738 research outputs found

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future

    An Implementation Approach and Performance Analysis of Image Sensor Based Multilateral Indoor Localization and Navigation System

    Full text link
    Optical camera communication (OCC) exhibits considerable importance nowadays in various indoor camera based services such as smart home and robot-based automation. An android smart phone camera that is mounted on a mobile robot (MR) offers a uniform communication distance when the camera remains at the same level that can reduce the communication error rate. Indoor mobile robot navigation (MRN) is considered to be a promising OCC application in which the white light emitting diodes (LEDs) and an MR camera are used as transmitters and receiver respectively. Positioning is a key issue in MRN systems in terms of accuracy, data rate, and distance. We propose an indoor navigation and positioning combined algorithm and further evaluate its performance. An android application is developed to support data acquisition from multiple simultaneous transmitter links. Experimentally, we received data from four links which are required to ensure a higher positioning accuracy

    Role of Reconfigurable Intelligent Surfaces in 6G Radio Localization: Recent Developments, Opportunities, Challenges, and Applications

    Full text link
    Reconfigurable intelligent surfaces (RISs) are seen as a key enabler low-cost and energy-efficient technology for 6G radio communication and localization. In this paper, we aim to provide a comprehensive overview of the current research progress on the RIS technology in radio localization for 6G. Particularly, we discuss the RIS-assisted radio localization taxonomy and review the studies of RIS-assisted radio localization for different network scenarios, bands of transmission, deployment environments, as well as near-field operations. Based on this review, we highlight the future research directions, associated technical challenges, real-world applications, and limitations of RIS-assisted radio localization

    Simulating and Modeling the Signal Attenuation of Wireless Local Area Network for Indoor Positioning

    Get PDF
    Location is a key filter for mobile services, including navigation or advertising. However, positioning and localization inside buildings and in indoor spaces, where users spend most of their time and where the signals of the most widely-used positioning system, i.e. Global Navigation Satellite Systems such as GPS (Global Positioning System), are not available, can be challenging. In this regard, Wireless Local Area Networks (WLAN), e.g. Wi-Fi, can be used for positioning purposes by using a WLAN-enabled device, e.g. a smartphone, to measure and match the Received Signal Strength (RSS) of a signal broadcast by an access point. The challenges of this approach are that accurate maps of RSS are required, and that measuring RSS can be affected by many factors, including the dynamics of the environment and the orientation and type of a device. This paper provides a path-loss model to produce RSS maps automatically from floor plans and introduces an agent-based simulation approach to investigate different positioning methods. This provides a pathway to reduce the time and effort associated with WLAN positioning research

    GNSS-free outdoor localization techniques for resource-constrained IoT architectures : a literature review

    Get PDF
    Large-scale deployments of the Internet of Things (IoT) are adopted for performance improvement and cost reduction in several application domains. The four main IoT application domains covered throughout this article are smart cities, smart transportation, smart healthcare, and smart manufacturing. To increase IoT applicability, data generated by the IoT devices need to be time-stamped and spatially contextualized. LPWANs have become an attractive solution for outdoor localization and received significant attention from the research community due to low-power, low-cost, and long-range communication. In addition, its signals can be used for communication and localization simultaneously. There are different proposed localization methods to obtain the IoT relative location. Each category of these proposed methods has pros and cons that make them useful for specific IoT systems. Nevertheless, there are some limitations in proposed localization methods that need to be eliminated to meet the IoT ecosystem needs completely. This has motivated this work and provided the following contributions: (1) definition of the main requirements and limitations of outdoor localization techniques for the IoT ecosystem, (2) description of the most relevant GNSS-free outdoor localization methods with a focus on LPWAN technologies, (3) survey the most relevant methods used within the IoT ecosystem for improving GNSS-free localization accuracy, and (4) discussion covering the open challenges and future directions within the field. Some of the important open issues that have different requirements in different IoT systems include energy consumption, security and privacy, accuracy, and scalability. This paper provides an overview of research works that have been published between 2018 to July 2021 and made available through the Google Scholar database.5311-8814-F0ED | Sara Maria da Cruz Maia de Oliveira PaivaN/

    Passive round-trip-time positioning in dense ieee 802.11 networks

    Get PDF
    The search for a unique and globally available location solution has attracted researchers for a long time. However, a solution for indoor scenarios, where high accuracy is needed, and Global Positioning System (GPS) is not available, has not been found yet. Despite the number of proposals in the literature, some require too long a calibration time for constructing the fingerprinting map, some rely on the periodic broadcast of positioning information that may downgrade the data communication channel, while others require specific hardware components that are not expected to be carried on commercial off-the-shelf (COTS) wireless devices. The scalability of the location solution is another key parameter for next-generation internet of things (IoT) and 5G scenarios. A passive solution for indoor positioning of WiFi devices is first introduced here, which merges a time-difference of arrival (TDOA) algorithm with the novel fine time measurements (FTM) introduced in IEEE 802.11mc. A proof of concept of the WiFi passive TDOA algorithm is detailed in this paper, together with a thorough discussion on the requirements of the proposed algorithmThis work was funded by the Spanish Government and European Regional Development Fund (ERDF) through Comisión Interministerial de Ciencia y Tecnología (CICYT) under Project PGC2018-099945-B-I00.Peer ReviewedPostprint (published version

    Self-healing radio maps of wireless networks for indoor positioning

    Get PDF
    Programa Doutoral em Telecomunicações MAP-tele das Universidades do Minho, Aveiro e PortoA Indústria 4.0 está a impulsionar a mudança para novas formas de produção e otimização em tempo real nos espaços industriais que beneficiam das capacidades da Internet of Things (IoT) nomeadamente, a localização de veículos para monitorização e optimização de processos. Normalmente os espaços industriais possuem uma infraestrutura Wi-Fi que pode ser usada para localizar pessoas, bens ou veículos, sendo uma oportunidade para aumentar a produtividade. Os mapas de rádio são importantes para os sistemas de posicionamento baseados em Wi-Fi, porque representam o ambiente de rádio e são usados para estimar uma posição. Os mapas de rádio são constituídos por amostras Wi-Fi recolhidas em posições conhecidas e degradam-se ao longo do tempo devido a vários fatores, por exemplo, efeitos de propagação, adição/remoção de APs, entre outros. O processo de construção do mapa de rádio costuma ser exigente em termos de tempo e recursos humanos, constituindo um desafio considerável. Os veículos, que operam em ambientes industriais podem ser explorados para auxiliar na construção de mapas de rádio, desde que seja possível localizá-los e rastreá-los. O objetivo principal desta tese é desenvolver um sistema de posicionamento para veículos industriais com mapas de rádio auto-regenerativos (capaz de manter os mapas de rádio atualizados). Os veículos são localizados através da fusão sensorial de Wi-Fi com sensores de movimento, que permitem anotar novas amostras Wi-Fi para o mapa de rádio auto-regenerativo. São propostas duas abordagens de fusão sensorial, baseadas em Loose Coupling e Tight Coupling, para a localização dos veículos. A abordagem Tight Coupling inclui uma métrica de confiança para determinar quando é que as amostras de Wi-Fi devem ser anotadas. Deste modo, esta solução não requer calibração nem esforço humano para a construção e manutenção do mapa de rádio. Os resultados obtidos em experiências sugerem que esta solução tem potencial para a IoT e a Indústria 4.0, especialmente em serviços de localização, mas também na monitorização, suporte à navegação autónoma, e interconectividade.Industry 4.0 is driving change for new forms of production and real-time optimization in factories, which benefit from the Industrial Internet of Things (IoT) capabilities to locate industrial vehicles for monitoring, improving safety, and operations. Most industrial environments have a Wi-Fi infrastructure that can be exploited to locate people, assets, or vehicles, providing an opportunity for enhancing productivity and interconnectivity. Radio maps are important for Wi-Fi-based Indoor Position Systems (IPSs) since they represent the radio environment and are used to estimate a position. Radio maps comprise a set of Wi- Fi samples collected at known positions, and degrade over time due to several aspects, e.g., propagation effects, addition/removal of Access Points (APs), among others, hence they should be periodically updated to maintain the IPS performance. The process to build and maintain radio maps is usually time-consuming and demanding in terms of human resources, thus being challenging to perform. Vehicles, commonly present in industrial environments, can be explored to help build and maintain radio maps, as long as it is possible to locate and track them. The main objective of this thesis is to develop an IPS for industrial vehicles with self-healing radio maps (capable of keeping radio maps up to date). Vehicles are tracked using sensor fusion of Wi-Fi with motion sensors, which allows to annotate new Wi-Fi samples to build the self-healing radio maps. Two sensor fusion approaches based on Loose Coupling and Tight Coupling are proposed to track vehicles. The Tight Coupling approach includes a reliability metric to determine when Wi-Fi samples should be annotated. As a result, this solution does not depend on any calibration or human effort to build and maintain the radio map. Results obtained in real-world experiments suggest that this solution has potential for IoT and Industry 4.0, especially in location services, but also in monitoring and analytics, supporting autonomous navigation, and interconnectivity between devices.MAP-Tele Doctoral Programme scientific committee and the FCT (Fundação para a Ciência e Tecnologia) for the PhD grant (PD/BD/137401/2018

    Viability and Performance of RF Source Localization Using Autocorrelation-Based Fingerprinting

    Get PDF
    Finding the source location of a radio-frequency (RF) transmission is a useful capability for many civilian, industrial, and military applications. This problem is particularly challenging when done “Blind,” or when the transmitter was not designed with finding its location in mind, and relatively little information is available about the signal before-hand. Typical methods for this operation utilize the time, phase, power, and frequency viewable from received signals. These features are all less predictable in indoor and urban environments, where signals undergo transformation from multiple interactions with the environment. These interactions imprint structure onto the received signal which is dependent on the transmission path, and therefore the initial location. Using a received signal, a signal characteristic known as the autocorrelation can be computed which will largely be shaped by this information. In this research, RF source localization using finger-printing (a technique involving matching to a known database) with signal autocorrelations is explored. A Gaussian-process-based method for autocorrelation based fingerprinting is proposed. Performance of this method is evaluated using a ray-tracing-based simulation of an indoor environment
    corecore