet) [159] architecture as the most known method. Convolutional Neural

Networks (ConvNet) are very similar to ordinary Neural Networks (NNs): they are made up of

neurons that have learnable weights and biases. Each neuron receives some inputs, performs a

dot product and optionally follows it with a non-linear operation. The network still expresses
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a single differentiable score function as in traditional Neural Networks. They still use a loss

function (e.g., Softmax, Hinge loss, etc.) on the last (fully-connected) layer. ConvNet archi-

tectures, differently from NNs, make the explicit assumption that the inputs are images, which

allows us to encode certain properties into the architecture. These make the forward function

more efficient to implement and vastly reduce the number of parameters in the network.

ConvNets present many interesting properties, for a better explanation we refer to the sur-

vey [306]. ConvNets take advantage of the “convolution” operation on images, where the

shift-invariant property, typical of the Euclidean domain is verified. Unfortunately, the shift-

invariant property is hard to extend to non-Euclidean domains, where, a new intrinsic definition

on a Riemannian manifold is necessary. Thus, recent works have tried to define a more general

“convolution” for the non-Euclidean domain. Bruna et al. [42] proposed a spectral formulation

of ConvNets on graphs. Masci et al. [139] proposed a generalization of ConvNets to triangu-

lar meshes using a local geodesic charting technique [149]. In this work, rather than defining a

new “convolution” operation, we will use a traditional computer vision framework for 3D shape

matching with the usual ConvNet architecture for RGB images.

In the traditional 2D setting we lose the view-invariant property. However, in cognitive

neuroscience, Viewpoint-dependent theories suggest that object recognition is affected by the

viewpoint at which it is seen, implying that objects seen in novel viewpoints reduce the accu-

racy and speed of object identification [281]. This theory of recognition suggests that objects

are stored in memory with multiple viewpoints and angles. Unfortunately, the storage require-

ment increase as it requires that each viewpoint must be stored. The accuracy depends on how

familiar the observed viewpoint of the object is [219]. Recent findings in the area of cognitive

neuroscience in object recognition have established that the brain separates the object recogni-

tion process, from the face recognition [163].

Many methods have been proposed in computer vision to address the problem of limited
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information in object recognition. Tremendous progress has been made especially in image-

level object classification under limited geometric transformations, such as classification of

side-view cars, or frontal view faces (e.g. [294],[92],[308]). Also relevant is the line of work

in object detection in cluttered real-world scenes, such as pedestrian detection, or car detec-

tion [66], [91], [235], [302], [277], [53], [75]. However, most of the previous approaches can

only handle up to a small degree of viewpoint variations of the 3D objects. As a result, they

can hardly be used for robust pose understanding. A small, but growing, number of recent

studies have begun to address the problem of object classification in a true multi-view setting

[282],[302],[153],[298],[63],[257],[258],[172].

The proposed approach is based on a multi-view framework, where all the views are avail-

able in training and testing. Although inspired by the work of Su et al. [274], we are interested

in evaluating the performances of a multi-views system for BFP classification. Differently

from [274], we introduce a different rendering technique that jitters the data creating a more

realistic and challenging environment.

A.2 Problem Definition

Given multiple RGB views of a given subject, our goal is to classify the subject concerning

the BFP. Instead of an ordinary feature-based or shape-based representation, we will use the

state-of-the-art in object classification: ConvNets. Feeding multiple images of the same subject

to a ConvNet can make the network more prone to errors, resulting in a lower classification rate.

In this work, we compare two modalities to feed the network. The first is view independent:

we send to the network images of the same subject, from different viewpoints, independently,

with no explicit correlation. This case is common to most classification problem, for instance

like in ImageNet Challenge [250], CiFar-10 [152], Pascal VOC [87], etc. In our case, the
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category is the BFP categories. The second model assumes some correlation between the views

for each subject. The network knows that each subject has n views. This model has been

implemented with a different network architecture, where an additional “pooling” layer works

as views “accumulator”.

A relevant part of this work is the generation of the needed views from the 3D dataset. In the

next section, we describe this important step. Subsequently, we describe the network model and

the training. Finally the results.

Pipeline

The tasks involved in this work are summarized in the following pipeline:

• Dataset:

– Rendering: 16 views/subject with random illumination conditions.

– Organization: split train/test 80%/20% set.

• Training:

– Setup pre-trained Network.

– Fine-tune pre-trained Network (partial training).

– Deploy the fine-tuned Network N. 1.

– Fine-tune Network N.2.

• Testing:

– Deploy Networks for testing.

– Feature extraction on the test set.

– Classification/Retrieval results.
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A.3 Dataset

We take advantage of the VirtualBody dataset introduced in Chapter 2. This dataset contains

useful labels BFP, BMI, stature and body measurements. For the BFP classification, we use

all the subjects in the Virtual NHANES dataset (Section 2.4.1) from all the weights classes.

Differently, from the previous Chapter, we expect that the ConvNet will be invariant to scaling

factors, such as the global dimension of the shapes. Figure A.2 shows some 3D male samples

contained in the dataset. Figure A.3 shows 3D mesh and some of the 16 rendered views for one

subject. In the next section, we explain the particular rendering process used to generate the

views.

A.4 A Renderer for the VirtualBody Dataset

General 3D data is a representation of the content view-invariant. Today, this data format,

with the excellent rendering capabilities of the GPU units, is giving outstanding performance

in Virtual Reality (VR) [79]. Although, as humans, we cannot interact directly with 3D data.

Moreover, to acquire and label the data is an expensive and very time consuming task, with the

downside that some data can be scarce, noisy, and affected by some uncontrollable nuisances.

In this context the computer vision community often resort to computer graphics techniques to

solve more complex problems. One of the best example is the use of simulated human body

pose depth images to train the random forest algorithm for body tracking in Microsoft Kinect

SDK [266]. Figure A.1 shows the Microsoft Kinect depth map with body labels and skeletal

joint points. Although typical random forest algorithms are not very demanding of training

data, the problem requires the need of depth views of the body in a large variety of pose and

activities. Such collection of data is quite demanding even for a corporate lab. The solution was

to use virtual bodies, represented by meshes, and animate them using some MoCap data [67].
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Figure A.1: Microsoft Kinect Body Tracking.

Using the virtual environment makes the body parts labeling accessible and more reliable than

the expensive Vicon system. Inspired by this work we created VirtualBody, with the intention

to simulate body shapes variation due mainly to BFP, and weight.

In Chapter 3 we propose an application based on computer graphics techniques to obtain

many depth views of the subject. In this Chapter, we extend the method for the generation of

thousands of views for the “hungry” (of training data) ConvNet algorithm.

A.4.1 Rendering

Rendering is the process of generating an image from a 2D or 3D model that we call subject.

The subject is defined in a data structure (triangular mesh, for MH meshes). It would contain

geometry, viewpoint, texture, lighting, and shading information as a description of the virtual

scene. In our VirtualBody dataset, we define the textures for males and females, as for different

races, but we do not define lighting, shading, and viewpoint. Then, we pass this information to

a rendering program to be processed and output to a digital image or raster graphics image file.

We define these quantities for the renderer: viewpoints, lighting and shading, and background.

The rendering process is similar to the raycast method introduced in Chapter 3. The main

difference is that for the WBSA estimation we needed to produce 3D information as x, y, z co-
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ordinates, then the raycast method is the preferable choice. We refer to the recent survey on ren-

dering techniques [123]. The renderer is based on the pinhole camera model. Parameters of the

model are the intrinsic parameters [114]. We do not use any distortion model in this work. An

important parameter is the camera location. The position of the camera is defined as x, y, z po-

sition with respect to the origin, where the subject is located. We used, as in Section 3.2.2, a con-

stant distance from the subject, and the angles: 0◦, 30◦, 45◦, 60◦, 90◦, 120◦, 135◦, 150◦, 180◦, 210◦, 225◦, 240◦, 270◦, 300◦, 315◦, 330◦

from the frontal position (0◦).

A.4.2 Data Augmentation and Jittering

Lighting and shading are two fundamental characteristics of the rendering process since they

contribute to making the final result close to reality. Lighting or illumination is the artificial

use of light to achieve a practical or aesthetic effect. Usually, the lighting is not part of the

rendering equations, however many tools include some lighting model. The most famous is the

Phong reflection model [220] (also called Phong illumination). It quantifies the surface reflected

light as a combination of the diffuse reflection of rough surfaces with the specular reflection of

shiny surfaces. Another critical element of the rendering process is the shading. Shading refers

to the process of altering the color of an object/surface/polygon in the 3D scene, based on its

angle to light sources and its distance from the light sources to create a photorealistic effect.

Lighting and shading, together, can make a drastic change on the appearance of the rendered

subject. In our case, we use these two operations to jitter the data, creating a more realistic re-

sult. This data augmentation is very useful for training the ConvNets, which can easily “mem-

orize” patterns in the data and overfit. Our solution is to randomly decide different illumination

and shading conditions for each rendered view. Figure A.3 shows the original subject (cen-

ter), and some rendered views. The views have different shading and illumination conditions,

making the visual appearance almost unrecognizable from the original in some instances.
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Figure A.2: 3D male models.

Background Overlaying: Till now we have generated multiple views of the same subject

jittering the visual appearance with some lighting and shading artifacts. However, as we can

see from Figure A.3, the silhouettes are still very clean because there is no background. This

is a situation that can happen in reality. Thus the next step is to overlay a background image to

the views. However, to avoid further “memorizing” effect by the ConvNet, for each rendered

image, we randomly sample an image from SUN397 dataset [299] as the background image.

We use the alpha-composition [228] to blend a rendered image as foreground and a scene image

as background. Figure A.4 shows some of the results of the alpha-composition.

A.5 Network Models

One of the main goals of this Chapter is to compare the performance of two network architec-

tures. The first one is the usual CNN network, and the second is a modified version of the first

with a new pooling layer. We develop two experiments with the following specs:

• Experiment 1: Classification task (lean, fat, average weight) with a traditional fine-tuned

CNN network on the independent views (CNN).

• Experiment 2: Classification task (lean, fat, average weight) multi-view CNN: the views

are “pooled” at a pooling layer (MVCNN) as seen in [274].
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Figure A.3: Original mesh ans some of the 16 views.

Figure A.4: Background Overlaid for some of the views.
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The second network differs in the multi-view pooling layer. A max-pooling kind of “pool-

ing” able to pool together all the views before classification. The basic network used is the

winner of Imagenet 2013 Zieler et al. [306], composed of 5 convolutional layers and 3 fully

connected layers, with RELU between each layer and batch normalization (Figure A.5). This

network, trained with Imagenet 2012, got the better results in the Imagenet 2013 competition.

The behavior of the two network for multi-view classification is different. A traditional Con-

vNet, trained with multiple views, will “accumulate” the information relative the view mostly in

the convolutional layers, where a “collage” of diverse activation patterns constitute the activa-

tion function. Then, we can imagine different bodies from different views stored. The ConvNet

with a multi-view pooling layer, instead, will have only the bodies information in the layers

subsequent the pooling, since the pooling stage will aggregate all the view together.

A.5.1 Training

A.5.2 Data Partitioning

At the end of the rendering process, we obtained the new multi-view data collection. From this

set we created two sets using an 80/20 % split between training and testing for both males and

females experiments, obtaining the following:

• 12500 subjects, 16 views for every subject for a total of 200000 total images generated.

• 3 classes: Lean, Fat, Average (see Table A.1)

Unfortunately, given the number of images per class ( 16000) we cannot train this kind of

network from random weights, because the data is not enough to train a network with this num-

ber of parameters (∼ 90, 000, 000). The number of parameters for this network is> 90, 000, 000
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Class/Split train val test
AVERAG 810 (16192) 202 (2000) 259 (2144)
FAT 810 (16192) 202 (2000) 259 (2144)
LEAN 810 (16192) 202 (2000) 259 (2144)

Table A.1: Number of subjects (images) per class.

Figure A.5: ILSVRC 2013 Winner model.

the network will underperform due to the lack of training data. Thus the following choice is to

use a pre-trained network and fine-tune only a few layers.

Fine-Tuning. The great power of deep ConvNets trained with a significative large amount

of data is that they have a tremendous discriminative power and are invariant to very strong

nuisances (e.g., affine transformations, illumination conditions, etc.). Unfortunately to train a

network of this kind require a huge amount of data. A common solution, already in use with

the old neural network architectures is to train only a portion of the network. This solution has

a very strong motivation in the genesis of neural networks. In a large ConvNet, the initial layers

are comparable to the primary elements of the visual cortex, V1 or striate cortex composed of

simple cells. Recall that ConvNets and NNs, in general, are inspired by the visual cortex of

mammals. Other areas are V2, V3, V4, V5, V6 or extrastriate areas, that account for much

higher level processing. Image processing has taken advantage of these structures creating

V1-based filters. Common V1-inspired filters (e.g., Gabor in image processing) are responsible

for the detection of basic geometric elements: corners, edges, and scale-space analysis. In the
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same fashion, the first few layers of a ConvNet work as a detector for basic geometric structures.

With this in mind, it is possible to use an already trained network (e.g., for cats and dogs) on

an entirely different dataset (e.g., pasta and cucumbers) just “tuning” some layers of the former

network for the new dataset. Now the question is: “which layers that need to be trained again?”.

A common solution is to train the final layers of the network, and many use this policy to

fine-tune the network with new data. See [126] for a review on fine-tuning techniques.

Batch Normalization. Training Deep Neural Networks is complicated by the fact that the

distribution of each layers inputs changes during training, as the parameters of the previous

layers change [132]. This slows down the training by requiring lower learning rates and careful

parameter initialization, making notoriously hard to train models with saturating nonlinearities.

This phenomenon has been called internal covariates shift. To address the problem, it is possi-

ble to normalize the inputs layers as Ioffe et al. suggested in [132]. Batch normalization helps

in two ways: faster learning and higher overall accuracy. The improved method allows using

a higher learning rate, potentially providing another boost in speed. The basis of this method

is this intuition: we know that normalization (shifting inputs to zero-mean and unit variance) is

often used as a pre-processing step to make the data comparable across features. As the data

flows through a deep network, the weights and parameters adjust those values, sometimes mak-

ing the data too big or too small (internal covariate shift). By normalizing the data in each

mini-batch, the problem is mostly avoided. Basically, rather than just performing normalization

once in the beginning, you are doing it all over the network.

A.5.3 Multi-View CNN: MVCNN

Inferring the shape of the subject from just one view can be a challenge when we have a single

2D RGB image. The principal problem in this situation is missing information. This problem
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has been tackled in many ways. The most famous is matrix completion that in the specific 3D

body setup has been largely discussed by the shape completion algorithm (SCAPE [7]). The

same problem has been tackled in a different setup by the well known collaborative filtering

techniques [311].

In this project, we follow the steps of the work by Su et al. [274]. The traditional ConvNet

considers each view separately (many to many), and the scores from the views are averaged

for the final result. The authors propose an attractive solution, where the views are pooled

together for a unique decision. This solution introduces a new pooling layer, called “multi-view

pooling”, a max-pooling sort of layer. The novelty is quite intuitive. However, the paper misses

a critical result. The new pooling layer has been tested on all the views, as it has been trained.

It would have been way more interesting to see what happens if we use only one view during

the test phase.

A.5.4 Testing: Deploying and Fine-tuning

Common terms used for the networks are deployed or trained. The training network is a net-

work with the loss layer, which computes the error between the predicted and the actual output

value. A deployed network, instead, does not have this layer, and the output labels are not prop-

agated from the input of the network. The key tasks involved to fine-tune and test the networks

(CNN,MVCNN) are the following:

• After fine-tuning, the network has to be deployed for testing (elimination of the layers

used to train the network) (loss, argmax if SVM is used, etc..)

• To evaluate the classification performance, we trained an SVM classifier with the features

extracted from the RELU7 layer.

• The MVCNN network, instead, is the deployed version of the former ConvNet with the
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addition of the multi-views pooling layers.

Network Memory. Training a deep or very deep neural network is a task way more different

than training a usual machine learning algorithm. It is something between, hacking, trial, and

error, with some heuristic solutions. A good overview can be seen in the excellent tutorial by

Bottou [34]. One of the most troublesome steps is the use of common tools (Caffe, Theano,

Tensorflow, etc.) on the GPUs. The principal problem is the network footprint on the memory

GPU. As we can see in Table A.2, with a huge amount of parameters, and many layers, the

memory occupancy increases very quickly. The values in Table A.2 are relative to a batch size

of 84 (num):

• Parameters Memory: 378MB (9.9e+07 parameters!)

• Data Memory: 1GB (for batch size 84)

As we can see, most of the memory is used by the batch of data that flow throughout the

network. Unfortunately, the data cannot be removed from the memory after each layer since we

still needed it to compute the derivative at the back propagation step! This is very important,

and is one of the major constraints to implement very deep network on home computers. The

parameters, luckily, do not take much of the memory since most of them are shared.

A.5.5 Results: Training

The above networks have been implemented using the matconvnet library [288]. The training

time to fine-tune the network is around 6-7 hours for 15 epochs in the case of CNN, and around

3 hours to fine-tune the MVCNN network. Fine tuning the MVCNN network takes less time

since only the last layer needs to be “tuned”. We use a common I7 Desktop computer and an

HPC machine with GPU GRID (4xK40) for heavy duty computing. In Figure A.6, we report the
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Table A.2: Network Specs. M: Mbyte, K:Kilobyte, B:byte. Support define the convolutional
layer geometry. The next rows: stride, size, and padding of the filters. Then the number, depth,
and size of the filters. Finally the amount of data and parameters.

Layer
type
name

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
inp conv relu mpool conv relu mpool conv relu conv relu conv relu mpool conv relu conv relu conv softm
n/a conv1 relu1 pool1 conv2 relu2 pool2 conv3 relu3 conv4 relu4 conv5 relu5 pool5 fc6 relu6 fc7 relu7 fc8 loss

support
filt dim
num
stride
pad

n/a 7 1 3 5 1 3 3 1 3 1 3 1 3 6 1 1 1 1 1
n/a 3 n/a n/a 96 n/a n/a 256 n/a 512 n/a 512 n/a n/a 512 n/a 4096 n/a 4096 n/a
n/a 96 n/a n/a 256 n/a n/a 512 n/a 512 n/a 512 n/a n/a 4096 n/a 4096 n/a 55 n/a
n/a 2 1 2 2 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1
n/a 0 0 0 1 0 0x1x0x1 1 0 1 0 1 0 0 0 0 0 0 0 0

rf size
rf off
rf stride

n/a 7 7 11 27 27 43 75 75 107 107 139 139 171 331 331 331 331 331 331
n/a 4 4 6 10 10 18 18 18 18 18 18 18 34 114 114 114 114 114 114
n/a 2 2 4 8 8 16 16 16 16 16 16 16 32 32 32 32 32 32 32

size
depth
num

224 109 109 54 26 26 13 13 13 13 13 13 13 6 1 1 1 1 1 1
3 96 96 96 256 256 256 512 512 512 512 512 512 512 4096 4096 4096 4096 55 1
84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 1

data
param

48M 365M 365M 90M 55M 55M 14M 28M 28M 28M 28M 28M 28M 6M 1M 1M 1M 1M 18K 4
n/a 56KB 0B 0B 2MB 0B 0B 5MB 0B 9MB 0B 9MB 0B 0B 288MB 0B 64MB 0B 880KB 0B
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Figure A.6: Training and validation Errors. CNN (Left), MVCNN (Right)

training and validation error for the two networks. As we can see, the error dropped very fast

with a few epochs. This behavior is characteristic of the fine-tuning procedure. A traditional

network of the same dimension will take much longer to converge with randomly initialized

parameters.

A.5.6 Results: Classification and Retrieval

In Table A.3 we report the results in testing for classification and retrieval task. In classification,

the network is used to extract the features from the images. These features have been pulled

from the network at RELU7 and used to train an SVM [33] classifier with a linear kernel.
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The retrieval task is different. Based on information retrieval (IR), this requires a ranked

list of items that are relevant to a specified query. The procedure is to compute the features

distances between the query and all the other subjects, and subsequently rank them. Finally,

common metrics are used to evaluate the performance. In this case, we report the mean average

precision (mAP), and the area under the curve (AUC).

Table A.3: Classification and Retrieval results.

Results
Males Females

CNN MVCNN CNN MVCNN
Classification
Accuracy (train) 99.95 % 100 % 99.49 % 100 %
Accuracy (test) 96.03 % 97.78 % 96.63 % 98.07 %
Retrieval

mAP 88.89 % 91.54 % 90.62 % 91.22 %
AUC 88.08 % 91.20 % 90.59 % 91.19 %

A.5.7 Comparison with Spectral BFP

Table A.4 shows the classification results for the same weight grouping (W0-W1, all stature, all

ages) used for the ConvNet approach. We can see that the ConvNet approach largely outperform

the Spectral approach. This result is mainly due to the much more discriminative 2D “deep”

features. However, the two methods are quite different. The spectral approach use only one 3D

mesh, instead the ConvNet can leverage the more informative multi-view information.

Table A.4: Comparison with Spectral method.

Results
Males Females

CNN MVCNN CNN MVCNN
Classification
Accuracy 96.03 % 97.78 % 96.63 % 98.07 %
Spectral BFP
Accuracy 71.93 % 84.93 %
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A.6 Conclusion and Future Work

In this Chapter, we have presented an interesting application that use the recently proposed

ConvNets to estimate the BFP class. We have introduced a rendering method to efficiently use

the developed VirtualBody dataset in a common RGB framework. The newly rendered dataset

allows us to develop endless multi-view methods since it can take advantage of the rich set of

labels presented in Chapter 2. We have also tested two network configuration for the multi-

view setting, obtaining excellent results. However, we found some important limitations in the

original method. The networks are trained on all the subjects views, as most often happens in

training time, but it is also tested on all the views. This last situation rarely happens in practice.

Instead, a more interesting solution will be training on all the views and testing with only one

view. One proposed work is to extend the present framework to test on a single random view.

Another interesting study is to consider the shape transformations as “style transfer”. StyleNet [100]

is one of nicest applications of ConvNets to the unusual field of artistic computer vision. Taking

too picture, StyleNet can maintain the contest of the original picture, but transferring the style

from the other picture. For a family of shapes, the style transfer can learn the “style” of fat

people and transfer it to skinny people and vice versa. Boscaini [32] used the style transfer as a

functional map for 3D shape retrieval but implemented on traditional spectral features.

Although the categorization in BFP classes is useful, a more interesting solution is the pre-

diction of BFP. This measure, however, is hard to estimate accurately since it depends on many

factors that the shape cannot account for (e.g., water in the body, the density of the bones, etc.).

Instead, VirtualBody allows us to have an accurate measure of the WHR, which is officially rec-

ognized as an obesity indicator [9]. The proposed predictor, ideally will estimate the subject’

WHR from a single view, after the training has been done with the multi-view approach.
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Appendix B

Spectral Analysis

B.1 Helmotz Equation

∆f = λf (B.1)

The solutions of this equation represent the spatial part of the solutions of the wave equation.

In the surface case f(u, v) in Eq. B.1 can be understood as the natural vibration form (also

eigenfunction) of a homogeneous membrane with the eigenvalue λ. The solutions of the general

vibration problem are the solutions f(u, v) of this differential equation on the surface. Because

of this physical interpretation, the question whether the eigenvalues of the Laplace operator

determine the shape of a planar domain, has been rephrased by the late mathematician L. Bers

in a terse, impressively concise and pictorial way: Can one hear the shape of a drum? [229]

∆ is the Laplace-Beltrami Operator (LBO). Like the Laplacian, the LaplaceBeltrami operator is

defined as the divergence of the gradient ∆f = ∇2f = ∇×∇f , and is a linear operator taking

functions into functions. The operator is the generalization of the Laplace operator to Riemann

manifold. From the spectrum of the Laplace-Beltrami operator, one can extract the area of S,

the length of its border and its genus [247]. For a more deep understanding about the role of the
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Laplacian operator on the manifold analysis is exciting the work of Canzani [48].

B.1.1 Spectrum Properties:

• The spectrum is defined to be the family of eigenvalues of the Helmholtz equation (Eq. B.1),

consisting of a diverging sequence 0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ . . . inf, with each eigen-

value repeated according to its multiplicity and with each associated finite dimensional

eigenspace. In the case of a closed manifold without a boundary, the first eigenvalue λ1 is

always equal to zero, because in this case the constant functions are non-trivial solutions

of the Helmholtz equation. If a Dirichlet boundary exists, the first eigenvalue is always

greater than zero, since the only constant solution is trivial (because of the boundary con-

dition). The first eigenvalue is always simple, and the corresponding eigenfunction has no

nodal lines (zero sets of the function). The nodal lines of the nth eigenfunction subdivide

the domain into maximal n subdomains.

• The spectrum is an isometric invariant as it only depends on the gradient and divergence

which in turn are defined to be dependent only on the Riemannian structure of the mani-

fold. This implies property ISOMETRY.

• Furthermore, we know that scaling an n-dimensional manifold by the factor a results in

scaled eigenvalues by the factor 1/a2. Therefore, by normalizing the eigenvalues, the

shape can be compared regardless of the objects scale (property SCALING). This fact

can be proved quite easily for any dimension n.

Let M be a compact n-dimensional Riemannian manifold of class CN with the local

parametrization h : Rn → Rn+k. The scaled manifold with the parametrization h̄ : ah
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possesses the partial derivatives

∂kh̄ = a∂kh(k = 1, . . . , n) implying g−ij =
1

a2
gij and W̄ = a2W, (B.2)

∆hu =
1

W

∑
i,j

∂i(g
ijW∂ju) = λu (B.3)

∆h̄u =
1

W̄

∑
i,j

∂i(g
ijW̄∂ju) =

1

a2W

∑
i,j

∂i(g
ijW∂ju) = − 1

a2
λu (B.4)

• The spectrum depends continuously on the shape of the membrane, thus complying with

property SIMILARITY. Moreover, it can be shown with similar arguments that the spec-

trum depends continuously on the Riemannian metric of the manifold in general.

• The numerical computation of the spectrum can already be done with a standard personal

computer. Therefore the requested EFFICIENCY can be satisfied as well.

• The property COMPLETENESS is not fulfilled by the spectrum because some non-

isometric manifolds with the same spectrum exist.

• The question if a sequence of n real numbers (S = {a1 = 0 ≤ a2 ≤ a3 ≤ · · · ≤

an}) can be the beginning of the spectrum of a compact Riemannian manifold X has

been discussed by Colin de Verdière. It is shown that for any such finite sequence S,

there always exists a compact Riemannian manifold X with dim(X) ≥ 3 always exists

realizing S as the beginning of its Laplace spectrum. This result also means that given

any positive integer n, a Riemannian manifold exists, such that the multiplicity of the first

non-zero eigenvalue is n. In the case of a closed Riemannian surface (dim(X) ≥ 2),

there are bounds to the multiplicities depending linearly on the genus. However, in the
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case of a surface, the result by Colin de Verdière holds also for finite sequences of the

form (S = {a1 = 0 ≤ a2 ≤ a3 ≤ · · · ≤ an}). These results are interesting in the context

of property COMPRESSION.

Of course, classes of manifolds exist (like the disks or the rectangle) where one or two

eigenvalues already determine the size and the shape and therefore the whole spectrum.

In other words, if we know we have a rectangle, we need just two eigenvalues to find its

side lengths. Without prior knowledge of the manifold, a characterization is impossible

by a finite subsequence of the spectrum. Therefore, the spectrum cannot be compressed

into a finite subsequence (see property COMPRESSION) without losing information.

• A substantial amount of geometrical and topological information is known to be con-

tained in the spectrum. Therefore the property PHYSICALITY is fulfilled. Even though

we cannot crop a spectrum without losing information, we will show that it is possible to

extract important information just from the first few eigenvalues (approx. 500).

However, it will not be possible to satisfy property [COMPLETENESS]. Nevertheless, no

three pairwise isospectral but non-isometric manifolds have been constructed so far and all

known pairs of isospectral planar domains have been shown to be non-convex with non-smooth

boundaries. The only examples of pairs of convex domains in Euclidean space, being isospec-

tral but not congruent, were found in four or higher dimensional spaces. It is not sure if triples

or isospectral continuous deformations exist in lower dimensions at all. The constructed ex-

amples (e.g., pairs of isospectral domains) were always somewhat artificial and appear to be

exceptional. For the special case of Riemann surfaces (namely surfaces with constant negative

curvature), Buser was able to derive an upper bound for the number of isospectral but non-

isometric surfaces depending only on the genus. For all of these reasons and also based on

experimental studies, we feel that the spectra of the LaplaceBeltrami operator have significant
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discrimination power, strong enough to be used in contemporary applications, as point clouds.

This will be the most recurrent data in future surveillance systems, acquired from mobile or

fixed lidar devices, RGB-D sensors, or simply as multi-view stereo reconstruction.
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