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Abstract

Recent improvements in non-invasive imaging, together with the introduction of fully-

automated segmentation algorithms and big data analytics, has paved the way for large-

scale population-based imaging studies. These studies promise to increase our under-

standing of a large number of medical conditions, including cardiovascular diseases. How-

ever, analysis of cardiac shape in such studies is often limited to simple morphometric

indices, ignoring large part of the information available in medical images. Discovery of

new biomarkers by machine learning has recently gained traction, but often lacks inter-

pretability. The research presented in this thesis aimed at developing novel explainable

machine learning and computational methods capable of better summarizing shape vari-

ability, to better inform association and predictive clinical models in large-scale imaging

studies.

A powerful and flexible framework to model the relationship between three-dimensional

(3D) cardiac atlases, encoding multiple phenotypic traits, and genetic variables is first

presented. The proposed approach enables the detection of regional phenotype-genotype

associations that would be otherwise neglected by conventional association analysis. Three

learning-based systems based on deep generative models are then proposed. In the first

model, I propose a classifier of cardiac shapes which exploits task-specific generative

shape features, and it is designed to enable the visualisation of the anatomical effect

these features encode in 3D, making the classification task transparent. The second

approach models a database of anatomical shapes via a hierarchy of conditional latent

variables and it is capable of detecting, quantifying and visualising onto a template shape

the most discriminative anatomical features that characterize distinct clinical conditions.

Finally, a preliminary analysis of a deep learning system capable of reconstructing 3D

high-resolution cardiac segmentations from a sparse set of 2D views segmentations is

reported. This thesis demonstrates that machine learning approaches can facilitate high-

throughput analysis of normal and pathological anatomy and of its determinants without

losing clinical interpretability.
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Chapter 1

Introduction

This chapter introduces the motivation for the research undertaken in this work and aims

at providing the reader with all the necessary clinical background. In Section 1.1, notions

of human cardiovascular anatomy and pathology are introduced. The main class of cardiac

diseases studied in this work, cardiomyopathies, are also reviewed. This is followed, in

Section 1.2, by an explanation of the clinical role of cardiac imaging and of imaging-derived

clinical indices, with a special focus on cardiovascular magnetic resonance (CMR) imaging.

Section 1.3 summarises the history and motivation for large-scale population-based cardiac

imaging studies, while Section 1.5 introduces the challenges related with modeling cardiac

shape in such studies. Finally, this chapter is concluded with a summary of the objectives

and contributions of this research work (Section 1.6), and with an overview of thesis

content (Section 1.7).

1.1 The Human Heart

The human heart is a hollow, muscular organ located in the thoracic cavity and consist-

ing of four chambers: the left and right atria and the left and right ventricle. A diagram

of the human heart anatomy is shown in Figure 1.1. The heart plays a key role in the

1



2 Chapter 1. Introduction

Figure 1.1: Anterior cross-section of the human heart.1

cardiovascular system by propelling blood through the human body. This is carried out

via two functionally distinct pathways: the systemic circuit and the pulmonary circuit.

The pulmonary circuit carries deoxygenated blood from the right ventricle to the lungs,

via the pulmonary artery; and returns oxygenated blood to the left atrium, via the pul-

monary veins. The oxygen-rich blood is then pumped, via the mitral valve, from the left

atrium to the left ventricle (LV), where the systemic circuit starts. The systemic circuit is

responsible for delivering, through the aorta and the body arteries, oxygen and nutrients

to the tissues of the body from the LV. The systemic circuit is completed when deoxy-

genated blood returns to the right atria through the body veins and is again provided to

pulmonary circuit.

The pumping motion of the heart is triggered by electrical stimuli in pacemaker cells of the

right atrium, which directly control the heart rate. During each heart beat, a contraction

phase of the atria and ventricles to pump blood out to the pulmonary arteries and to

the aorta, named systole, is followed by a relaxation phase, named diastole. In normal

1Figure adapted from Wikipedia: https://en.wikipedia.org/wiki/Heart

https://en.wikipedia.org/wiki/Heart


1.1. The Human Heart 3

conditions, the heart beats between 65 to 75 times per minute. In case it stops pumping

blood, the cells of the body will not be able to survive without the necessary nutrients,

resulting in cell death.

1.1.1 The Left Ventricle of the Human Heart

This work focusses on the analysis of the left ventricle. The LV is a conical cavity, often

represented schematically as a prolate ellipsoid, located in the bottom left portion of the

heart, below the left atrium and with the right ventricle hugging it [1]. As shown in Figure

1.1, separating the right and left ventricle (RV and LV) is the interventricular septum,

which is concave in shape and bulges into the right ventricle. A smooth inlet portion that

contains the mitral valve apparatus and a smooth outlet portion leading to the aortic

valve are located at the top of the LV.

In imaging protocols, the line that passes through the center of the mitral valve orifice

and the apex of the LV is commonly referred to as the long axis of the heart, while

the axis perpendicular to it is named the short axis of the heart [2, 3]. To facilitate

clinical studies and diagnosis, the American Heart Association (AHA) 17-segment model

is conventionally used to divide the LV into 17 distinct regional segments (Figure 1.2). In

particular, based on autopsy data, the AHA 17-segment model divides the LV into equal

thirds perpendicular to its long axis to create three circular sections named basal, mid-

cavity, and apical. Then, the model further divides the basal and mid-cavity sections into

six segments, the apical section into four, and the final, seventeenth segment represents

the apical cap, or apex. The LV apex contains the true muscle at the extreme tip of the

ventricle where there is no longer cavity present.

The LV, as the rest of cardiac muscle, consists of three layers: the epicardium (forming the

outermost wall), the myocardium (the middle layer) and the endocardium (the innermost

layer, which has contact with the blood-pool). The myocardium is the thickest of the
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Figure 1.2: The American Heart Association’s 17-Segment Model (AHA-17). Figure
adapted from [4].

three layers, mainly composed of cardiomyocytes. The LV is responsible for pumping

oxygenated blood all over the body, developing a much higher pressure than the other

heart chambers, and for this reason is the thickest of the heart’s chambers. The healthy

LV myocardial wall reaches the maximum thickening at its base, while thinning to only

1-2 mm at its apex. Septal LV wall thickness (WT), which is of particular importance

in the diagnosis of many cardiovascular diseases, is on average 7-12mm in healthy adults

[5, 3].

1.1.2 Cardiovascular Diseases and Cardiomyopathies

Cardiovascular diseases are the leading cause of morbidity and mortality globally, repre-

senting the 31% of all deaths worldwide (17.9 million) in 2016, according to the World

Health Organization (WHO) [6]. Heart failure, a clinical condition in which the heart

is unable to pump blood to meet the body’s needs, is among the main contributors to

this public health issue, with an estimated prevalence of 23 million subjects worldwide

[7]. Heart failure is a final common stage of several cardiovascular diseases including

cardiomyopathies, hypertension, and coronary or valvular heart disease, which adversely

modify the structure or the function of the heart, provoking this impairment. Due to the

advances in the understanding of the biological mechanisms driving it, slowing or revers-
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ing heart failure has now become an important therapy goal. This makes the quantitative

assessment of the heart changes over time associated to this condition crucial.

Cardiomyopathies are a common global set of cardiovascular diseases of the myocardium

which manifest with heterogeneous structural and functional phenotypes. These diseases

are characterized by heterogeneous complex etiologies and a significant percentage of

their number is of genetic origin, origin which has been increasingly uncovered over the

past three decades. Cardiomyopathies are typically characterized by abnormal thickening,

weakening or stiffening of the myocardial wall causing significant global systolic alteration

in the absence of congenital heart disease, hypertension, coronary or valvular heart disease

[8]. The classification of primary cardiomyopathies, i.e. cardiomyopathies not originating

from a different pre- or co- existing condition, has been repeatedly updated over the

past decades. The most common classification divides them into five categories: dilated,

hypertrophic, restrictive and arrhythmogenic right ventricular cardiomyopathy, and left

ventricular noncompaction [9].

Hypertrophic cardiomyopathy (HCM)

This thesis focuses on hypertrophic cardiomyopathy (HCM). This cardiomyopathy has a

heterogeneous clinical spectrum and it is defined by unexplained myocardial hypertrophy

in the absence of other cardiac or systemic diseases [10, 3]. The reported prevalence of

HCM is 0.02 – 0.2% (1:5000 – 1:500) in the general population. Sudden cardiac death is

the HCM most devastating expression, and represents the most frequent cause of sudden

death in the young with an annualized rate presumed to be 1% per year [11, 10, 3].

Because of marked heterogeneity in clinical manifestations, phenotype and prognosis,

HCM often represents a dilemma to cardiologists with regards to diagnostic criteria,

clinical course, and management [10]. The clinical literature of the last 60 years has largely

investigated HCM, and reported hypertrophy patterns which vary widely in extent and

location, while the LV cavity remains non-dilated with normal or hyperdynamic global
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Figure 1.3: The two most common phenotypes in HCM: asymmetric septal hypertrophy
and apical hypertrophy. Figure adapted from [12].

systolic function. Among the heterogeneous spectrum of hypertrophy patters that affect

the LV, the two most common reported patterns affect the interventricular septum and

the apex; these patterns are reported in Figure 1.3.

The genetic bases of HCM have been investigated for over 30 years [13, 14]. Pathogenic

variants in genes encoding sarcomere proteins are identified approximately in 60-70%

and in 10-50% of the HCM patients with or without a HCM family history [15]. In

the American College of Cardiology Foundation and American Heart Association Task

Force guidelines from 2011 [16], it is emphasized that the diagnosis of HCM should be

confirmed in the presence of LV hypertrophy and an identified sarcomere mutation, or

in the presence of LV hypertrophy ≥ 15mm without extra genetic findings. However, a

substantial proportion of HCM patients lack familial history, and considerable uncertainty

remains about the evidence of causality on genetic mutations found in HCM patients and

on the interpretation of genetic testing results. This has resulted in clinical guidelines

conservative in assigning pathogenicity to genetic variants. As an example, the guidelines

of the European Society of Cardiology [17] from 2014 use the purely morphological disease

definition of a LV hypertrophy ≥ 15mm that is not solely explained by abnormal loading

conditions, making the diagnosis of HCM depending only on imaging criteria.
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1.2 Cardiac Imaging

Cardiac imaging techniques are a set of non-invasive tests used to diagnose and monitor

the structural and functional behaviour of the heart, with the aim of avoiding unnecessary

invasive procedures. Common modalities for cardiac imaging include Computer Tomog-

raphy (CT), Positron Emission Tomography (PET), Single-Photon Emission Computed

Tomography (SPECT), Ultrasound (US) and Magnetic Resonance (MR) [3]. CT imag-

ing produces tomographic images from X-ray transmission by rotating an X-ray source

and a digital detector system around the subject under examination. The obtained ac-

quisitions have high spatial and temporal resolution, but employ a significant amount

of ionizing radiation and for this reason are mainly used for diagnosis and follow up of

coronary artery disease. PET and SPECT are functional imaging techniques that mea-

sure positron and gamma emitting radioligands injected intravenously to study metabolic

processes. SPECT is employed to study myocardial perfusion and coronary heart disease

in conjunction with CT or MR. PET is more expensive than SPECT and for this reason,

even if it provides better contrast and spatial resolution, it is mainly used for research

purposes. Cardiac US or Echocardiogram uses ultrasonic waves to produce a real-time

visualisation of the heart chambers and, by Doppler US, of the blood flow. The low costs

and absence of ionising radiation associated with cardiac US makes it the most common

and cheapest investigation for a first assessment of the heart status. Magnetic resonance

(MR) imaging exploits magnetic fields and radio-frequency waves to acquire tomographic

images with unmatched soft tissue contrast. As for US, MRI does not use ionising radia-

tion, making it relatively safe and enabling repeatable acquisitions. In contrast with US,

MRI has higher soft tissue contrast and larger field of view and smaller intra-observer and

interobserver variability. These characteristics make MR an accurate, highly reproducible

modality well-suited for populations studies [18]. On the downsides, MRI is an expensive

modality and causes discomfort when compared with US, as patients are required to re-

main still inside a narrow tube for at least 30 minutes, while also wearing headphones for
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reducing the loud noise caused by the gradient coils in the scanner. MR imaging is also

impacted by artifacts due to heart and respiratory motion due to its long imaging times.

Among the many different modalities of cardiac imaging, this thesis deals with data from

MR imaging exclusively, and thus the following of this section will mainly focus on MR,

which represents the current gold standard for the assessment of cardiac structure and

function.

1.2.1 Cardiac Magnetic Resonance Imaging

Cardiac MR (CMR) allows for evaluation of infarct segments, characterisation of per-

fusion, motion and wall abnormalities, making it an excellent modality for myocardial

assessment [19, 20, 3]. A challenging aspect of imaging the heart with CMR is presented

by the complex and rapid heart motion in addition to two other types of motion: the

respiratory motion and the patient motion due to relatively long image acquisition times.

Heart motion can be addressed by means of fast acquisitions and of electrocardiogra-

phy (ECG) gating, which enables the identification of the phase of the cardiac cycle to

which each acquired image belongs. In healthy individuals, respiratory motion can be

alleviated by means of breath holding acquisitions, single-shot fast imaging techniques or

respiratory-triggered acquisitions by placing a respiratory tracking device on the subject’s

abdomen [21, 3].

The preferred MR sequence for myocardial assessment is cine balanced steady-state free

precession (bSSFP) [22]. This acquisition provides good temporal resolution and high

blood vs myocardium contrast, and very high signal-to-noise ratio. Cine bSSFP MR

acquisitions are acquired in stacks of thick 2D slices from different imaging planes and for

multiple cardiac phases so that to include the whole cardiac cycle [23, 24]. Ventricular

volumetric measurements are routinely obtained from these SAX acquisitions [25]. A

typical acquisition starts from a fast single-shot sequence which aims at identifying the

long-axis (LAX) plane of the heart. From the LAX plane, two planes orthogonal to it can
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Figure 1.4: Top: An example of the planning used for the short-axis bSSFP cine stack.
Bottom: Examples of short-axis slices. Figure adapted from [24] and [27].

be identified: the short-axis (SAX) plane and the vertical long-axis (VLA) plane. Then,

a stack of 2D images is acquired along the SAX plane, creating a 3D representation of the

LV. However, only one or two of these images are acquired during a breath-hold and, also

because of cost factors, these acquisitions result in a in-plane resolution (1-2.5mm) much

higher than the through plane resolution (8-10mm) [26]. The location of these planes

with respect to the cardiac anatomy and an example of a 2D cine bSSFP cardiac MR

acquisition are depicted in Fig. 1.4.



10 Chapter 1. Introduction

Figure 1.5: Resolution comparison of 2D vs 3D bSSFP cine sequences. Image courtesy of
[31].

Misalignment between the acquired slices of the SAX stack is common in 2D cine ac-

quisitions. This is caused by slightly different subjects’ positions during breath-holding

acquisitions or poor compliance with breath holding instructions, even in the healthy

population [28, 29]. Another limitation of 2D cine acquisitions is the need to find a trade-

off between number of required breath-holds and the slice gaps between each acquired

image of the 2D stack, which can cause localised or regional effects to be missed. These

challenges can be overcome by using 3D bSSFP sequences which enable isotropic high-

resolution acquisitions and to image the full volume in a single breath hold [30]. However,

3D bSSFP sequences have worse contrast between blood and the myocardium and long

breath holds, and therefore are not commonly used in clinical practice. An example of

2D vs 3D bSSFP cine sequences are reported in Fig. 1.5.

Several other CMR imaging acquisitions are also routinely employed in the clinical rou-

tine [2, 3]. Myocardial tagging has been introduced to evaluate myocardial wall motion

at a regional level during the whole cardiac cycle [32, 2]. This is achieved by altering the

magnetization of the myocardial tissue, such as in the spatial modulation of magnetiza-

tion (SPAMM) technique that produces a series of images with hypointense stripes (or

tags). Other popular CMR tagging sequences include delay alternating with nutations

for tailored excitation (DANTE), which provides high-density pattern of thin stripes,

and complementary SPAMM (CSPAMM), which was introduced to improve the SPAMM
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contrast, providing better defined stripes [32]. Late gadolinium enhancement CMR (LGE-

CMR) is instead used to identify areas of myocardial fibrosis thanks to a gadolinium-based

contrast agent [33], while CMR imaging perfusion also employs a gadolinium-based con-

trast agent to derive blood flow (perfusion) maps of the heart, both under stress and at

rest, for the assessment og known or suspected coronary artery disease [2, 3].

1.2.2 Indices of Cardiac Function

The quantitative assessment of cardiac structure and function is of key importance in

managing patients with cardiovascular disease. The importance of accurate quantita-

tive analysis has been increasingly recognized for accurate diagnosis, prognostication and

therapeutic planning. Indices of cardiac function can be grouped into two classes: 1)

global indices, which assess the overall ability of the heart to supply blood to the body;

2) local indices, which are used to assess regional contraction by quantifying myocardial

deformation [2].

For the LV assessment, the heart chamber of interest in this work, global indices comprise:

• Left ventricular mass (LVM) which represents the mass of the LV myocardium. It is

obtained by the product of the LV myocardial volume and an estimated myocardial

density.

• Left ventricular volume (LVV) which measures the volume of the blood enclosed

by the LV. The LVV curve during a cardiac circle is usually derived to assess LV

perfomance.

• Stroke volume (SV). SV quantifies the volume of blood pumped by the LV within

an heart beat, and it is thus defined by the difference between the LV end-diastolic

volume (LVEDV) and the end-systolic volume (LVESV).
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• Left ventricular ejection fraction (LVEF) which coincides with the ratio of stroke

volume to LV end-diastolic volume (LVEDV). LVEF represents the volume of blood

ejected by the LV during a contraction divided by the volume volume of the blood

enclosed by the LV at end-diastole (ED).

• Cardiac output (CO) which is the amount of blood ejected from the LV per minute

and is computed by multiplying the stroke volume by the heart rate (HR).

• Cardiac index (CI) which is instead computed by dividing the cardiac output to

body surface area (BSA), hence accounting for the size of the individual.

A widely recognised regional analysis technique for the LV myocardium is to use the AHA

17-segment model in combination with local indices to measure regional LV abnormal-

ity. The most adopted local indices are regional wall thickening, regional wall motion

and regional myocardial strain. Regional wall thickening (RWT) measures the change

in myocardial wall thickness (WT) between two phases, usually end-systole (ED) and

end-systole (ES), where WT is defined as the distance between the endocardial and epi-

cardial surfaces. Regional wall motion (RWM) measures the wall motion, perpendicular

to the endocardial wall, of a myocardial segment between two cardiac phases. Regional

myocardial strain (RMSt) is the fractional change of the myocardial length between two

cardiac phases in the radial, circumferential and longitudinal directions.

1.3 Population-based Cardiac Imaging Studies

The structure and function of the heart continuously adapts (remodels) either because of

physiological factors (e.g. physical exercise), or as a consequence of disease. Pathological

cardiac remodelling is a clinical term that refers to any change in the size and shape of

the heart in response to cardiac disease [34]. Early quantitative assessment of cardiac

remodeling through imaging-derived indices is of crucial importance for the detection and
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effective treatment of almost all cardiovascular conditions. At present, despite substantial

advances in their treatment, diagnosis of heart pathologies is still too often made at

late symptomatic stages, leading to late, costly and partially effective therapies. As a

consequence, characterizing the early stages of cardiovascular diseases has now become

one the main focuses of contemporary cardiovascular research, with the final goal of

developing accurate, effective preventive healthcare [35, 36].

Large part of our current understanding of human diseases relies on population-based

studies. These studies aim at testing a clinical hypotheses over a defined population, i.e.

a group of individuals who share a common characteristic, such as age range, ethnicity,

or health condition. From an historical perspective, in the cardiac field the most relevant

studies include the Framingham Heart Study [37], the INTERHEART study [38], and the

MONICA project [39], from which the current knowledge of epidemiological risk factors

of cardiovascular disease arised.

Due to the improvements of imaging modalities and reduced costs, non-invasive imag-

ing has been increasingly incorporated into population-based studies in the last decades

[40]. This integration aims at investigating the association between morphological and

functional alterations of the human anatomy, as measured by imaging-derived indices,

and clinical factors. This new scenario provides a unique opportunity for deepening our

understanding of the mechanisms and characteristics of cardiovascular disease [41]. How-

ever, the unprecedented volume and speed of accumulation of such databases makes their

analysis impractical without automated, data-driven aiding tools. In addition, deciding

how to summarize the high-resolution phenotypical information provided by such images

is of pivotal importance. Large part of the current literature summarises this information

using global and regional indices of heart function, to then employ them in association

studies or predictive clinical models [42, 43, 35, 44, 45, 46].

Estimation of the majority of the clinical indices used in population-based imaging studies

requires delineation of the endocardial and epicardial boundaries of the myocardium, a
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process called image segmentation. In order to do so, manual or semi-automated segmen-

tation by experts has represented for many years standard clinical practice. However, this

constitutes a tedious, time-consuming task, prone to intra- and inter- observer variability

[47]. For this reason, the development of computational tools aimed at achieving fully

automated image segmentation have been widely pursued. This resulted in the introduc-

tion of many fully automated image segmentation pipelines [31, 48, 49, 50], many of them

now enabling the derivation of imaging-derived indices with drastically reduced physician

supervision, mainly limited to a quality control step of the obtained segmentation before

clinical report finalisation [51].

The introduction of fully-automated learning-based segmentation pipelines of anatomi-

cal structures has consequently paved the way for large-scale population-based imaging

initiatives. In such studies, clinically relevant imaging indices are automatically derived

for all the subjects’ images in a cohort under study. Later, these indices are employed

as variables in statistical models to investigate their association with epidemiological and

clinical data, leaving to scientists only the tasks of formulating clinical hypotheses and of

choosing the right computational and mathematical methods to test them. Examples of

large-scale population-based initiatives carrying out cardiovascular imaging include Multi-

Ethnic Study of Atherosclerosis (MESA) [52] - the first large-scale population study to

employ cardiac MRI, UK Biobank [53], the Jackson Heart Study (JHS) [54], the Cardiac

Atlas Project [55] and the UK Digital Heart Project [56].

Currently adopted classifications of cardiovascular diseases are grounded in the results

provided by population-based cardiac imaging studies. In these studies, indices of mass

and volume obtained from echocardiography and CMR were adopted to represent the

cardiac phenotype, hence assuming anatomic uniformity of effect [57]. However, this

has been proved to be sub-optimal for early discovery of alterations due to impending

disease, patient stratification and management [58, 59, 60]. Relevant to this work, this

also affected the characterisation of the diseases of the myocardium, often resulting in
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crude diagnostic criteria [58, 61].

1.3.1 Cardiac Imaging-Genetics

The development of many cardiac conditions, including cardiomyopathies, depends on a

complex interaction between environmental and genetic factors [62]. The past decades

have witnessed a tremendous progress in the development of high-throughput DNA se-

quencing and genotyping technologies. These technologies now enable cost-effective and

fast sequencing of large groups of individuals and made genetic testing increasingly em-

ployed in the diagnosis of inherited cardiac conditions. Moreover, these improvements

together with the hypothesis that imaging phenotypes bear a close relationship to the

underlying biology, has made the integration of genetics data within population-based

imaging studies more common [63, 64, 65]. The derived class of studies, named imaging-

genetics studies, aims at discovering novel genotype-phenotype associations between ge-

netic variants and imaging phenotypes. The UK Digital Heart Project [56] and UK

Biobank [53] are examples of such initiatives in the cardiac domain.

Genetics studies already helped shed new light on the genetic factors governing extreme

ventricular phenotypes as imaged by non-invasive imaging, and proved how common ge-

netic variants are implicated in a wide range of cardiovascular diseases [66, 67]. However, a

common factor limiting current research is the ability to employ detailed, high-dimensional

representation of human phenotypes in such studies and to successfully combine them

with the already high-dimensional genotypic data [68, 69, 70]. So far, this has resulted

in the adoption of one dimensional variables, such as the global or regional indices of

cardiac function, as means to represent the heart phenotype [71, 72]. However, this crude

approach lacks of the necessary resolution for the assessment of asymmetric, regional

genotypic effects [73, 69], and often produced underpowered studies requiring large, pro-

hibitive sample sizes to discover or replicate previously discovered phenotype-genotype

associations [70, 63].
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1.4 Medical Image Analysis with Machine Learning

The introduction of machine learning approaches in medical image analysis shows promise

to fully automate many image processing tasks. Machine learning methods can effectively

leverage large amounts of annotated imaging data to make accurate, automated predic-

tions from them. However, it is only until the introduction of deep learning models,

a subclass of machine learning methods which exploit neural networks, that large-scale

fully automated medical image analysis was made possible [74, 75, 76]. The reason behind

the success of deep learning models relies on their extraordinary ability at automatically

learning complex task-specific models from large datasets using a general-purpose learn-

ing procedure [77]. These models can efficiently exploit complex image features learned

through stacked layers of non-linear processing constituting a neural network, bypassing

feature hand-crafting steps usually present in traditional machine learning pipeline de-

signs. This new learning paradigm, named end-to-end learning, has been made possible

only in the last decade by the technological progress in computer hardware (e.g. graphical

processing units (GPUs) and tensor processing units (TPUs)), big data infrastructures to

collect vast amounts of imaging data and efficient stochastic optimization methods [77].

Due to these improvements, deep learning models managed to outperform previous tradi-

tional machine learning methods in a variety of medical imaging tasks, which often relied

on hand-crafted features and had significantly slower inference time [75, 76, 78]. In the

context of medical image segmentation, these algorithms can learn the necessary image

features to reproduce the delineation of the anatomical contours of interest on unseen

images with high accuracy, either in healthy and pathological populations [31, 48, 49, 50].

Prior to them, although some relatively efficacious methods were already commercially

available, lengthy and variable manual post-processing was required [51, 75, 79]. Similar

improvements have been obtained in automatic organ or landmarks localization, often

an important pre-processing step for image segmentation, medical image synthesis, re-

construction and enhancement, tumor or lesion detection and classification and quality
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control of medical images [74, 80, 79].

1.5 Modeling Cardiac Shape in Large-Scale Imaging

Studies

The successful introduction of machine learning methods into medical image processing

pipelines, together with improvements and reduced costs of non-invasive imaging and data

management infrastructures, has paved the way for large-scale population-based imaging

studies. Due to these improvements, large databases of cardiac images can be fully-

or semi- automatically annotated with minimal human expert effort and costs, showing

promise to deepen our understanding of cardiovascular disease. Traditional approaches in

clinical research employ linear regression modelling of clinical variables and crude volu-

metric imaging-derived metrics. However, these metrics mostly ignore shape information

available in modern cardiac imaging examinations and are largely insensitive to early

pathological cardiac remodeling [81, 82, 83]. In order to address this limitation, compu-

tational and statistical modelling of cardiac shape, motion and physiology which leverage

large annotated imaging datasets have received substantial interests [84, 55]. The aim of

this class of approaches is to discover novel imaging biomarkers, which afford precise and

regional quantification of disease-relevant cardiac variability, and to employ them in asso-

ciation and predictive models to uncover their relationship with common environmental

and genetic risk factors [59, 85].

Three-dimensional shape data obtained medical image segmentation algorithms on large

datasets is typically high-dimensional, presenting its own set of challenges for drawing

inferences. This problem is further exacerbated when integration with large-scale genetic

and epidemiological data is aimed or a compact set of parameters is needed to inform

clinical prediction models [63, 59]. To date, two approaches attempting at going beyond

crude metrics of shape variation while addressing the high-dimensional nature of shape
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data have been proposed [85]. The first approach transforms shape data into a lower-

dimensional, latent representation that summarises the shape variability by means of an

average shape and its main modes of deformation. Principal component analysis (PCA)

or its modifications have mainly been employed for this task. This aims at obtaining a

low-dimensional latent representation, considered as a new set of shape descriptors, to

be used in association studies or in classification and clinical prediction models [86, 85].

However, the shape variation encoded by these new parameters does not guarantee their

usefulness in subsequent analysis as the captured variation may have small correlation with

the clinical hypothesis under exam, largely impeding the full exploitation of the acquired

data [87, 85]. The second class of approaches consists in maintaining the high-resolution,

high-dimensional phenotyping provided by state-of-the-art imaging techniques to derive

3D structural cardiac phenotypes at each and every vertex of a computational model of

an anatomy of interest. Then, the association between variations of these 3D phenotypes

and clinical variables of interest is investigated by computing univariate statistics at each

and every shape vertex, independently. This approach is named mass univariate analysis

[88], and it originates from neuroimaging research, and had been loosely investigated in

the cardiac domain [89, 56].

Machine learning approaches showed great promise in addressing big data challenges in

cardiovascular research [51, 75], including the analysis of anatomical shape variability in

large populations. One of the strengths of these approaches relies in their ability to dis-

cover unknown patterns in the data without requiring any a priori assumption, potentially

enabling the discovery of unknown disease-relevant shape biomarkers of cardiovascular

disease, which could more accurately predict clinical outcomes and better correlate with

genetic and environmental covariates. On the other hand, machine learning approaches,

and especially deep learning approaches, often lack interpretability in the feature extrac-

tion and decision process, and seldom result in new metrics and biomarkers that can be

readily understood by a clinician. This poses the need for the development of approaches

and software that can fully exploit such classes of model while, at the same time, being
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interpretable by an human [76].

1.6 Thesis Objectives and Contributions

The ultimate objective of population-studies of the heart is to extract novel, useful clinical

insights from large-scale imaging databases. The research presented in this thesis con-

tributes to improve such studies by modeling heart shape variation using machine learning

and advanced statistical analysis. The work in this thesis aims at providing automated,

data-driven computational methods capable of better summarizing shape variability than

conventional volumetric imaging metrics or traditional dimensionality reduction tech-

niques, and which can be used to inform association, classification and predictive clinical

models. At the same time, this thesis aims at developing explainable models, enabling

the visualisation of the captured anatomical variation in three-dimension. The main con-

tributions of this work can be summarized as follows:

A framework for 3D imaging-genetics. A mass univariate framework able to de-

rive associations between genetic variations and 3D high-dimensional cardiac phenotypes

obtained from MR imaging is developed. Extensive experiments on genetic and synthetic

data showing how the proposed framework enables to derive computationally-efficient are

reported, statistically powerful inferences on imaging-genetics datasets, even in the pres-

ence of small genetic effect sizes not detectable with conventional imaging parameters.

Moreover, a general purpose R package to perform this class of studies is also introduced.

Learning generative and discriminative deep features of cardiac shapes. Two

3D deep learning models for automatic classification of cardiac shapes from patients with

cardiac diseases associated with structural remodeling are proposed. By exploiting state-

of-the-art deep generative models, the proposed approaches are specifically designed to
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learn both generative and discriminative anatomical shape cardiac features. More im-

portantly, it enables the visualisation of the anatomical effect in three-dimension. This

provides an interpretable classifier of anatomical shapes which achieves high accuracy in

the categorisation of healthy and remodelled left ventricles when tested on unseen data.

Modeling shape variation in large-scale imaging databases using deep hier-

archical generative models. A deep learning approach, based on deep hierarchical

generative models, to model a large database of anatomical shapes through a hierarchy

of conditional latent variables is introduced. Due to the generative properties of the

model, the encoded three-dimensional anatomical effect can be visualised on a template

anatomical shape. Furthermore, the model enables automated, data-driven extraction

and visualisation of the shape differences distinguishing different populations.

Learning to generate 3D high-resolution cardiac shape from 2D views. Finally,

this work introduces a deep conditional generative model architecture able to reconstruct

3D high-resolution LV segmentations from a sparse set 2D LV segmentations of routinely

acquired MR images. This is evaluated on unseen healthy volunteers, outperforming

competing architectures and showing promise for future investigations.

1.7 Thesis Overview

This PhD thesis is structured as follows. Following this chapter, the state-of-the-art com-

putational anatomy and machine learning methods of interest for this work are reviewed

(Chapter 2). Chapter 3 introduces the mass univariate framework for 3D imaging-genetics

and reports extensive experiments on real genetic and synthetic data, showing its effec-

tiveness in capturing regional genotype-phenotype interactions. In Chapter 4, a 3D deep

learning classification model able to learn discriminative and generative features of diseases
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associated with structural remodeling is presented. This approach yields high accuracy in

the categorisation of healthy and remodelled left ventricles and enables the visualisation

in 3D of the anatomical variability encoded by the adopted task-specific features. Chap-

ter 5 presents instead a deep learning system able to model an imaging-derived database

of anatomical shapes via a hierarchy of conditional latent variables and capable of de-

tecting and visualising on a template shape the most discriminative anatomical features

that characterize distinct clinical conditions under exam. In Chapter 6, a preliminary

study showing the feasibility of the reconstruction of 3D high-resolution LV segmenta-

tions from a sparse set of 2D views LV segmentations using generative models is reported.

Finally, in Chapter 7, the work presented in this thesis, its limitations and future work

are summarised.



Chapter 2

Background

This chapter is composed of three sections providing all the methodological background

for this PhD project. In Section 2.1 the field of Computational Anatomy and its main

achievements in the cardiac domain are reviewed. This comprises an introduction to

cardiac atlases and their construction process (2.1.1), to statistical shape models (2.1.2)

together with a survey of their applications for cardiac shape analysis (2.1.3), and to

statistical deformation models (2.1.4). In Section 2.2, a survey of the imaging-genetics

methods is presented (2.2.1)followed by a detailed introduction to mass univariate analysis

(2.2.3). Section 2.3 provides an introduction to deep learning (2.3) and its application

to shape analysis (2.3.2), with a special focus on the autoencoder (2.3.3) and variational

autoencoder (2.3.4)) architectures, which are of particular interest for this work.

2.1 Computational Anatomy

Shape, as defined by Kendall [90], “is all the geometrical information that remains when

location, scale and rotational effects are filtered out from an object”. Notably, whilst in

mathematical and computer vision applications changes induced by scale transformation

are removed in the analysis of shape, in medical application changes in size are considered

22
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as part of the biological shape variation to investigate. Computational anatomy is an

interdisciplinary research field that aims at modelling the normal and pathological shape

variability of the human anatomy [91]. Identifying statistical shape differences that char-

acterize healthy individuals and patients affected by a disease is one of the main interests

in medical image analysis, showing promise to improve diagnosis, disease staging and

treatment.

2.1.1 Computational Atlases

Shape and size of anatomical organs can show significant variation in a population of med-

ical images. Computational atlases have been introduced to provide a common reference

system to rigorously compare and analyse subjects. This provides many advantages, in-

cluding accurately quantifying and modeling the organs shape and size differences among

group of subjects, studying their changes over time, and encoding structural, functional,

mechanical and electrophysiological information, often from different imaging modalities,

into a single framework [85, 92, 93]. Computational atlases are defined by the com-

bination of a template anatomy and a deformation (registration) technique to map the

information of other subjects to this template [91, 94, 95, 84, 96]. The generic approach

to construct a template anatomy starts from a first averaging of all the anatomies un-

der exam after spatial normalisation. The purpose of this step is to filter out location

and rotational effects and is typically achieved by registering all the individual anatomies

to an initial template. Such initial template can be obtained from another dataset, or

be an anatomy selected from the available dataset. Then, an iterative procedure alter-

nating registration steps to align the imaged anatomical structures to the template, and

template update via averaging of the registered structures, is performed. The process

normally stops when the difference between two successive templates is smaller than a

threshold [97, 98, 99]. The two most common types of computational atlases are volumet-

ric and surface atlases, which differ with respect to the computational means employed
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Figure 2.1: Volumetric and surface atlases construction schemes. Image adapted from
[81].

to represent the anatomy [81, 59]. Figure 2.1 reports a scheme summarising the pipeline

for their construction.

The template of a volumetric atlas consists of an image and its associated segmentation,

hence encoding both intensity and geometric information. In order to derive such at-

las, inter-subject spatial normalisation is achieved through volumetric image registration,

which exploits image intensity features to compute the desired transformations. After

correction for inter-slice motion, each image is registered via a global rigid transforma-

tion to the common reference system, and can be refined by a coarse non-rigid B-spline

transformation [96]. The computed transformation is also used to warp the respective

segmentation. This procedure enables to derive an appearance and a shape atlas. The

simplest example of an appearance atlas template is the mean intensity image of the

dataset. A random image or the image closest to the population mean intensity image

have also been investigated as appearance templates [100]. However, these templates may

not be truly representative of the population, especially in the presence of large inter-

subject variation. For this reason, more complex models involving the estimation of the
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Figure 2.2: Components of the volumetric atlas of the UK Digital Heart project. Image
courtesy of [96]. The first elements show the 2D mid-ventricular template image, its label
and probability maps at end-diastole (ED), while at the far right the corresponding 3D
surface mesh is also reported.

true population mean intensity have been proposed [98, 95, 101]. The shape atlas can

be similarly obtained by fusing the subjects’ segmentations after their registration to the

common reference space. Alternatively, individual segmentations can be used to model

the probability that a particular spatial location has a certain label [102, 96], generating

a so-called probabilistic template. Probabilistic templates providing a tissue probability

map or other local image statistics have been also later proposed to account for different

resolutions and contrasts, registration distortions and the uncertainty related to under-

lying tissue type [103, 104]. Figure 2.2 showcases the described components for the UK

Digital Heart project volumetric atlas [96]. In the scenario in which the initial template

is a higher-resolution atlas, the inverse of the computed transformation can be applied

to the higher-resolution shape atlas to derive a higher-resolution shape representation for

each subject under investigation. Being a result of the warping of the same template

to the same anatomical positions in each subject’s image, the obtained higher-resolution

shape representations will be consisting of co-registered shape vertices.

The template of a surface atlas is a surface of one or more anatomies of interest, de-

scribing their average shape in a population [84, 105, 106, 107, 108]. In the first step of

its construction as illustrated in the second row of Figure 2.1, the segmentation or the

landmarks associated with each individual image in the database under exam are used

to construct a subject’s specific surface mesh. This is obtained by fitting a 3D finite
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element model to the obtained segmentation or landmarks, which also enables correction

for inter-slice motion by shifting the surface contours in-plane. Moreover, it guarantees

shape co-registration [84]. The spatial normalisation in this case is obtained by rigid

registration of the meshes directly (by matching mesh vertices or landmarks), while the

template shape is obtained by averaging the mesh coordinates.

Once a shape representation for each subject has been obtained, several phenotypes can

be derived from the each individual shape [83, 96]. These include LV mass (LVM) by com-

puting the volume of the voxels labelled as left ventricle myocardium in the correspond-

ing segmentation, and LV end-diastolic volume (LVEDV) and the end-systolic volume

(LVESV) by computing the volume of the voxels labelled as left ventricle cavity at ED

and ES. Moreover, vertex-wise phenotypes can be derived at each co-registered vertices.

These can include wall thickness (WT), measured as the length of segment perpendicular

to a midwall plane equidistant to the endocardial and epicardial surfaces, fractional wall

thickening (FWT), computed as the difference in WT at ED and ES divided by WT at

ED, and many other 3D cardiac phenotypes including vertex-wise wall stress [83, 109].

2.1.2 Statistical Shape Models

Anatomical shape information provided by computational atlases is the building block of

statistical shape models (SSMs) [110]. SSMs are a class of statistical methods that aim to

study the distribution of global and regional shape variations across a population without

making any a priori assumption on it [111, 112]. This is typically achieved by capturing a

small set of parameters, named modes of variation, that encode the main variation around

a mean shape representative of the population under study. These modes can be then

used for subsequent association or predictive analysis as well as prior information for a

wide range of applications [85].

SSMs were firstly introduced by the work of Cootes et al., who proposed the currently most
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common approach, called Active Shape Model (ASM) [113, 114]. In this work, landmark

points, a set of points distributed across the surface of each anatomy, were used as shape

representation. Each shape within the dataset was parameterised with the same number

of co-registered points, i.e. each point was placed in the same anatomical location in all

the shapes under exam. Then, the different anatomies were normalised with respect to

rotation and translation, as in the computational atlas construction process, and gathered

into a common space. Once aligned, 3D shapes are still typically high dimensional and

thus require dimensionality reduction techniques to study their variabilty. In the ASM

work, principal component analysis (PCA, [115]) was used for this purpose and it is still,

by far, the most common method deployed to extract a mean shape and its modes of

variation from a population of anatomies under study.

PCA is a popular dimensionality reduction technique which linearly transforms high-

dimensional input data into a new coordinate system in which a new set of uncorrelated,

mutually orthogonal basis vectors is employed to describe the input data variability [115].

Moreover, these new variables, named principal components, are designed so that each of

them encodes the highest variance possible. In this way, the input data can be approxi-

mated using a linear combination of a mean value and a subset of principal components

representing large part of the input data variance. In the study of shape variation, this

provides an efficient and compact parameterisation of anatomical variability [116], which

can also be used to inform common medical image processing [112]. As an example, in

Figure 2.3, the first three PCA modes of shape variation for the healthy LV in UK Digital

Heart project are showcased.

2.1.3 Cardiac Shape Analysis

The decomposition of a cardiac structure, which has been imaged in a population of

interest, into a mean shape and its principal modes of deformation opens the way for

two distinct types of subsequent analysis in the cardiac domain [117, 118]. The first
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Figure 2.3: The first three modes of shape variation for the healthy LV in UK Digital
Heart project, septal wall is showcased. Vertex-wise difference in wall thickness (WT)
between each derived shape and the mean surface shape is plotted at each vertex. It
can be noticed that mainly changes in size and sphericity are captured by PCA, while
patterns in WT are neglected.

type, named descriptive analysis, aims at identifying the most common patterns and

characteristics of a population of interest and to compare them against the ones of other

populations. The second type, named predictive analysis, aims at deriving the relation-

ships between shape and clinical variables by applying regression or classification models.

The underling hypothesis of both these two classes of approaches is that automated shape

characterization methods perform better than crude, one-dimensional mass and volume

indices currently used in the clinic.
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Figure 2.4: Example of a predictive shape analysis approach - Figure from [119]. (a)
Anatomical shapes are aligned to a common reference system. (b) PCA shape components
are extracted for each shape, modeling shape variation in a new reference system. In a
second step, shape components are then used as features in a subsequent clinical prediction
task (c). In this application, the model aims at learning the best decision boundary in the
shapes feature space for the classification of healthy subjects and myocardial infarction
(MI) patients.

The first descriptive analysis study of cardiac data aimed at describing the variability of

2D left ventricle contours in echocardiograms [120]. Later, statistical significant differences

between the modes of deformation of healthy controls and diabetic subjects [121], women

with higher cardiovascular risk profiles [122], pre-term born subjects in adult life [105] or

congenital heart disease patients [123] were also investigated in subsequent shape analysis

studies. In the same fashion, Ardekani et al. [124] showed how PCA-derived modes of de-

formation can be used to quantify LV shape differences between ischemic cardiomyopathy

and global nonischemic cardiomyopathy patients. More recently, Bai et al. applied PCA

analysis on a database of 1000+ LV shapes from the UK Digital Heart project to visualise

their main modes of deformation [96]. Gilbert et al. demonstrated how volumetric and

surface atlases provide similar LV principal component on 5000 LV shapes from the UK

BioBank and tested their association with common cardiovascular risk factors [81].

An early work in predictive analysis is the work of Perperidis et al. [125], in which normal

patients are differentiated from hypertrophic cardiomyopathy patients by means of LV

PCA-derived modes of variation using a k-weighted nearest-neighbour classifier. Varela
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et al. derived left atria shapes of 144 subjects from MRI images and then applied PCA

to extract features of left atria shape to predict post-ablation atrial fibrillation recur-

rence [86]. In the 2015 challenge at the Statistical Atlases and Computational Models of

the Heart MICCAI workshop [119], 11 methods for feature extraction and of classification

of LV after myocardial infarction and healthy controls were proposed, including methods

exploiting PCA-derived modes of deformation [106]. An illustration of one of these ap-

proaches is reported in Figure 2.4. However, a strong limitation of deploying PCA shape

components as shape features is that they do not necessarily encode the shape information

needed to differentiate between disease classes. For this purpose, approaches that search

for new axes of variation that are disease-meaningful have been later proposed. Lekadir et

al. [126] and Zhang et al. [127] investigated the of use partial least squares to decompose

LV shape variability into modes of deformation that are optimally, independently associ-

ated with distinct remodeling indices. Dawes et al. proposed to employ supervised PCA

to predict survival from 3D right ventricular systolic motion in a cohort of pulmonary

hypertension patients [128]. However, such methods are still confined to modelling shape

variations only in a linear fashion, are mainly able to capture global anatomical changes

and rely on already known clinical indices, which could hide the discovery of unknown

factors of variability.

2.1.4 Statistical Deformation Models

Closely related to SSMs are statistical deformation models (SDMs) [110]. The key idea

behind this model is to perform statistical analysis directly on the dense deformation

fields which describe the correspondence between an image template and subjects’ im-

ages [110, 129]. SDMs first applications dates back to the introduction of deformation-

based morphometry [130] in which highly non-linear registration algorithms were used to

register subjects’ shapes to a surface template. Then, this class of approaches employs

statistical analysis on the parameters describing the computed deformation fields, aiming
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at localising global shape differences between the different populations under study [131].

Similar approaches employing large deformation diffeomorphic metric mapping (LDDMM)

algorithms to derive high-dimensional velocity fields, subsequently reduced in dimension-

ality, were also proposed [132, 82, 133]. Examples in the cardiac domain include the

work of Mansi et al. in which a right ventricular shape representation for patients with

repaired tetralogy of Fallot is derived [82], and the work of Jia et al. in which left atrial

shape features related to post-ablation outcome in atrial fibrillation are computed [133].

More recently, Zhang et al. develops a novel probabilistic model for factor analysis in the

space of diffeomorphisms which exploits principal geodesic analysis to extract a compact

representation of image deformation [134]. Advantages of SDMs over SSMs include the

possibility of both describing the intra- and inter-structure variability across a population

to perform shape analysis without the need for medical image segmentation [135], which

has been a challenging task until the development of machine learning approaches for

medical image segmentation. Drawbacks of SDMs include their high computational cost

and mathematical complexity together with their slow optimisation process, requiring

many iterations to reach satisfactory convergence [136, 137, 131].

2.2 Imaging genetics

Imaging genetics is a research field that aims to evaluate the effect of genetic varia-

tion on functional, physiological, and anatomical phenotypes imaged by medical imaging

techniques [63]. The genetic variation is often expressed in terms of single-nucleotide

polymorphisms (SNPs) or candidate genes. SNPs are sites in the DNA sequence at which

more than one nucleotide (adenine, thymine, cytosine or guanine) is found with a min-

imum frequency of 0.5% in a population. They are the most common type of genetic

variation among humans and while most of them have no or minimal effect on health

or development, it is believed that the coordinated effect of some of them regulates dis-

ease susceptibility and therapy response, making their discovery crucial for personalised
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Figure 2.5: The four classes of imaging genetics methodologies. Columns: dependent/out-
come variable, either a candidate phenotype (such as an imaging metric) or the whole
structure. Rows: independent variable, either a candidate SNP/gene (such as an imaging
metric) or the whole structure. Image adapted from [141, 142, 143, 144]

medicine [63, 138, 69, 139]. Historically, imaging genetics studies have been introduced

and mainly applied in the neuroimaging domain, and only recently research efforts have

been conducted in the cardiovascular field. From a methodological point of view [140],

imaging genetic studies can be divided into four categories as summarized in Fig. 2.5.

2.2.1 Methodological Approaches

Candidate-phenotype candidate-gene analyses. These studies investigate the de-

gree of association between a quantitative imaging-derived metric (also named candidate

phenotype) and SNPs or pre-specified genes. This class of approaches provided the first

evidence of the feasibility of imaging genetics research [145]. Despite their simplicity, they

were able to demonstrate how quantitative biomarkers extracted from imaging modalities,

already used as indicators of biological processes, disease status or treatment response,

are also heritable and under genetic control [146], hence enabling inferences between brain

status and genetics [147]. As an example, Loth et al. [141] tested the association between

SNPs of the oxytocin receptor gene (OXTR, candidate SNP) and the functional MRI
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bold activity of the ventral striatum of adolescent human brain (candidate phenotype).

This latter was already recognized as a biomarker of social-affective problems. The study

found that adolescents with homozygotic minor alleles had significantly lower activity

(Figure 2.5, top left), therefore suggesting that OXTR-regulated brain mechanisms are

associated with social-affective problems [141].

Candidate-phenotype genome-wide analyses. This approach again employs a quan-

titative imaging measurement as outcome variable, however in this case the association of

SNPs of the whole-genome is tested against it, i.e. making no prior genetic assumption

on the set of genetic mutations to test as in the case of the previous class of studies.

In other words, a genome-wide association study (GWAS) using an imaging metric as

outcome variable is performed (further information about these methods is reported in

Section 2.2.2). The bottom left image of Figure 2.5 shows an example of outcome of

one these studies in which several genetic variants of dopamine-related genes where found

associated with the volume of the caudate subcortical brain structure assessed through

structural MR imaging (candidate phenotype) [142].

Whole-image candidate-gene analyses. In order to precisely map genetic influences

over the entire medical image, these studies compute a pixel- or voxel- wise map express-

ing the association between one or more genetic variants and the value at each pixel or

voxel over the image. This type of investigation is usually referred to as mass univariate

analysis [88] and was introduced in order to overcome the lack of phenotyping power of

quantitative imaging-derived biomarkers, which are often insensitive to regional or asym-

metric effects [73, 69, 148], leading to reduced statistical power and missing associations.

As an example, Filippini et al. reported a positive association between the APOE ε4 al-

lele (APOE4) - a genetic risk factor for sporadic Alzheimer’s disease - and regional brain

cortical atrophy as assessed by T1-weighted MR images [143]. The results are reported

in a Manhattan plot, a plot reporting SNPs along the X-axis and the negative logarithm
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of their association p-value on the Y-axis, at the top right of Figure 2.5.

Whole-image genome-wide analyses. This approach aims to scan the entire genome

and entire brain at the same time for non-random associations, and it is the most chal-

lenging one from a statistical perspective. It is motivated by the fact that, despite the

interpretability and computational tractability of the above studies involving candidate

phenotypes and candidate genes/SNPs, a priori knowledge on how to select these vari-

ables is not always available. Discarding part of the biological information contained in

the genome or in an image could cause to miss potential associations, especially when

the underlying mechanisms and the genetic factors of the disease process are largely

unknown. However, merging the extremely high-dimensional genetic and imaging data

imposes many challenges, making it still an open research topic. The first attempt in

this direction was made by Stein et al. [144] who studied, using parallel computing, the

univariate relation between 448,293 SNPs and 31,622 voxels in whole-brain maps of lo-

cal brain volumetric change in elderly subjects with Alzheimer’s disease. In the study,

several biologically interesting SNPs were identified and the association maps of the one

scoring the lowest p-value was plotted on a template image (Fig. 2.5, bottom right).

However, no SNP had whole-brain whole-genome significance due to the massive multiple

testing correction required by the proposed approach [144]. This could be due to the fact

that univariate-imaging univariate-genetic association tests completely ignore information

from neighboring voxels or nearby genetic variants, which still makes the statistical power

of these techniques low. To overcome this, joint modeling of the imaging and genetic data

looks a promising area of research. Recent works employed multivariate models regular-

ized with sparsity or rank constraints to select subsets of putative genetic markers and

affected voxels, reducing the burden of multiple testing correction problem [149, 150, 151].

However, this class of techniques largely employs computationally expensive iterative op-

timization procedures and permutation schemes, are prone to overfitting problems, and

have higher mathematical complexity than the other three categories of studies, which
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makes the evaluation of the significance of the obtained findings difficult.

Additional details about GWAS and mass univariate analysis will be provided in the next

two sections (2.2.2 and 2.2.3) due to their relevance to this work.

2.2.2 Genome-wide Association Studies

A genome-wide association study (GWAS) scans hundreds of thousands to millions of

SNPs of an individual to test their statistical association with categorical outcomes (such

as case versus control) or continuous outcomes (such as an imaging metric for candidate-

phenotype genome-wide analyses) [138]. These studies are based on the concept of linkage

disequilibrium, which expresses the degree of correlation between pairs of SNPs in a

continuous genomic region. Due to linkage disequilibrium, a large group of SNPs can

be represented through only one marker - a tag SNP - in GWAS, due to their high

correlation. This reduces the number of SNPs to be studied, making these analyses

feasible. GWAS are supported by the ”common disease - common variant” hypothesis

stating that complex diseases are caused by several common alleles (loci) that taken

individually have a negligible effect on the phenotype, unlike Mendelian diseases which

are caused by a mutation of a single gene and are studied in candidate genes studies

(“rare disease - rare variant” hypotheses). As mentioned above, the main advantage of

these studies is that they are unbiased by prior knowledge on the relationship between

certain genes and complex phenotypes (as opposed to candidate genes studies). Their

main limitation is the enormous number of statistical tests being performed that could

potentially cause a large number of false positive results.

In 2006, the first GWAS were extremely successful and led to important results as the

discovery of coding variants involved in age-related macular degeneration [152, 153] and

of the IL23R Crohn’s disease gene [154]. However, in the following years several GWAS

studies suffered from the lack of a standardised protocol, leading to many associations
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that were not validated in external cohorts and no more reached the modern definition of

genome-wide significance (p < 5 × 10−8), such as in the case of the association between

the gene INSIG2 and childhood obesity [155]. In the cardiovascular field, the normal

distribution of ventricular mass, ejection fraction, volume assessments in populations

suggests that this phenotype is a complex trait influenced by multiple genes. Several

loci have been discovered to be associated with LVM [156, 157, 158] and other structural

or functional ventricular phenotypes [71, 159]. However, a very small number of the

discovered loci has been replicated in subsequent studies [160]. It is believed that these

discoveries have only accounted for a small proportion of phenotypic variance and that a

strong contribution to the missing heritability might be due to the low-resolution adopted

for heart phenotyping, i.e summarizing the complex heart phenotype with a handful set

of global metrics [69, 139].

2.2.3 Mass Univariate Analysis

A commonly used tool for whole-image candidate-gene studies is mass univariate analysis

[88, 161]. Mass univariate analysis constitutes the building block of voxel-based mor-

phometry (VBM), arguably the most successful method in the Computational Anatomy

field, which was popularised by the methodological work of Ashburner and Friston and

the statistical parametric mapping software package [162, 163]. A mass univariate study

analyses data involving a massive number of univariate hypothesis tests (e.g., t-tests)

at every pixel or voxel of an image, and produces a statistic image, or image of statis-

tics, named statistical parametric map. This resulting statistic image is then assessed

for statistical significance and the regions in which statistical significance is found are

highlighted on the original image [164]. The voxel- or pixel-wise test can express the local

difference in the tissue maps between two studied groups as in VBM, or the association

between a candidate gene and the intensity values at that spatial location as in whole-

image candidate-gene studies. Both approaches start from a computational atlas which is
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obtained through tissue segmentation, spatial normalisation, Jacobian modulation, and

spatial smoothing of the images of a population [162]. Tissue segmentation is usually

needed as the calculations are performed at each voxel within the segmentation mask so

as to reduce the multiple comparison problem always generating from this approach.

Multiple Comparison Problem

How to mitigate the problem of multiple comparisons that arises in mass univariate studies

has received a lot of research interest [165, 166]. As the name suggests, the issue arises

when many statistical hypothesis tests are performed at the same time. Indeed, if the

significance level of single statistical test is set to α = 0.05, the accepted false positive

rate for a test, i.e. the probability of falsely rejecting the null hypothesis for that test,

is 5%. However, if the number of comparisons is increased, the probability of falsely

rejecting the null hypothesis at least once, named the family-wise error rate, increases as

well [166]. There exists a number of solutions to the problem of multiple comparisons

that can generally be divided into two types. One approach uses probability theory, while

the second uses permutation testing approaches to estimate the null distribution for the

univariate statistic.

The simplest and firstly introduced probability theory method to correct for multiple

comparisons is the Bonferroni correction, which dates back to 1936 [167]. Under the

assumption that the N mass univariate tests performed are independent, the method

adjusts the significance threshold to α̂ = α
N

, typically resulting in a overly conservative

procedure. The conservative nature of these approaches relies in its test independence

assumption: imaging data typically present high spatial correlation between adjacent

locations, hence the significance threshold should account for this and be set to a higher

value. Moreover, instead of controlling for the family-wise error rate, imaging genetics

studies usually can afford to a small proportion of false positive results in exchange of

greater statistical power. For this reason, methods to control the proportion of significant
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results that are false positive, named false discovery rate (FDR) corrections have been

introduced [168]. One the firstly introduced procedures for this class of correction is the

original work of Benjamini and Hochberg [169], which also assumes that the tests are either

independent or positively correlated. Hence, Benjamini and Yekutieli [170] introduced a

formula to control the false discovery rate regardless of dependence, but which is also

more conservative. Later, Benjamini et al. [171] developed a new procedure intended to

be less conservative when a large proportion of tests are testing a null effect.

Approaches using permutation testing can be divided into two classes [172]. The first ap-

proach estimates the distribution of the maximum effect across the whole image assuming

the null hypothesis is true at every location, and the statistical significance of the tests at

every pixel or voxel is compared against it. This distribution is obtained by computing

the maximum value of the statistic under exam for every permutation or bootstrap of the

data, and it takes into account their spatial correlation. The second approach makes use

of cluster-based statistics and it is the most popular [173]. In particular, it finds clusters

of voxels or pixels with effects surpassing some threshold (often the t-value or F-value that

would be significant with no correction) or according to some other condition [166], and

sums all the statistic values to form a cluster mass statistic. A permutation testing ap-

proach is then used to estimate the null distribution for this statistic by finding the largest

cluster across a large number of random permutations or bootstrapped samples [174].

The General Linear Model

In mass univariate approaches, a general linear model (GLM) is typically fitted at each

pixel or voxel location to model relationship between the intensity value there and, for

instance, a candidate gene or SNP of interest [88, 161]. In a GLM, the relationship between

a random variable y = (yi) ∈ Rn representing the intensity value at a pixel or voxel in the

n subjects under study is modelled using a linear combination of predictors βx, where

x is the vector of predictors and β the magnitude of their effect to be estimated. The
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predictors x can also include set of covariates (such as age, sex, ethnicity) to account for

known clinical variability. Moreover, a term accounting for the model error and which

assumes it as an independent identically distributed normal error ε is also added, resulting

in a final model of the form y = βx + ε. The values of the coefficients β are usually

computed through maximum likelihood estimation, β = (XTX)−1XTy [88]. To test

significance their statistical significance, the t-statistic is calculated by computing the

difference between the estimated values of β and the value of β̂ under the null hypothesis

(which is expressed as β̂ = 0 in case of no significant association), and by dividing it for

the standard error (SE) of β̂, i.e. t = β̂−β̂0

SE(β)
.

Mass Univariate Analysis of the Heart

Mass univariate analysis has only recently been applied to 3D cardiac imaging, and

although the approach is feasible in population-based studies, it may provide overly-

conservative inferences without considering spatial dependencies in the underlying data [83,

175, 89]. The first application in the cardiac domain is the work of de Creane et al. [89], in

which mass univariate analysis is employed to quantify abnormal myocardial motion from

velocity fields. Previous work of our group employing mass univariate analysis demon-

strated how adverse regional remodelling is associated with increased systolic blood pres-

sure in healthy volunteers [83]. However, these mass univariate analyses did not derive

any significant vertices after multiple testing correction, even though large and plausible

regions of the ventricle demonstrated similar association coefficients and reached signifi-

cance before multiple testing correction.



40 Chapter 2. Background

2.3 Deep Learning for Shape Analysis

2.3.1 Deep Learning

Deep learning has revolutionised many computer vision and medical imaging applica-

tions due to its ability to learn hierarchies of task-specific features directly from data,

largely outperforming traditional approaches employing handcrafted features [74, 77, 176].

Examples include image classification [177], semantic segmentation and object detec-

tion [178, 179, 78], natural language processing [180] and speech recognition [181]. Given

input data x, and a desired output y = f(x), deep learning models approximate f by an

artificial neural network composed of a deep hierarchy of processing layers. These layers

consist of a set nodes (or neurons) which apply non-linear and/or linear transformations

to their input.

The two most common and basic layers adopted in deep learning models are the fully-

connected and convolutional layers. Given a layer composed of a set of S nodes and P

input nodes, the output of each node oi in a fully-connected layer is obtained as

oi =
∑
p∈P

ωip ip + bi (2.1)

where ωip is the weight of the connection between an input node p (which can be the

network input or the output of a previous layer) and the node i, while bi is a bias term.

Fully-connected layers are usually followed by a non-linear function named activation

function. Stacking fully-connected layers on top of each other creates one of the most

simple neural networks architectures: the multi-layered perceptron (MLP). Despite its

simplicity, an MLP is able to compute virtually any non-linear complex function f by

exploiting matrix multiplication. However, despite this architeture and its principles were

introduced in the early sixties [182], efficient training of deep neural networks was only

made possible in the last decade by the combination of fast graphics processing units
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Figure 2.6: Spatial connectivity comparison of fully-connected vs convolutional layers.

(GPUs) and stochastic optimization algorithms.

Deep networks parameters θ, which consists of all the weights ω and biases bi used by

a neural network to model f ' fθ, are learned from data via the optimization of an

objective function g(θ). Being the optimization process non-convex, stochastic gradient-

based optimization on small subsets of the training data (called mini-batches) is mostly

employed for fast and effective network training [77]. This consist of iteratively updating

the network parameters by an update rule on mini-batches of the training data. In its

simplest formulation, the update rule involves modifying each model parameter θt ∈ θt,

at an iteration t, by a term proportional to the derivative of the objective function with

respect to the parameter θt = θt−1−α∇θgt(θt−1−1). The derivative ∇θgt(θt−1−1) can be

efficiently computed via the back-propagation algorithm and chain rule, while α is called

the learning rate [183]. In the most recently adopted procedures, improved update rules

exploiting the mean and variance of the gradient to update the learning rate over time,

including the currently most frequently used Adam optimizer [184], have been proposed

to improve network training.

Convolutional layers employ the convolution operation instead of general matrix multipli-

cation as in fully-connected layers (a schematic representation is reported in Figure 2.6).

Thus such layers only need to learn the values of a small convolution kernel K, instead of

the all weights connecting input-output nodes pairs, a property called local connectivity.
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Figure 2.7: LeNet-5 architecture. The input image is fed to two convolution and pooling
(subsampling), and then to two fully connected layer to predict handwritten digits.

This effectively reduces the number of parameters to be learnt and increases efficiency.

Moreover, convolutional layers better exploit the statistical correlation between neigh-

bouring nodes on grid-structured (euclidean) data, such as 2D images. In particular, a

convolutional kernel can learn specific corners and edges and respond to them similarly

at any location in the image, a property called translation invariance, in contrast to fully-

connected layers which can recognize them only if they are in the same position in the

training set. In a convolution layer the convolutional operation is usually followed by an

activation function, as in MLPs. The number of pixels the filter moves each time (strid-

ing), the kernel dimension and the amount of padding adopted in a convolution layer all

influence the resulting output, also called feature map. At each layer, many filters can be

applied resulting in as many feature maps.

Fully-connected and convolutional layers together with pooling operations have been the

backbone of many of the earliest deep learning architectures. Pooling operations are

adopted to down-sample the input shape by replacing a small input region with a single

value, for example its maximum value in max pooling. In Figure 2.7, as an example,

one of the first CNNs architectures which have been applied commercially (for hand-

written numbers recognition on cheques), named LeNet-5, is reported. LeNet-5, as all

CNN architectures, learns low-level feature maps in the first layer, while more complex

high-level features will be learnt at deeper layers before its output. In order to classify
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different digits, a final fully-connected layer with a number of nodes K equal to possible

digits constitutes the output of the network, to which the softmax function is applied

activation function. The softmax function normalises the output nodes values so that

each item is in the range (0, 1) and their sum is 1:

σ(o)i =
eoi∑K
k=1 e

ok
i = 1, . . . K (2.2)

An example of objective function is categorical cross-entropy

g = H(p, q) = −
K∑
i=1

p(i) log q(i) (2.3)

where p(i) is equal to 1 or the correct category, 0 otherwise, and q(i) = σ(o)i. The

minimisation of g via a stochastic gradient-based optimization procedure enables the

learning of discriminative digits features directly from the training data and different

features will be derived for different tasks. Thus, no hand-engineered image features and

ad-hoc preprocessing methods as in traditional machine learning are needed. This training

methodology is also referred to as end-to-end learning and also enables the mutual training

and optimization of multiple networks and objectives simultaneously [77].

Deep learning models, as all machine learning models, can both suffer of overfitting and

underfitting problems. Overfitting arises when the network parameters model the training

data too well, including details and noise of the training data, which is a common issue in

deep networks due to their overparametrization [77]. This prevents the model to learn the

overall data pattern, causing poor generalization over unseen datasets. On the contrary,

underfitting happens when the learned model is unable to learn appropriate data patterns,

typically due to insufficient number of parameters or inadequate training. Disadvantages

typically associated with deep learning in comparison with standard machine learning

models include the need of large amount of labeled data for these algorithms in order to
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perform better than traditional methods, their complexity and lack of standard theory

and interpretability.

2.3.2 Shape Representation Learning

The shape analysis field has not been left untouched by deep learning breakthroughs, aim-

ing at learning better shape representations. What makes a good shape representation?

In broad terms, a good shape representation is “one that makes a subsequent learning task

easier” [77]. Representation learning is an active research topic in computer vision and

graphics, and shape representation learning is a subtopic which aims at enabling com-

plex 3D reasoning, aiding visual recognition and partial or whole shape synthesis tasks

by learning robust, complex shape features from data [185, 186]. In the same fashion,

medical shape analysis is interested in learning good shape representations, generally for

disease prediction, shape synthesis and unsupervised clustering [119, 187, 188, 189, 190].

In addition, the constraint of interpretability is further added in medical shape analysis,

as the motivation behind a clinical prediction or a shape synthesis process is often as

important as the accuracy with which the task is performed [191, 60].

A key decision to make when studying 3D shapes is about their parametrization, which is

typically selected depending on the application [192, 193, 194]. Deep learning approaches

showed great performance analysing data organized on euclidean grid-like structures, such

as 2D/3D images, on which translation invariance, local connectivity, and compositional-

ity properties of CNNs can be exploited [195]. For this reason, voxelization, the process

of converting a shape into a 3D grid that encodes the geometric information, has char-

acterized the first applications and has been widely used to enable deep learning of 3D

shape representations [196, 197, 198, 199, 193, 200]. Alternatives including projecting

3D data into multiple views [201], or using surfaces meshes [202], point clouds [186] or

skeletons [203] have been also successfully explored.
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As in traditional approaches, large part of the deep learning applications for shape analysis

have resorted to learn a low-dimensional parametrization to model shape variability, also

called shape descriptors [194]. These approaches have often been seen as a replacement

of PCA-based approaches, providing excellent results in 3D object synthesis, matching,

recognition and retrieval [204, 205, 206, 201, 185, 199, 207, 202, 200]. Their superior

performance over PCA components or hand-crafted representations lies in their ability

to learn both local and global shape descriptors, and to be learnable end-to-end and

task-specific from data, thus requiring minimal expert knowledge [194]. At the core of

such approaches are the autoencoder and variational autoencoder approaches, which will

be introduced in detail in the next two sections. This section is then concluded with a

discussion on intrepretable deep learning, of crucial importance for medical image and

anatomical shape analysis.

2.3.3 Autoencoder

An autoencoder (AE) is a non-linear dimensionality reduction method which employs a

deep neural network to learn a compact feature representation z ∈ Z ⊂ Rd of input

data x ∈ X ⊂ RD, with typically d << D [183, 208]. It consists of two networks:

an encoder network fφ : X → Z and a decoder network gθ : Z → X , i.e the encoder

network is a function f that maps the input x to z, while the decoder is a function g

that aims at reconstructing the input x from the latent code z, x′ = g(z). A schematic

representation of the AE architecture is reported in Fig. 2.8. The two networks are learned

by minimizing a loss function φ, θ = argminφ,θL(x′,x) which measures the quality of the

reconstructions, making the x′ as close as possible to the original input x. If fφ and gθ

are parameterized with one linear layer and the loss function L is computed through the

mean squared error, an AE can be proved equivalent to PCA [176].

AEs have been traditionally categorized as unsupervised learning algorithms [77]. In this

setting, the work of Zhu et al. [201] computes a 3D shape descriptor by projection of
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Figure 2.8: Scheme of the Autoencoder (AE) and Variational Autoencoder (VAE) archi-
tectures. Both architectures aim at reconstructing the input x by encoding and decoding
it into a latent space z. However, the VAE architecture learns a distribution over it - a
multivariate Gaussian with a diagonal covariance structure in the reported figure.

the 3D object into 2D images and by aggregating their AE-derived latent representations

into a unique shape descriptor. However, AEs are often framed as discriminative models

when used for deep learning of shape descriptors [194]. A discriminative model is a model

that aims at learning the decision boundary between classes. To achieve this, the popular

works of Fang et al. [204], Dai et al. [209] and Xie et al. [205] employ many-to-one AEs,

which decode shapes of the same category to a unique target value in the decoding step.

This forces the latent representation of same class shapes to be similar, while distinct class

shape will have representations as different as possible, hence making the shape descriptor

sensitive to inter-group structural variations.

Autoencoder-based models have also been used to learn compact representations of medi-

cal images, aiding many image processing tasks [74]. These tasks include deep neural net-

work pre-training [210, 211], image denoising [212], real-time image reconstruction [213],
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incorporating shape priors for semantic segmentation [214, 215, 216], low-dimensional rep-

resentations of diffeomorphism shape matching [217], content-based retrieval of medical

images [218]. Moreover, Oktay et al. [215] showed how autoencoder-derived features of

LV segmentations outperform PCA features in the classification of healthy subjects versus

dilated cardiomyopathy and HCM patients on the MICCAI ACDC dataset [60].

2.3.4 Variational Autoencoders

While discriminative models learn the decision boundary between classes, generative mod-

els explicitly model the class distributions. This can enable the synthesis of new, unseen

shapes, which is not possible, for example, with standard AE models. Formally, given

input data x and their class label y, a discriminative model learns the conditional proba-

bility p(y|x) of a label given the input from the train data. Conversely, a generative model

learns the joint probability p(x,y) of the inputs x and labels y [219]. Within the class of

generative models, the variational autoencoder (VAE) [220] has been successful at learning

generative models of deforming 3D shapes for a variety of applications, including shape

space embedding and generation, outperforming state-of-the-art methods [185], [202].

The idea behind VAEs is to learn a latent variable model pθ(z,x) = pθ(z)pθ(x|z) of

learnable parameters θ, latent variables z ∈ Rd and observed variable x ∈ RD, d � D.

The observed variable x is a shape parametrisation in the context of shape analysis, for

example a 3D segmentation or point cloud. pθ(z) is the prior distribution over the latent

variables z, pθ(x|z) is the generative (decoding) function. By marginalising over the latent

variables z, the VAE model evidence can be written as

pθ(x) =

∫
z

pθ(x, z)dz =

∫
z

pθ(x|z)pθ(z)dz (2.4)

Given a training set of N training examples X = {xj, j = 1, ...N}, the direct solution
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of log(pθ(x)) for these N example is computationally infeasible, as it requires to compute

the integral in Eq. 2.4 over all the z values. In the case of VAEs, variational inference is

employed to solve this problem, by casting it as an optimization problem. In particular, a

variational distribution qφ(z|x) to approximate the posterior distribution pθ(z|x) of the

latent variables z is introduced. This function qφ(z|x) is also called encoder network,

and its parameters φ are called variational parameters. These parameters are optimized

so that qφ(z|x) ≈ pθ(z|x). The optimization objective of the VAE is the evidence lower

bound (ELBO), which can be obtained by manipulating the log-likelihood log pθ(x) of

the training data x as follows.

log pθ(x) = E
qφ(z|x)

[log pθ(x)] = (2.5)

= E
qφ(z|x)

[
log

[
pθ(x, z)

pθ(z|x)

]]
= E

qφ(z|x)

[
log

[
pθ(x, z)

qφ(z|x)

qφ(z|x)

pθ(z|x)

]]
= (2.6)

= E
qφ(z|x)

[
log

[
pθ(x, z)

qφ(z|x)

]]
+ E

qφ(z|x)

[
log

[
qφ(z|x)

pθ(z|x)

]]
(2.7)

The second term in Eq. 2.7 is known as Kullback-Leibler (KL) divergence between qφ(z|x)

and pθ(z|x), DKL(qφ(z|x)||pθ(z|x)). The closer the two distributions are, the smaller the

KL value is, which is by definition non-negative. Given this, the first term in Eq. 2.7 is a

lower bound of log pθ(x), named evidence lower bound or variational lower bound. Thus,

the maximization of the ELBO is equivalent to compute and minimize the KL divergence

DKL(qφ(z|x)||pθ(z|x)), which would be computationally intractable. Given input data

X = {xj, j = 1, ...N}, the ELBO value for each data-point can also be rewritten as:

Lθ,φ(xj) = E
qφ(z|xj)

[
log

[
pθ(xj, z)

qφ(z|xj)

]]
= E

qφ(z|xj)

[
log

[
pθ(xj|z)pθ(z)

qφ(z|xj)

]]
= (2.8)
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= E
qφ(z|xj)

[log [pθ(xj|z]]− E
qφ(z|xj)

[
log

[
qφ(z|xj))
pθ(z)

]]
= (2.9)

= E
qφ(z|xj)

[log [pθ(xj|z]]−DKL(qφ(z|xj)||pθ(z)) (2.10)

which can be optimized via stochastic gradient descent by minimizing its negative value.

The first term in the lower bound represents a reconstruction loss, i.e. how accurate is

the generative model pθ(xj) in the reconstruction of the input data xj from the latent

space values z using the generative (or decoder) network pθ(xj|z). In a deep learning

model, the functions qφ(z|x) and pθ(xj|z) are parametrised by two neural networks fφ

and gθ. The second term is a regularization term that makes qφ(z|xj) match with its prior

distribution pθ(xj) on the latent variables z. A common choice of the form of qφ(z|xj)

is a multivariate Gaussian with a diagonal covariance structure, i.e. z ∼ N (z;µ,σ2I).

Figure 2.8 illustrates a scheme of the VAE architecture in this setting.

Due to their generative properties, VAEs have been used in an extensive number of com-

puter vision applications, including high-resolution random image generation [221], small

graph and molecule generation [222], semi-supervised text classification [223], prediction

of scene evolution [224]. Moreover, VAEs have been successfully used for 3D object

shape synthesis and completion [185, 202] and for single image voxelized 3D shape re-

trieval [225, 226]. In the medical imaging domain, VAEs have been exploited to approxi-

mate the distribution and likelihood of previously unseen MR images [227], to learn a low-

dimensional manifold of 3D fetal skull segmentations [228] and hippocampal meshes [229],

to learn a low-dimensional probabilistic deformation model for cardiac image registra-

tion [230] and to learn a domain-invariant latent space of segmentations for cross-modality

image segmentation [231]. In the same domain, 3D VAEs alone or coupled with another

convolutional neural newtwork outperformed prediction accuracy of several state-of-the-

art predictors of Alzheimer disease when trained to capture anatomical shape variations
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in structural MRI scans of the brain [229, 232].

2.3.5 Interpreting Deep Learning Models

In contrast to traditional machine learning models, deep learning methods are not trans-

parent by design, i.e. they are not by themselves understandable by a human [233,

234, 191]. This is an issue of crucial importance in medical image analysis as computer-

based systems need to prove reliable and explainable to both clinicians and patients.

In particular, such methods are required to provide the same performance in the face of

distributional shifts, such as the ones arising from imaging protocol changes, different pre-

processing or patient demographics, and changes in scanner design and construction. This

proved to be extremely challenging with deep learning models due to their tendency to

overfit [235, 236]. Moreover, an increasing body of legislation, such as the new European

Union’s General Data Protection Regulation, allows patients to ask for an explanation of

an algorithmic decision that has been made about them, the so named right to explana-

tion, making even more challenging the application of deep learning models in the clinical

practice [237].

An increasing number of works have been focusing on understanding deep learning net-

works, especially CNNs based models, trying to reduce their often criticised black-box-ness

nature. This is often attempted by using post-hoc explainability techniques which aim at

investigating how a trained deep model makes its decisions [233]. An interesting direction

pursed for post-hoc analysis is based on uncertainty analysis. Two types of uncertainty

measures are typically defined in these works: epistemic, which measures how small per-

turbations of training data modify model parameters, and aleatoric uncertainty, which

measures how input parameter changes would affect the prediction for one particular

example [238, 239]. Notably, measures of uncertainty have been employed in medical

image analysis to quantify the uncertainty over the network output, which can be used to

improve diagnostic performance [240, 241] and to assess segmentation accuracy [242, 243].
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The most popular track of works however consists in the analysis of the input or inter-

mediate feature maps obtained by either exploiting backpropagation algorithms and their

modification [234, 244], or by sampling input patches that maximize activation of hidden

units [245, 246]. In the medical image analysis domain these approaches have been used

to indicate whether shape and edge information of the structure of interest are used in

the network prediction [247, 248]. The obtained visualisations are able to show insights

of the low and high level image patterns learned, providing a qualitative yet subjective

means for model interpretation. Moreover, such approaches typically do not scale well

when many layers are employed, and typically require an observer to manually assess

many images and their saliency maps to draw general conclusions [249, 250].



Chapter 3

Three-dimensional Cardiovascular

Imaging-Genetics: A Mass

Univariate Framework

This chapter is based on: Biffi, Carlo, et al. ”Three-dimensional cardiovascular

imaging-genetics: a mass univariate framework.” Bioinformatics 34, no. 1 (2018):

97-103.

3.1 Introduction

One of the most complex unanswered questions in cardiovascular biology is how genetic

and environmental factors influence the structure and function of the heart as a 3D organ

[62]. Genetic testing is increasingly used to confirm or rule out diagnosis of inherited

cardiac conditions and to assess relatives’ disease risk, and it is increasingly included in

large-scale population-based studies [64]. However, our understanding of the penetrance

and expressivity of variants associated with inherited cardiac conditions as well as the bi-

52
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Figure 3.1: UK Digital Heart 3D high-resolution phenotypes derivation. (A) Short axis
cardiac magnetic resonance image demonstrating automated segmentation of the endo-
cardial and epicardial boundaries of the left ventricle. (B) The segmentation is used to
construct a three dimensional mesh of the cardiac surfaces (left ventricle shown in red,
right ventricle in blue) that is co-registered to a standard coordinate space. Phenotypic
parameters, such as wall thickness, are then derived for each vertex in the model.

ology of heart development and within-population variation remains limited [251, 69, 146].

One of the motivations behind this is partially attributed to the lack of precision and res-

olution in the assessment and modeling of the cardiac phenotype [73, 69]. CMR is the

gold-standard for quantitative structural imaging of the heart [18, 3], providing a rich

source of high-resolution anatomic and motion-based data. However, conventional pheno-

typing relies on manual analysis, often reducing the detailed imaging information to crude

global indices of volume and mass, only relatively sensitive to regional or asymmetric mor-

phological and functional changes [58, 82]. Coupling CMR images with fully automated

segmentation algorithms enables high-throughput 3D phenotyping of the cardiac pheno-

type within a population of interest [63, 85]. Moreover, it facilitates the construction

of high-resolution computational atlases (Figure 3.1), which provide a means to study

3D phenotypic variation and its determinants at thousands of vertices in a standardized

coordinate space (more details reported in Section 2.1.1). Therefore, the development

of methods enabling sensitive and reproducible mapping of genotype-phenotype associ-

ations, i.e. associations between genetic variation and 3D high-resolution phenotypes,

constitute an unprecedented occasion to help refining our knowledge of the pathogenicity

of genetic variants [65, 63].
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3.1.1 Related Work

One common approach to uncover genotype-phenotype associations is to transform the

spatially-correlated phenotypic data of the imaged 3D high-dimensional phenotype into

a smaller set of latent variables [41, 117], for example by exploiting PCA to derive a

set of uncorrelated principal components or similar dimensionality reduction approaches

[115]. However, this new set of principal variables would not provide an explicit and easily

interpretable model relating genotype to phenotype, with reduced applicability to clinical

studies. Furthermore, the obtained low-dimensional description might not encode the

anatomical variation of interest. An approach widely used in functional neuroimaging [88],

named mass univariate analysis, offers an interesting alternative (Section 2.2.3 provides a

general introduction to the topic). This class of approaches derives an univariate statistic

expressing evidence of a given genotype-phenotype effect at each vertex of the 3D atlas

template, independently, using a general linear model. This produces a so-called statistical

parametric map which, after multiple testing correction, enables the direct appreciation

of both regional and global genotype-phenotype associations to a human investigator, and

which also accounts for additional clinical covariates. In the cardiac domain, preliminary

work from de Marvao et al. [83] showed how the increase of systolic blood pressure

(SBP) is associated with regional patterns of LV hypertrophy and increased LV wall stress

in hypertensive subjects, despite not achieving statistical significance after the required

multiple testing correction. This was a consequence of the overly-conservative nature of

this correction when spatial dependencies in the underlying data are not considered. In my

MRes project report [252], I translated a statistical approach from neuroimaging research,

named threshold-free cluster-enhancement (TFCE) [166], for the sensitive detection of

spatially coherent association signals which guarantees, at the same time, a robust control

for multiple testing. The proposed approach resulted in a mass univariate framework

which achieved statistical significant results in all the experimental settings investigated

by de Marvao et al. [83].



3.2. Study Population 55

3.1.2 Contribution

In this chapter, the previously proposed mass univariate approach I proposed during

my MRes thesis project is extended and validated to the cardiovascular imaging-genetics

domain through experiments on real genetic and synthetic data, with a special focus on

GWAS results validation. In order to achieve this, a fast and memory-efficient R package

is also introduced and made publicly available providing all the necessary tools to perform

this class of studies1.

3.2 Study Population

3.2.1 Imaging and Clinical Data

The proposed method is tested on 1,124 Caucasian healthy volunteers from the UK Digital

Heart Project at Imperial College London [56]. Healthy volunteer refers to an individual

who did not have any known cardiovascular or metabolic disease, or that was not taking

prescription medicines at the time of the scan. Cardiac MR (CMR) was performed on

a 1.5-T Philips Achieva system (Best, the Netherlands). To capture the whole-heart

phenotype, a high-spatial resolution 3D bSSFP cine sequence was used that assessed the

LV in a single breath-hold (60 sections, repetition time 3.0 ms, echo time 1.5 ms, flip

angle 50◦, field of view 320 × 320 × 112 mm, matrix 160 × 95, reconstructed voxel

size 1.2 × 1.2 × 2 mm, 20 cardiac phases, temporal resolution 100 ms, typical breath-

hold 20 s). Images were stored on an open-source database (MRIdb, Imperial College

London, UK) [253]. Conventional volumetric analysis of the cine images was performed

using CMRtools (Cardiovascular Imaging Solutions, London, UK) following a standard

protocol [254]. Blood pressure was acquired in accordance with the guidelines of the

European Society of Hypertension [255] using a calibrated oscillometric device (Omron

1https://github.com/UK-Digital-Heart-Project/mutools3D
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Full Cohort (N = 1, 124) Males (N = 511) Females(N = 613)
Age [years] 43.4 ± 13.3 (19-77) 43.2 ± 13.0 (19-77) 43.5 ± 13.2 (20-77)
BSA [m2] 1.84 ± 0.2 1.98 ± 0.16 1.72 ± 0.14

SBP [mmHg] 119.3 ± 14 125.0 ± 12.7 114.65 ± 13.2

Table 3.1: A summary of the 1,124 Caucasian subjects of UK Digital Heart Project at
Imperial College cohort employed in this work.

M7, Omron Corporation, Kyoto, Japan). Five measures were taken and last two were

averaged to obtain the final value. Body surface area (BSA) was calculated by Mosteller

formula BSA(m2) =
√

Ht(cm)∗Wt(kg)
3600

, after measurement of height (Ht) and weight (Wt).

3.2.2 Genetic Data

Genotyping of common variants in the 1,124 Caucasian subjects was carried out us-

ing an Illumina HumanOmniExpress-12v1-1 single nucleotide polymorphism (SNP) array

(Sanger Institute, Cambridge). Clustering, calling and scoring of SNPs was performed

using Illumina GenCall software [256]. Samples were pre-phased with SHAPEIT [257]

and imputation was performed using IMPUTE2 [258] with the UK10K dataset as a refer-

ence (www.uk10k.org). Quality of the genotypes was evaluated both on a per-individual

and per-marker level using in-house Perl scripts and PLINK software [259]. SNPs were

removed if they had a Impute Information (INFO) score < 0.4, missing call rate in more

than 1% of samples, minor allele frequency of less than 1% or deviated significantly from

Hardy-Weinberg equilibrium (p > 0.001). Only non-related individuals with CEU ethnic-

ity were retained. The total genotyping rate in these individuals was 0.997 and the total

number of variants available was 9.4 million.

3.2.3 Atlas-based segmentation and co-registration

All image processing was performed with Matlab (MathWorks, Natick, Mass, USA). A

previously validated cardiac segmentation framework exploiting previous knowledge of
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heart anatomy from a set of manually annotated atlases was used. Details are reported in

[96, 83]. After a rigid registration step in which all the obtained segmentations were rigidly

aligned to an higher-resolution template segmentation, its corresponding high-resolution

average template surface mesh was warped to each subject space by employing the in-

verse of the registration field from subject segmentation to template segmentation. This

enabled the derivation of high-resolution subjects’ meshes composed of 49,876 epicardial

co-registered vertices in a standard coordinate space, and consequently a cardiac atlas en-

coding the phenotypic variation for the study population (Figure 3.1) [96]. In particular,

for each mesh, wall thickness (WT) was measured by computing the distance between

respective vertices on the endocardial and epicardial surfaces at end-diastole.

3.3 Method

In the following paragraphs the framework originally introduced in [252] is summarized

and how it can be adapted to test associations between genetic variables and a 3D cardiac

phenotype defined at each vertex of a computational atlas is explained in detail. The

framework is outlined in Figure 3.2.

3.3.1 Mass Univariate Analysis

The degree of association between a 3D cardiac phenotype, such as LV wall thickness

(WT), and genetic variables can be inferred via a general linear model. Given N subjects

in a population under study, the general linear model has the form of Y = βββX + εεε, where

• Y is a [1, N ] vector containing, for example, the WT values of all the N subjects at

one vertex of the LV.

• X is a [V +1, N ] design matrix used to model the hypothesis under investigation. X

contains in its columns the subject’s values of V clinical variables, and an intercept
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term. Genetic variables in X can encode the absence/presence of a genetic mutation

as categorical variables or the posterior estimate of allele frequency as a numerical

variable. Their magnitude of association with the 3D phenotype can be adjusted

for other co-variates, such as age or sex, by including them as additional columns

of the matrix X.

• βββ is the [1, V +1] regression coefficient vector to be estimated. βββ can be standardized

by normalizing to mean 0 and unit-variance the columns of X and Y. In this way,

βββ will represent the magnitude of variation of Y in units of its standard deviation

when X is increased by one standard deviation. This enables the comparison of the

association effects between different studied variables.

• εεε is a [1, N ] vector representing the variability of Y not explained by the linear

model, and assumed to be a zero-mean Gaussian process [88].

The same general linear model can be fitted at each surface vertex independently, resulting

in a mass univariate regression approach. The regression coefficients β at each vertex

and their related p-value thus obtained can be plotted to display, at high resolution on

the whole 3D anatomy, the magnitude and spatial distribution of a given association.

However, this approach underestimates associations where the signal is more spatially

correlated than noise coherence. For this reason non-parametric statistics such as TFCE

are valuable to increase the statistical power of the approach.

3.3.2 Threshold-free cluster enhancement on a cardiac atlas

A surface atlas can be parametrized as a 3D mesh composed of non-congruent triangles

containing at each vertex p the values of a phenotype variable for the N subjects under

study. The value of the TFCE statistic at that vertex p of the atlas under exam for the
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Figure 3.2: Outline of the proposed 3D mass univariate framework. A computational atlas
provides 3D vertex-wise phenotypes of geometry and function which association can be
tested with clinical and genetic variables via a general linear model. 3D maps representing
the degree of association (βββ) at each vertex can be derived. Permutation testing coupled
with threshold-free cluster enhancement (TFCE) produces vertex-wise p-values weighted
to the degree of coherent spatial support. Finally, multiple testing correction is applied
to the obtained p-values. Regression coefficients enclosed by significance contours are
represented on a model of the left ventricle.

studied model can obtained by computing:

TFCE(p) =

∫ hp

h=0

e(h)E hH δh '
hp∑
h=0

e(h)E hH ∆h (3.1)

where h is the value of a statistic obtained through mass univariate regression, a t-statistic

in scenario under exam, and hp is the value of the statistic at a vertex p. e(h) is the spatial

extent of the biggest cluster with cluster-forming threshold h that contains p, and E and H

are two hyperparameters usually set to 0.5 and 2 for empirical and analytical motivations

[166]. The integral can be computationally solved by computing its discretized form

following the procedure I previously proposed in [252], and which is fully reported in the

paper version of this Chapter [260].

Combining TFCE with permutation testing enables the computation of a new set of p-

values at each atlas vertex p. The Freedman-Lane procedure [261] is adopted as it provided

the best control of statistical power and false positives (type 1 error) in neuroimaging

studies [262]. By sampling the data M times, M new models are computed and the
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TFCE procedure is computed M times over the obtained statistical maps.

3.3.3 False discovery rate correction

A multiple testing problem arises by testing tens of thousands of statistical hypotheses

simultaneously. Control of the family wise error rate at 5% could be derived by extracting

the maximum score from each map derived via permutation testing and by using the 95th

percentile as a threshold for significance. However, in this context such a correction could

be overly conservative as we are rarely interested in the exact number of vertices that reach

significance. The main goal is to detect extended areas of coherent signal and therefore we

can accept a maximum fixed percentage of false discoveries as provided by false discovery

rate (FDR) procedures. In particular, these procedures can be applied to adjust the

voxelwise p-values obtained at each vertex by computing the ratio between the number

of times in which a TFCE score greater than the measured one has been obtained and

the number of permutations N . Also on genetic data, we have found adaptive procedures

such as the two-stage Benjamini-Hochberg [171] not suitable for our dataset, since it led

to lower p-values and increased areas of significance, as also reported in the neuroimaging

literature [263]. For this reason, the original Benjamini-Hochberg (BH) [169] procedure

has been employed for this work.

3.3.4 Software

I propose an R package (called mutools3D) which enables the reproduction of all the ex-

periments reported in this Chapter. A full package documentation has been also produced

to make it easily employable in future research. All the package functions enable their

execution in parallel, and all the necessary calculations have been coded using matrix

algebra to guarantee fast computations and reduced memory usage in comparison with

built-in R functions. Matrices containing the phenotypic data and templates to visualise
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Figure 3.3: Applying three-dimensional analysis to single nucleotide polymorphism (SNP)
replication. β coefficients are plotted on the surface of the left ventricle for the effect of
4 distinct SNPs on wall thickness (WT) adjusted for age, gender, body surface area
and systolic blood pressure. Yellow contours enclose standardized regression coefficients
reaching significance after multiple testing

the 3D models are also available with the R package2. Linear regression assumptions must

be met in order to obtain reliable inferences [88]. Particularly important in this context

are multicollinearity and heteroscedasticity problems which should be checked and solved

for each model definition when using the proposed approach. Multicollinearity arises

when high correlation between covariates is present, resulting a reduction of statistical

power and ambiguous effects [264]. Heteroscedasticity arises when the error ε variance

σ2 is identical across observations, giving too much weight to certain subsets of the data

when estimating the final βs. For this latter problem, the R package implements mass

univariate functions exploiting HC4m heteroscedascity consistent estimators [265].

2https://github.com/UK-Digital-Heart-Project/mutools3D
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3.4 GWAS Replication Study

In this section, the proposed pipeline is employed in a GWAS replication study. In par-

ticular, 6 out of 9 exonic SNPs were identified in the UK Digital Heart Project genotypes

which have previously shown an association with LV mass in a case-control GWAS, using

echocardiography for phenotyping [157]. For each SNP, WT at each vertex in the 3D

atlas in 1,124 healthy Caucasian subjects was tested for association with the posterior

estimate of the allele frequency by a regression model adjusted for age, gender, body sur-

face area (BSA) and systolic blood pressure (SBP). The posterior estimate of the allele

frequency is coded as 1 if the derived (mutant) allele was observed at that site, whereas

0 indicates the ancestral allele was observed. The tested SNPs are rs409045, rs6450415,

rs1833534, rs6961069, rs10499859 and rs10483186. Regression diagnosis through Breush-

Pagan and White’s test showed how the homoscedasticity assumption was violated at a

large number of vertices, therefore mass univariate regression was corrected using HC4m

heteroscedascity consistent estimators [265]. Regarding the assumption of multicollinear-

ity, the condition number of the model matrix was 2.19 while the variance inflation factor

was equal to 1.06, suggesting a very low degree of multicollinearity. All the simulations

were executed on a high performance computer (Intel Xeon Quad-Core Processor (30M

Cache, 2.40 GHz), 36Gb RAM), using the analysis pipeline and R package proposed in

this Chapter (Figure 3.2). A multiple comparisons procedure correcting for the number

of vertices and the number of SNPs tested was applied by simultaneously testing in a

BH FDR-controlling procedure all the TFCE-derived p-values from all the models as sug-

gested in [266]. The number of permutations was fixed to 10,000 and simulations required

less than 3 hours each with the proposed R package. Finally, as a result of a preliminary

study we conducted (full details in Section 3.5.3), TFCE parameters E and H were set to

0.5 and 2, as suggested in the original TFCE paper [166], since this choice provides good

sensitivity and specificity on a range of synthetic signals.

Four SNPs showed a significant association with WT as reported in Figure 3.3. These are
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SNP β p-value
rs409045 0.06 0.17
rs6450415 0.01 0.75
rs1833534 -0.05 0.43
rs6961069 -0.01 0.96
rs10499859 0.01 0.84
rs10483186 0.01 0.74

Table 3.2: Regression coefficients and their related p-values of the linear association study
between LVM and the posterior estimate of the allele frequency adjusted for age, gender,
body surface area (BSA) and systolic blood pressure (SBP) of the presented GWAS
replication study.

rs409045 (maximum regression coefficient β̄ = −0.1, percentage of the LV area significant

S = 13%), rs6450415 (β̄ = −0.11, S = 11%), rs6961069 (β̄ = −0.09, S = 44%) and

rs10499859 (β̄ = 0.1, S = 41%). Table 3.4 reports conventional linear regression analysis

using LV mass (LVM) and the same model for all the SNPs. It can be seen that none of

the models did not reach statistical significance, even without multiple testing correction.

3.5 Experiments on Synthetic Data

3.5.1 Sensitivity, Specificity and FDR Assessment

In this section, sensitivity, specificity and the rate of false discoveries (FDR) of the pro-

posed pipeline are estimated using synthetic data. A 3D model showing no correlation

between WT and the posterior estimate of the allele frequency Xsnp of an non-associated

SNP (rs4288653) adjusted for age, gender, BSA and SBP was used to generate back-

ground noise. A synthetic data signal was generated by summing to the WT values of

each subject a term I β Xsnp at each vertex, where I is the signal intensity and β is a

map of regression coefficients. Two contrasting β maps (signal A and B) obtained from

real clinical data were chosen and are shown in Figure 3.4. Signal A was characterized

by non-null β coefficients covering 10% of the total area of the LV and scaled to the (0,1]
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Figure 3.4: The two β maps used to generate the synthetic data for the statistical power
calculation experiment - signal A (first row) and B (second row).

Figure 3.5: Assessment of statistical power using synthetic data. Plots of our framework
sensitivity at different sample sizes N and signal intensities I to detect a synthetic signal
on A) 10% and B) 60% of the LV surface. A black line on the plots indicates a threshold
of 80% sensitivity.

range, while signal B presented non-null regression coefficients scaled to the [-1,0) range

in a more extended area covering the 60% of the LV surface. By subsampling the number

of subjects N and the signal intensity I, different signals to be detected by the proposed

standard mass univariate pipeline were obtained. The number of permutations for each

simulation was fixed to 5,000 and results were linearly interpolated and plotted on the

contour plots shown in Figure 3.5.

Sensitivity increased at larger sample sizes N and signal intensities I, reaching the greatest

values with the most extended signal (signal B) as expected. Given the sample size of our
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Figure 3.6: Rate of false discoveries and sensitivity of the proposed pipeline with or
without TFCE on signal A and B.

GWAS replication study and the intensity of the associations found, these results would

assign a sensitivity of 70% for the first two discovered SNPs and more than 90% for the

other two. Figure 3.6 reports the model specificity and FDR for different I and N values.

It can be noticed how the FDR was 0 for all the results of signal A and below 5% except

for few simulations involving signal B and sample sizes greater than 1,600. This effect is

due to the large synthetic signal extension, which causes TFCE to extend its support to

vertices near the true signal which show the same direction of effect. Hence, this is not

considered a major limitation as TFCE will not enhance clusters that originate only from

noise.

3.5.2 Importance of TFCE

Figure 3.6 reports the specificity and FDR obtained by our pipeline with and without

TFCE on signal A and B at different signal intensities (I) and sample sizes (N). Further-

more, Figure 3.7 reports the two maps obtained for the difference in sensitivity scored by

the proposed pipeline using TFCE and without it. From the reported results it can be

noticed how TFCE provides a relevant increase of up to 50% in sensitivity, which only

comes at the expense of a small decrease in specificity on large extended signals. The

increase of sensitivity provided by TFCE was higher for signal B due to its larger spatial
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Figure 3.7: 2D maps showing the increase of sensitivity of the proposed pipeline when
TFCE is applied on two different synthetic signals (A and B) at different signal intensities
I and cohort dimensions (N).

Figure 3.8: The three regression coefficient β maps (signal 1, 2 and 3) used to generate the
synthetic signal to be detected the method proposed in this paper with different values
of the TFCE parameters E and H.

extension as expected. The difference of sensitivities converged to zero at high I and N as

also the sensitivity of the pipeline without TFCE reached 100% sensitivity. Overall, the

application of TFCE provides a relevant increase in sensitivity which only comes at the

expenses of a little decrease of specificity on largely extended signals.
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Figure 3.9: Colour plots for the proposed framework sensitivity at different TFCE param-
eters E and H and for different signal intensities I and signal extension S. In each graph
sensitivity values were normalized to the maximum sensitivity detected.

3.5.3 Sensitivity to TFCE hyperparameters

The sensitivity of the proposed pipeline using different values of the TFCE parameters

E and H was also assessed using synthetic data. Three new β maps (signal 1, 2 and 3)

obtained from real clinical data and characterized by non-null β coefficients scaled to the

(0,1] range were employed (Figure 3.8). These covered the 25%, 50% and 75% of total

area of the LV respectively and were employed together with three distinct values (0.2,

0.3, 0.4) of signal intensity I. For a given value of the signal intensity I and of the spatial

extension S of the synthetic signal, five values of the parameter E and five values of the

parameter H were employed by the proposed framework to detect the synthetic signal

generated (a total of 25 simulations for each (I, S) couple). The number of subjects N

was fixed to 80, the number of permutations for each simulation to 5,000. Sensitivity

results were linearly interpolated and normalized for the maximum sensitivity obtained

for each (I,S) couple and plotted on the colour plots reported in Figure 3.9.

The first row of Figure 3.9 shows the sensitivity results obtained at a fixed spatial extension
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of the generated synthetic signal (S = 25%) and different signal intensities I. It can be

noticed how at higher signal intensities the framework sensitivity increases and how on

a small extended signal better sensitivity values are obtained when H is higher than E.

The second row of Figure 3.9 shows the results obtained at a same signal intensity I when

increasing the spatial extension S of the generated signal. In particular, in the bottom left

figure it can be noticed how the importance of the signal intensity I is still predominant,

while with the increase of the signal extension S the relative importance of the parameter

E increases. In all the studied cases, the false discovery rate of the framework was always

below the 5% and often equal to 0%, while the sensitivity was always above 99%.

Overall, in this preliminary study the values of E = 0.5 and H = 2 suggested in the TFCE

original paper [166] by theoretical and empirical reasons achieved good sensitivity values.

However, the performance of other combinations of E and H such as (E = 1, H = 3) show

promise.

3.5.4 TFCE vs Standard Cluster-based Thresholding

A comparison between the proposed framework using TFCE or using a standard cluster-

extend based thresholding was performed on the same synthetic data used in the previous

section. The latter procedure as proposed in [267] has been implemented in the R package

developed for this work. This procedure consists of two steps. In a first step, a cluster

in the statistical map obtained by mass univariate regression is defined as the group of

connected vertices that have a t-statistic value greater than a user-defined threshold hthr.

Then, a second threshold hα is computed via permutation testing as the 95th percentile of

the distribution of largest cluster in each permuted map, and used to declare significant the

clusters in the original statistical map that are more spatially extended than this threshold

hα. Hence this method depends on the user-defined initial cluster-forming threshold hthr.

For this reason, the sensitivity, specificity and FDR of the proposed approach with TFCE

parameters E = 0.5 and H = 2 were compared against the results obtained by the
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Figure 3.10: Sensitivity, specificity and the false discovery rate (FDR) of the proposed
pipeline using either cluster-extent based thresholding or TFCE at different cluster-
forming thresholds (thr). At the top of each set of graphs, the intensity I and the spatial
extension S of the generated synthetic signal is reported.
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same approach using cluster-extent based thresholding with five distinct cluster-forming

thresholds hthr (0.5, 1, 1.5, 2, 2.5). The number of subjects N was again fixed to 80, the

number of permutations for each simulation to 5,000 and the obtained plots are reported

in Figure. 3.10

The sensitivity of the cluster-extent based thresholding method proved to be very de-

pendent on the cluster-forming threshold hthr and its choice had a large impact on the

results. Moreover, higher FDR and lower specificity characterised cluster-extent based

thresholding results when their sensitivity was comparable or greater than TFCE. These

results therefore favour the use of TFCE over cluster-extent based thresholding as also

proved in the brain image analysis literature [166].

3.6 Discussion

Despite recent advances in medical imaging and biobank medicine, the genetic and en-

vironmental determinants of cardiac physiology and function, especially in the earliest

stages of disease, remain poorly characterized [58, 41]. Conventional morphological clas-

sification relies on one-dimensional metrics derived by manual image segmentation, largely

insensitive to complex phenotypic variations [73, 57]. In contrast, computational cardiac

analysis provides precise 3D quantification of shape and motion differences between disease

groups and normal subjects [268, 85]. In this chapter, a general linear model framework

I previously introduced for standard clinical variables ([252]) was extensively validated

on a more challenging imaging-genetics scenario. The approach proved to be capable of

providing a powerful approach for modelling the relationship between phenotypic traits

and genetic variation using high-fidelity 3D representations of the heart. By translating

statistical parametric mapping techniques originally developed for brain mapping to the

cardiovascular domain, the proposed methodology exploits spatial dependencies in the

data to identify coherent areas of biological effect in the myocardium which would be
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otherwise neglected by standard volumetric analysis. Moreover, it also accounts for mul-

tiple testing correction at tens of thousands of vertices which is the main drawback of this

class of techniques. In particular, the application of TFCE leads to a notable increase in

power of the mass univariate approach at the expense of only a slight increase of the false

discovery rate in large extended signals.

Genetic association studies using conventional 2D imaging leave much of the moderate

heritability of LV mass unexplained [71, 159, 269]. One contribution may be the lack of

phenotyping power of conventional imaging metrics, which require manual analysis and

are insensitive to regional patterns of hypertrophy [73, 69]. Our simulations on synthetic

data show that our approach has the power to detect anatomical regions associated with

even small genetic effect sizes. In the reported exemplar application, we replicated the

effect of four SNPs discovered in a GWAS for LV mass using a 3D WT phenotype with

TFCE applied, while none of the SNPs replicated with conventional LV mass analysis. The

genotype-phenotype associations that we report reflect that cardiac geometry is a complex

phenotype with a highly polygenic architecture dependent on anatomical patterns of gene

expression and spatially-varying adaptations to haemodynamic conditions [270, 271].

One of the main limitations of the presented framework is that high-spatial resolution

CMR is not available in all cohorts, although conventional two-dimensional images may

be super-resolved to provide similar shape models [215]. A second limitation is that the

true association may not be linear in the model parameters and nonlinear models could

better fit the data. However, the advantages favouring a general linear model are its

simplicity, the ability to easily design and adjust the results for multiple factors and its

wide use in biomedical statistics. A third limitation of this work is with regards to the

experiments using synthetic data as we only assessed noise in our single centre population

and did not generalise this to other cohorts. A general limitation of these approaches is

that they do not establish causal relationships, such as the interaction between genetic

variants, blood pressure and LV mass, although this may be addressed in future work by
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Mendelian randomisation.

In the neuroimaging literature, in the context of brain-wide candidate-SNP analyses,

mass univariate approaches are used more extensively than multivariate approaches for

a two-fold motivation [88]. Firstly, multivariate methods have been found so far less

sensitive to regional association. Secondly, they typically require more observations than

the dimension of the response variable, i.e. number of vertices in this case, or the use

of dimensionality reduction techniques to summarize the phenotype and which might

discard anatomical information of interest. On the other hand, mass univariate approaches

do not directly consider the local covariance structure of the data as their multivariate

counterparts. However, this is accounted for when Random Field Theory or permutation

tests define a threshold for significant activation [272]. For these reasons, the development

of the proposed mass univariate approach over multivariate methods has been prioritized.

As the methods are computationally-efficient and require no human input for phenotypic

analysis, it is feasible to scale up the pipeline to larger population cohorts such as UK

Biobank, which aims to investigate up to 100,000 participants using MR imaging [40]. In

the last years, the proposed method and R package already helped to reveal the effect of

rare variants on LV geometry in participants without overt cardiomyopathy [273], and to

detect specific regional remodeling patterns in aortic stenosis patients [274] and during

pulmonary hypertension [109]. All the discovered associations were not detectable by

global measures of remodelling, thus showing promise for the discovery of new insight

on determinants of healthy and pathological cardiac anatomy in other large-scale imag-

ing studies, such as the above mentioned UK Biobank. In order to characterize genetic

susceptibility of cardiac phenotypes in greater depth, vertex-wise genome-wide analyses

also represent an interesting direction of future methodological work. In this latter con-

text, multivariate approaches may show promise for modelling high-dimensional imaging

and genetic data [150, 275], but specific approaches for the cardiac domain are yet to be

proposed. Finally, while we have focused on LV geometry and shape, the same approach
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can be applied to time-resolved vertex-wise data to create a functional phenotype for

regression modelling.

3.7 Conclusion

In this chapter, a powerful and flexible framework for statistical parametric modelling

of 3D cardiac atlases, encoding multiple phenotypic traits, and imaging-genetic data is

presented. The approach has been validated the approach on both synthetic and genetic

datasets, showing its suitability for detecting genotype-phenotype interactions on LV ge-

ometry. More generally, the proposed method can be applied to population-based studies

to increase our understanding of the physiological, genetic and environmental effects on

cardiac structure and function.



Chapter 4

Learning Interpretable

Discriminative Features via

Deep Generative Models

This chapter is based on: Biffi, Carlo, et al. ”Learning interpretable anatomi-

cal features through deep generative models: Application to cardiac remodeling.”

In International Conference on Medical Image Computing and Computer-Assisted

Intervention (MICCAI), pp. 464-471. Springer, Cham, 2018.

4.1 Introduction

Alterations in the geometry and function of the heart (cardiac remodeling) are com-

monly employed as criteria to diagnose and classify cardiovascular diseases as well as risk-

stratify individual patients [34, 42]. For instance, diagnosis of hypertrophic cardiomy-

opathy (HCM) involves the detection of unexplained left ventricular (LV) hypertrophy

patterns, often affecting distinct LV segments and not easily quantifiable [276]. The gold-

74
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standard imaging technique to assess structural shape changes of the heart is magnetic

resonance (MR) which enables imaging at high-resolution and in three-dimensions (3D)

[17]. Despite the advances in non-invasive imaging, including MR imaging, classification

and risk-stratification of cardiac disease patients still rely on the combination of visual

interpretation of medical images by a cardiologist, and on the assessment of scalar indexes

describing pathological remodeling. However, these indices (LV mass or ejection fraction

for instance) have low diagnostic and prognostic value due to their limitations in repre-

senting regional or asymmetric effects that occur during pathology [58, 59, 82]. Subjective

visual interpretation by a cardiologist often results in considerable observer-dependencies,

despite years of training [76].

Due to the recent advancements in machine learning and database technologies, auto-

mated data-driven diagnosis approaches able of obtaining and exploiting a deeper quan-

tification of cardiac phenotypes have been increasingly investigated [60, 119, 277]. These

approaches aim to fully exploit the diagnostic value of cardiovascular imaging and to pro-

vide novel computer-aided diagnosis tools to improve clinician decision-making, promis-

ing to improve early detection, risk stratification and therapy of cardiac diseases [76, 17].

Among all the available machine learning methodologies, deep learning approaches seem

particularly suited for this task due to their unmatched feature extraction capabilities.

However, such models are typically regarded as black-box models due to their difficul-

ties at providing explanations on how and why a certain decision has been made, hence

limiting their value in clinical diagnosis [278, 191].

4.1.1 Contributions

In this work, a modification of VAE framework [220], based on 3D convolutional layers,

which is employed for classification of cardiac diseases associated with structural remod-

eling is proposed. The proposed model learns a small set of generative shape features

which are concurrently optimized for cardiac shape classification in an end-to-end fash-
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ion. This latter property is achieved by employing such features as input of a classification

network. As a consequence, the anatomical effect encoded by the learned features can

be easily visualised in the original space of the segmentations, making the classification

task transparent. Moreover, a novel data-driven method to enable the easy visualisation

and quantification of the learned remodeling is proposed. The performance of the pro-

posed approach is evaluated for the classification of healthy volunteers (HVols) and HCM

subjects on our own multi-centre cohort (Imperial College dataset) and on the ACDC

MICCAI 2017 challenge dataset.

4.1.2 Related Work

Learning-based approaches that can capture complex phenotypic variation and exploit it

for data-driven decision making, such as image or shape classification, have been widely

studied in the last decade [76, 75, 148]. Of particular interest for this work, recent research

has shown the potential of machine learning algorithms in distinguishing benign from

pathological hypertrophy from multiple manually-derived cardiac parameters [279, 50] or

medical images [280, 281]. However, these methods lack interpretability in feature ex-

traction and decision processes, making it hard to infer which feature best contributes to

the outputs and what anatomical information it expresses [278]. In the work of Zheng

et al. [282], myocardial motion is end-to-end learned to obtain easy-to-interpret features

describing cardiac motion. These features are then combined with conventional imaging

metrics as input of simple cascaded binary classifiers. The simplicity and the small num-

ber of used features, makes the classifier explainable. However, the employed features are

not task-specific, as the model proposed in this work aims to obtain, but hand-crafted

before classifier training. In the brain imaging domain, Shakeri et al. [229] employed

a variational autoencoder (VAE) model based on two fully connected layers to learn a

low-dimensional representation of co-registered hippocampal meshes, which is later em-

ployed in a multi-layer perceptron (MLP) to classify patients with Alzheimer disease.
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In contrast, in this work a deep 3D convolutional neural network architecture is applied

directly on segmentation maps to learn a discriminative latent space in an end-to-end

fashion. Furthermore, a data-driven method, within the VAE framework, to visualise the

anatomical features employed in the classification process is also proposed.

4.2 Material and Methods

4.2.1 Cardiac Datasets

A multi-centre cohort consisting of 686 HCMs patients and 679 healthy volunteers was con-

sidered for this work. All subjects underwent cardiac phenotyping at a 1.5-T on Siemens

(Erlangen, Germany) or Philips (Best, Netherlands) system using a standard cardiac MR

protocol. Cine images were acquired with a balanced steady-state free-precession sequence

and included a stack of images in the left ventricular short axis plane (voxel size 2.1x1.3x7

mm3, repetition time/echo time of 3.2/1.6 ms, and flip angle of 60◦). End-diastolic (ED)

and end-systolic (ES) phases were segmented using a previously published and extensively

validated cardiac multi-atlas segmentation framework [96]. HCM patients were confirmed

with reference to established diagnostic criteria [17].

As a first preprocessing step, the quality of the 2D stacks segmentation by a multi-

atlas-aided upsampling scheme was improved. For each segmentation, twenty manually-

annotated high-resolution atlases at ED and ES were warped to its space using a landmark-

based rigid registration. Then a free-form non-rigid registration with a sparse set of con-

trol points was applied (nearest-neighbor interpolation) [283] and fused with a majority

voting consensus, leading to an upsampled high-resolution segmentation (2mm x 2mm x

2mm). In a second step, all the quality-enhanced segmentations were aligned onto the

same reference space at ED by means of landmark-based and subsequent intensity-based

rigid registration to remove pose variations. After extracting the LV myocardium label,
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HCM Hvol
Mean SD Mean SD

Age at recruitment / first CMR 54.87 15.97 37.51 12.94
Females (%) 27.1 36.8
BSA (m3) 1.91 0.23 1.80 0.19
Left ventricular end-diastolic volume (mm3) 134.77 36.35 141.77 30.52
Left ventricular end-systolic volume (mm3) 35.28 17.43 48.53 14.51
Left ventricular ejection fraction (%) 74.45 9.74 66.12 5.04
Left ventricular mass (g) 182.00 64.84 109.84 32.29
Max wall thickness (mm) 18.33 4.85 7.37 3.52

Table 4.1: Table of population characteristics of the Imperial College dataset. Information
for 34 HCMs patients were not available. The total number of healthy volunters (HVols)
subjects is 451, total number of HCMs is 402.

each segmentation was cropped and padded to [x = 80, y = 80, z = 80, t = 1] dimen-

sion using a bounding box centered at the LV’s ED myocardium. The latter operation

guarantees shapes to maintain their alignment after cropping. Finally, all segmentations

underwent manual quality control in order to discard scans with strong inter-slice motion

or insufficient LV coverage, resulting in 436 HCM patients and 451 healthy volunteers that

were used for the final analysis. This dataset is referred as Imperial College dataset and

its population characteristics and standard CMR metrics are reported in Table 4.1). As

an additional external testing dataset, ED and ES segmentations from 20 healthy volun-

teers and 20 HCMs from the ACDC MICCAI’17 challenge training dataset [60] were also

used (after undergoing pre-processing using the same high-resolution upsampling pipeline

explained above).

4.2.2 Deep Generative Model

A schematic representation of the proposed architecture is shown in Fig. 4.1. At training,

the input of the proposed architecture is constituted of a set of N anatomical segmenta-

tions X = {xj, j = 1, ...N} of a structure of interest from a population S and of their

disease class label Y = {yj, j = 1, ...N}. In this paper, xj is a pair of 3D LV myocardial

segmentations at ED and ES phases and presented as a two-channel input. Our proposed
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Figure 4.1: Deep generative model architecture. Registered LV segmentations at ED and
ES phases are mapped to a low-dimensional latent space. Each latent dimension is forced
to be normally distributed with mean µ and standard deviation σ. A decoder network is
then used to reconstruct the input segmentation from a low-dimensional vector z sampled
from the learned latent distribution (training) or the µ vector (testing). The µ latent
representation is used as input of a MLP to predict disease status.

architecture consist of a VAE [220], which learns a latent representation zj ∈ Rp, where

p� d and d is the number of pixels/voxels in a segmentation xj ∈ S, and which is trained

concurrently with a shallow multilayer perceptron (MLP) learning p(yj|zj). As reported

in Section 2.3.4, the VAE learns the distribution pθ(x) of the population of segmentations

x ∈ S by learning from the training data distribution pθ(x|z), named decoder network,

and qφ(z|x), encoder network, via the optimization of

Lθ,φ(xj) = E
qφ(z|xj)

[log [pθ(xj|z]]−DKL(qφ(z|xj)||pθ(z)) = Lrec + LKL (4.1)

The form of qφ(z|x) = N (z;µ,σ2I) is assumed to be a multivariate Gaussian with

a diagonal covariance structure and µ and σ are the outputs of the encoder network.

Given an input segmentation xj, its disease class label, HVol or HCM in this chapter, is

computed by the prediction network using µj as input, i.e. yj = p(yj|zj = µj). With
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the addition of a cross-entropy loss term for the training of a prediction network LMLP ,

the overall loss function becomes L = Lrec + αLKL + βLMLP . Lrec is a reconstruction

loss and it is implemented as a Sorensen-Dice loss between the input segmentations xj

and their reconstruction x̂j. LKL is the Kullback-Leibler divergence loss forcing N (µ,σ)

to be as close as possible to its prior distribution N (0,1). The latent space dimension

was fixed to d = 64. At test time, each input segmentation is reconstructed by passing

the predicted µ to z (without sampling from the latent space), while the classification is

performed as in training time.

4.2.3 Interpreting Learned Features via Navigation in the La-

tent Space

Our generative model architecture allows for the visualization of the features learned by

the network in the original segmentation space. For this purpose, the weights learned by

the MLP can be exploited to compute the partial derivative of the disease class label C (yC)

w.r.t. to the latent space representation µj of an input xj, i.e. ∂yC
∂µj

, by backpropagating

the gradient from the class label C to µj using chain-rule. Given a randomly selected

healthy shape, the derived gradient can be used to change the latent representation of

a subject µ. In particular, using an iterative algorithm, this can be changed along the

direction of the latent code variability that maximises the probability of µ being classified

to class C. Starting with the mean latent representation µ0 = µ̄j of a healthy shape, µj

can be iteratively updated at each step t accordingly to Eq. 1:

µtj = µt−1j + λ
∂yC

∂µt−1j

(4.2)

Here λ = 0.1. Finally, each latent representation µtj at each step t can be decoded

back to the segmentation space by passing it to zj. This enables the visualization of the

corresponding reconstructed segmentation x̂j on which all the clinical indices currently
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employed in the clinic, such as LVM or LVV, can be now also computed.

4.3 Results

The Imperial College Dataset was split into training, evaluation and testing sets consisting

of 537 (276 HVols, 261 HCMs), 150 (75 HVols, 75 HCMs) and 200 (100 HVols, 100 HCMs)

subjects respectively. The model was developed in Tensorflow, and trained on a Nvidia

Tesla K80 GPU using Adam Optimizer, learning rate of 10−4 and batch size of 16. After

96k iterations, the total validation loss function stopped improving and the training was

stopped. No significant changes in the classification results were found by varying the loss

parameters α and β, while α was set to 0.1 as this captured local shape variations without

losing the generative model properties. All the 200 subjects in the testing dataset were

correctly classified (100% accuracy) by the trained prediction network. The model also

correctly classified 36 out of the 40 ACDC MICCAI 2017 segmentations (90% accuracy);

of the 4 misclassified cases, 3 did not properly cover the whole LV, which might have been

the cause for the error.

By employing the proposed method for latent space navigation, a randomly selected

healthy segmentation was deformed from the training set towards the direction that max-

imizes its probability of being classified as HCM. On the right of Fig. 4.2, the original

segmentations of the selected subject at ED and ES phases is reported, their reconstruc-

tion from the VAE, and the reconstructed segmentations at four different iterations of the

latent space navigation method. On the left of Fig. 4.2, the latent 64-dimensional repre-

sentation µ of the training set segmentations together with the latent representations µt

obtained at each iteration t were reduced for visualization purposes to a bi-dimensional

space using Laplacian Eigenmaps [284]. This technique allows to build a neighborhood

graph of the latent representations that can be used to monitor the transformation (light

blue points) of the segmentation under study from the HVol cluster to the HCM cluster.
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Step #1
[100%,0%]INPUT

14

810

1

ED

ES

Step #8
[34%,66%]

Step #10
[0%,100%]

Step #14
[0%,100%]

LVM   =   45208       49360      93368     130792
LVCV = 38960       38000      43688       44400

LVM = 53400        53752     83904      95972
LVCV = 122472     120080    115512    119480
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Figure 4.2: On the left, Laplacian Eigenmaps (LE) bi-dimensional representation of the
latent µ of each subject in the training set (red and green dots) and of the µtj obtained
through latent space navigation (light blue dots) for a random healthy shape. This latter
is displayed on the right, together with the decoded segmentations corresponding to the
sampled µtj reported on the left at 4 exemplary iterations. The probabilities of class HVols
and HCM, and the computed LVM and LVCV are also shown.

At each reported step, LV mass (LVM) from each segmentation was derived by computing

the volume of the myocardial wall using the number of voxels labeled as LV myocardium.

Moreover, a LV atlas segmentation having also labels for the LV cavity was non-rigidly

registered to each segmentation to compute LV cavity volume (LVCV) by summing the

number of the voxels labeled as LV blood pool. Finally, for each iteration the probabilities

of being an HVol or HCM are also reported as computed by the prediction network. The

learned deformations demonstrate a higher LVM and lower LVCV with an asymmetric

increase in septal wall thickness in the geometric transition from HVol to HCM - which

is the typical pattern of remodeling in this disease [285]. At iteration 8, where the pre-

diction network gives an indeterminate classification probability, LV geometry appears

normal at ED but is thickened at ES suggesting that altered contractility may also be a

discriminative feature.
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4.4 Discussion

In this chapter, a deep generative model for automatic classification of heart conditions as-

sociated with cardiac remodeling is presented. The proposed model leverages task-specific

latent variables learned directly from 3D segmentations, which are made explainable by

design. In particular, the proposed architecture is specifically designed to enable the visu-

alization and quantification of the anatomical effect encoded by the latent variables in the

original segmentation space, making the classification decision process interpretable and

potentially enabling quantification of disease severity. In this work, a simple but effective

method that enables the navigation of the low-dimensional latent manifold learned by

the network is also proposed. In the reported exemplar clinical application, the learned

features achieved high accuracy in the discrimination of healthy subjects from HCM pa-

tients on our unseen testing dataset and on the ACDC MICCAI 17 dataset. Moreover,

the reported results show the potential clinical utility of the derived latent representation

for tracking and scoring patients against a reference population.

The methodologies presented can be easily extended to other cardiac related clinical tasks

by replacing the prediction network with survival, risk score or other clinical models imple-

mented as neural networks. For instance, in later work from our group [286] a supervised

denoising autoencoder was used to learn a latent code representation of right ventricular

contraction patterns and to concurrently perform survival prediction in pulmonary hyper-

tension patients cohort. Clough et al. [287] also extended this approach to use the whole

cardiac cycle rather than just the ED and ES frames and employed the concept activation

vector method to associate diagnostically meaningful clinical biomarkers to some latent

space variables, further increasing the intrepretability of the model. In [288], the authors

employ a deep network to estimate conventional cardiac biomarkers used to estimated

cardiac function. Then these biomarkers are used as input of a VAE-based model that

learns to regress systolic blood pressure (SBP) from the model latent space variables as

proposed in this chapter. In this way, by monitoring the changes in the decoded values
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of the studied clinical biomarkers when SBP changes, a data-driven description of the

relation between cardiac function can SBP is found.

The proposed approach worked successfully on conventional MR acquisitions, showing its

potential for using routinely acquired clinical MR imaging for end-to-end automatic diag-

nosis. Moreover, the by only employing segmentation masks, the proposed model could

allow its application to a wider range of CMR images such as multi-site images acquired

from different machines and using different imaging protocols. Finally, the external test-

ing dataset was small, future work will focus on evaluating the proposed approach on a

bigger unseen dataset from different centres and on various types of cardiomypathies.

4.5 Conclusion

In this work, this chapter demonstrates how a deep generative model can be employed to

learn discriminative and generative features for classification of cardiac diseases associated

with structural remodeling. Due to the double nature of such features, the anatomical

effect they encode can be easily visualised in the original space of the segmentations,

making the classification task transparent. The proposed approach is a promising step

towards the development of interpretable deep learning classifiers for the medical imaging

domain, which may assist clinicians to improve diagnosis and provide new insight into

patient stratification. This general approach is not limited to the cardiac domain and can

potentially be extended to other image analysis tasks where pathological shape change is

prognostically relevant.



Chapter 5

Explainable Anatomical Shape

Analysis through Deep Hierarchical

Generative Models

This chapter is based on: Biffi, Carlo, et al. ”Explainable Anatomical Shape Anal-

ysis through Deep Hierarchical Generative Models.” IEEE Transactions on Medical

Imaging (2020).

5.1 Introduction

The quantification of anatomical changes and their relationship with disease is a funda-

mental task in medical image analysis, ultimately leading to new clinical insights and

enhanced risk assessment and treatment. Recent improvements in the medical image

analysis field have been characterised by an increase of large-scale population-based ini-

tiatives [55, 289, 290, 35], such as the UK Biobank study which aims at performing

cardiac imaging in up to 100,000 participants [290]. This, together with the development

85



86 Chapter 5. Explainable Anatomical Shape Analysis

of automated segmentation pipelines of anatomical structures [291, 292], which recently

achieved human-level performance [31, 74], provides a means for unprecedented deep

phenotyping of populations. However, alterations in shape and structure of an organ as-

sociated with many conditions (pathological remodeling) remain poorly characterised, as

typically evaluated with crude global or hand-crafted metrics. Examples include diagnosis

of hypertrophic cardiomyopathy (HCM) or Alzheimer’s disease (AD), where pathologi-

cal remodeling is proved to affect distinct local areas of the myocardial or hippocampal

shape, but it is often assessed using scalar indices [276, 293, 294]. Therefore, the de-

velopment of novel data-driven processing tools to enable quantitative assessment of the

differences between normal anatomy and pathology has now received significant interest

[190, 277, 294].

5.1.1 Related Work

Deep learning methods proved to be powerful features extractors for the classification

of clinical conditions from medical images [74, 60]. Despite their tremendous success, a

major drawback of deep learning models is their lack of interpretability, which currently

hampers their translation to clinical practice. In fact, the physiological reason that drives

the classification result is often as important as the classification result itself, making ex-

plainability an increasingly requested property for machine learning algorithms [60, 237].

In hippocampus shape analysis, Shakeri et al. [229] employed a VAE model to learn a low-

dimensional representation of co-registered hippocampus meshes, which was employed in

conjuction with a multi-layered perceptron (MLP) to classify healthy subjects from AD

patients. The network input consisted of mesh vertices coordinates, and the representa-

tion was learned through two fully connected layers. Similarly, in the previous Chapter

4, a modification of the 3D convolutional VAE framework is proposed to learn a low-

dimensional latent representation of 3D LV segmentations, which was not only able to

encode the 3D segmentations manifold, but also to discriminate different conditions by
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performing the classification task in the latent space. In the same work, a latent space

navigation method to explore the anatomical variability encoded by the learned latent

space was proposed. This consisted in iteratively modifying the latent representation of

a segmentation obtained from an healthy subject along the direction that maximized its

probability to be classified as pathological. By decoding the different latent represen-

tations in the original space of the segmentations, the proposed technique allowed the

visualisation of the anatomical changes caused by this transformation. However, the fol-

lowing limitations characterize the work presented in the previous chapter: 1) The learned

VAE latent space not only encoded the factors of variation that most discriminate be-

tween classes, but also all the other factors of variation that regulate shape appearance.

The latent space navigation was thus a necessary step to attempt the offline estimation

of the variations linked to the pathological remodeling. This work aims at automatically

learning a latent space that encodes only these changes. 2) The previous model required

an additional offline dimensionality reduction technique to visualize in two dimensions

the clustering obtained in the VAE latent space, which would however not reflect the real

distribution of the shapes in the learned latent space. The model proposed in this work

aims at directly learning this two-dimensional latent space. 3) The latent space navigation

method proposed in the previous model could only obtain subject-specific paths (with no

obvious navigation stopping criteria). The model proposed in this work aims at providing

a means to extract the more clinically appealing population-based inferences.

In the later work from our group [286], a supervised denoising autoencoder was used to

learn a latent code representation of right ventricular contraction patterns and, at the

same time, to perform survival prediction. Not being a generative model, the effect of

task-specific features learned by the proposed model could not be visualised, making the

prediction task not explainable and population based inferences difficult to obtain. In

addition, an additional offline dimensionality reduction step was also required to visualise

in two-dimensions the distribution of different groups of subjects.
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Hierarchical VAEs are a class of generative models that decompose the input data into

a hierarchical representation [295], [296]. Although highly flexible, these models have

been traditionally difficult to optimise, especially in the training of their higher levels,

as often their lowest layer alone can contain enough information to reconstruct the data

distribution, and the other levels are ignored. This chapter focuses on the ladder VAE

(LVAE) framework [296], which was shown to be capable of learning a deeper and more

distributed latent representation by combining the approximate likelihood and the data-

driven prior latent distribution at each level of the generative model.

5.1.2 Contributions

I aim to extend the work presented in the previous Chapter 4 with the aim of assisting

clinicians in quantifying the morphological changes related to disease and to introduce a

deep learning system for explainable anatomical shape analysis. The main contributions

of this work can be described as follows:

• It is demonstrated that an interpretable classifier of anatomical shapes can be de-

veloped by performing a classification task of interest in the highest level of a LVAE

model. In this way, the latent variables of this level automatically encode the most

discriminative features for the task under exam, while the other subsequent levels

model the remaining factors of anatomical variation in the data.

• It is shown that the LVAE highest latent space can be assumed to be two- or three-

dimensional so that the classification space can be directly visualised without further

offline dimensionality reduction steps. Furthermore, it is shown how the anatomical

variability encoded by this latent space can be visualised in the original space of

the segmentations thanks to the generative properties of the model, enabling the

visualisation of the anatomical effect of the most discriminative features between

different conditions.
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• The proposed LVAE-based method achieves high classification accuracy of HCM ver-

sus healthy 3D LV segmentations and of AD versus healthy controls 3D hippocampi

segmentations. More importantly, it is shown how the proposed model captures

and enables the easy visualisation of the most discriminative features between the

conditions under exam. Finally, the reported experiments the learned hierarchical

representations provide higher reconstruction accuracy compared to single-latent-

space VAEs.

• While hierarchical VAEs have been mainly evaluated on benchmark datasets, in

this chapter they are successfully applied to two real-world 3D medical imaging

datasets. Insights on the model functioning and optimal training are showed, and

the implementation of proposed method is made publicly available1.

5.2 Methods

This section is organised as follows. First, in subsections A and B, the theoretical founda-

tions of the proposed method are summarised. Second, in subsection C the modifications

to the original VAE and LVAE frameworks towards explainable shape analysis are re-

ported (graphical models in Fig. 5.1). Then, in subsection D, the datasets used in this

work for the classification of healthy subjects versus HCM patients and of healthy controls

versus AD patients are described in detail. Finally, in subsection E, a detailed description

of the LVAE models used in this work is reported (model summary in Fig. 5.2 for the

cardiac application, and in Fig. 5.3 for the brain application).

1https://github.com/UK-Digital-Heart-Project/lvae mlp
DOI 10.5281/zenodo.3247898
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Figure 5.1: Graphical models of a standard VAE (a), the previously proposed method
(Chapter 4) (b) and the new LVAE-based approach (c). x represents and anatomical
segmentation, y the disease class label and z the latent variables to learn. Schematic
representation of a three-level LVAE (d) and of the flow of information (e). Circles
represent stochastic variables, diamonds represent deterministic variables. Variables in
light blue represent the inputs of the network.

5.2.1 Ladder Variational Autoencoder (LVAE)

Given a training set of N anatomical segmentations X = {xj, j = 1, ...N} of a structure

of interest from a population S, a VAE [220] aims at learning the distribution pθ(x) of

the population of segmentations xj ∈ S under study. As seen in Section 2.3.4, this is

achieved by learning from the training data distribution pθ(x|z) (decoder network) using

a model of latent variables z ∈ Rp, where p � d and d is the number of pixels/voxels



5.2. Methods 91

in a segmentation x ∈ S, and a variational distribution qφ(z|x) (encoder network). The

VAE graphical model is depicted in Figure 5.1 (a) and it is trained by optimizing:

Lθ,φ(xj) = E
qφ(z|xj)

[log [pθ(xj|z]]−DKL(qφ(z|xj)||pθ(z)) (5.1)

Conversely, a Ladder VAE (LVAE) [296] is a hierarchical latent variable model that em-

ploys a hierarchy of i = 1, ..., L conditional latent variables in the generative model and it

is schematised in Fig. 5.1 (d). The total prior distribution pθ(z) of this model is factorised

as:

pθ(z) = pθ(zL)
L−1∏
i=1

pθ(zi|zi+1) (5.2)

pθ(zi|zi+1) = N (zi|µp,i(zi+1),σ
2
p,i(zi+1)) ∀i < L (5.3)

pθ(zL) = N (zL|0,1) (5.4)

where the highest latent space (i = L) has a prior distribution pθ(zL) which is typically

assumed to be a Gaussian distribution with µp,L = 0 and σ2
p,L = 1 (Eq. 5.4), while the

other levels in the hierarchy have their prior values of µp,i and σ2
p,i that conditionally

depend on the upper levels of the ladder (Eq. 5.3).

The LVAE inference model also differs from a standard VAE. In particular, each layer i in

the hierarchy of the latent variables is conditioned on the previous stochastic layers and

the total inference model qφ(z|x) is specified by the following fully factorised Gaussian

distribution:

qφ(z|x) = qφ(z1|x)
L−1∏
i=1

qφ(zi+1|zi) (5.5)
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qφ(z|·) = N (zi|µd,i,σ2
d,i) (5.6)

In contrast with standard hierarchical VAEs [295], where the inference qφ(z|x) and prior

distributions pθ(z) are computed separately with no explicit sharing of information, the

LVAE framework introduces a new inference mechanism. As shown in Fig. 5.1 (e), at

each level i, an approximate likelihood estimation µe,i and σ2
e,i of its latent Gaussian

distribution parameters is obtained from the encoder branch. This likelihood estimation

is combined with the prior estimates µp,i and σ2
p,i obtained from the generative branch

to produce a posterior estimation µd,i and σ2
d,i of the latent Gaussian distribution at

that level i. In particular, this sharing mechanism between the inference (encoder) and

generative (decoder) branches is performed at each level i 6= L through a precision-

weighted combination of the form:

σ2
d,i =

1

σ−2e,i + µ−2p,i
µd,i =

µe,iσ
−2
e,i + µp,iσ

−2
p,i

σ−2p,i
(5.7)

while µd,L = µe,L and σ2
d,L = σ2

e,L. This combination enables to build a data-dependent

posterior distribution at each level, N (µd,i,σ
2
d,i), that is both a function of the values

assumed in the higher levels of the generative model and of the inference information

derived of the subsequent (lower) levels. The loss function of the LVAE is the same of a

VAE (Eq. 5.1) with the only difference that the number of KL divergence terms is equal

to the number of levels L in the ladder. These KL divergence terms force the learned

prior and posterior distributions at each level to be as close as possible. The sharing of

information between the encoder and decoder through Eq. 5.7 promotes the learning of

a data-dependent prior distribution better suited for the dataset to be modelled. More-

over, this provides a better and more stable training procedure as the inference (encoder)

branch iteratively corrects the generative distribution, instead of learning the posterior

and prior values separately [296].
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The full LVAE generative model has therefore the following formulation:

pθ(x) =

∫
z

pθ(x|z1) pθ(zL)
L−1∏
i=1

pθ(zi|zi+1) dz (5.8)

5.2.2 LVAE for Interpretable Shape Analysis

In the previous Chapter (Section 4.2.2), I proposed a modification of the standard VAE to

include a classification network p(y|z) able to predict the disease class label y associated

with a segmentation x by using its latent representation z (the corresponding graphical

model is shown in Fig. 5.1 (b)). In this work, I hypothesise that such modification can

be extended to the LVAE framework by connecting a MLP p(y|zL), which classifies the

disease status y of an input segmentation x by only using its latent representation on

the highest latent space zL (graphical model in Fig. 5.1 (c)). By end-to-end training

the LVAE+MLP architecture, I aim at encoding a very low-dimensional latent space zL

the most discriminative features for the classification task under study, while the other

latent spaces will model all the modes of shape variation needed to reconstruct the input

segmentations x. This approach yields two main advantages over the previous approach:

1. Template shapes for each disease class can be obtained by sampling from the learned

distributions in a top-down fashion (starting from the highest level in the hierar-

chy p(zL|y) and subsequently from every prior pθ(zi|zi+1)). The posterior p(zL|y)

can be estimated by kernel density estimation and, since zL is typically very low-

dimensional, this estimation is straightforward;

2. If the latent space zL is designed to be 2D or 3D, the distributions p(zL|y) in the

classification space can be directly visualised without the need of further offline

dimensionality reduction techniques required in previous works [297, 286].
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Figure 5.2: Detailed scheme of the LVAE+MLP architecture adopted in this work for the
cardiac application. Top: encoder model; Bottom: decoder model. At testing, segmen-
tations class scores y are computed with z3 = µe,3. The green arrows indicate the loss
function terms used to train the network.

5.2.3 Datasets

Cardiac Dataset 3D segmentations at ED and ES of the 436 HCM patients and 451

healthy volunteers from the Imperial College Dataset and of 20 healthy volunteers and 20

HCMs from the ACDC MICCAI’17 challenge training dataset [60] used in the previous

chapter were also employed in this work. The same pre-processing steps outlined in

Section 4.2.1 were adopted, please refer to that section for the full details and population

characteristics.

Brain Dataset A total of 726 3D left and right hippocampus segmentations of healthy

controls (HC,N = 404, 202 males, median age 74.2 [min=59.8;max=89.6]) and Alzheimer’s
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disease subjects (AD, N = 322, 177 males, median age 75.8 [min=55.1;max=91.4]) from

a publicly available repository were also analysed in this chapter. The segmentations were

obtained from baseline T1-weighted (T1w) MR brain images from the ADNI-1/-GO/-2 co-

horts using a multi-atlas label propagation method with expectation-maximisation based

refinement (MALPEM) [292]. Images were automatically segmented individually and no

additional pre-processing was performed. All segmentations were rigidly registered to the

MNI standard reference space using nearest neighbour interpolation. Shape-based interpo-

lation was applied to upsample each segmentation to 0.75mm x 0.75mm x 0.75mm resolu-

tion. Finally, each segmentation was cropped and padded using a bounding box positioned

at its centre to obtain 3D segmentations of dimension [x = 60, y = 60, z = 60, t = 1] for

both the left and right hippocampus. Moreover, a 3D high-resolution left and right hip-

pocampus volumetric template segmentation was obtained by averaging the upsampled

and rigidly registered healthy controls segmentations. By thresholding the template prob-

abilistic segmentation, a template triangular mesh was extracted using marching cubes

algorithm and will be used in this work for results visualisation.

5.2.4 Application to Pathological Remodelling - LVAE+MLP

model details

A detailed scheme of the three-level (L = 3) LVAE+MLP architecture employed in this

work for the classification of HCM patients versus healthy subjects is summarised in

Fig. 5.2, while the corresponding architecture for the classification of healthy controls

versus AD patients is reported in Figure 5.3. For the sake of display clarity the model

schemes were split into two rows: the encoder (inference) branch is shown at the top

while the decoder (generative) branch is depicted at the bottom, and the two branches

are connected by the latent space z3. In the cardiac application, the input of the encoder

branch are the 3D LV segmentations at ED and ES for each subject under study, which

are presented as a two-channel input (top-left of Fig. 5.2), while in the brain application,
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Figure 5.3: Detailed scheme of the LVAE+MLP architecture adopted in this work for the
brain application. Top: encoder model; Bottom: decoder model. At testing, segmen-
tations class scores y are computed with z3 = µe,3. The green arrows indicate the loss
function terms used to train the network.

the input of the encoder branch are the 3D left and right hippocampus segmentations

(top-left of Fig. 5.3). In the next paragraph, the flow of data in the network will be

explained in detail for the cardiac application, and it is identical for the brain application

expect for dimensional details.

A 3D convolutional encoder compresses them into a 250-dimensional embedding through

a series of 3D convolutional layers with stride 2. This embedding is used then as input

of a deterministic inference network, which computes the likelihood estimates µe,i and

σe,i for each level i of the hierarchy of latent variables. These estimates are derived by

manipulating the input through a series of fully connected layers (black arrows), which are

all followed by batch normalisation and elu non-linearity with the only exception of the

layers computing µe,i and σe,i. At the highest latent space (i = 3 in this case), a shallow
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MLP (2 layers) is attached to learn p(y|z3), i.e. to predict the class (HCM or healthy)

label y corresponding to the input segmentation x by just using its latent variable values

z3. ReLu was used as non-linearity after the first layer. The latent variable values z3 are

sampled during training from N (µd,3,σ
2
d,3) where µd,3 = µe,3 and σd,3 = σe,3 and they

are also the starting point of the generative process (bottom-right of Fig. 5.2). At each

level i of the generative (decoder) network, the prior distribution terms are computed by

modifying the values of the previous latent space zi+1 through a fully connected layer

followed by batch normalization and elu non-linearity and by a second fully connected

layer. These prior values are combined with µe,i and σe,i through Eq. 5.7 to obtain the

posterior estimates µd,i and σd,i from which zi is sampled. Finally, the value of z1 is

passed to a 3D convolutional decoder which aims to reconstruct the input segmentations

x through a series of upsampling and convolutional layers. After every convolutional

and upsampling layer used in the architecture ReLu was applied as non-linearity, except

at the output of the network where sigmoid was applied. All the network weights were

randomly initialised from a zero-mean Gaussian distribution (σ = 0.02). In the brain

application, the same architecture was replicated with the only exception of a different

layer dimensionality due to a different input dimension.

The training loss function of the LVAE+MLP network is composed of three contribu-

tions: 1) two LV segmentation reconstruction accuracy terms (for the ED and ES LV

segmentations or for the left and right hippocampus segmentations) and it defined as the

overlap (Dice score) between the input segmentation x and its reconstruction x′; 2) L

KL divergence terms, penalising discrepancies between the learned prior and posterior

distributions at each level and 3) a binary classification cross entropy (CE) term for the

classification of healthy versus HCM segmentations or healthy controls vs AD patients.

All the KLi divergence terms except the one of the highest level (i = 3) were evaluated

between the prior distribution N (µp,i,σ
2
p,i) and their posterior distribution N (µd,i,σ

2
d,i),

while for the highest level the prior distribution was assumed to be a standard Gaussian
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N (0, 1). The total loss function is

L = DSCED +DSCES + γ
[ L∑
i=0

αi KLi + β CE
]

(5.9)

and depends on αi, which weights the KL terms, on β, which weights the classification

loss, and on γ, which is set to increase from 0 to 1 at the beginning of the training. This

increase of γ is called deterministic warm-up and it has been commonly found useful in

practice to converge to better local minima [296]. The weighting of the KL terms and

the use of the Dice Score as a reconstruction metric lead to a different lower bound than

standard VAE and LVAE. In the literature, it has been shown that the use of variants

of the VAE lower-bound tend to favor better empirical results in various problems [298].

In this work, Dice score was adopted as a reconstruction metric since it was successfully

used in the work presented in Chapter 4 and in related work [228] to achieve better

reconstruction results on 3D anatomical segmentations.

At testing, a pair of ED and ES LV segmentations (or left and right hippocampus seg-

mentations) are reconstructed by starting from z3 = µd,3 and by assigning to z2 and

z1 the values µd,2 and µd,1 computed from z3 = µd,3 and z2 = µd,2, i.e. no sampling

is performed from the posterior distribution at each level. To interpret the anatomical

information encoded by the highest latent space, at each level i 6= 3, the value of µp,i can

be assigned to zi instead of µd,i and the segmentations are reconstructed as explained

above. In this way, by varying the values of z3, a set of segmentations can be directly

generated for each point in z3, without using the inference information provided by µe,i

and σe,i. This enables the visualisation of the anatomical information encoded by the

highest latent space. Finally, in order to visualise the distribution of a set of segmenta-

tions under exam in the highest latent space, the µe,3 values of each segmentation can be

computed through the inference network and directly plotted in a 2D space.
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5.3 Cardiac application

5.3.1 Model Training

Healthy and HCM subjects’ 3D segmentations at ED and ES from the Imperial College

dataset were randomly divided into train, validation and test sets consisting of a total of

537 (276 from healthy volunteers, 261 from HCMs), 150 (75 from healthy volunteers, 75

from HCMs) and 200 (100 from healthy volunteers, 100 from HCMs) segmentations. A 3-

level LVAE+MLP model (Fig. 5.2) was adopted since adding more levels in the generative

model did neither improve the segmentation reconstruction accuracy, nor the classification

accuracy in the clinical application under exam. The model was end-to-end trained on

an NVIDIA Tesla K80 GPU using Adam optimiser with learning rate equal to 10−4

and batch size of 16. For the first 40k iterations, data augmentation including rotations

around the three standard axis with rotation angles randomly extracted from a Gaussian

distribution N (0, 6◦) was applied in order to take into account small mis-registrations

between the subjects’ segmentations. This data augmentation strategy helped the final

model to achieve higher reconstruction accuracy (higher Dice score and lower 2D slice-by-

slice Hausdorff distance) both at testing and training phases, as it can be seen in Table

5.1.

In the loss function (Eq. 5.9), the KL weights were fixed to α1 = 0.02, α2 = 0.001 and

α3 = 0.0001 while γ was set to increase from 0 to 100 by steps of 0.5 every 4k iterations.

The relative magnitude and ascending order of the KL weights αi were chosen as this

provided both better classification and reconstruction accuracy in contrast with models

having all the weights αi equal or in descending order (results are reported in Table 5.2).

This suggests the higher levels of a LVAE might be more difficult to train, and that a

lower KL regularization term helps the generative model training. The model produced

similar results when varying these parameters within one order of magnitude, while a

further increase in value reduced reconstruction accuracy and a further decrease resulted
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Effect of DA and DWU

Augmentation DSCED DSCES HED [mm] HES [mm] ACC [%]

Training

None 0.75±0.07 0.79±0.05 7.30±1.80 7.08±1.68 51.40%
DA 0.77±0.05 0.80±0.05 6.94±1.62 6.86±1.53 51.40%

DWU 0.82±0.05 0.86±0.04 6.20±1.23 5.93±1.23 99%
DA&DWU 0.85± 0.04 0.88±0.03 5.70±1.12 5.58±1.00 100%

Testing

None 0.72±0.07 0.76±0.05 8.01±1.99 7.53±1.97 51.40%
DA 0.74±0.06 0.78±0.05 7.62±1.86 7.31±1.82 51.40%

DWU 0.79±0.05 0.83±0.04 6.91±1.79 6.72±1.68 99%
DA&DWU 0.81±0.04 0.85±0.04 6.54±1.62 6.40±1.56 100%

Table 5.1: Dice score (DSC) and average 2D slice-by-slice Hausdorff distance (H) at ED
and ES and their standard error for the proposed LVAE+MLP model when Deterministic
Warm-Up (DWU) and Data Augmentation (DA) are applied. ACC is the classification
accuracy of the different models.

Effect of the KL weights

[α1, α2, α3] DSCED DSCES HED [mm] HES [mm] ACC [%]

Training

[10−4, 2 10−4, 10−3] 0.79± 0.05 0.80± 0.05 6.93±1.62 6.88±1.60 100%
[10−4, 10−4, 10−4] 0.80± 0.05 0.83± 0.04 6.50±1.41 6.48± 1.47 100%

[10−3, 2 10−4, 10−4] 0.85± 0.04 0.88± 0.03 5.70±1.12 5.58± 1.00 100%

Testing

[10−4, 2 10−4, 10−3] 0.75± 0.06 0.78± 0.05 7.64±1.72 7.37±1.68 99%
[10−4, 10−4, 10−4] 0.78± 0.05 0.80± 0.04 7.01±1.53 6.94±1.58 100%

[10−3, 2 10−4, 10−4] 0.81±0.04 0.85±0.04 6.54±1.62 6.40±1.56 100%

Table 5.2: Dice score (DSC), average 2D slice-by-slice Hausdorff distance (H) at ED and
ES and they standard error of the mean together with classification accuracy (C) for the
proposed LV AE+MLP model for different sets of the KL weights αi in the training loss
function. ACC is the classification accuracy of the different models.

in model overfitting.

The classification loss function weight β was instead set to 0.005: experiments showed

that a higher β value would have still produced a good model, but at the price of a more

unstable training at the early stages. With regards to the number of layers and nodes
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adopted in the MLP, adopting a single fully connected layer posed a too strong constraint

on the latent space distribution, preventing a successful posterior learning, and using more

than two layers caused overfitting. The derived constrain on the latent space distribution

is due to the fact that if the MLP is shallow network, it tries to separate healthy and

HCM segmentations with a simple, linear separation in the latent space, not being able

to differentiate them otherwise with the limited capacity it has. This however makes

difficult the matching of the prior and posterior distributions in the latent space. After

220k iterations the training procedure was stopped as the increase of the KL divergence

started to interfere with the decrease of the reconstruction and classification losses. In

particular, this is due to the fact that in the highest latent space the KL divergence term

tries to cluster all the data together, while the classification loss tries to separate the

clusters. Hence the relative weight of β and α3 needs to be tuned in order to obtain a

good equilibrium.

Finally, the gradual increase of the classification and KL divergence weights during train-

ing through the γ parameter, known as deterministic warm-up [296], proved to be crucial

to construct an expressive generative model, as the results reported in Table 5.1 show.

As already exposed in previous research [299, 296], the KL regularization can cause many

latent variable to become inactive, i.e. their posterior matches their prior before their

learned a useful representation, and to not model any shape effect. By gradually turning

on the Kl weight, this effect can be alleviated.

5.3.2 Classification and Reconstruction Results

All the 200 subjects in Imperial College testing dataset were correctly classified (100%

sensitivity and specificity) by the trained prediction network. The same model also cor-

rectly classified 36 out of the 40 ACDC MICCAI 2017 segmentations (100% sensitivity

and 80% specificity) without the need of any re-training procedure. The four misclassi-

fied segmentations correspond to the same ones misclassified by the previous approach
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Figure 5.4: Latent space clusters in the highest latent space (l = 3) obtained by the
proposed LVAE+MLP model on both the in-house training and testing datasets as well
as on the ACDC dataset (entirely used as an additional testing dataset). Dimension 1 and
2 represent the two dimensions of µe,3. On the left, long-axis sections of the reconstructed
3D segmentations at ED and ES obtained by sampling from three points in z3 are shown.

(Section 4.3), suffering from a lack of coverage of the LV apex which causes them to be

classified as pathological. The clustering of the shapes under exam as obtained by the

proposed model are shown in Fig. 5.4, where two separated clusters of segmentations

have been discovered both on the training and on the testing data. An analogous result

was obtained with the VAE-based model (Section 4.3, Figure 4.2): however, the previous

version of the model required an additional dimensionality reduction step to visualise in

2D the obtained latent space of segmentations, while in the new proposed framework the
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Figure 5.5: Average healthy and HCM shapes at ED and ES sampled from the two clusters
in the highest latent space of proposed LVAE+MLP model. The colormap encodes the
vertex-wise wall thickness (WT), measured in mm.

VAE+MLP vs LVAE+MLP Reconstruction Accuracy

Training

Model DSCED DSCES HED [mm] HES [mm]

VAE+MLP 0.81±0.04 0.85±0.04 6.30±1.25 5.96±1.20
LVAE+MLP 0.85±0.04 0.88±0.03 5.70±1.12 5.58±1.00

Testing

VAE+MLP 0.78±0.04 0.83±0.04 6.98±1.65 6.75±1.61
LVAE+MLP 0.81±0.04 0.85±0.04 6.54±1.62 6.40±1.56

Table 5.3: Cardiac. Dice score (DSC) and average 2D slice-by-slice Hausdorff distance
(H) at ED and ES and their standard deviation for the proposed LVAE+MLP model and
for the VAE+MLP model proposed in Chapter 4 on training and testing sets.
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Figure 5.6: Point-wise difference in wall thickness (dWT) at ED and ES between the
healthy and the HCM average shapes of Fig. 4. Left - lateral wall; Right - septal wall.

highest latent space is 2D by design.

The new model achieved higher reconstruction accuracy than the previous model, as

shown in Table 5.3, suggesting that a better generative model of shapes was learned. In

particular, the table shows the reconstruction accuracy in terms of 3D Dice score and

average 2D slice-by-slice Hausdorff distance between the 3D original and reconstructed

segmentations on the testing and training datasets obtained by the proposed LVAE+MLP

model and the previously proposed VAE-based model (VAE+MLP). The VAE+MLP

model was constructed with the same 3D convolutional encoder and decoder networks of

the LVAE+MLP model and with a single latent space composed of 98 latent variables,

which corresponds to the total number of latent variables adopted in the LVAE+MLP

model (three levels of 64, 32 and 2 latent variables, respectively). As it can be noticed in

the table, the obtained Dice score results at ES are better than at ED for all the models,

while the Hausdorff results seem to follow instead an opposite trend. This is probably

due to the fact that since the LV is more compact at ES, the Dice score might not be

sensitive to small misalignment of the reconstructed shape, which are instead captured

by the Hausdorff distance.
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Figure 5.7: Long-axis section of reconstructed LV segmentations at ED and ES by the
LVAE+MLP model, using only z3 information (first column) or also using the poste-
rior information of the other latent spaces (z2, z1) . Last column: ground-truth (GT)
segmentation. DSC = Dice Score between the segmentation at that column and the GT.

5.3.3 Visualisation of the latent spaces

Due to the properties of the proposed model, the anatomical information encoded by each

latent space can be directly visualised, especially the anatomical information embedded

in the highest level (i = 3), which encodes the most discriminative features for the classi-

fication of healthy and HCMs 3D LV segmentations. For the exemplar application under

investigation, little intra-cluster variability between the shapes generated from the latent

space z3 was obtained, while much larger inter-cluster variability between the generated

shapes was obtained. This can be seen on the left-side of Fig. 5.4 where the long-axis

section of the 3D reconstructed segmentations at ED and ES at three points of the latent

space z3 are reported. In Appendix A a detailed grid visualisation of the shapes encoded

by this latent space is also reported.

In Fig. 5.5 the obtained mean average shape for each cluster is shown, represented as a tri-

angular mesh with point-wise wall thickness (WT) values at vertex. This was obtained by
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Figure 5.8: tSNE visualisation of the latent spaces z2 and z1. Top: cardiac application.
Bottom: brain application.

sampling N = 1000 segmentations from each cluster in z3 after estimating its probability

density via kernel density estimation. Then, the obtained segmentations for each cluster

were averaged to extract the corresponding average segmentation. Finally, a non-rigid

transformation between the obtained average segmentation and a 3D high-resolution LV

segmentation from the UK Digital Heart project2 was computed, and the inverse of this

transformation was applied to the corresponding 3D high-resolution LV segmentation to

warp it to the cluster specific average segmentation. At each of the mesh vertices, WT

was then computed as the perpendicular distance between the endocardial and epicardial

wall. The results are presented in Fig. 5.5, where it can be noticed that the average HCM

shape has higher WT than the corresponding healthy shape and it has a slightly reduced

2https://digital-heart.org/
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VAE+MLP vs LVAE+MLP Reconstruction Accuracy

DSCl DSCr Hr [mm] Hl [mm]

Training

VAE+MLP 0.81± 0.05 0.80±0.05 3.35±0.67 3.28±0.69
LVAE+MLP 0.85± 0.04 0.85± 0.03 3.05±0.69 2.96±0.66

Testing

VAE+MLP 0.79±0.05 0.79±0.05 3.51±0.64 3.49±0.67
LVAE+MLP 0.82±0.03 0.82±0.03 3.31±0.68 3.23±0.65

Table 5.4: Brain. Dice score (DSC) and average 2D slice-by-slice Hausdorff distance (H)
for the left (l) and right (r) hippocampus and their standard deviation for the proposed
LVAE+MLP model and for the VAE+MLP model proposed in Chapter 4 on training and
testing sets.

size. Fig. 5.6 instead reports the point-wise difference in WT between the HCM and the

healthy shape, and it can be noticed that the most discriminative anatomical feature to

classify an HCM shape consists in an increased WT in the septum, which is in agreement

with the clinical literature [285].

Fig. 5.7 shows a long-axis section of the reconstructed segmentations at ED and ES from

the LVAE+MLP model when only z3 posterior information is used (first column) or when

also the posterior information in the other levels (z2, z1) is exploited: the latent spaces

z2 and z1 evidently encode different anatomical features that help to refine the structural

information provided by z3. Results for more subjects are reported in Appendix A.

Finally, the dimensionality reduction technique tSNE [300] is applied to visualise in two

dimensions the distributions of z1 and z2 latent spaces. The reported plots show that the

latent representations of the two classes of shapes are clustered also at both these levels

(plots shown in Fig. 5.8). A possible explanation relies on the fact that the generative

process is a conditional: if the data is clustered at the top of the hierarchy, it may be

easier for the network to keep the clusters also in the subsequent levels.
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5.4 Brain application

5.4.1 Model Training

As an additional benchmark test, the LVAE+MLP model proposed in this work was

also tested for the classification of healthy controls (HC) and patients with AD by using

only 3D segmentations of the left and right hippocampus. Data was randomly assigned to

train, validation and testing sets consisting of a total of 562 (322 HC, 240 AD), 64 (32 HC,

32 AD) and 100 (50 HC, 50 AD) segmentations respectively. A three level LVAE+MLP

model was also adopted for this application (Figure 5.3), since adding more levels did not

improve classification or reconstruction accuracy. In the model loss function (Eq. 5.9),

the KL weights were fixed to the values of α1 = 0.03, α2 = 0.003 and α3 = 0.0003, γ

was set to increase from 0 to 100 by steps of 0.5 every 4k iterations and β was instead

set to 0.005. The same augmentation strategy and the rationale for the selection of

the hyperparameters in the cardiac experiment were adopted. The model training was

stopped after 200k iterations.

5.4.2 Classification and reconstruction results

84 out of 100 subjects were correctly classified by the training prediction network (78%

sensitivity, 90% specificity). A VAE+MLP model with the same 3D convolutional en-

coder and decoder networks of the LVAE+MLP model, but with a single latent space of

dimension 66 (equal to the total number of latent variables adopted in the LVAE+MLP

model) was also trained. This model classified 81 out of 100 subjects correctly (74% sen-

sitivity, 88% specificity) on the same training, testing and validation splits of the previous

model. On the same dataset, an accuracy of 78% (75% sensitivity, specificity 80%) for the

same classification task was obtained by using left and right hippocampus volume seg-

mentations [292]. Compared to the VAE+MLP model, the LVAE+MLP model achieves
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Figure 5.9: Latent space clusters in the highest latent space (l = 3) obtained by the
proposed LVAE+MLP model on the brain dataset. Left and right hippocampus shapes
(in blue) at four points in the latent space have been reconstructed and showed together
with a reference shape (in grey and opaque) sampled from the healthy control shapes
(Ref, Coord: [2,2]). The first image is a view from the top, second image a view from the
bottom.

higher reconstruction accuracy in terms of 3D Dice score and 2D slice-by-slice Hausdorff

distance between the original segmentations and the reconstructed ones, these results are

reported in Table 5.4.
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5.4.3 Visualisation of the latent spaces

Fig. 5.9 shows the distribution of the training and testing 3D hippocampus segmentations

in the highest (i = 3) latent space for the trained LVAE+MLP model. It can be noticed

how the healthy and pathological shapes are not as separated as in the previous appli-

cation due to the more challenging nature of the new task. However, two clear clusters

of healthy and AD shapes can still be identified. Fig. 5.9 also shows the left and right

hippocampus segmentations obtained by sampling from four distinct points of this latent

space, which are showed together with a reference healthy shape sampled from a point

in the healthy cluster (marked as Ref). For each reconstructed segmentation, the rate of

hippocampal volume change (VR) with respect to the reference healthy shape was com-

puted (V R =
∣∣∣V−VrefVref

∣∣∣× 100). From the figure, it can be noticed how the AD shapes are

characterized by decreased hippocampal volume, reduction that slighty but consistently

affects more the left than the right hippocampus, in agreement with the previous findins

Figure 5.10: First row: Average healthy (in grey and opaque) and AD (in red) left and
right hippocampus shapes sampled from the two clusters in the highest latent space of
proposed LVAE+MLP model. Second row: vertex-by-vertex L2 distance between the two
mean shapes.
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on this data [292]. Moreover, a pattern in regional changes in volume can be identified:

AD cases closer to the reference healthy shape show atrophy predominantly (if not only)

in the tail of the hippocampus, while cases further away from the healthy class and deeper

into the AD group show an atrophy pattern more spread throughout the whole hippocam-

pal shape. In Fig. 5.10, the obtained average left and right hippocampus shapes from the

healthy and AD distribution represented as triangular meshes are shown. These meshes

were obtained by sampling N = 1000 segmentations from the healthy and AD distribu-

tions in z3 after estimating their probability density via kernel density estimation. Then,

the obtained segmentations for each cluster were averaged to extract the corresponding

cluster mean segmentation. Finally, the 3D template hippocampus segmentation was

non-ridigly registered to each obtained cluster specific average segmentation and the esti-

mated transformation was applied to the corresponding high-resolution mesh. In the first

row of Fig. 5.10, it can be noticed how the reconstructed template AD segmentation (red)

which is shown together with the HC segmentation (grey and opaque) is more atrophied

and it is characterized by a bending of the head of both the left and right hippocampus.

The second row displays the vertex-by-vertex L2 distance between the two mean shapes

demonstrating a more pronounced regional atrophy in the hippocampal head consistent

with the CA1 and subiculum regional athrophy already reported in the literature [294],

[301]. The right hippocampus is characterized by a 13.5% decrease in volume between the

healthy shape and the AD shape, while the decrease in volume for the left hippocampus

is 14.6%. The volume ratio between the AD right and left hippocampus is 3.6% and

2.5% in the healthy mean shape. Finally, the plots resulting from the application of tSNE

dimensionality reduction technique to the z1 and z2 training data values are shown at

the bottom of Fig. 5.8. Once again, it can be noticed a clear separation between healthy

controls and AD patients also in these levels of the ladder.
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5.5 Discussion

This work presents a data-driven framework to model a population of 3D anatomical

segmentations through a hierarchy of conditional latent variables, encoding at the high-

est level of the hierarchy the most discriminative features to differentiate distinct clinical

conditions. This is achieved by implementing and extending for the first time the LVAE

framework to a real-world medical imaging application. In particular, building on the

results obtained in the previous chapter, the new proposed model also performs a classi-

fication task in a generative latent space, which this time is the highest level of a LVAE

model. In this way, this latent space can be forced to encode the most discriminative

features for a clinical task under exam, while the other levels encode the other factors

of anatomical variation needed to model the manifold of segmentations under analysis.

Being a generative model, also this framework provides the advantage of enabling the

visualisation and quantification of the remodeling effect encoded by each latent space in

the original segmentation space. Hence, the anatomical differences used by the classi-

fier to distinguish different conditions can be easily visualised and quantified by sampling

from the posterior distribution of the LVAE highest level computed from a given database

of shapes. Moreover, by designing this latent space to be two or three dimensional, no

additional offline dimensionality reduction technique is required to visually assess the dis-

tribution of these shapes in the latent space. As a consequence, this method not only

provides a deep learning classifier that uses a task-specific latent space in the discrim-

ination of different clinical conditions, but more importantly enables the visualisation

of the anatomical features encoded by this latent space, making the classification task

transparent.

With the aim of assisting the clinicians in quantifying the morphological changes related

to disease, the proposed framework was applied for the automatic classification of heart

and brain pathologies against healthy controls. In the reported cardiac application, the

learned features achieved high accuracy in the discrimination of healthy subjects from
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HCM patients on our unseen testing dataset and on a second external testing dataset

from the ACDC MICCAI 17 challenge. On the more challenging task of classification

of healthy versus AD hippocampi, the model achieved better classification accuracy than

using volumetric indices [292] and the previously proposed VAE-based method. Moreover,

the visualisation of the features encoded in the highest level of the adopted LVAE+MLP

model showed how the proposed model is able to provide the clinicians with a 3D visuali-

sation of the most discriminative anatomical changes for the task under study, making the

data-driven assessment of regional and asymmetric remodelling patterns characterizing a

given clinical condition possible. On both applications, the reported results show that

the proposed LVAE+MLP model allows the construction of a better generative model in

comparison to a VAE-based model with a single latent space [297]. To the best of my

knowledge, this result confirms for the first time that hierarchical latent spaces provide

a more accurate generative model on a real clinical dataset. Moreover, this work also

gives insights on the functioning of these models on 3D anatomical segmentations, includ-

ing how the different levels of latent variables encode different anatomical features, and

how to optimally train this class of models for the reconstruction of these 3D anatomical

segmentations.

5.5.1 Limitations and Future Work

While this work showed the potential of the proposed method on two common classifi-

cation tasks, this method is domain-agnostic and could be applied to other classification

problems where pathological remodelling is a predictor of a disease class label. However,

further work is needed to explore the full potential of this approach, for instance in order

to visualize the pathological remodeling of different disease subgroups characterized by

different clinical endpoints. Of note, it is expected that on very difficult tasks one or two

more dimensions in the highest latent space might be needed, although further increasing

the dimensionality will go against the rationale of the proposed approach. In fact, the



114 Chapter 5. Explainable Anatomical Shape Analysis

proposed model aims at encoding the most discriminative anatomical information for the

classification task under exam in the highest latent space, while the other latent spaces

are intentionally left to model the remaining factors of variation. Interestingly, Fig. 5.8

shows that the shapes are clustered also in the other latent spaces, probably encoding

additional variability of the disease groups not strictly useful for the specific classification

task. By specializing the classification task to more categories, it is expected that some

information currently encoded in the other latent spaces to be moved and encoded in

the highest one. For instance, studying multiple disease subgroups would enable a finer

representation of the spectrum of remodeling patterns against which patients can be com-

pared. Presently this was not achievable as the model has been optimized to discriminate

only between healthy and diseased subjects, although a step in this direction was taken in

Fig. 5.9, showing how different latent space points map to different hippocampal volume

measures.

In comparison with the previous (generative) VAE-based model and Bello et al. [286]

model, the proposed method requires tuning of a few additional hyperparameters, i.e. the

number of adopted levels in the ladder and their weights importance in the model loss

function. On the other hand, the proposed approach is fully data-driven and it spares the

need for further downstream dimensionality reduction and latent space navigation tech-

niques, which would themselves require separate optimization and human intervention,

potentially adding bias to the analysis. The proposed method also enables the derivation

of population-based inferences (Fig. 5.5, 5.6 and 5.10), which could neither have been

obtained from VAE-based model (due to the subject-specific nature of the latent-space

navigation), nor from the one of Bello et al. (due to the non-generative nature of the

model).

Another limitation shared by the current approach is the fact that the input segmentations

need to be rigidly registered to train the model. Future work should consider how to

extend the proposed method to unregistered shapes, for example with the introduction
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of spatial transformer modules inside the architecture [302]. In this work, as the output

of the model is binary, Dice score was adopted as reconstruction metric. However, other

alternatives exist, for example by modeling the model output with a Bernoulli distribution

[303], and they will be investigated in future work. Finally, the prior distribution adopted

in the highest latent space is a standard Gaussian distribution N (0, 1): future work could

consider alternative prior distributions which could further favour the clustering of shapes.

Even more interestingly, the interpretability and visualisation properties of the proposed

method indicate that it could constitute an interesting tool for unsupervised clustering

of shapes, for example by learning in the highest level discrete random variables [304] or

Gaussian mixtures [305].

5.6 Conclusions

In recent years, the medical image analysis field has witnessed a marked increase both

in the construction of large-scale population-based imaging databases and in the devel-

opment of automated segmentation frameworks. As a consequence, the need for novel

approaches to process and extract clinically relevant information from the collected data

has greatly increased. In this chapter, a method for data-driven shape analysis which

enables the classification of different groups of clinical conditions through a very low-

dimensional set of task-specific features is proposed. Moreover, this framework naturally

enables the quantification and visualisation of the anatomical effects encoded by these

features in the original space of the segmentations, making the classification task trans-

parent. As a consequence, this method could be useful for the study of both normal

anatomy and pathology in large-scale studies of volumetric imaging.



Chapter 6

3D High-Resolution Cardiac

Segmentation Reconstruction from

2D Views using Conditional

Variational Autoencoders

This chapter is based on: Biffi, Carlo, et al. 3D high-resolution cardiac segmentation

reconstruction from 2D views using conditional variational autoencoders. In 2019

IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1643-

1646. IEEE, 2019.

6.1 Introduction

Accurate assessment of heart morphology is key for the quantitative analysis and diagnosis

of cardiac pathology. CMR is the gold-standard technique for reproducible assessment of

cardiac morphology and function [306], and multiplanar breath-hold 2D cine sequences

116
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constitute standard clinical practice [2]. As outlined in Section 1.2.1, these protocols

consist in the acquisition of a stack of breath-hold 2D image sequence in the LV short

axis supplemented by long axis images in prescribed planes. Segmentation of the obtained

images, more and more often fully-automated, follows image acquisition in order to derive

mass and volumetric clinical indices describing the heart clinical status (Section 1.2.2).

However, the disadvantages of this acquisition protocol for whole-heart assessment are

low through-plane resolution, misalignment between breath-holds and lack of whole-heart

coverage, resulting in segmentations not correctly representing the cardiac volume, and

causing potential errors in the following analyses and research [56].

High-resolution 3D CMR sequences enable whole-heart structural imaging and, as showed

in Chapter 3, proved to be crucial for the construction of integrative statistical models

of cardiac anatomy and physiology and promise to further our understanding of disease

characterization [96]. However, high-resolution 3D image sequences are time-consuming,

expensive to acquire and they often require long breath holds that are not sustainable for

patients. The increased availability of annotated large-scale medical imaging databases

offers the opportunity to learn in an automated, data-driven way descriptors of anatomical

shape variation. Consequently, an end-to-end method to reconstruct a 3D high-resolution

segmentation from routinely-acquired 2D cine MR imaging could be highly beneficial -

offering high resolution phenotyping robust to artefact in large clinical populations with

conventional imaging.

6.1.1 Related Work

In the medical imaging domain, the reconstruction of 3D anatomical structures from a

limited number of 2D views has been traditionally studied via the combination of im-

age registration algorithms to align and fuse the acquired 2D views and statistical shape

models to infer the final 3D anatomical structure [307, 308, 309]. However, these meth-

ods require complex, slow reconstruction procedures and are computationally-intensive.
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In recent years, with the advent of learning-based approaches, and in particular of deep

learning, a number of alternative strategies have been proposed in the computer vision

field. One of the most employed approaches, the TL-embedding network (TL-net), con-

sists of a 3D convolutional autoencoder (AE) which learns a low-dimensional representa-

tion of 3D geometries, whereas a second convolutional neural network connected to the

AE latent space maps 2D views of the same object to the same low-dimensional repre-

sentation [310]. In this way, an explicit connection between the 2D views and the 3D

shape descriptor is established at training time, and 3D object shapes can be efficiently

predicted at inference from their 2D views. The resulting reconstruction process is how-

ever deterministic, showing little clues on which shape parts the network considers a

plausible reconstruction. Shape generation based on low-dimensional representations of

deep generative models has also been largely investigated both using variational inference

[225, 202, 185] and adverserial learning [311, 312] for 3D object generation and retrieval

from 2D images, and potentially enabling multiple plausible shape predictions from such

low-dimensional representations. Cerrolaza et al. [228] proposed a convolutional con-

ditional variational autoencoder (CVAE) architecture for the 3D reconstruction of the

fetal skull from 2D ultrasound standard planes of the head. Finally, Chapter 4 and 5

showed how the VAE framework can learn a shape segmentation model of LV segmen-

tations and how the learned latent space can be exploited to accurately identify healthy

and pathological cases and generate realistic segmentations unseen during training.

6.1.2 Contributions

In this chapter, a CVAE architecture that reconstructs a high-resolution 3D segmentation

of the LV myocardium from three segmentations of 2D routinely acquired cardiac views

(one short-axis and two long-axis views) is presented. The proposed architecture has the

appealing property, unlike deterministic models, of naturally producing confidence maps

associated to each reconstruction due to its generative properties.
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6.2 Materials and Methods

6.2.1 3D Cardiac Image Acquisition and Segmentation

A dataset of 1,912 healthy volunteers from the UK Digital Heart Project at Imperial Col-

lege London was used in this preliminary analysis. A high-spatial resolution 3D balanced

steady-state free precession cine MR image sequence was acquired for each subject using

a 1.5-T Philips Achieva system (Best, the Netherlands) [96]. Left and right ventricles

were imaged in their entirety in a single breath-hold (60 sections, repetition time 3.0 ms,

echo time 1.5 ms, flip angle 50◦, field of view 320 × 320 × 112 mm, matrix 160 × 95,

reconstructed voxel size 1.2 × 1.2 × 2 mm, 20 cardiac phases, temporal resolution 100 ms,

typical breath-hold 20 s). CMR images were stored in an open-source database (MRIdb,

Imperial College London, UK) [253]. For each subject, a 3D high-resolution segmentation

of the LV was automatically obtained using a previously reported technique employing a

set of manually annotated atlases [96]. In this work, only the end-diastolic (ED) frame

was considered.

Full Cohort (N = 1, 912) Males (N = 859) Females(N = 1, 053)
Age [years] 42.3 ± 13.0 (18-82) 41.0 ± 12.6 (18-75) 41.5 ± 13.4 (20-82)
Ethnicity
Caucasian 1337 (69.7%) 601 (70.0%) 736 (69.9%)

South Asian 260 (13.6%) 126 (14.6%) 132 (12.5%)
African 195 (10.2%) 73 (8.5%) 122 (11.5%)
Other 120 (6.3%) 58 (6.8%) 62 (5.9%)

BSA [m2] 1.8 ± 0.2 2.0 ± 0.2 1.7 ± 0.2
SBP [mmHg] 118 ± 14 123 ± 13 114 ± 13

Table 6.1: A summary of the 1,912 healthy subjects of the UK Digital Heart Project at
Imperial College cohort employed in this project.

6.2.2 Conditional Variational Autoencoder Architecture

The outline of the proposed CVAE architecture is reported in Figure 6.1. The aim of

framework is to end-to-end learn a generative model p(x|y) of 3D high-resolution LV
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segmentations x conditioned on a sparse set of 2D views segmentations y = {yi | i =

1, 2, 3}, two long axis and one short axis views in the cardiac application examined in this

work. The training set of the proposed architecture is composed of a pair (X, Y ) of N

3D high-resolution LV segmentations X = {xj, j = 1, ...N} and of their corresponding

2D views segmentations Y = {yj, j = 1, ...N}. For each segmentation xj, a CVAE

model learns a generative model via a p-dimensional latent representation zj ∈ Rp, where

p� d and d is the number of pixels/voxels in a segmentation xj, as in a standard VAE.

However, the encoder and decoder functions are this time conditioned on the 2D views y

values [303], i.e. qφ(z|x,y) and pθ(x|z,y). Therefore, the loss function to be optimized

has the form:

Lθ,φ(xj|yj) = E
qφ(z|xj ,yj)

[log [pθ(xj|zj,yj)]]−DKL(qφ(z|xj,yj)||pθ(zj)) = Lrec+LKL (6.1)

where qφ(zj|xj,yj)) is modeled also in this work as a multivariate Gaussian with a diagonal

covariance structure, i.e. z ∼ N (z;µ,σ2I). An important choice in the construction of the

encoder and decoder functions, qφ(z|x,y) and pθ(x|z,y), is how to effectively condition

them on the values y. As shown in Figure 6.1, in this work a 2D convolutional neural

network (CNN) is used to learn a low-dimensional representation c from the views y. This

latent representation is then concatenated with the output of the 3D CNN encoder, x̂,

and used as input of a fully connected layer to learn the latent space parameter estimates

µ and σ2. Moreover, c is also concatenated with the sampled values of z, and used at the

input of a fully connected layer to compute x̃, which is then sent to the 3D CNN decoder

to reconstruct the input segmentation x. An alternative encoding strategy was proposed

in [228], using a separate branch for each conditional input of the model,e.g. a separate

branch for each 2D view of the same subject. However, whilst this latter approach proved

efficient when the views suffer from large inconsistencies or variability (e.g., free-hand

ultrasound scans), the model complexity can be notably reduced by combining the views
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Figure 6.1: The proposed conditional variational autoencoder (CVAE) architecture.

y as a unique three-channel input as these are acquired consistently in clinical routine for

this application.

The reconstruction loss Lrec in Equation 6.1 is computed as the Dice score (DSC) between

x and its reconstruction x′, which is the output of the proposed generative model. The

regularisation term LKL employs as prior distribution N (0,1), a p-dimensional normal

distribution with zero mean and unit-standard deviation. Building over previous results

(Chapter 5), in our implementation the two losses are weighted during training by a

parameter α, L = Lrec + α LKL. At testing phase, the 3D encoder branch is disabled.
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The reconstruction of a 3D high-resolution segmentation is obtained by setting the latent

variables z = 0 and by concatenating this latent representation with the low-dimensional

representation c, which is obtained by encoding the 2D views segmentations y via the 2D

conditional encoder. The obtained representation is used to computed x̃ which is then

used as input of the 3D CNN decoder.

6.2.3 Experimental Setup and Network Training

In this work, the two long-axis and one short-axis segmentation views acquired in a routine

CMR acquisition, y, were mimicked via the following steps:

1. All the ground truth 3D high-resolution segmentations y have been rigidly aligned

by performing landmark-based and subsequent intensity-based registration (nearest-

neighbours interpolation).

2. Only the LV myocardium label was kept and the segmentations were cropped and

padded to [x = 80, y = 80, z = 80, t = 1] dimension using a bounding box centered

at the centre of mass of the LV myocardium.

3. Finally, three orthogonal views passing through the centre of each segmentation

were sampled (an example is shown in Figure 6.1 as input to the 2D conditional

encoder).

Thanks to this process, three 2D views segmentations showing the same three LV sections

consistently for all subjects were obtained. In the following experiments, the ground truth

3D high-resolution segmentations and their corresponding 2D views were kept all in the

same reference space.

The dimension p of the latent space was fixed to 125 as values smaller than 100 pro-

vided less accurate reconstruction results, while above 125 no further improvements in
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reconstruction accuracy were observed. The dimensionality of the low dimensional repre-

sentation c was kept equal to the dimensionality of z to guarantee a balanced contribution

to the generative model. Simulations for different values of the parameter α in the loss

function were performed: low values of α (α < 0.5) provided better reconstruction re-

sults on the training data at the expenses of a strong deviation from normality of the

latent space distribution (KL term not converging) causing poor reconstruction accuracy

at testing on the evaluation set, i.e. overfitting. Higher values of α (α > 2) penalized the

reconstruction term in favour of a strictly normal latent space, hence also providing poorer

reconstruction accuracy. In this work, α was set to 1 as this provided good reconstruction

accuracy and convergence of the KL term.

Experiments were performed with different numbers of view segmentations yi as condi-

tions for the proposed model. In particular, referring to the first long-axis view as 1,

the second long-axis view as 2 and the short-axis view as 3, the model training was per-

formed using either only one view (which will be indicated as CVAE 1), or a combination

or two views (CVAE 12, CVAE 23, CVAE 13), or all the three views (CVAE 123). The

feasibility of training a 2D AE on the 3 view segmentations y to then use its encoder

as a pre-trained conditional encoder (pCVAE 123) was also studied. Moreover, the re-

construction capability of the proposed architecture was compared with the one of the

TL-net [310]. Finally, the reconstruction obtained by a VAE with z=0 (VAE 0) to all our

test segmentations was also compared, as this represents the best segmentation that the

generative model can reconstruct when no information is provided to it (lower bound for

reconstruction accuracy). Results obtained with an autoencoder (AE) are also reported

since this model yielded better results than different VAEs with distinct α values as it

only optimizes the reconstruction accuracy (upper bound for reconstruction accuracy).

All the models share the same 3D encoder and decoder architectures.

The employed dataset was split into training, evaluation and testing sets consisting of

1362, 150 and 400 subjects respectively. Data augmentation included rotation around the
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three orthogonal axis with rotation angles randomly extracted from a normal distribution

N (0, 6◦) and random closing and opening morphological operations. All the networks were

implemented in Tensorflow and training was stopped after 300k iterations, when the total

validation loss function had stopped improving (approximately 42 hours per network on

an NVIDIA Tesla K80 GPU), using stochastic gradient descent with momentum (Adam

optimizer, learning rate = 10−4) and batch size of 8.

6.3 Results

6.3.1 Accuracy of 3D Reconstruction

Table 6.2 shows the testing reconstruction accuracy achieved by all the studied archi-

tectures in terms of 3D Dice score and 2D slice-by-slice Hausdorff distance between the

ground truth 3D high-resolution segmentations and their reconstruction by the network.

The reported results indicate that the reconstruction accuracy decreases (lower Dice Score,

higher Hausdorff distance) when 2D views segmentations are removed. From the exper-

iments with only two views it can also be inferred how different views have different

importance. In particular, the short-axis view seems to have the smallest impact on the

reconstruction accuracy. This could be motivated by the fact that the long-axis views con-

tain more information about the regional changes in curvature of the LV, which strongly

influences the Dice Score. The results reported in Table 6.2 also show how the proposed

architecture significantly outperforms the TL-net by a large amount (p = 2.2 · 10−16),

and how the pre-training of the 2D CNN encoder network did not help to achieve better

results.

LV mass is an important clinical biomarker for diagnosis of many cardiovascular condi-

tions, therefore for each reconstruction its percentage difference in mass with the ground

truth was also estimated as 100 · m(x′)−m(x)
m(x)

, where m() sums the number of voxels labelled
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Model DSC Hausd. [mm] MassDiff [%]

VAE 0 65.48 ± 0.38 9.32 ± 0.06 35.37 ± 0.70

CVAE 1 78.08 ± 0.33 5.29 ± 0.04 3.94 ± 0.38

CVAE 23 82.90 ± 0.21 4.43 ± 0.04 3.93 ± 0.19
CVAE 12 85.21 ± 0.20 4.46 ± 0.04 3.73 ± 0.19
CVAE 13 83.18 ± 0.18 4.77 ± 0.04 3.69 ± 0.19

CVAE 123 87.92 ± 0.15 3.99 ± 0.03 2.70 ± 0.14
pCVAE 123 87.63 ± 0.16 4.04 ± 0.04 3.05 ± 0.16

TL net 82.60 ± 0.23 4.66 ± 0.04 3.85 ± 0.19

AE 90.45 ± 0.12 3.46 ± 0.03 1.50 ± 0.10

Table 6.2: Reconstruction metrics together with their standard error of the mean for
all the studied models. The Dice score (DSC) and the Hausdorff distance are reported
together with the LV mass difference.

as LV myocardium in a segmentation. It can be observed that its trend is in agreement

with the other two studied metrics and that the mass difference is systematically over-

estimated by a small amount, which decreases with the number of views provided. This

may be linked to the choice of the reconstruction loss. In fact, we observed that models

trained using cross entropy in the loss function yielded a systematic underestimation of

the mass, often with reconstructions with missing LV apex, as this loss term tends to

favour the background instead of the myocardium, while model trained with Dice score

yielded an opposite trend, often overestimating the LV apex.

6.3.2 Visualisation and Uncertainty Estimation

In the first and third rows of Figure 6.2 the reconstructed segmentations obtained with one

and three views (in red) are reported and overlaid onto the ground truth segmentation (in

black) for one subject of the testing dataset (with Dice score 0.80 and 0.89, respectively).

In the second and fourth rows are instead reported the confidence maps obtained for

the reconstruction with one and three views - P (1v) and P (3v). These maps have been

obtained by sampling N times (N = 1, 000) z fromN (0,1) to reconstruct N segmentations

from the same set of views Y. Unlike deterministic architectures (such as the TL-net),
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Figure 6.2: First and third rows, reconstructed segmentation obtained with one and three
views (in red, 1v and 3v) overlaid onto the ground truth segmentation (in black, GT)
for one random subject. Second and fourth rows, confidence maps for the reconstruction
with one and three views - P (1v) and P (3v). First and second columns, long-axis views
(LA1 and LA2). Third column, short-axis (SA) view.

by averaging these maps the probability of each voxel to be labelled as LV myocardium

can be computed, providing to clinicians a richer and more intuitive interpretation of

the reconstruction. It can be seen in Figure 6.2 how the confidence map obtained with

only 1 view has greater uncertainty than the one obtained with 3 views, which instead

shows lower variability. Moreover, the amount of uncertainty in the P (1v) map for the

long-axis view 1 is less than for the other two views, as this view was the one provided

to the network as condition. Interestingly, in the reconstruction with one view the areas

with more uncertainty correspond to the areas where there is less overlap with the ground

truth, i.e. the areas where the network is less accurate in predicting the shape.
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6.4 Discussion

In this preliminary work, building on the evidence gathered in previous chapters, a simple

conditional generative model is introduced to model anatomical 3D high-resolution LV

segmentations conditioned on a sparse set of routinely acquired 2D views segmentations.

The proposed framework can model shape variations using a low-dimensional latent space

and, by conditioning on a conditional vector representing the anatomical variation encoded

by the views segmentations, can obtain accurate high-resolution 3D reconstructions by just

using such views as input. Furthermore, a simple procedure able to provide reconstruction

uncertainty is proposed.

Concurrently with our work, CVAEs have also been used to generate hippocampal shapes

conditioned on clinical data [189]. Similarly to this work, shape variation was modeled

with a low-dimensional VAE representation, while shapes were parameterised as point

clouds in this case. CVAE based methods were also proposed to generate images of the

whole fetus from a large number of overlapping image patches [313] and electrical activ-

ity maps of the heart conditional to body surface potentials [314], further showing the

potential of these models for conditional medical data generation. In future work, this

project will focus on benchmarking the proposed model using real standard long-axis

views (instead of the simulated ones in this work) with the aim of identifying the smaller

sparse set of 2D views necessary to reconstruct with high accuracy the high-resolution

segmentations of interest. Invariance towards inter-subject pose variability is a desidered

property for the architecture under exam, and currently an important limitation of the

presented work, and will be investigated in future work. This can be potentially addresses

with a tailored data augmentation strategy, the introduction of spatial transformed mod-

ules [302] or by employing other shape parametrisations, such as point clouds [189, 315],

which afford for neural network architectures which do not require aligned inputs. Ad-

ditional direction for future work include reconstructing multiple structures at the same

time and extending the proposed framework to pathological datasets, for which acquiring
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breath-hold sequences is even more challenging and hence the method can be even more

beneficial. Finally, based on very recent advances in shape reconstruction and generative

modeling, better generative models architectures, such as the β-VAE [316] or the LVAE

[296], should to be investigated in future research together with image-based methods for

3D object reconstruction methods from the computer vision field [225, 226].

6.5 Conclusion

In this chapter, the first deep conditional generative network for the reconstruction of 3D

high-resolution LV segmentations from three segmentations of 2D orthogonal views was

presented. The reported results showed the potential of this class of models to provide

quantitative cardiac models from sparse imaging acquisitions.



Chapter 7

Conclusion and Future Work

In this chapter, a summary of the research aims of this thesis is firstly presented. The

achieved methodological contributions are then listed item by item. Finally, the cur-

rent limitations of the proposed algorithms and interesting possible directions for future

research are proposed.

7.1 Summary

The current understanding of the epidemiological risk factors and of the progression of

cardiovascular conditions has largely been inferred from population-based studies [37,

39, 38]. The recent improvements in non-invasive imaging modalities and semi- and

fully- automated image processing pipelines, together with advances in high-performance

computing and big data analytics, have made large-scale population-based imaging studies

of the heart feasible [41, 55, 35]. These improvements enable the assessment of heart

function and morphology in large cohorts through relatively fast derivation of physiological

clinical indices. However, currently adopted indices are largely insensitive to complex

modifications in heart morphology, especially at the earliest disease stages [81, 82, 83].

Machine learning approaches showed great promise in addressing big data challenges in

129
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cardiovascular research tasks. This is mainly due to their excellent capability at feature

extraction and at learning highly-complex functions modeling a specific task under study

[77, 74, 51, 75]. However, machine learning approaches seldom result in image features

and biomarkers that can be readily understood by a clinician, and to explain why a

specific prediction has been made by a deep model is often difficult. This poses the need

for the development of novel methodologies that can successfully employ learning-based

strategies or advanced statistical modeling while, at the same time, being explainable [76].

7.2 Achievements

In order to address the aforementioned need for model explainability, all the methodologies

proposed in this work afford for the direct visualisation, on a template three-dimensional

anatomy, of the learned anatomical remodelling patterns predictive of a disease status or

associated with a genetic variation. The main methodological achievements of this PhD

project can be summarized as follows:

3D cardiovascular imaging-genetics. This work demonstrated how regional phenotype-

genotype associations can be discovered and visualised via mass univariate analysis of 3D

cardiac atlases encoding multiple phenotypic traits from MR imaging (Chapter 3, [260]).

An R package providing all the necessary functions to perform this class of studies is also

proposed. The R package is validated on synthetic and real genetic data, and the reported

results show how the proposed framework enables the detection of small, regional patterns

of remodelling with relatively small sample sizes. In particular, in the reported GWAS

replication study, the effect of four SNPs previously discovered and never replicated in

a GWAS for LV mass was confirmed by the proposed approach, while none of the SNPs

was found significant with conventional LV mass analysis.
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Learning generative and discriminative deep features of cardiac shapes. This

thesis demonstrated how automatic classification of anatomical shapes associated with

morphological remodelling can be performed from a generative latent space learned by

shape auto-encoding. Concurrent classification network training enables the learning of

generative and discriminative anatomical shape features. Either by using an iterative

latent space navigation (Chapter 4, [297]) procedure or by the sampling from the poste-

rior distribution of the shape classes (Chapter 5, [317]), the results reported in this work

show the feasibility of visualising in three-dimension the anatomical effect encoded by

learned generative and discriminative shape features. These approaches provide an inter-

pretable classifier of anatomical shapes which achieves high accuracy in the categorisation

of healthy and remodelled left ventricles of the heart, and on distinguishing hippocampi

from healthy controls and from patients with Alzheimer’s disease.

Modeling shape variation in large-scale imaging databases using deep hierar-

chical generative models. This work introduces a deep learning approach, based on

state-of-the-art deep hierarchical generative models, to model a large database of anatom-

ical shapes through a hierarchy of conditional latent variables (Chapter 6, [318]). The

proposed approach can learn the most distinctive morphological differences between dif-

ferent clinical populations at the top of the hierarchy, while the subsequent levels in the

hierarchy are left to model the other factors of shape variation. Moreover, this latent space

can be made two- or three- dimensional, enabling the direct visualisation of the classifica-

tion space and the estimation of the posterior distribution of the shape classes. Sampling

from this posterior distribution affords for the visualisation on a template shape of the

most distinctive morphological shape features of the different clinical conditions under

exam, hence enabling automated, data-driven population-based inferences.

Learning to generate 3D high-resolution cardiac shape from 2D views. In

a preliminary study, this thesis introduces a first, simple deep conditional generative
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model architecture able to reconstruct 3D high-resolution LV segmentations from 2D

LV segmentations of one short-axis and two long-axis routinely acquired images. The

proposed model was evaluated on unseen healthy volunteers, outperforming competing

architectures, and could allow for automated reconstruction of three-dimensional high-

resolution cardiac phenotypes from routine acquisitions.

7.3 Limitations and Future Work

One of the main focuses of this work is to be able to process a large database of shapes

with deep neural networks, aiming at modeling shape variation within a population. A

crucial point in shape analysis studies relies in the choice of the shape parametrization

to be employed. In the literature, multiple shape representations have been previously

explored and concurrently to this work, in the last years, several approaches aiming at pro-

cessing shape with deep learning methods have been proposed. In this work, a volumetric

representation of cardiac shape was adopted, i.e a probabilistic distribution of binary

variables on a 3D voxel grid. This enabled the full exploitation of 3D convolutional and

up-convolutional layers properties, which make deep learning architectures such powerful

and efficient feature extractors. However, one important drawback of adopting such vol-

umetric representations is their memory and computational requirements which increase

cubically with the input resolution [319]. Shape analysis approaches on point clouds could

guarantee a significant reduction of such computational requirements [186, 320]. In the

analysis of pathologies of the myocardium, regional changes in volume are of main inter-

est, and point clouds could provide an effective way to study such shape changes, being

the classification task primarily interested in regional contraction or expansion of the

myocardial wall. Furthermore, deep learning methods on point clouds could not require

co-registered input shapes for model training [189, 186, 315], currently another limitation

of the proposed approaches. Specific data augmentation strategies in combination with

spatial transformer modules [302] to align all the input shapes to a canonical space could
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alternatively constitute a viable shortcoming for this limitation.

Geometric deep learning approaches have been introduced to generalize convolution op-

erations to non-Euclidean domains, on which medical shapes naturally live in contrast to

2D/3D images, and to enable learning on graph structured data [321, 195]. An interesting

direction for future work consists in encoding at each vertex of a subject mesh multiple

3D structural information together with motion and tissue data. This would enable the

construction of a comprehensive representation of the cardiac phenotype as a graph that

can be processed with graph CNNs. Many classification and survival prediction tasks

are expected to benefit from this richer representation of the cardiac phenotype. The

methods based on shape auto-encoding reported in this work could be applied to this new

input data by employing graph CNNs in place of regular convolutions. Distance metric

learning approaches aiming at separate subjects from different classes and at obtaining

population-level saliency maps, which have been recently applied to analyse functional

brain networks [322, 323], should also be explored.

In Chapter 5, two common and simple classification tasks were investigated to evaluate

the proposed model properties for explainable shape analysis. However, additional work

is required to fully explore the full model potential on more complex shape classification

tasks. A first and more challenging application could consist in deploying the model

to characterize distinct disease subgroups by their clinical endpoints. In this scenario,

the database of shapes under exam is expected to be more heterogeneous and the shape

changes more challenging to be captured. Secondly, the deployment of the proposed

models for end-to-end unsupervised clustering of shapes is another interesting direction

of future work. This latter could be achieved by adopting as prior distribution discrete

random variables [304] or a Gaussian mixture [305] in the highest latent space. Both the

aforementioned directions could provide better patient stratification rules than currently

employed global indices, and help the discovery of homogeneous disease subgroups in an

automated, data-driven way, while also enabling the visualisation of their morphologi-
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cal characteristics. Moreover, it is unrealistic to expect that the proposed models could

be employed in the clinical practice without incorporating the information provided by

conventional clinical covariates and other non-imaging measurements. Therefore, a rel-

evant direction of investigation consists in being able to include such information, for

example by conditioning the latent spaces [324, 325]. This would help the model learn

better, prognostically discriminative remodelling patterns, and potentially improve both

its sensitivity and specificity.

An end-to-end learned and explainable low dimensional representation of 3D heart shape

could more effectively capture the heart phenotype and better inform imaging-genetics

studies than simple volumetric measurements. Thus, the application of autoencoded

shape representations as novel imaging-derived metrics is another interesting direction for

future work, including their employment in multi-trait genome-wide association studies.

This class of studies is known for being currently lacking of statistical power, which has

not only been attributed to the massive multiple testing correction they require, but

also to phenotyping resolution issue [69]. Being able to capture disease-related high-

resolution anatomical variation into a low-dimensional representation, and to link it to

genetic variables thus constitutes an interesting future application.

Finally, the presented imaging-genetics framework requires high-spatial resolution CMR,

which is not available in all populations. Also, the studied models for interpretable shape

analysis presented in this work required to process their inputs with up-sampling and mo-

tion correction procedures to enhance the quality of segmentations to be studies. Starting

from the evidence collected in this work about the feasibility of end-to-end learning of

generative shape models, in Chapter 6 a first generative model able to generate such high-

resolution phenotypic representation from standard acquisitions was introduced. However,

further analysis is required to investigate the feasibility and accuracy of this approach on

large-scale imaging cohorts. This includes the training of the proposed approach on real

views segmentations and/or images, and testing more sophisticated generative models
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and decoder networks [326, 316, 189]. For this latter objective, being able to exploit

more computationally efficient shape representations requires additional investigations,

and informing the generative process by exploiting non-imaging measurements routinely

acquired in the clinical practice should also be considered in this context.

7.4 Conclusion

An important challenge to be addressed to fully exploit the potential of large-scale imaging

studies of the heart relies in the development of novel, automated data-driven methods

to extract new clinical insights from this unprecedented volume of big heart data. The

approaches proposed in this work show that machine learning methodologies can facilitate

high-throughput analysis of normal and pathological anatomy of the heart, and of its

determinants, without losing clinical interpretability.
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Appendix A

I report here additional visual results of the method proposed in Chapter 5 for the cardiac

application. Figures 7.1 and 7.2 illustrate the anatomical variability encoded by the

highest space zzz3. Figures 7.3, 7.4, 7.5 and 7.6, 7.7 show additional reconstruction examples

of HVol and HCM segmentations.
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Figure 7.1: Long-axis section of reconstructed segmentations at ED by the LVAE+MLP
model by sampling from different points in z3 and subsequently from the prior distribution
of the latent variables z2 and z1.
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Figure 7.2: Long-axis section of reconstructed segmentations at ES by the LVAE+MLP
model by sampling from different points in z3 and subsequently from the prior distribution
of the latent variables z2 and z1.



Figure 7.3: Long-axis section of an healthy subject reconstructed segmentations at ED
and ES by the LVAE+MLP model using only z3 information (first column) or also using
the posterior information of the other latent spaces (z2, z1) . Last column: ground-truth
(GT) segmentation. DSC = Dice Score between the segmentation at that column and
the GT.

Figure 7.4: Long-axis section of an healthy subject reconstructed segmentations at ED
and ES by the LVAE+MLP model using only z3 information (first column) or also using
the posterior information of the other latent spaces (z2, z1) . Last column: ground-truth
(GT) segmentation. DSC = Dice Score between the segmentation at that column and
the GT.
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Figure 7.5: Long-axis section of an HCM patient reconstructed segmentations at ED and
ES by the LVAE+MLP model using only z3 information (first column) or also using the
posterior information of the other latent spaces (z2, z1) . Last column: ground-truth (GT)
segmentation. DSC = Dice Score between the segmentation at that column and the GT.

Figure 7.6: Long-axis section of an HCM patient reconstructed segmentations at ED and
ES by the LVAE+MLP model using only z3 information (first column) or also using the
posterior information of the other latent spaces (z2, z1) . Last column: ground-truth (GT)
segmentation. DSC = Dice Score between the segmentation at that column and the GT.
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Figure 7.7: Long-axis section of an HCM patient reconstructed segmentations at ED and
ES by the LVAE+MLP model using only z3 information (first column) or also using the
posterior information of the other latent spaces (z2, z1) . Last column: ground-truth (GT)
segmentation. DSC = Dice Score between the segmentation at that column and the GT.
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Mansi. Learning a probabilistic model for diffeomorphic registration. IEEE Trans-

actions on Medical Imaging, 2019.

[231] Cheng Ouyang, Konstantinos Kamnitsas, Carlo Biffi, Jinming Duan, and Daniel

Rueckert. Data efficient unsupervised domain adaptation for cross-modality im-

age segmentation. In International Conference on Medical Image Computing and

Computer-Assisted Intervention, pages 669–677. Springer, 2019.

[232] E. Hosseini-Asl et al. Alzheimer’s disease diagnostics by adaptation of 3D convolu-

tional network. In Image Processing (ICIP), 2016 IEEE International Conference

on, pages 126–130. IEEE, 2016.

[233] Alejandro Barredo Arrieta, Natalia Dı́az-Rodŕıguez, Javier Del Ser, Adrien Ben-
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Siegfried Wahl. Leveraging uncertainty information from deep neural networks for

disease detection. Scientific reports, 7(1):1–14, 2017.

[241] Ryutaro Tanno, Daniel Worrall, Enrico Kaden, Aurobrata Ghosh, Francesco

Grussu, Alberto Bizzi, Stamatios N Sotiropoulos, Antonio Criminisi, and Daniel C



BIBLIOGRAPHY 179

Alexander. Uncertainty quantification in deep learning for safer neuroimage en-

hancement. arXiv preprint arXiv:1907.13418, 2019.

[242] Shi Hu, Daniel Worrall, Stefan Knegt, Bas Veeling, Henkjan Huisman, and Max

Welling. Supervised uncertainty quantification for segmentation with multiple an-

notations. In International Conference on Medical Image Computing and Computer-

Assisted Intervention, pages 137–145. Springer, 2019.

[243] Simon Kohl, Bernardino Romera-Paredes, Clemens Meyer, Jeffrey De Fauw,

Joseph R Ledsam, Klaus Maier-Hein, SM Ali Eslami, Danilo Jimenez Rezende, and

Olaf Ronneberger. A probabilistic u-net for segmentation of ambiguous images. In

Advances in Neural Information Processing Systems, pages 6965–6975, 2018.

[244] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Ried-

miller. Striving for simplicity: The all convolutional net. arXiv preprint

arXiv:1412.6806, 2014.

[245] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.

Object detectors emerge in deep scene cnns. arXiv preprint arXiv:1412.6856, 2014.

[246] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Region-based con-

volutional networks for accurate object detection and segmentation. IEEE transac-

tions on pattern analysis and machine intelligence, 38(1):142–158, 2015.

[247] Kristoffer Wickstrøm, Michael Kampffmeyer, and Robert Jenssen. Uncertainty and

interpretability in convolutional neural networks for semantic segmentation of col-

orectal polyps. Medical Image Analysis, 60:101619, 2020.
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