2,026 research outputs found

    A Prolog compiler and its extension for OR-parallelism

    Get PDF
    This report describes algorithms for the compiler component of the Aurora Or-Parallel Prolog system. The compiler translates one Prolog clause at a time into a sequence of abstract instructions. The instruction set is based on the sequential Warren Ab- stract Machine (WAM) with extensions for full Prolog, shallow backtracking, memory management and garbage collection, and for the SRI model of or-parallel execution of Prolog. Most of the described algorithms apply to compilation of sequential Prolog programs. The extensions introduced to support or-parallelism are minor, and concern pruning operators (cut and commit) and compile-time allocation of binding array offsets for permanent variables (generalised environment trimming). Code generation proper is kept separate from register allocation, and uses heuristics for finding a compilation order which minimises the number of register-register copies. After such copies have been coalesced where possible, register allocation is performed in a single pass over the intermediate code. The various compilation phases are described in detail, and the implementation is compared with some other compilers

    On the Efficiency of Optimising Shallow Backtracking in Prolog

    Get PDF
    The cost of backtracking has been identified as one of the bottlenecks in achieving peak performance in compiled Prolog programs. Much of the backtracking in Prolog programs is shallow, i.e. is caused by unification failures in the head of a clause when there are more alternatives for the same procedure, and so special treatment of this form of backtracking has been proposed as a significant optimisation. This paper describes a modified WAM which optimises shallow backtracking. Four different implementation approaches are compared. A number of benchmark results are presented, measuring the relative tradeoffs between compilation time, code size, and run time. The results show that the speedup gained by this optimisation can be significant

    On the Implementation of GNU Prolog

    Get PDF
    GNU Prolog is a general-purpose implementation of the Prolog language, which distinguishes itself from most other systems by being, above all else, a native-code compiler which produces standalone executables which don't rely on any byte-code emulator or meta-interpreter. Other aspects which stand out include the explicit organization of the Prolog system as a multipass compiler, where intermediate representations are materialized, in Unix compiler tradition. GNU Prolog also includes an extensible and high-performance finite domain constraint solver, integrated with the Prolog language but implemented using independent lower-level mechanisms. This article discusses the main issues involved in designing and implementing GNU Prolog: requirements, system organization, performance and portability issues as well as its position with respect to other Prolog system implementations and the ISO standardization initiative.Comment: 30 pages, 3 figures, To appear in Theory and Practice of Logic Programming (TPLP); Keywords: Prolog, logic programming system, GNU, ISO, WAM, native code compilation, Finite Domain constraint

    Optimizing the SICStus Prolog virtual machine instruction set

    Get PDF
    The Swedish Institute of Computer Science (SICS) is the vendor of SICStus Prolog. To decrease execution time and reduce space requirements, variants of SICStus Prolog's virtual instruction set were investigated. Semi-automatic ways of finding candidate sets of instructions to combine or specialize were developed and used. Several virtual machines were implemented and the relationship between improvements by combinations and by specializations were investigated. The benefits of specializations and combinations of instructions to the performance of the emulator is on the average of the order of 10%. The code size reduction is 15%

    Efficient management of backtracking in and-parallelism

    Full text link
    A backtracking algorithm for AND-Parallelism and its implementation at the Abstract Machine level are presented: first, a class of AND-Parallelism models based on goal independence is defined, and a generalized version of Restricted AND-Parallelism (RAP) introduced as characteristic of this class. A simple and efficient backtracking algorithm for R A P is then discussed. An implementation scheme is presented for this algorithm which offers minimum overhead, while retaining the performance and storage economy of sequent ial implementations and taking advantage of goal independence to avoid unnecessary backtracking ("restricted intelligent backtracking"). Finally, the implementation of backtracking in sequential and AND-Parallcl systems is explained through a number of examples

    Delimited continuations for Prolog

    Get PDF
    Delimited continuations are a famous control primitive that originates in the functional programming world. It allows the programmer to suspend and capture the remaining part of a computation in order to resume it later. We put a new Prolog-compatible face on this primitive and specify its semantics by means of a meta-interpreter. Moreover, we establish the power of delimited continuations in Prolog with several example definitions of high-level language features. Finally, we show how to easily and effectively add delimited continuations support to the WAM
    • …
    corecore